UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA 3
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

RICARDO PARIZOTTO

Consistent Code Composition and Modular
Data Plane Programming

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Alberto Egon Schaeffer-Filho

Porto Alegre
May 2020

CIP — CATALOGING-IN-PUBLICATION

Parizotto, Ricardo

Consistent Code Composition and Modular Data
Plane Programming / Ricardo Parizotto. — Porto Alegre:
PPGC da UFRGS, 2020.

82 1.1l

Thesis (Master) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduagdo em Computacao, Porto Alegre, BR—
RS, 2020. Advisor: Alberto Egon Schaeffer-Filho.

1. Software Defined Networks. 2. Programmability. 3. Data
Plane. 4. Consistency. I. Schaeffer-Filho, Alberto Egon. II. Ti-
tulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Prof®. Jane Fraga Tutikian

Pré-Reitor de Pos-Graduagao: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informatica: Prof*. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof*. Luciana Salete Buriol

Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“Nothing is so painful to the human mind as a great and sudden change.”

— MARY SHELLEY

ACKNOWLEDGEMENTS

First, I would like to thank my family: my mom, Natalina Parizotto, my father
Nilvo Parizotto and my sisters Rafaela and Luciana Parizotto, for their love and support.
Thank you for being so understanding when I missed countless family meetings because
I was distant.

I would like to thank my advisor, Alberto Egon Schaeffer-Filho. Alberto has a
remarkable ability to shape ideas and helped me keep focused on this project. He always
expects the best from me, and this leads me to make a work that now I am really proud
of. I will always be grateful for his guidance.

I would like to express my gratitude to my collaborators during the making of this
thesis. I would like to give a special thanks to Lucas Castanheira, my co-author, who has
special technical contributions to this work. It has been a pleasure to work with Arthur
Jacobs, Fernanda Bonetti, and Luciano Zembruzki. I would like to give my special thanks
to Rafael Riberio, my colleague since my time in undergraduate school and lab-mate. I

also greatly enjoyed having Leonardo Lauryel friendship while I wrote this thesis.

ABSTRACT

Programmable Data Planes (PDP) enable more flexibility for the operation of networks.
The various benefits of programmability have led the community to develop new software
on both academic and industrial capacities. To fully reap the benefits of programmability,
it should be feasible to compose and operate multiple PDP functions into a single target
switch as needed. However, existing techniques are not suitable in the sense that they use
an excessive number of parser states and tables, and lack abstractions for the steering of
packets through the control flows. As such, they do not support modular composition of
PDP functions. This thesis proposes PRIME, a composition mechanism of in-network
functions that also addresses the fundamental needs of packet steering between PDP pro-
gram modules. PRIME enables network operators to specify compositions of network
functions written in P4 and how traffic traverses them. The composition employs a verifi-
cation phase to identify ambiguities at source code level and avoid loops inside the switch
pipeline. An additional table and a control plane management system enforce the steering
of packets through control flows. We present a prototype of PRIME, along with a proof
of the steering correctness. The results shows that it is possible to achieve module-wide

compositions at little additional cost in terms of delay and throughput.

Keywords: Software Defined Networks. Programmability. Data Plane. Consistency.

Composicao Consistente de Codigo e Programaciao Modular do Plano de Dados

RESUMO

Planos de dados programéveis (PDP) permitem mais flexibilidade para a operacdo de
redes. Os vdrios beneficios da programabilidade levaram a comunidade a desenvolver
novos softwares, tanto na academia quanto na industria. Para aproveitar plenamente os
beneficios da programabilidade, deve ser possivel compor e operar varias fun¢des do PDP
em um unico switch de destino, conforme necessario. No entanto, as técnicas existentes
nao sdo adequadas no sentido em que usam um numero excessivo de estados e tabelas
de encaminhamento e ndo possuem abstracdes para o direcionamento interno de pacotes
através dos fluxos de controle. Portanto, as técnicas existentes ndo suportam a compo-
sicdo modular de funcdes ao PDP. Esta dissertacdo propde PRIME, um mecanismo de
composicao de fungdes em rede que também atende as necessidades fundamentais do di-
recionamento interno de pacotes entre os modulos de um programa PDP. PRIME permite
que os operadores de rede especifiquem composi¢des de fungdes de rede escritas em P4 e
como o trafego as atravessa. A composi¢ao emprega uma fase de verificacio para identi-
ficar ambiguidades em nivel do codigo fonte e evitar loops dentro do pipeline do switch.
Uma tabela adicional e um sistema de gerenciamento para o plano de controle garantem
o direcionamento de pacotes através dos fluxos de controle. Apresentamos um prototipo
do PRIME, juntamente com uma prova da corretude do médulo de direcionamento de
trafego. Os resultados mostram que € possivel obter composi¢cdes de médulos com pouco

custo adicional em termos de atraso e taxa de transferéncia.

Palavras-chave: Redes Definidas por Software, Programabilidade, Plano de Dados, Con-

sisténcia.

ALU

ASIC

CPU

DPI

FPGA

ICF

INT

MAT

MAU

NFV

NF

P4

PDP

PISA

SDN

SRAM

SFC

TCAM

LIST OF ABBREVIATIONS AND ACRONYMS

Arithmetic Logic Unit
Application-specific integrated circuit
Central Processing Unit

Deep Packet Inspection

Field Programmable Gate Array
In-Network Computing Function

In-Band Network Telemetry
Match-Action Tables

Match-Action Units

Network Function Virtualization

Network Function

Programming Protocol-independent Packet Processor
Programmable Data Planes

Protocol Independent Switch Architecture
Software Defined Network

Static Random-Access Memory

Service Function Chaining

Ternary Content Addressable Memory

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 3.1
Figure 3.2
Figure 3.3

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

LIST OF FIGURES

Switch State tranSItON.......eeiiuieiiiiieiiee ettt 13
SDN High-level architeCturec.coeviieriieeiiierieeeieeeiee et 16
Protocol Independent Switch Architecture..........ccccveeeviveeriieesieeeniieeieeee. 18
Abstract Packet Processing Modelcccooviiiiiiiiniiniiniiiiecieceeeeee, 19
Example of Packet Parserccocovviiiiiiiiiniiiiceceeeeeeee e 19
Example Ingress Control FIOWc.cccociiiiiniiiiiiniiiiiececcceceee, 20
EXample DeParser.......cc.coiiiiiiiiiiiieniieeieeete et 20
High-Level Architecture of PRIME.cccccoooiiiiiiiiiiieeeceeee, 23
Graphic representation of packet parser trees COmpoSition.............ceeveeneee. 25
Traffic steering through program modulescccccevviieriiieniieeniieeeieeen. 29
Description of Implementation of PRIMEcccoceiiiiiininiieeee. 33
Compilation and Program Building Methodologycccccevvieiniiennicnnnen. 34
Example flow COMPOSILIONoevvuiiiriieiiiieiieeieeeiee et 35
Example catalog written in P4ccoooiiiiiiiiieiiieie e 36
Example ingress host program written in P4ccoooiiniiiiiiininiee, 36
TRIOUZNPUL ..o et e et e e e 41
| D 11C) 1 L) OO U 42
P4Visor vs PRIME: Latencyccccovuiiiiiiiniiiiiieeieeeeeeeee e 43

P4Visor vs PRIME: Throughput..........ccocceoiiiiiiiiiiiiieecceceeeee, 44

LIST OF TABLES

Table 5.1 Code MELrICS OF The USE CASES . .evvmmneeetieeee et e et e e e e e e e eeeees
Table 5.2 Resource Overhead of PRIME and PAVISOLcoveueeeeeeeeeeeeeeeeeeeeeeeeee e

Table 6.1 Scope of operation and characteristics of recent Work............ccceeevveeiieennenn.

CONTENTS

1 INTRODUCTION..... 11
1.1 Problem Statement w11
1.2 Research Goals...... . . w12
1.3 Summary of Contributions w13
1.4 Thesis Outline 14
2 BACKGROUND 15
2.1 Software-Defined Networking.... 15
2.1.1 SDN Architecture & Conceptual Planes...........cccoevveeriieeiiiieniiieeiieeeieeeeiee e 15
2.1.2 OPENFIOW ..cciiniiiiiiiiiiie ettt e et e e sttt e e et e e e s abeeeeentaeaeeans 17
2.2 Programmable Data Planes A7
2.2.1 Protocol Independent Switch Archltecture .. 18
2.2.2 P4: High-Level Data Plane Programming LANGUAEZEcccueeeeeerveeeeeuenans 18
3 PRIME: DESIGN AND ALGORITHMS w22
3.1 Overview..... . . w22
3.2 Combining Header Instances w24
3.2.1 Extending Parsing TIEEScccociiiiiiiiiiiiiieieeneeeeeeeeeeete e 24
3.2.2 DEPAISINGveenvieiieiiieiieeite ettt sttt et sat ettt set e ettt et s bt e be e bbb e senes 26
3.3 Control Flow Arrangement .26
3.3.1 Function CataloZINg........c.eeeiuiieriieeiiieenieeeiieesieeesiteesteeeiveesteeennaeesseeensaeesnseeenns 26
3.3.2 Constructs DiSambigUatiONccccuiieiriiiiieiiiiiieeeniieeesriteeeeieeeeesieeeesibeeesseaeeeenns 27
3.4 Traffic Control . .28
3.4.1 ConsiStent UPAec..coeuiiiiiiiiiniiiiieieneeee ettt 29
3.4.2 EnfOrcing COITECINESS.eieiuiieriiieeriieeeiieeriteeeite e st e siteesiteesbee et esbeeesabeesbeeesaneas 30
4 IMPLEMENTATION 33
4.1 Prototype Overview .33
4.2 Composition Compiler..... .34
4.3 Steering API 34
5 EXPERIMENTAL SETUP. 38
5.1 Use Cases..... .38
5.2 Metrics Formulation .40
5.3 Assessing Compositions... . . .41
5.4 Comparison with State-of-the-art 42
S.4.1 COAE MELTICS ..uvveeeeiiiieeeiiiteeeciteeeeeiee e e ettt e e eetaee e e taeeeesssaeeeessseeesnssseaessseeessnsseaeans 42
5.4.2 Steering PerfOrmance..........ocuuieiiiiiiiieniieeiieesiee ettt s 43
6 RELATED WORK ... 45
6.1 Data Plane Composition.. .45
6.2 Discussions.. ...46
7 CONCLUSIONS & FUTURE WORK .49
7.1 Summary and Contributions 49
7.2 Limitations.. 50
7.3 Future Work and Perspectives... .51
REFERENCES.. . . .52
APPENDIX A — PUBLISHED PAPER SBRC 2019. .58
APPENDIX B — ACCEPTED PAPER - NOMS 2020. 73

11

1 INTRODUCTION

Software-based paradigms for networking enable decoupling software solutions
from the hardware in which they execute, making the management and operation of the
network infrastructure more flexible and adaptive. Software-Defined Networking (SDN)
(FEAMSTER; REXFORD; ZEGURA, 2014) promotes the separation of the control logic
from the forwarding behavior of network devices. More recently, Programmable Data
Planes (PDP) offer more flexibility in the development of protocols and network func-
tionality by allowing packet processing at the line rate in the switch itself. This motivated
many emerging applications, such as NetCache (JIN et al., 2017) and P4xos (DANG et
al., 2016), to bring part of the processing back to the data plane to achieve economies of
scale and lower operating costs. As such, operators can leverage programmable hardware
to, for instance, process or analyze data (MUSTARD et al., 2019), thereby enabling faster
reactions in contrast to packet mirroring to middleboxes or controller-based applications

(SONCHACK et al., 2016; ERAN et al., 2019).

1.1 Problem Statement

Rather than writing monolithic functions, it should be straightforward for PDP
software to be shared and composed into switches as needed (FREIRE et al., 2018)(LIU
et al., 2018)(BENSON, 2019). However, existing languages for data plane programming
do not support modular development. P4 (“Programming Protocol-independent Packet
Processors”) (BOSSHART et al., 2014), one of the most popular languages for PDPs,
requires developers to perform extensive modifications into the function source code to
deploy it on existing applications. For instance, if a network operator wants to install
a new program in a switch that is already running a P4 program, both programs would
require modifications. As a result, researchers have responded by offering composition
instances that dedicate multiple PDP functions to the same physical target (HANCOCK;
MERWE, 2016). Composition typically refers to code merging techniques or virtual-
ization techniques (SAQUETTI et al., 2019b; SAQUETTI et al., 2019a; KRUDE et al.,
2019; ZHANG et al., 2019; LI et al., 2017; LI et al., 2018), which can both be utilized as
a programming model (ZHOU; BI, 2017) or for the automation of development. Hence,
composition try to avoid rewriting code from different functions manually and maintains

the semantics of the system.

12

Unfortunately, while composing multiple functions may promote better usage of
network resources, the management becomes more complex and error-prone. Current
efforts to compose various programs in a single target switch make use of an excessive
number of flow tables and parser states (HANCOCK; MERWE, 2016; ZHANG et al.,
2017; ZHENG; BENSON; HU, 2018). Consequently, these techniques can severely limit
throughput and increase latency in general-purpose hardware or do not fit in specialized
hardware, such as netFPGAs (SAQUETTI et al., 2019b) or ASICs (DANG et al., 2017).

Moreover, state-of-the-art techniques do not suffice to provide transitional con-
sistency between steering configurations. Without transitional consistency, changes in
the steering of flows through the program modules can create intermediary states, which
may cause misrouting and security holes (HAN et al., 2015) (REITBLATT et al., 2012)
(MATTOS; DUARTE; PUJOLLE, 2016). Thus, new techniques are required to allow new
applications to be composed, preserving transitional packet-consistency of traffic steering

and without degrading the performance of the data plane operation (HE et al., 2019).

1.2 Research Goals

We summarize the research goals of this thesis as follows:

Composition of Programs. We need to provide a data plane composition mech-
anism, allowing operators to use the mechanism on different scenarios. The composition
must allow different data plane programs to share the same switch resources, allowing
better resource usage compared to placing monolithic functions on sequences of different
switches. The process of sharing resources must provide intuitions about source code
merging to improve resource utilization.

Steering Definition. Composing multiple P4 programs into devices brings to-
gether the necessity of abstractions to steer flows through the composed modules. This,
in turn, creates new difficulties for the network operation. We must provide ways to steer
packets internally between composed programs. The steering configuration must be easy
to manage and semantically coherent with the policy specified by the network operator
(HAN et al., 2015), 1.e., we must support dynamic steering of internal functions avoiding
that each update creates state configurations with intermediary states. For example, Figure
1.1 presents two different states of traffic steering. In the example, network state ¢ steers
Flow 1 packets through programs (F1, £'3) and Flow 0 through programs (E2, E3), re-

spectively. For some reason, it might be desirable to achieve a transition between the state

13

configuration ¢ to state ¢/, in which (E'1, £2) process Flow 1. However, this change of
configuration is error-prone and can create undesirable intermediary states, i.e., a packet
may see part of state i and part of state i’. In the example, an intermediary state can
be created by performing the update of /1 before updating £2, leading a new packet to

reach E'2 without having the proper instructions to process it.
Figure 1.1: Switch state transition

In Out |

Q @ O

!

2 '
Flow 0 :
]

Ry State i
Source: The Author

State i’

1.3 Summary of Contributions

As programmers may want to instantiate programs without rewriting their con-
structs (e.g., tables, actions or parser states), we present a new mechanism to compose
P4 modules, which we call PRIME (Programming In-Network Modular Extensions). The
developer can perform the composition of functions placing an ordered set of programs
(e.g., security functions, including firewalls, access controls, and DPIs) and isolating re-
sources between them. A source code analysis phase detects and corrects ambiguities
between the control flow of modules, consequently avoiding undesired loops inside the
switch pipeline. Dynamically, PRIME allows network administrators to specify the steer-
ing of traffic through the composed programs. The key insight is to deploy programs
statically and use the per-packet state to steer flows using one single additional table.
PRIME then provides a control plane interface to specify steering updates and send the
necessary table entries to switches.

Overall, this thesis makes the following contributions:

e Identifies a set of requirements that network operators would require to compose
multiple functions at a single switch. Besides, it describes an architecture that can
be implemented without changes to the network hardware.

e Explores state machine composition techniques for providing an extension operator

for the P4 language that merges independent parsers.

e Designs a composition model for P4 programs and provides a control plane in-

14

terface to steer flows through the composed programs. The interface provides the

means to update the configuration without creating intermediary states.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents a brief overview
of Software Defined Networks and Programmable Data Planes. Chapter 3 presents the
main design principles of PRIME, as well as its architecture and algorithms. Chapter
4 presents implementation details. Chapter 5 presents the evaluation methodology, use
cases we built using existing P4 applications, and results obtained using the bmv2 soft-
ware switch. Chapter 6 presents the main related work and discussions. Finally, Chapter

7 presents the conclusions and future work.

15

2 BACKGROUND

In this chapter, we present the essential background for this work. Section 2.1
presents Software-Defined Networking (SDN) and its architecture. Next, Section 2.2
presents technical concepts about Programmable Data Planes (PDP). We finish the section

showing details of the P4 language and its configuration.

2.1 Software-Defined Networking

Software-Defined Networking (SDN) is a networking paradigm that brings soft-
ware abstractions to build network behavior. The main difference of SDN to traditional
networks is the decoupling of the control plane from the forwarding devices (data plane)
(FEAMSTER; REXFORD; ZEGURA, 2014). In SDN, network devices become simple
forwarding devices while the “brain” is implemented on the controller.

This paradigm brings several advantages compared to legacy methods. First, an
advantage of SDN is the simplification of the instantiation of new applications in the con-
trol plane when compared to traditional networks, where the data and control planes are
tightly coupled and typically operate in a distributed design (JARRAYA; MADI; DEB-
BABI, 2014). Second, with SDN, it is much easier to introduce new ideas to the network
through a software program, as it is easier to manipulate the network behavior through a
fixed set of commands (KIM; FEAMSTER, 2013). To this end, the architecture defines
conceptual planes and communication interfaces. Next, we discuss the architecture in

detail and how the conceptual planes are related.

2.1.1 SDN Architecture & Conceptual Planes

The SDN architecture, depicted in Figure 2.1, defines four conceptual planes and
communication interfaces.

The Management Plane is responsible for monitoring, configuring, and manag-
ing the network application behavior on each plane, e.g., making decisions according to
the network state. The management plane can be utilized to configure the data plane;
however, it does so infrequently.

The Application Plane is responsible for executing applications within the net-

16

Figure 2.1: SDN High-level architecture

Management
A A A Application
Manager > PPl PP2 PPn Plane
¢ NorthBound API
Control
M
anager o Controllery Controllery Controllern Plane

¢ SouthBound API

Manager | <> m Data
Plane
\— N —

Source: The Author

work infrastructure. Applications can build on an abstract view of the network to gather
information and make decisions. Examples of such applications are interfaces for net-
work visualization, load balancers, or analytics applications to detect suspicious network
behaviors for security.

The Control Plane defines the control logic, such as the implementation of routing
mechanisms. It is important to say that a logically centralized programming model given
by SDN does not imply a physically centralized system (KOPONEN et al., 2010). In
general, the control plane is composed of one or more controllers that monitor and con-
figure the data plane behavior (KREUTZ et al., 2014). In fact, such distribution usually is
made to obtain adequate levels of performance and reliability for the network (HELLER;
SHERWOOD; MCKEOWN, 2012).

The Data Plane includes devices responsible for forwarding packets (generally re-
ferred to as switches). The data plane only forwards packets according to rules received
from the control plane, i.e., they only take one packet from an input port and send to an
output port according to the forwarding rules. Traditionally, switches have the function-
ality fixed by application-specific integrated circuits (ASICs).

The controller operating system can offer an API to application developers. This
API is a common interface for developing applications. Typically we refer to this API
as the Northbound interface. The northbound interface abstracts low-level details to pro-
gram forwarding devices. Besides, the Southbound API defines the instruction set of
forwarding devices, which composes the Southbound Interface. Furthermore, the South-
bound Interface formalizes the way that the control and data plane interact (KREUTZ et
al., 2014).

17

2.1.2 OpenFlow

OpenFlow (MCKEOWN et al., 2008a) proposes a new protocol to perform exper-
imental tests on networks operators use every day. OpenFlow is the most widely accepted
and deployed open southbound standard for SDN (JAIN et al., 2013). The protocol pro-
vides three sources of information: First, event messages are sent when a link or port
change is triggered. Second, flow statistics are generated by the switch and collected by
the SDN controller. Thirty, a warning is sent to the controller when a new flow arrives,
and the switch does not know what to do with it, i.e., it still does not have rules to process
it (KREUTZ et al., 2014).

An OpenFlow switch is composed of three main parts: (1) the forwarding table,
which is associated with processing actions for each table entry; (2) a secure channel for
the switch to communicate with the control plane; and (3) the OpenFlow protocol, which
provides an open and standard way for the control plane to interact with the OpenFlow
switch. Each flow entry has simple actions associated with it: (1) forward, (2) encapsulate
and send to a controller, and (3) drop. The forward of packets map a flow to a given output
port. Such characteristics of the forwarding enable packets to be routed by the network.
Encapsulating packets to the control plane is typically performed for the first packet from
a flow in order to the controller to calculate a new route and install it on the forwarding
table (FOSTER et al., 2011). Finally, drop packets can be used for security reasons to
eliminate denial of service attacks or reduce discovery attacks to end hosts (SONCHACK
et al., 2016).

OpenFlow, however, is limited to a strict set of header fields and actions. To over-
come this limitation, the community is making efforts to make reconfigurable switches
(BIFULCO; RETVARI, 2018). Emerging switch architectures are enabling programmers
to reconfigure header fields and write their actions (HALEPLIDIS et al., 2015). The
reconfigurable architectures result in promising ways to leverage the network hardware
and their APIs to management. The main aspects of Programmable Data Planes are syn-

thetized next.

2.2 Programmable Data Planes

Data Plane Programmability has been proposed as a means to deploy new features

on forwarding devices without the need to buy new hardware. The development of speci-

18

fication languages such as P4 (BOSSHART et al., 2014) enabled operators to change the
behavior of programmable switches without rewriting low-level instructions (e.g., the ker-
nel of OvS (PFAFF et al., 2015), integrated circuits of hardware switches, or components

of simulation environments).

2.2.1 Protocol Independent Switch Architecture

The Protocol Independent Switch Architecture (PISA) architecture is one of the
technologies which enabled programmability. Figure 2.2 presents the standard PISA ar-
chitecture. The architecture divides the forwarding model into a programmable packet

parser, a pipeline of match+action logic, and a packet deparser.

Figure 2.2: Protocol Independent Switch Architecture

Match+Action
- | =B O -
£ -
—{} D] - D T —
- | B &b o

Source: The Author

The match+action logic is a mix of SRAM and TCAM for lookup tables, coun-
ters, meters, and generic hash tables. The action logic is composed of ALU’s and stands
for standard boolean and arithmetic operations, header modification operations, hashing
operations, etc. Programmable forwarding devices do not understand any protocols until
they get programmed. Programming languages, such as P4 (BOSSHART et al., 2014),
Domino (SIVARAMAN et al., 2016) and POX (LI et al., 2017), can specify a logic data
plane view and be mapped to the physical resources. In this work, we focus on P4, which

is the most popular language for the PDP.

2.2.2 P4: High-Level Data Plane Programming Language

P4 allows programming and configuration of forwarding devices, including spe-
cific actions or control calls. In contrast to standard OpenFlow switches (MCKEOWN et
al., 2008b), P4 enables network developers to build programs that modify the structure of

packet headers and can store complex network state on the data plane.

19

Figure 2.3: Abstract Packet Processing Model

Control
Program
Population Forwarding Rules
packet state
(metadata) Configuration
Parser Custom Deparser
i e MAT —>
packet-in packet-out
Ingress Egress —|

Recirculation
Source: The Author

A P4 architecture model is a contract between the P4 developer and the switch
manufacturer. Therefore, each switch manufacturer must provide a P4 compiler as well as
an architecture pattern for their hardware. Figure 2.3 shows an example of a P4 abstraction
to configure a PISA-based switch. The abstraction divides the data plane behavior into
three main blocks: the Parser, Control flows, and the Deparser:

Parser. P4 declares a parser state machine that describes how to extract headers
from incoming packets. The programmer declares names for each header field, so the
parser can reference bit fields into typed data, which the programmer can reference next

(JOSE et al., 2015).

Figure 2.4: Example of Packet Parser

1 parser Parser(packet_in packet,...) {

2 state start {transition parse_ethernet;}

3

4 state parse_ethernet {

5 packet.extract (hdr.ethernet);

6 transition select(hdr.ethernet.etherType) ({
7 TYPE_IPV4: parse_ipv4;

8 default: accept;

9 }
10 }

1 state parse_ipv4 {...}

Source: The Author

An example P4 parser is presented in Figure 2.4, where an ethernet header is
extracted, and a transition can be made to extract IPv4 header using the etherType
field value. After the parser processes a packet, the packet follows to a pipeline of control
flows.

Control Flows. Each control flow is composed of a set of logical match+action

tables implemented using match+action units (MAUs). An apply block specifies the se-

20

mantics and order that each MAU processes packets, reads, and modifies the content of

header attributes instantiated by the parser.

Figure 2.5: Example Ingress Control Flow

1 control Ingress(inout headers hdr, ...) {

2 action ipv4_forward(macAddr_t dstAddr) {...}
3

4 table ipv4_lpm {

5 key = {hdr.ipv4.dstAddr: lpm;}

6 actions = {ipv4_forward;}

7 size = 1024;

8 }

9 apply {ipv4_lpm.apply ()}

Source: The Author

In the example of Figure 2.5, the ingress match+action pipeline implements a
single table that routes 32-Bit IPv4 addresses using least prefix matching with at most
1024 entries. After the pipeline of control flows processes a packet, it follows to the
deparser.

Deparser. The Deparser writes internal variables to the packet header and emits
the packet to an output port (or recirculates it back to the parser). In practice, typed data
are assembled into bit fields of the packet header. In the example of Figure 2.6, the switch

first assembles et hernet header and then IPv4.

Figure 2.6: Example Deparser

1 control MyDeparser(packet_out packet, in headers

hdr) {
2 apply {
3 packet.emit(hdr. ethernet);
4 packet.emit (hdr.ipv4);

Source: The Author

The PDP abstraction divides the forwarding model into two stages: the configura-
tion and the population.

During the configuration, developers can program the parser state machine, the
structure of MAUs, and the semantics of control flows. In this phase, the developer also
defines header structures and internal registers. Packets can carry variables during its pro-

cessing, called metadata. Examples of metadata are output ports, timestamps of opera-

21

tions, and table-to-table states. Such examples are common in the underlying architecture
of P4, but developers can create their own metadata to develop new applications.

The population stage allows the operator to insert, remove, or modify entries of
the stateful objects, such as tables and registers that were created during the configuration
phase. In the case of P4, the language does not dictate table update behavior. Therefore
it is necessary to build tools on top of P4 to provide an update command for a different
target switch, i.e., when a packet matches a rule, an action is invoked with parameters

supplied by a control program.

22

3 PRIME: DESIGN AND ALGORITHMS

This chapter presents the system design and the algorithms used in this work.
First, Section 3.1 presents an overview of PRIME, as well as the system architecture and
terminology. Next, Section 3.2 presents the composition of packet parsers and deparsers.
Section 3.3 describes the composition of control flows and a source code analysis method.
Finally, Section 3.4 presents how to perform the steering of packets, and a proof of con-

sistency.

3.1 Overview

In this section, we describe an overview of PRIME (Programming In-Network
Modular Extensions), a mechanism for network administrators to compose different PDP
programs in each switch of the network.

PRIME is responsible for two main tasks: providing an P4 program as a basis
for the composition of functions and generating a programming interface (API) to steer
packets through program modules (e.g., tables) at run-time. As such, the system enables
network operators to easily deploy only the necessary modules in each switch without
rewriting code to build different configurations with the available programs. PRIME has
a controller interface, which interacts through an API with an base program. The com-
ponents of the base program were based in P4 and provide a programming model to host
compositions of in-network functions written as P4 programs for the data plane. Finally,
this is all supported by the PISA architecture on a target switch.

The function composition must preserve the following constraints:

e Function Isolation: the arrangement and composition must isolate network func-

tions. The isolation ensures that variables from different programs do not overlap.
e Loop-Freedom: both the steering and composition must ensure packets do not loop
inside the switch.

e Consistent Updates: updating the set of compositions of flows must be made con-

sistently, i.e., must not create intermediary states.

To identify the elements of the system as unequivocally as possible, we now
present the essential terminology used in this work: A Program is a syntactically cor-

rect P4 program, which can be verified by the language compiler. A Program Module

23

is a P4 program control block. A program module can be an ingress control or only a
packet parser that will be composed. Extensions are program modules required to be on
the host program. Each specific computation that can be invocated as part of a P4 program
is a Function. A Program may contain more than one function, and such information is

transparent for the composition mechanism.

Figure 3.1: High-Level Architecture of PRIME.

Network
Operator D Composition . .
"""""""""""" > eeoe

@ Updates i Q Code Merging
PRIME Y
Steering Composition
Interface Engine
Add Table
® " entries . (@ Deployment
¥

iR

Steering Table

Host Program
PDP Target

Source: The Author

Figure 3.1 presents the high-level architecture of PRIME. Firstly, network oper-
ators write separated and independent programs, running independently from each other
(Figure 3.1, Step 1). Secondly, the source code of multiple programs is merged into a
host program (Figure 3.1, Step 2), which provides primitives to steer packets through
them. The composition performs an analysis of the packet parsers and control flows to
ensure the program will operate with no loops or ambiguous states. If the merged code
passes this analysis, the new program is deployed on the switch (Figure 3.1, Step 3). Net-
work operators may define which sequences of programs will process a flow dynamically
by using a steering interface. The interface updates the switch state to multiplex packets
to a specific set of program modules (functions) (Figure 3.1, Step 4). Specifically, the
steering interface produces switch table entries and installs them on the switch (Figure
3.1, Step 5).

After discussing the design of the system, we now present in detail how to com-

pose data plane programs.

24

3.2 Combining Header Instances

Given a set of program extensions and the host program, the composition aggre-
gates the functionalities of the set of extensions to the host program. The system assumes
that each extension is syntactically correct and verified by the standard P4 compiler to per-
form the composition. Then, the system computes the composition by scanning parsers
and control flows and merges the respective structure definitions according to the seman-
tics of the composition and the characteristics of the modules themselves. These aspects

are explained in detail below.

3.2.1 Extending Parsing Trees

We assume for the extensions a general definition of packet parser trees, which
can fit most usual composition techniques. A parser tree is defined as an oriented graph
PG = (V, E), where each node represents a packet header, and each transition represents
the next protocol header. Let the composition operation on packet parsers of an extension
E and a host program H be C' : I'p x 'y +— I'. We define the composition of parsers as
the union of the set of terminal states, non-terminals, transitions, and header definitions

of the extension.

Algorithm 1: Handling the extension of parsers
Data: PGE = (SE,TE), PGH = (SH,TH)
Result: parser,,;

1 begin
for state € Sk do
if (state ¢ Sy) then
| Su < Sy U {state}

for transition € Tr do

if transition ¢ Ty then
| Tu < Ty U {transition}

Use in-depth search algorithm to identify loops and non-determinism

return Parserg,;

o R TR N7, B R ¥

Algorithm 1 presents a pseudo-code for handling the extension between two parser-
state machines. The composition result is a new parser state machine ', which merges
states with the same ID; and performs the union of state transitions from the extension

and the host parser.

25

Conflict-Free State Machines. To ensure that the composition is correct, we
constrain the scope of extensions, requiring the resulting parser to be deterministic and
loop-free. It is difficult to find the equivalence between two headers, therefore we consider
that two vertices are equivalent when they have the same header ID. These are restrictions
we need to enforce in order to ensure the composition of parser operates correctly. We
say that I'g extends 'y if I'p satisfies the restrictions imposed by I'y. For this, after
the modules are interpreted and merged, PRIME performs a custom verification phase
(SCHWERDFEGER; WYK, 2009).

The verification performs an in-depth search in the result of the union of packet
parsers. Once each packet parser is a tree, the composition can create a graph with loops
and non-determinism, and in this case, the verification will find existing loops. If the
composed code passes this analysis, i.e., I'p extends 'y, then 'y, = T'yp C T'py, it
can be considered “certified” and safely composed with the host program. Otherwise,
the administrator is notified with a warning. After receiving a warning, the administrator
should manually rename states and transitions that created the inconsistency. This would
also require to rewrite control flows invocations in the case that the object that created the
error is a header field. We intend to investigate ways to repair those cases automatically,
e.g., recirculating packets through a new independent parser that could not be merged

because of the host program restrictions (PRAKASH et al., 2015).

Figure 3.2: Graphic representation of packet parser trees composition
(a) Vlan Parser (b) Int Parser (c) Parser Composition

0x1212

Source: The Author

Figure 3.2 presents an example of the composition of the two parser state machines
that are shown in Figure 3.2a and Figure 3.2b. The composition result, depicted in Fig-
ure 3.2c, merges Ethernet, which now has the transition 0x8100 to Vlan and 0x1212
to INT. Finally, State ICMP is included in the parser with a transition 0x1 from already
known State IPv4. The inclusion of a new state also carries its header definitions, i.e.,
the composition merges the definitions of packet header and the state ICMP into the com-

posed program (GIBB et al., 2013).

26

3.2.2 Deparsing

Each state composed with the program must be carefully emitted to ensure packets
are well-formed (LOPES et al., 2016). For instance, the system should not emit IPv4
headers before emitting TCP, which could impact on out-of-order read/writes on the next
network hop. Once the structure of deparsers does not convey sufficient information to
establish a dependency among them, we cannot infer the order in which packet headers
must be emitted in the composed program. To avoid that disruption, the composition of
deparsers must (1) unite the set of emitted headers from both programs, and (2) create a
new deparser that emits headers in the same order as they are instantiated by the parser

(SONI; TURLETTI; DABBOUS, 2018).

3.3 Control Flow Arrangement

Control flows of P4 programs include additional definitions of actions, tables and
conditional branches (if-else statements) inside of control blocks. To extend functionali-
ties of two control blocks, we present a programming operator to compose P4 programs,
enabling the network administrator to isolate control flow blocks in a static manner (JIN

et al., 2015)(SUN et al., 2017).

3.3.1 Function Cataloging

The composition aggregates ingress and egress modules into an additional table in
the host program, which we call the “steering table” according to the semantics of the
composition operator and the constructs of the P4 program. The composition operator can
be utilized between two P4 programs to place the control flow of a new extension to the
beginning of the pipeline of the steering table. In practice, control flows of the programs
appear in the host program in the order in which they were composed.

Merging tables may promote space optimization, but creates the possibility of
violating target-independent constraints, such as the equivalence between table structures,
table dependencies, and loop-freeness (which is a restriction imposed by the P4 language
and the data plane itself) (ZHENG; BENSON; HU, 2018). To ensure the merging does not

break target-independent constraints, the merging operator provides isolation of tables,

27

registers, and actions. Therefore, the semantics of the host program is preserved by not

allowing a function to rewrite it.

3.3.2 Constructs Disambiguation

PRIME performs a source code analysis step to identify the equivalence of struc-
tures between the composed tables and ensure they do not violate table dependencies. For
tables with ambiguous IDs, PRIME renames their IDs and rewrites the “apply” construct
for the merged structure to use the proper ID and preserve dependencies of both modules
(SAHA; SAMANTA; SARANGI, 2009). The same isolation is performed for registers,

actions, and metadata definitions with ambiguous IDs.

Algorithm 2: Modules merging and verification
Data: host.p4, module.p4
Result: host
1 begin
Ambiguous = {}
/[for all tables
for ¢ € pipeline do
if t € H, then
| Ambiguous = Ambiguous U {t};
else
| H,=H,U{t};
/for all actions
for a € pipeline do
if « € H, then
| Ambiguous = Ambiguous U {a};
else
| H,=H,U{a}
/ffor all registers
for r € pipeline do
if r € H, then
| Ambiguous = Ambiguous U {r};
else
| H,=H,U{r};
return host

O o Nt AR WN

S I S S S I S e
S v o NS p W N =2

[S]
[

Algorithm 2 traverses all tables, actions, and registers defined on the new function
and associates them with the host program. In order to do this, we first collect all defined
registers, actions, and tables in both pipelines. Afterward, we disambiguate repeated IDs

and rewrite the statements in the apply struct (Algorithm 3).

28

Algorithm 3: Constructs Disambiguation
Data: newprogram.p4, Ambiguous
Result: host

1 begin

2 for each node n in pipeline do

3 if n is START or not a invocation statement then

4 ‘ continue;

5

6

if n € Ambiguous then
\ rename.invocation(n, newprogram);

With the aid of the “steering table”, the composition produces a sequence of
program modules whose execution order can be altered dynamically. For instance, the
composition can change the order of execution of a firewall and a load balancing. Specif-
ically, a firewall must be applied before load balancing incoming packets as the firewall
must consider the original IP addresses. Conversely, the load balancer must first restore
the original IP address before the firewall handles outgoing packets (MONSANTO et al.,
2013).

The structure of the host program and the composition assures a data plane struc-
ture that allows the configuration of both directions. Each composition translates into a
configuration that works as a link for a sequence of program control flows. The steer-
ing table is positioned at the beginning of the switch pipeline and intercepts all incoming
packets. The table specification can match packets using wildcards, lpm or exact and
works as a large catalog of pointers from specific sets of packets to sequences of program
modules merged during the composition (CHEN; BENSON, 2017; SONCHACK et al.,
2016) (a process similar to service function chaining (SFC) in the context of Network

Function Virtualization (MIJUMBI et al., 2016)).

3.4 Traffic Control

When the network administrator wishes to steer packets for a specific sequence
of programs, s/he describes the identifier of the flow and the sequence of modules that
must process this flow. A configuration C is defined as a pair of switch programs P and
the steering function S. A switch state N is a pair (Q, C) containing a set of flows Q and
the configuration C. The system has two kinds of transitions: recirculations (rounds) and
updates transitions.

During a recirculation, a packet is retrieved from the egress and sent to the next

29

program using the set of switch programs P, and the steering function S. A recirculation
denotes the traversing of a packet through the pipeline of programs. In each round, only
one of the programs process the packet. The host program utilizes a traffic control module
to deliver the packet to the program indexed by the next program of the catalog. After a
packet reaches the egress, the next program indicator is updated, and the packet recircu-
lates to start another round. This repeats until the packet is processed by all the programs

indexed by the configuration C.

3.4.1 Consistent Update

In an update transition, the switch forwarding is updated to a new behavior for a
specific flow. We represent an update as a partial function from local packets to a list of
programs. To apply an update, PRIME then translates the code to the tuple of parameters
of the steering table. When an incoming packet matches the table, an action that we
call ‘catalog’ loads the parameters supplied by the administrator to the internal state.
Subsequently, these user-supplied parameters will be stored as packet metadata and used

by the host program to determine the order in which program modules are processed.
Figure 3.3: Traffic steering through program modules

Next Program

Pointer w

' P3 P1 P2
Catalog Traffic Control
Match Program Pipeline
10.0.* *
— N c
€ € S
> O > O b »| ©
o)])]
o o o
a o o

Steering Table r —‘

Recirculate (3x)

Source: The Author

Figure 3.3 presents an example of how the steering table can map flows to se-
quences of programs. In the example, packets that match 10.0. x.* are mapped to be

processed by programs Ps, P, and P; respectively. For this, after matching the table, the

30

catalog points to the ingress control-flow of P; and follow to its egress. Next, the packet
recirculates and follows to P ingress and egress. Finally, the packet recirculates a third
time to . Itis important to note that the same data plane structure supports the execution

in a different order if the network administrator wishes.

3.4.2 Enforcing Correctness

To ensure packets will not face intermediary states of steering configurations, we
reduce our problem to the transitional per-packet-consistent updates problem (HAN et al.,
2015). Per-packet states for a given packet are consistent if the traces generated during
the update are generated from the previous configuration, or from the new configuration,
but not from a mixture of the two (REITBLATT et al., 2012).

We explicitly state the invariants enforced by the host program and the merging

itself. The host program maintains the following invariants:

e (HI) All functions in the pipeline are ordered linearly in the order they are merged,
and each packet follows the pipeline in order. Effectively, the set of functions IDs

is the set of naturals numbers, and ordering follows directly from that.

(H2) The configuration of steering is only loaded into a packet metadata in the first
round, thus preventing the configuration of a transient flow from being changed by

the table on other rounds.

(H3) No changes are accepted into the steering configuration while it is already

updating (this occurs because the action that loads the configuration is atomic).

(H4) Standard metadata (e.g, output ports) are copied into user-metadata before re-
circulating and restored into new standard values to index functions into the correct

processing order.

(H5) The active steering configuration and packet header are recirculated only when
function ID < # of Programs. The next function to be processed is then updated

according to the values of steering.

To ensure the composition does not violate these invariants, the merging must act

accordingly. For this, the program merging satisfies the following invariants:

e (M1I) Metadata definitions are verified and disambiguated to ensure no function

code modify the catalog structure.

31

e (M?2) Each table and action is disambiguated to ensure composed function code do

not rewrite the catalog of a packet or apply the steering table.

We now can use these invariants to prove transitional packet-consistent updates

for the steering configuration in the switch pipeline.

Lemma 1. If pkt carries Cy configuration, where |Cy| > 1, it is not possible for any

update to change its configuration until the end of its processing.

Proof. We proceed by induction over m, the configuration length, noting that the base
case, m = 0, is consistent. Assume that an update occurs: H2, M1, M2 ensure that when
(' is loaded, the steering trace of pkt is not modified until emitted by the egress. H4
ensures that pkt keeps the same steering configuration C' after recirculating. Therefore,
to all processing rounds 7, ..., 7, of pkt, the configuration in round n is the initial config-
uration C';. HS ensures that packets do not recirculate forever. H1 ensures that a packet
pkt with steering configuration C' always crosses every program in the pipeline and, by

the previous conclusions, finds each program in the steering configuration, C'.

]

Theorem 2. For all configurations Cy and Cy(P|py, ...px|, S)., updating from C to Cy is

per-packet consistent.

Proof. The proof proceeds by considering every trace generated during the execution of
the update. There are two cases: In case (1) the transient packet creates a new state
for disambiguation. In this case, PRIME has the C; loaded into packet metadata. In
case (2) packets enter the switch with the new configuration C. In case (1), the traces
can be generated by no update operations, and the definition of per-packet consistency
holds directly from Lemma 1. In case (2) we denote pkt as the first packet entering the
switch tagged with a new steering configuration Cy, written [py, ...px]. H3 ensures that
while the steering table is loading C5, no other update can be performed into the steering
configuration of pkt. HI proves that when pkt exists in the pipeline, all the programs in
the pipeline are updated to Cy, even if pkt is marked to be dropped by a program in the
pipeline. Hence pkt and all subsequent packets tagged with C'y are processed with the

new configuration. [

We claim that although the implementation of the composition of multiple pro-
grams in the same switch pipeline appears straightforward, configuring the traffic steering

requires the switch to preserve certain invariants. Consistency is made possible because

32

P4 provides per-packet states (metadata). However, metadata still needs to be copied into
user-metadata before recirculating. We hope that our work provides a good motivation to
rethink the design of the metadata system to facilitate the correct steering conceptually. In
this section, we have shown what invariants to preserve, and why they suffice for a correct

implementation of a packet-consistent steering configuration (HAN et al., 2015).

33

4 IMPLEMENTATION

This chapter summarizes the development details of PRIME. Section 4.1 presents
an overview of the main components of PRIME. Next, Section 4.2 presents details of the
programming API and the composition compiler. Finally, Section 4.3 shows how network

operators can use the programming API to define the steering of flows.

4.1 Prototype Overview

We have prototyped a system called PRIME that implements the composition and
steering abstractions presented earlier. Figure 4.1 illustrates the design details of PRIME.

PRIME is composed of two essential modules: The steering interface and a composition

compiler.
Figure 4.1: Description of Implementation of PRIME
(a) Programming Interface (b) Composition Compiler
Network
Operator
Updates n n
L. addFlowo, NF.p4 NF.p4
L removeFlow()
A getStats() pac
_________________ ' frontend

A
Add Table

Entries

‘ Ambiguation

i iti > i

‘| Composition Solver :

eee| P2 : f
Steering Table p4c

Host Program backend

PDP Target ‘// \

Switeh

Source: The Author

The composition compiler provides the means to assemble large P4 programs by
merging smaller ones. We call these programs “extensions” and the merged program the
“host” program. The host program is a P4 program that has an additional table, control
blocks, and metadata control, which works as a base to compose extensions. The network

operator can place network functions into the host program as a programming model.

34

The host program has slots for functions and their primitives to steer packets through the

functions internally.

4.2 Composition Compiler

We implemented a prototype of the composition compiler to support the develop-
ment of programs written in P44 and using the V1 Switch model. The compiler works as
an extension for the p4c compiler, managing the source code between the p4c front-end
to verify the properties between programs. The system parses and composes the original
code to the P4 source code. Therefore it maintains compatibility with any target switch.
In the end, we build the new source with the p4c compiler to obtain the specific target
code. Thus, the output code is compatible with any programmable target with support to

the language.

Figure 4.2: Compilation and Program Building Methodology

t .
%fggtrﬁaf Compile .| Merge Successfully
programs Programs 7| Extensions Compilation

Generate
Binary

Parser

Error
Ambiguous Non- Deploy

States Determinism Program

Source: The Author

Figure 4.2 represents the program compiling flow chart of PRIME. First, devel-
opers build independent programs and compile them with the standard compiler. Next,
programs are linked through the algorithms presented earlier. In the case of the parser,
the composition has no success, and it can raise two different instances of errors: a parser

error can indicate repeated states with different structures or non-determinism.

4.3 Steering API

After the deployment, the operator can utilize the steering interface to specify the

steering of specific subsets of traffic through sequences of program modules during run-

35

time. All insertion happens in a steering table that performs the first lookup of the traffic.
To avoid misrouting during updates of the steering configuration, we provide the means to
avoid intermediary states and show why they suffice for a correct implementation. These
properties make PRIME valuable for supporting bi-directional configurations.

The host program contains several lines of P4 code and supports P44 programs
written using the V1 Switch Model. The integration of programs inserts functions inside
the slots of the host program and can add more slots as we compose modules. PRIME
uses the standard p4runtime to provided by the P4 language consortiumm to create the
programming API after we compose programs. The programming API interacts with the
p4-bm target and enables control plane actions over the steering table through a python-
based language.

To specify sequences of functions in each switch, PRIME offers a simple API with
python-based operators. The API is based on P4runtime (PARUNTIME, 2019) and en-
ables us to determine which sequence of functions will process specific packets. Instead
of match patterns, PRIME allows programs to write basic instructions using the proper
name of the function (FOSTER et al., 2011). PRIME also includes a standard switch that
specifies the rule’s current physical location in the network. Finally, PRIME program-
mers are free to define their function fields as modules are composed. For example, a
programmer may want to assign a packet to one of several functions through the network
switches.

The composition treats the output of one function as the input of another. Consider

a simple example:

Figure 4.3: Example flow composition

1 writeSteering (p4info_helper , sw_id=sl,
dst_ip_addr="10.0.1.3", nfl=firewall , nf2=
loadbalancer , ttl_rounds=2)

Source: The Author

In Figure 4.3, switch S1 will filter packets with destination 10.0.1.3 and apply
the firewall and the load balancer in sequence. To this end, during the composition, the
system reads configuration files with the function ID and respective names and translates
to low-level rules of the S1 device.

These parameters are wrapped into gRPC requests by the P4runtime API and sent
for the target switch in question. Such parameters are translated to the catalog of func-

tions, as presented in Figure 4.4.

36

Figure 4.4: Example catalog written in P4

1 action catalogue(bit<8> nfl, bit<8> nf2, ...,

2 bit<8> nfn, bit<32> ttl_rounds) {

3 meta.custom_metadata.nf_01_id = nfl ;
4 meta.custom_metadata.nf_02_id = nf2 ;
5

6

7 .

8 meta.custom_metadata.nf_02_id = nf8 ;
9 meta.custom_metadata.total _rounds =

ttl_rounds;

10 }
Source: The Author

The figure presents the catalog parameters previously passed through P4runtime
API (Lines 1-2). Next, these parameters are copied into custom metadata, which will be
the steering configuration of each packet (Lines 3-9). Finally, the tt1_rounds is also
copied to custom metadata and works as an upper bound for the number of NFs that a

packet will be processed.

Figure 4.5: Example ingress host program written in P4

1 if (meta.custom_metadata.rounds > 0) {

2 // restore standard metadata

3 standard_metadata.egress_spec = meta.port_aux;
4}

s if (meta.custom_metadata.rounds == 0){

6 steering .apply () ;

7 meta.custom_metadata.next_function = meta.

custom_metadata.nf_01_id;
s }
9 //next function has ID=17?
o if (meta.custom_metadata.next_function == 1){
1 // Function_1 code

2}

3 if (meta.custom_metadata.next_function == 2){
14 // Function_2 code

15}

16

17

18 .

19 if (meta.custom_metadata.next_function == N){
20 // Function_N code

u)
Source: The Author

These metadata are used to define the processing order of composed functions.

37

Figure 4.5 presents how we arrange functions sequentially on the host program. Firstly,
we ensure that standard metadata are restored before processing anything (Lines 1-4).
Next, we check if we are in the first round. In this case, we load the steering parameters
by performing a lookup on the steering table and setting up the first function to process
the packet (Lines 6-9). Finally, we may choose between composed functions, which are

those that will process the packet in the current round (Lines 10 - 21).

38

5 EXPERIMENTAL SETUP

This chapter summarizes the experimental evaluation scenarios of PRIME. Section
5.1 presents different use cases using PRIME. Section 5.2 presents metrics and the evalu-
ation methodology. Section 5.3 shows the results of experiments with a software switch to
show the impact of using PRIME to compose in-network functions. Finally, Section 5.4
compares PRIME with P4Visor (ZHENG; BENSON; HU, 2018) through simple compo-

sitions and comparing the host programs of both systems.

5.1 Use Cases

To validate the feasibility of PRIME, we composed existing P4 applications with
a simple L2 switch program that corresponds to our Host program. The code from use
cases and evaluation scenarios are available at github !. Next, we discuss the details of
these existing applications and the final configuration of the compositions we performed.

FlowStalker. FlowStalker (CASTANHEIRA; PARIZOTTO; SCHAEFFER-FILHO,
2019) is a monitoring mechanism which encodes metrics and stores them on data plane
devices. Specifically, FlowStalker monitors per-flow and per-packet metrics (e.g., byte
counts, packet counts, timestamps) defined by the operator. FlowStalker employs a hash
table of registers to index information for the exact flow or packet. A reactive system
detects if specific flows violate local thresholds and raises a warning in the case that the
threshold is crossed. Thresholds are implemented as a Heavy Hitter Detection mechanism
(SIVARAMAN et al., 2017), which has a pipeline of registers indexed by a 5-tuple that
represents the flow. After the warning is sent, the controller can inject courier packets to
collect data from data plane registers.

In-Band Network Telemetry (INT). INT (KIM et al., 2015) is a framework that
allows the collection and reporting of network state by the data plane, without requiring
intervention from the control plane. INT is being utilized as a tool for several security
mechanisms to troubleshoot, perform congestion control, or even notify the control appli-
cations about traffic anomalies. INT extends the packet parser with a new header, which
encapsulates monitored items (e.g., timestamps, buffer times, and switch identification).
Monitored items are appended into a new header, which is unique for each switch. This

means that a new header is instantiated and emitted by all switches in the path to an end

Thttps://github.com/PRIMEb4/Prime

39

host. The last hop removes INT headers and sends the standard packet to the end host.

LetFlow. LetFlow (VANINI et al.,, 2017) is a load balancer that executes on
switches. Letflow picks paths at random for each flowlet and balances traffic on dif-
ferent paths of the network. A flowlet is a burst of packets that is separated in time from
other bursts by a sufficient gap (timeout). When a packet arrives, LetFlow uses a table
to map flowlets to paths. Each table entry contains two fields: the last seen time and a
path id. When a packet arrives, the program computes a hash (CRC-16) of the source
IP, destination IP, source port and destination port. This hash is used as the key to the
flowlet table. If the packet is part of an already existing flowlet, the packet is sent on the
path identified by the path id, and last seen time is set to the current time. Otherwise, the
packet begins a new flowlet and may be assigned to a new path at random.

P4Xos. P4xos (DANG et al., 2016) is a consensus protocol that runs on the data
plane. P4Xos is divided into three different P4 programs: the coordinator (leader), the
acceptor and the learner. The coordinator ensures only one process sends messages to
instances of the protocol, guaranteeing message ordering: it writes the current instance
number and an initial round number into the message header; increments the instance
number for the next invocation; stores the value of the new instance number; and broad-
casts the packet to acceptors. Acceptors choose a value (vote) for each instance of the
consensus before forwarding them. Acceptors keep a history of votes to ensure they do
not vote for the same value on the same instance of consensus. Finally, learners require a
quorum of messages from acceptors and “deliver” a value.

We compose these programs incrementally to analyze the impact of each compo-
sition independently. Scenario 1 is a composition of FlowStalker with the host program.
The idea is to build a switch with support to the analysis of security threats using the
metrics collected by FlowStalker.

Scenario 2 composes scenario 1 with the In-Band Network Telemetry (INT). This
composition allows debugging the network state (e.g., identifying the source of bugs in
the network). Scenario 3 merges LetFlow to Scenario 2. The idea to compose LetFlow is
to allow flows to be balanced, mainly when the network performance is low.

Finally, we build scenarios 4, 5 and 6 by composing Scenario 3 with P4Xos. In
particular, Scenario 4 is a composition with the acceptor; Scenario 5 is a composition
with the coordinator; and Scenario 6 is a composition with the learner. The composition
of P4xos raised an error during compilation, because it uses different names for packet

instances. We renamed header instances of P4xos to the composition be correct.

40

Table 5.1: Code metrics of the use cases
Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Sce.6
LoC 366 489 617 779 759 649
States 3 5 5 7 7 7
Tables 4 6 12 15 15 16
Source: The Author

Table 5.1 presents the respective number of states on the packet parser, tables and
lines of code (LOC) of the composed programs in each respective scenario. As PRIME
merges equivalent states between different programs, the composition tries to minimize
the number of states and lines of code. Next, we discuss in details a run-time analysis of

each scenario.

5.2 Metrics Formulation

Evaluating programmable switches requires new methodologies. Commonly, end-
to-end measurement tools are used, such as iperf and ping. However, this consid-
ers information which is not useful to assess PRIME, as the system operates exclusively
on the processing pipeline of the switch. Therefore we follow a different methodology
(DANG et al., 2017) to measure latency. We need to assess only the latency of the control
flows, as the time spent on parsing and deparsing is not important in this case.

When a packet enters the pipeline and matches the steering table, we store a lo-
cal timestamp, denoted as Timestamp;. Timestamp; is stored as part of a packet state
until the last program of the pipeline is concluded. On the last stage of the pipeline,
Timestamp, 1s stored into a local register for further analysis. These correspond to
ingress time and egress time, respectively.

Throughput represents the amount of data the switch can process in a given time.
Similarly to what we did with the latency measurements, we do not consider parsing and
deparsing time on the calculation of throughput. Thus, throughput is calculated as the
effective throughput of processing a program’s control flows 7},.,ccss less the time spent
on the parser T),,ser. Removing 7,4, s justified because it is not overhead of the
additional tables or the replacement actions. Therefore we define the number of packets

traversing the switch as n, and model the per-packet throughput, Pip.roughput, as follows:

-Pth'roughput = PacketSize x (Tprocess - Tparser)/n (51)

41

All experiments below are ideally based on a single source and destination flow
traversing the P4 switch. However, multiple flows with different packet sizes would tra-
verse the switch and consequently impact throughput. Therefore we need a more in-depth
monitoring mechanism to store metrics from multiple flows. We see the development of

a monitoring mechanism like this and more detailed evaluation as future work.

5.3 Assessing Compositions

To evaluate PRIME we need to assess the imposed penalty of steering packets us-
ing the final program. For this, we executed each specific scenario using the behavioral
model in an Intel(R) Core(TM) i3-6006U CPU 2.00GHz. We performed a thousand re-
quests, and collected packet timestamps to measure latency and throughput following the

methodology presented earlier.

Figure 5.1: Throughput

9
o el T
o 8
v
L 79
fe} -
= 61
455 ——
o 2] -
- -— 1
S 44
o
c 3
c 24
=
2| T T T T T
LA A A A
g § & £ & ¢
F v & & S8
1Y v S S I
f\v

Source: The Author

Figure 5.1 presents the throughput that the composition achieves in the data plane.
When the switch steers packets through scenario 1 (i.e., packets match the steering table),
throughput is nearly 8 Mbits/sec. The throughput reduces as we compose more modules
in scenarios 2-6. The reduction occurs because of the amount of computation required by
the functions.

Figure 5.2 presents the latency in ms with only one rule installed on the steering
table (i.e., the rule that matches the end host). As we compose more program modules, la-

tency increases. This happens, similarly to what happens to throughput reduction, because

42

Figure 5.2: Latency

0.70
0.65 -
0.60
0.55
0.50 1
0.45
0.40
0.35
0.30 -

Latency (ms)

Source: The Author

of the insertion of additional states to the parser. Behavior model runs on general-purpose
hardware, and additional states increase CPU consumption. The latency in scenario 1
is nearly 0.4ms. As we compose more program modules, such as in scenario 5, latency
increases to nearly 0.5ms. We see as future work deploying PRIME compositions into

high-performance packet-processing ASIC and FPGA.

5.4 Comparison with State-of-the-art

We compare PRIME with one of the state-of-the-art approaches, P4Visor (ZHENG;
BENSON; HU, 2018), to compose programs. P4Visor is a system to compose P4 pro-
grams. The system provides testing operators which compose two different versions of a

program using source code merging.

5.4.1 Code Metrics

Specifically, we utilized the Differential testing Operator of P4Visor to compose
programs. We could not build the case studies we presented earlier because P4 Visor does
not currently support the composition of more than two programs. Thus we show two
simple scenarios: a production version of a router with a testing version of the same

program, and LetFlow with the simple router program.

43

Table 5.2: Resource Overhead of PRIME and P4 Visor

PRIME P4Visor
Router LetFlow Router LetFlow
Parser States 3 4 5 6
Tables 7 10 12 13

Source: The Author

Table 5.2 presents the number of states of the parser and tables of the programs.
The composition of the simple router creates fewer states using the PRIME approach.
P4Visor does not merge IPv4 states, therefore creating two different states for equivalent
header instances. The number of tables in PRIME is also smaller for these compositions.
Although PRIME does not support abstractions to merge tables between programs, the
traffic steering control has only one table. Other features to steer packets are performed

only by interacting on the catalog and if-else statements, without the need of more tables.

5.4.2 Steering Performance

Similarly to PRIME, P4Visor composes programs into a P4 base program which
has control structures to steer packets internally. In this section, we show how both host
programs impact on the latency of packets. Once every composition will be merged to the
host, the latency of the host will always sum to the latency of compositions. To compare
P4Visor with our program, we had to translate the P4 Visor base program to P4v16. The
translation was required to support the same measurement methodology (presented earlier

on Section 5.2) to both systems, and perform a more reliable measurement.

Figure 5.3: P4Visor vs PRIME: Latency
0.8

0.7 1
AR
0.5 1
ol T

0.3

Latency (ms)

—
=

P4V'isor Prfme

Source: The Author

We performed an experiment that traversed a thousand packets through the pro-
grams with no table entries, i.e., we only assessed the standard host program forwarding

structure during the experiment. Figure 5.3 presents the latency of the base P4 Visor base

44

program and compared it with PRIME. P4 Visor takes about 0.55ms to traverse one single
packet through the entire host program, while PRIME takes only about 0.45ms. This can
be explained because PRIME requires fewer lookup operations than P4Visor. Achiev-
ing less latency in the host program gives evidence that composing programs using the

PRIME host program has less penalty on latency than using P4 Visor.

Figure 5.4: P4Visor vs PRIME: Throughput

12.0 4

10.0 - %
80| o
E= T

6.0
4.0

P4V|i50r Prilrne

Throughput (Mbits/sec)

Source: The Author

Additionally, Figure 5.4 presents the throughput of both base programs. P4Visor
takes about 8 Mbits/sec, while PRIME takes about 12Mbit/sec. This gives some evidence
that PRIME would attend flow demands faster.

Although we use only one table for internal packet addressing and handling, we
are still dependent on the switch architecture. The software switch used in the evaluations
has the table lookup with time corresponding to the number of rules. Therefore, when the
steering table has multiple flows, the overall switch latency will be reduced proportionally.
Therefore, we recommend operators to keep a small number of rules and, where possible,

split the network load on more than one device so that the network has small delays.

45

6 RELATED WORK

PRIME is closely related to efforts on data plane composition. Section 6.1 reviews
the main research efforts in this field. Next, Section 6.2 discuss the differences of PRIME

to these efforts using a taxonomy of properties covered by each work.

6.1 Data Plane Composition

Hyperd (HANCOCK; MERWE, 2016) is a hypervisor for programmable data
planes. It provides a virtualization layer that runs in software. This virtualization layer
runs inside the target switch and executes several instances of P4 programs. Although
Hyper4 enables modularization, the system imposes high overhead on the forwarding
of packets. The overhead occurs because composed modules are running on partially-
virtualized programs and because the Hyper4 base program includes several additional
tables to support composition. Conversely, PRIME runs as a single P4 program, thus
avoiding the virtualization-layer and utilizes only one additional forwarding table to com-
pose modules.

MPVisor (ZHANG et al., 2017) is a hypervisor that uses P4 but provides a base
program much smaller than Hyper4. The system offers high-level operators for program-
ming P4 targets. However, their operators produce large pipelines of programs and are
not sufficient for the correct operation of steering. This hinders the deployment of config-
urations that support multiple steering configurations. MPVisor also reduces the number
of tables required to virtualize P4 programs when compared to Hyper4, but the number is
still large compared with PRIME, which uses only one additional table.

ClickP4 (ZHOU; BI, 2017) 1s a programming architecture for P4 programs. ClickP4
enables program decomposition into modules and improve code reuse. The system or-
chestrates modules dynamically, granting more flexibility for the data plane. To this end,
ClickP4 uses recirculation to steer packets through programs. Although ClickP4 enables
dynamic orchestration of programs, the system may create intermediary states and com-
promise the forwarding during updates.

P4Bricks (SONI; TURLETTI; DABBOUS, 2018) is a system for multi-processing
P4 programs. The system provides parallel and sequential operators, but exclusively to
allow nodes to process packets at the same time. The system compiles programs to the

same target and restructures the logical pipeline according to control flow dependencies.

46

P4Bricks provides a low-level compilation for the target switch, which makes the system
target specific and limits the utilization of the system. Although the operators proposed
by P4Bricks may enable multi-processing, P4Bricks performs out-of-order readings and
writes while processing packets, which can create inconsistencies and compromise the
developer logic.

P4Visor (ZHENG; BENSON; HU, 2018) is a system to merge and test P4 pro-
grams. The system provides AB and Differential testing operators, which both isolate
testing traffic from the composed programs. The traffic isolation requires parsers from
different program modules to have disambiguation states even if the merged states are
equivalent. The merging of control flows tries to minimize resource sharing between
modules by merging equivalent tables. The parser composition does not merge transitions
from equivalent states, and thus their approach creates a new state for disambiguation. In
contrast, PRIME merges equivalent states by uniting their transitions. This feature conse-
quently reduces the number of states necessary to parse the composed program.

Dejavu (WU et al., 2019) is a programming model to optimize resource utiliza-
tion of programmable switches. The system connects and hosts several functions in a
single switch. The system provides parallel and sequential operators, allowing different
functions to share the same pipeline. The system leverages recirculation to route packets
between chains of functions and tries to minimize the number of recirculations. However,
although allowing optimization of the number of recirculation, this can perform out-of-
order processing, once functions usually are composed of ingress and egress capabilities.
PRIME takes a more intuitive approach, which ensures the correct ordering of read/writes

between the functions.

6.2 Discussions

Among the related work, Hyper4 was the pioneer. However, the system has sev-
eral limitations, mainly because of the usage of an excessive number of tables. Despite
the table configuration enables the placement of functions dynamically, such configura-
tion creates a dependency on the hardware which must have an interface do place entire
programs dynamically. Such an interface is not common for all target programmable
forwarding devices. Such dynamic composition is important for the network, but can be
performed in different ways, such as migrating functions (LUO; YU; VANBEVER, 2017)
and rerouting traffic (KRUDE et al., 2019).

Table 6.1: Scope of operation and characteristics of recent work

47

Work/ Multiple Dynamic Parser Hardware Consistent

Goals | Operators | Compositions | Merging Indepen.dence Composition
(Partial)

Hyperd °

P4Bricks

P4Visor

MPVisor °

ClickP4

Dejavu) ° °

PRIME . . °

Source: The Author

Other approaches, such as MPVisor and ClickP4, tried to mitigate these limitations
using a reduced number of tables compared to Hyper4. However, they still lack for merg-
ing optimizations, such as the parser composition. Moreover, the complexity of tables
and parser states is still considerably high, once they choose to compile new NFs without
data plane interruption by using an approach similar to Hyper4. While Hyper4 uses al-
most 400 tables to declare a program with 8 stages, MPvisor saves 5x to 8x. ClickP4, in
turn, requires developers to know ClickP4 code before they deploy a new function, and
additional source code is still required to deploy new modules.

Efforts such as P4Visor and P4Bricks introduced host programs with static num-
bers of tables. Both systems provide multiple operators with different semantics to com-
pose programs. P4Bricks yet enables parallel execution of P4 programs but requires spe-
cialized targets, which are not conventional P4 devices. P4Visor breaks barriers by intro-
ducing optimization techniques to reduce the resource consumption of control flows and
still preserve program isolation. Despite such techniques to optimize the number of tables
between modules (or functions) help reducing resource consumption, P4visor uses a fixed
amount of 8 tables. Conversely, PRIME uses just one table. P4Visor has limitations on
packet parsing because they always make copies of identical states. PRIME covers such
parser limitations by enabling the modular composition of parsers. Besides that, current
efforts support a limited number of functions. P4Visor, for instance, supports only two
compositions and requires modifications on the traffic control to allow more functions to
be composed.

More recently, Dejavu suggests the union of equivalent parser states. The union
is performed manually, creating limitations for the developer. To this end, PRIME allows

that the parser union to be made automatically. Once recirculating packets can generate a

48

higher overhead on packet processing, Dejavu advocated that programs could divide the
same ingress or egress by using sequential and parallel operators. This optimizes some
recirculations and, consequently, can allow a higher throughput rate. The negative side of
this strategy is that allowing the dynamic changes in the execution order would require
multiple copies of the same source code and consequently have high resource consump-
tion. Therefore, the placement of multiple functions at the same control block requires a
previous analysis to avoid such a phenomenon. As PRIME composes programs sequen-
tially, as presented in Section 3.3, avoiding such analysis, and ensuring that ordering is
preserved.

Further, beyond these limitations of the composition, current research has several
limitations for the operation of the network. None of the work allows the consistency of
the inner steering updates, which can cause misrouting due to undesired intermediary con-
figurations formed during the update. Table 6.1 shows the properties covered by previous

work.

49

7 CONCLUSIONS & FUTURE WORK

Software paradigms for networks promise to transform the network architecture
by softwarizing it, which can simplify network operations and simplify the development
life cycle of new solutions. SDN decouples the control logic from forwarding devices,
enabling simplified management of the network. OpenFlow is the standard communica-
tion protocol for SDN switches, allowing a standard way to program switches through the
control plane. However, OpenFlow still has fixed packet headers and is limited to simple
forwarding logic. Programmable Data Planes (PDP) enable more flexibility for the oper-
ation of networks. With PDP, we can define processing blocks that modify the structure
of header contents. Such flexibilization enables us to rethink the design of forwarding

devices, placing new functionalities inside the infrastructure.

7.1 Summary and Contributions

To fully reap the benefits of programmability, it should be feasible to compose and
operate multiple PDP functions into a single target switch as needed. However, existing
techniques are not suitable in the sense that they use an excessive number of parser states
and tables, and lack abstractions for the steering of packets through the control flows.
As such, they do not support the modular composition of PDP functions. In this thesis,
we presented the design and evaluation of PRIME, a composition mechanism to help the
modular development and management of P4 programs. PRIME provides a base p4 pro-
gram that is capable of hosting several functions. The deployment is made by composing
packet parsers using a P4 programming operator and by carrying out the placement of
functions on slots of the host program using source code merging. The usage of source
code merging is required both to allow functions to be implemented independently and
do not require developers to know how the base program works.

Furthermore, PRIME introduces the steering of packets through program modules.
The steering uses P4 metadata and additional recirculations to ensure that updating the
steering of packets is made consistent (i.e., without allowing the creation of intermediary
states during updates).

Although composing multiple functions may promote better usage of network re-
sources, the management becomes more complex and error-prone. Current efforts to com-

pose various programs in a single target switch make use of an excessive number of flow

50

tables and parser states. Consequently, these techniques can severely limit throughput and
increase latency in general-purpose hardware or do not fit in specialized hardware, such
as netFPGAs or ASICs. To overcome these limitations, we reduce the number of tables
the host program needs to steer packets internally to just one table. We also described
how the table steers packets to the internal functions and how the composition avoids
intermediary states. State-of-the-art techniques do not suffice to provide transitional con-
sistency between steering configurations. Without transitional consistency, changes in
the steering of flows through the program modules can create intermediary states, which
may cause misrouting and security holes. PRIME provides techniques to allow new ap-
plications to be composed, preserving transitional packet-consistency of traffic steering
without degrading the performance of the data plane operation. We provide proof that the
merging does not rewrite basic steering control and show that composing new rules into
the steering table is always made consistently.

We presented a case study showing the operation of our abstractions for several
existing P4 programs. For the case studies, we took existing applications and composed
them into a host program using PRIME. Results of simulations in a software switch evi-
dence that the compositions have a moderate yet acceptable impact on delay and through-
put. We think that this is acceptable because other tools for composition (such as P4Visor
or Hyper4) require more tables, which increases the overhead linearly. The overhead ob-
tained is due to the steering table and the recirculations. Yet, we compare PRIME with
P4Visor and find that P4Visor has some drawbacks in the case studies performed. We
found through two simple compositions that PRIME uses fewer tables and uses fewer
parser states on these use cases. We also present the evaluation of the host programs of
PRIME and P4Visor to measure latency. We found that our host program achieves lower

latency on the data plane.

7.2 Limitations

PRIME still faces several limitations. In particular, inserting overlapping rules into
the table can generate conflicting directions on the switch pipeline. We see as future work
the development of a mechanism that filters and solves the overlaps before the insertion.
This feature can be designed similarly to what is presented in Hermes (CHEN; BENSON,
2017), combined with CacheP4 (MA et al., 2017), to achieve both low update times and
throughput. Another limitation is that PRIME still requires the developer of a module

51

to be responsible for the correctness of each independent module. There is a need for
a previous verification step during network operation to ensure the consistency of each
separate module. Furthermore, inner characteristics of modules, such as incrementing
TTL were not addressed. This can make one switch decrements TTL counters more than
once.

PRIME also requires several constraints for the composition to be correct. Firstly,
we do not allow the composition of programs that use recirculations or resubmissions.
These primitives rewrite the metadata being traversed and, therefore, can make the state
inconsistent. Secondly, we still require developers to know the parser states of differ-
ent programs and ensure their equivalence manually. Third, we also did not address the
composition of checksums, which means that if the program has different checksums, we
would require this composition to be manual. Fourthly, we did not do any experiment
on real hardware, which make our results far for real scenarios. Finally, we do not allow

dynamic compositions, requiring to shut down the device to make a switch composition.

7.3 Future Work and Perspectives

There are several other potential future research directions. In particular, explor-
ing new compilation techniques may allow more efficient use of data plane resources by
sharing resources between programs. The development of new operators to identify de-
pendencies between modules and a formal reasoning about the steering correctness are
also in perspective. Further, in addition to the local guarantees addressed in the composed
P4 program, we aim to investigate global path level guarantees for automatic virtualiza-
tion of PDP programs (YU et al., 2019), and placement heuristics similar to those used
with Virtual Network Functions (ANWER et al., 2015) (CHARIKAR et al., 2018).

After such challenges, we aim to investigate the use cases of functions distributed
on the data plane and identify end-to-end constraints to the orchestration of NFs/ICFs.
The orchestration model may deploy functions on switches organized as a cluster. To this
end, we can leverage checkpoint/restore (SHERRY et al., 2015) techniques to ensure that
already deployed functionalities keep working after the deployment of new functionali-
ties. This can be built using a new virtualization layer for the data plane by formalizing
the orchestration using optimization techniques. Finally, we also see as future work a full

exploration of distributed system replication techniques to handle failures.

52

REFERENCES

ANWER, B. et al. Programming slick network functions. In: Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research. New
York, NY, USA: ACM, 2015. (SOSR ’15), p. 14:1-14:13. ISBN 978-1-4503-3451-8.
Available from Internet: <http://doi.acm.org/10.1145/2774993.2774998>.

BENSON, T. A. In-network compute: Considered armed and dangerous. In: Proceed-
ings of the Workshop on Hot Topics in Operating Systems. New York, NY, USA:
ACM, 2019. (HotOS ’19), p. 216-224. ISBN 978-1-4503-6727-1. Available from Inter-
net: <http://doi.acm.org/10.1145/3317550.3321436>.

BIFULCO, R.; RETVARI, G. A survey on the programmable data plane: Abstractions
architectures and open problems. In: Proc. IEEE HPSR. [S.I.: s.n.], 2018. p. 1-7.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 44, n. 3, p. 87-95, jul.
2014. ISSN 0146-4833. Available from Internet: <http://doi.acm.org/10.1145/2656877.
2656890>.

CASTANHEIRA, L.; PARIZOTTO, R.; SCHAEFFER-FILHO, A. Flowstalker: Com-
prehensive traffic flow monitoring on the data plane using p4. In: IEEE. 2019 IEEE
International Conference on Communications (ICC). [S.1.], 2019.

CHARIKAR, M. et al. Multi-commodity flow with in-network processing. arXiv
preprint arXiv:1802.09118, 2018.

CHEN, H.; BENSON, T. Hermes: Providing tight control over high-performance sdn
switches. In: Proceedings of the 13th International Conference on Emerging Net-
working EXperiments and Technologies. New York, NY, USA: ACM, 2017. (CoNEXT
17), p. 283-295. ISBN 978-1-4503-5422-6. Available from Internet: <http://doi.acm.
org/10.1145/3143361.3143391>.

DANG, H. T. et al. Paxos made switch-y. SIGCOMM Comput. Commun. Rev., ACM,
New York, NY, USA, v. 46, n. 2, p. 18-24, may 2016. ISSN 0146-4833. Available from
Internet: <http://doi.acm.org/10.1145/2935634.2935638>.

DANG, H. T. et al. Whippersnapper: A p4 language benchmark suite. In: Proceedings
of the Symposium on SDN Research. New York, NY, USA: ACM, 2017. (SOSR ’17),
p. 95-101. ISBN 978-1-4503-4947-5. Available from Internet: <http://doi.acm.org/10.
1145/3050220.3050231>.

ERAN, H. et al. NICA: An infrastructure for inline acceleration of network applications.
In: 2019 USENIX Annual Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, 2019. p. 345-362. ISBN 978-1-939133-03-8. Available from In-
ternet: <https://www.usenix.org/conference/atc19/presentation/eran>.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The road to sdn: An intellectual history
of programmable networks. SIGCOMM Comput. Commun. Rev., ACM, New York,
NY, USA, v. 44, n. 2, p. 87-98, abr. 2014. ISSN 0146-4833. Available from Internet:
<http://doi.acm.org/10.1145/2602204.2602219>.

http://doi.acm.org/10.1145/2774993.2774998
http://doi.acm.org/10.1145/3317550.3321436
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/3143361.3143391
http://doi.acm.org/10.1145/3143361.3143391
http://doi.acm.org/10.1145/2935634.2935638
http://doi.acm.org/10.1145/3050220.3050231
http://doi.acm.org/10.1145/3050220.3050231
https://www.usenix.org/conference/atc19/presentation/eran
http://doi.acm.org/10.1145/2602204.2602219

53

FOSTER, N. et al. Frenetic: A network programming language. SIGPLAN Not., ACM,
New York, NY, USA, v. 46, n. 9, p. 279-291, sep. 2011. ISSN 0362-1340. Available from
Internet: <http://doi.acm.org/10.1145/2034574.2034812>.

FREIRE, L. et al. Uncovering bugs in p4 programs with assertion-based verification. In:
ACM. Proceedings of the Symposium on SDN Research. [S.1.], 2018. p. 4.

GIBB, G. et al. Design principles for packet parsers. In: IEEE. Architectures for Net-
working and Communications Systems. [S.1.], 2013. p. 13-24.

HALEPLIDIS, E. et al. Software-Defined Networking (SDN): Layers and Architec-
ture Terminology. RFC Editor, 2015. RFC 7426. (Request for Comments, 7426). Avail-
able from Internet: <https://rfc-editor.org/rfc/rfc7426.txt>.

HAN, J. H. et al. Blueswitch: Enabling provably consistent configuration of network
switches. In: IEEE. 2015 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). [S.1.], 2015. p. 17-27.

HANCOCK, D.; MERWE, J. van der. Hyper4: Using p4 to virtualize the programmable
data plane. In: Proceedings of the 12th International on Conference on Emerg-
ing Networking EXperiments and Technologies. New York, NY, USA: ACM, 2016.
(CoNEXT °’16), p. 35-49. ISBN 978-1-4503-4292-6. Available from Internet: <http:
//doi.acm.org/10.1145/2999572.2999607>.

HE, M. et al. Toward consistent state management of adaptive programmable networks
based on p4. In: Proceedings of the ACM SIGCOMM 2019 Workshop on Net-
working for Emerging Applications and Technologies. New York, NY, USA: ACM,
2019. (NEAT’19), p. 29-35. ISBN 978-1-4503-6876-6. Available from Internet: <http:
//doi.acm.org/10.1145/3341558.3342202>.

HELLER, B.; SHERWOOQD, R.; MCKEOWN, N. The controller placement problem. In:
Proceedings of the First Workshop on Hot Topics in Software Defined Networks.
New York, NY, USA: ACM, 2012. (HotSDN ’12), p. 7-12. ISBN 978-1-4503-1477-0.
Available from Internet: <http://doi.acm.org/10.1145/2342441.2342444>.

JAIN, S. et al. B4: Experience with a globally-deployed software defined wan. SIG-
COMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 43, n. 4, p. 3-14, aug.
2013. ISSN 0146-4833. Available from Internet: <http://doi.acm.org/10.1145/2534169.
2486019>.

JARRAYA, Y.; MADI, T.; DEBBABI, M. A Survey and a Layered Taxonomy of
Software-Defined Networking. IEEE Communications Surveys Tutorials, v. 16, n. 4,
p. 1955-1980, Fourthquarter 2014. ISSN 1553-877X.

JIN, X. et al. Covisor: A compositional hypervisor for software-defined networks. In:
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation. Berkeley, CA, USA: USENIX Association, 2015. (NSDI'15), p. 87—
101. ISBN 978-1-931971-218. Available from Internet: <http://dl.acm.org/citation.cfm?
1d=2789770.2789777>.

http://doi.acm.org/10.1145/2034574.2034812
https://rfc-editor.org/rfc/rfc7426.txt
http://doi.acm.org/10.1145/2999572.2999607
http://doi.acm.org/10.1145/2999572.2999607
http://doi.acm.org/10.1145/3341558.3342202
http://doi.acm.org/10.1145/3341558.3342202
http://doi.acm.org/10.1145/2342441.2342444
http://doi.acm.org/10.1145/2534169.2486019
http://doi.acm.org/10.1145/2534169.2486019
http://dl.acm.org/citation.cfm?id=2789770.2789777
http://dl.acm.org/citation.cfm?id=2789770.2789777

54

JIN, X. et al. Netcache: Balancing key-value stores with fast in-network caching. In:
Proceedings of the 26th Symposium on Operating Systems Principles. New York,
NY, USA: ACM, 2017. (SOSP ’17), p. 121-136. ISBN 978-1-4503-5085-3. Available
from Internet: <http://doi.acm.org/10.1145/3132747.3132764>.

JOSE, L. et al. Compiling packet programs to reconfigurable switches. In: Proceedings
of the 12th USENIX Conference on Networked Systems Design and Implementation.
USA: USENIX Association, 2015. (NSDI'15), p. 103—-115. ISBN 9781931971218.

KIM, C. et al. In-band network telemetry via programmable dataplanes. In: ACM SIG-
COMM. [S.L: s.n.], 2015.

KIM, H.; FEAMSTER, N. Improving network management with software defined net-
working. IEEE Communications Magazine, Citeseer, v. 51, n. 2, p. 114-119, 2013.

KOPONEN, T. et al. Onix: A distributed control platform for large-scale production net-
works. In: OSDLI. [S.L.: s.n.], 2010. v. 10, p. 1-6.

KREUTZ, D. et al. Software-defined networking: A comprehensive survey. arXiv
preprint arXiv:1406.0440, 2014.

KRUDE, J. et al. Online reprogrammable multi tenant switches. In: Proceedings of the
1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms. New
York, NY, USA: ACM, 2019. (ENCP ’19), p. 1-8. ISBN 978-1-4503-7000-4. Available
from Internet: <http://doi.acm.org/10.1145/3359993.3366643>.

LI S. et al. Sr-pvx: A source routing based network virtualization hypervisor to enable
pof-fis programmability in vsdns. IEEE Access, IEEE, v. 5, p. 7659-7666, 2017.

LI, S. et al. Pvflow: Flow-table virtualization in pof-based vsdn hypervisor (pvx). In:
IEEE. 2018 International Conference on Computing, Networking and Communica-
tions (ICNC). [S.1.], 2018. p. 861-865.

LI, S. et al. Protocol oblivious forwarding (pof): Software-defined networking with en-
hanced programmability. IEEE Network, IEEE, v. 31, n. 2, p. 58-66, 2017.

LIU, J. et al. p4v: Practical verification for programmable data planes. 2018.

LOPES, N. et al. Automatically verifying reachability and well-formedness in P4 Net-
works. [S.1.], 2016.

LUO, S.; YU, H.; VANBEVER, L. Swing state: Consistent updates for stateful and pro-
grammable data planes. In: Proceedings of the Symposium on SDN Research. New
York, NY, USA: ACM, 2017. (SOSR ’17), p. 115-121. ISBN 978-1-4503-4947-5. Avail-
able from Internet: <http://doi.acm.org/10.1145/3050220.3050233>.

MA, Z. et al. Cachep4: A behavior-level caching mechanism for p4. In: ACM. Proceed-
ings of the SIGCOMM Posters and Demos. [S.1.], 2017. p. 108-110.

MATTOS, D. M. E;; DUARTE, O. C. M. B.; PUJIOLLE, G. Reverse update: A consistent
policy update scheme for software-defined networking. IEEE Communications Letters,
IEEE, v. 20, n. 5, p. 886-889, 2016.

http://doi.acm.org/10.1145/3132747.3132764
http://doi.acm.org/10.1145/3359993.3366643
http://doi.acm.org/10.1145/3050220.3050233

55

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., ACM, New York, NY, USA, v. 38, n. 2, p. 69-74, mar.
2008. ISSN 0146-4833. Available from Internet: <http://doi.acm.org/10.1145/1355734.
1355746>.

MCKEOWN, N. et al. Openflow: enabling innovation in campus networks. ACM SIG-
COMM Computer Communication Review, ACM, v. 38, n. 2, p. 69-74, 2008.

MIJUMBI, R. et al. Network function virtualization: State-of-the-art and research chal-
lenges. IEEE Communications Surveys & Tutorials, IEEE, v. 18, n. 1, p. 236-262,
2016.

MONSANTO, C. et al. Composing software defined networks. In: 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 13). Lombard, IL:
USENIX Association, 2013. p. 1-13. ISBN 978-1-931971-00-3. Available from Internet:
<https://www.usenix.org/conference/nsdil 3/technical-sessions/presentation/monsanto>.

MUSTARD, C. et al. Jumpgate: In-network processing as a service for data analytics.
In: 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19).
Renton, WA: USENIX Association, 2019. Available from Internet: <https://www.usenix.
org/conference/hotcloud19/presentation/mustard>.

PARUNTIME. [S.L]: GitHub, 2019. <https:/github.com/p4lang/p4runtime>.

PFAFF, B. et al. The design and implementation of open vswitch. In: 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 15). [S.1.:
s.n.], 2015. p. 117-130.

PRAKASH, C. et al. Pga: Using graphs to express and automatically reconcile network
policies. In: Proceedings of the 2015 ACMbloom filters for flow frequency monitoring
[19]. Conference on Special Interest Group on Data Communication. New York, NY,
USA: ACM, 2015. (SIGCOMM ’15), p. 29-42. ISBN 978-1-4503-3542-3. Available from
Internet: <http://doi.acm.org/10.1145/2785956.2787506>.

REITBLATT, M. et al. Abstractions for network update. In: Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication. New York, NY, USA: ACM, 2012. (SIG-
COMM ’12), p. 323-334. ISBN 978-1-4503-1419-0. Available from Internet: <http:
//doi.acm.org/10.1145/2342356.2342427>.

SAHA, D.; SAMANTA, A.; SARANGI, S. R. Theoretical framework for eliminating
redundancy in workflows. In: IEEE. 2009 IEEE International Conference on Services
Computing. [S.1.], 2009. p. 41-48.

SAQUETTI, M. et al. Hard virtualization of p4-based switches with virtp4. In: Pro-
ceedings of the ACM SIGCOMM 2019 Conference Posters and Demos. New York,
NY, USA: Association for Computing Machinery, 2019. (SIGCOMM Posters and Demos
’19), p. 80—81. ISBN 9781450368865. Available from Internet: <https://doi.org/10.1145/
3342280.3342314>.

SAQUETTI, M. et al. P4vbox: Enabling p4-based switch virtualization. IEEE Commu-
nications Letters, IEEE, 2019.

http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
https://www.usenix.org/conference/hotcloud19/presentation/mustard
https://www.usenix.org/conference/hotcloud19/presentation/mustard
https://github.com/p4lang/p4runtime
http://doi.acm.org/10.1145/2785956.2787506
http://doi.acm.org/10.1145/2342356.2342427
http://doi.acm.org/10.1145/2342356.2342427
https://doi.org/10.1145/3342280.3342314
https://doi.org/10.1145/3342280.3342314

56

SCHWERDEFEGER, A. C.; WYK, E. R. V. Verifiable composition of deterministic gram-
mars. ACM Sigplan Notices, ACM, v. 44, n. 6, p. 199-210, 2009.

SHERRY, J. et al. Rollback-recovery for middleboxes. In: Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication. New York, NY, USA:
ACM, 2015. (SIGCOMM '15), p. 227-240. ISBN 978-1-4503-3542-3. Available from
Internet: <http://doi.acm.org/10.1145/2785956.2787501>.

SIVARAMAN, A. et al. Packet transactions: High-level programming for line-rate
switches. In: Proceedings of the 2016 ACM SIGCOMM Conference. [S.1.: s.n.], 2016.
p. 15-28.

SIVARAMAN, V. et al. Heavy-hitter detection entirely in the data plane. In: Proceedings
of the Symposium on SDN Research. New York, NY, USA: ACM, 2017. (SOSR ’17),
p. 164-176. ISBN 978-1-4503-4947-5. Available from Internet: <http://doi.acm.org/10.
1145/3050220.3063772>.

SONCHACK, J. et al. Enabling practical software-defined networking security applica-
tions with ofx. In: NDSS. [S.1.: s.n.], 2016. v. 16, p. 1-15.

SONI, H.; TURLETTI, T.; DABBOUS, W. P4Bricks: Enabling multiprocessing using
Linker-based network data plane architecture. Working paper or preprint. 2018. Available
from Internet: <https://hal.inria.fr/hal-01632431>.

SUN, C. et al. Nfp: Enabling network function parallelism in nfv. In: ACM. Proceedings
of the Conference of the ACM Special Interest Group on Data Communication. [S.1.],
2017. p. 43-56.

VANINI E. et al. Let it flow: Resilient asymmetric load balancing with flowlet switch-
ing. In: 14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). Boston, MA: USENIX Association, 2017. p. 407—420. ISBN 978-
1-931971-37-9. Available from Internet: <https://www.usenix.org/conference/nsdil7/
technical-sessions/presentation/vanini>.

WU, D. et al. Accelerated service chaining on a single switch asic. In: Proceedings of the
18th ACM Workshop on Hot Topics in Networks. New York, NY, USA: ACM, 2019.
(HotNets '19), p. 141-149. ISBN 978-1-4503-7020-2. Available from Internet: <http:
//doi.acm.org/10.1145/3365609.3365849>.

YU, H. et al. Automatic virtualization of accelerators. In: Proceedings of the Workshop
on Hot Topics in Operating Systems. New York, NY, USA: ACM, 2019. (HotOS ’19), p.
58-65. ISBN 978-1-4503-6727-1. Available from Internet: <http://doi.acm.org/10.1145/
3317550.3321423>.

ZHANG, C. et al. Mpvisor: A modular programmable data plane hypervisor. In: Pro-
ceedings of the Symposium on SDN Research. New York, NY, USA: ACM, 2017.
(SOSR ’17), p. 179-180. ISBN 978-1-4503-4947-5. Available from Internet: <http:
//doi.acm.org/10.1145/3050220.3060600>.

ZHANG, C. et al. Hypervdp: High-performance virtualization of the programmable data
plane. IEEE Journal on Selected Areas in Communications, IEEE, v. 37, n. 3, p. 556—
569, 2019.

http://doi.acm.org/10.1145/2785956.2787501
http://doi.acm.org/10.1145/3050220.3063772
http://doi.acm.org/10.1145/3050220.3063772
https://hal.inria.fr/hal-01632431
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
http://doi.acm.org/10.1145/3365609.3365849
http://doi.acm.org/10.1145/3365609.3365849
http://doi.acm.org/10.1145/3317550.3321423
http://doi.acm.org/10.1145/3317550.3321423
http://doi.acm.org/10.1145/3050220.3060600
http://doi.acm.org/10.1145/3050220.3060600

57

ZHENG, P.; BENSON, T.; HU, C. P4visor: Lightweight virtualization and composition
primitives for building and testing modular programs. In: Proceedings of the 14th In-
ternational Conference on Emerging Networking EXperiments and Technologies.
New York, NY, USA: ACM, 2018. (CoNEXT ’18), p. 98—111. ISBN 978-1-4503-6080-7.
Available from Internet: <http://doi.acm.org/10.1145/3281411.3281436>.

ZHOU, Y.; BI, J. Clickp4: Towards modular programming of p4. In: Proceedings of
the SIGCOMM Posters and Demos. New York, NY, USA: ACM, 2017. (SIGCOMM
Posters and Demos *17), p. 100—102. ISBN 978-1-4503-5057-0. Available from Internet:
<http://doi.acm.org/10.1145/3123878.3132000>.

http://doi.acm.org/10.1145/3281411.3281436
http://doi.acm.org/10.1145/3123878.3132000

58

APPENDIX A — PUBLISHED PAPER - SBRC 2019

Redes definidas por software (SDN) e o surgimento de planos de dados pro-
graméveis permitem maior flexibilidade para a operacao de redes. Essas tecnologias sdao
capazes de permitir que os administradores de rede reconfigurem os planos de dados e de
controle. A capacidade de reconfigurar e programar a rede sob demanda oferece varios
beneficios, em particular possibilitando melhorar os mecanismos de seguranca de rede
usando a capacidade de programacgdo. No entanto, além de promover um grau maior de
flexibilidade, a programagao do plano de dados levanta preocupag¢des em relacdo a er-
ros que podem criar inconsisténcias na funcdo mais bdsica da rede, o encaminhamento
de dados, interrompendo politicas previamente definidas. Neste trabalho apresentamos
um framework para instalar funcdes em planos de dados programdveis de maneira con-
fidvel, garantindo que a instalacdo de tais funcdes preserve as propriedades bdsicas de en-
caminhando. Para isso, empregamos técnicas de composi¢do de programas para mesclar
fungdes modulares em um tnico plano de dados agregado, garantindo que o programa
resultante seja correto apos a mesclagem. Para mostrar a corretude de nosso método,

apresentamos um estudo de caso com um firewall e um mdédulo de monitoramento.

e Title: Abordagem de Composicao de Programas P4 em Redes Programaveis

e Conference: XXXVII Simpdsio Brasileiro de Redes de Computadores e Sistemas

Distribuidos

Type: Main Track (Full Paper)

Qualis: B2
Held at: Gramado-RS, Brazil

59

Abordagem de Composicao de Programas P4 em Redes
Programaveis

Ricardo Parizotto, Lucas Castanheira, Alberto Schaeffer-Filho

Instituto de Informdtica — Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil

{rparizotto, lbcastanheira,alberto}@inf.ufrgs.br

Abstract. Software Defined Networks (SDN) and emerging programmable data
planes enable more flexibility for the operation of networks. Such technologies
are capable of allowing network operators to reconfigure networks on both con-
trol and data planes dynamically. Such an ability to reconfigure and program
the network on demand offers several benefits, in particular making it possible
to improve network security mechanisms by using programmability. However,
in addition to promoting a higher degree of flexibility, data plane programma-
bility raises concerns with respect to bugs that can create inconsistencies in
the network’s most basic function, the forwarding of data, disrupting previously
defined policies. In this work we present a framework to install functions on
programmable data planes in a reliable manner, ensuring that the installation
of such functions preserves basic forwarding properties. For this, we employ
program composition techniques to merge knowingly correct modular functions
into a single, aggregated data plane program, ensuring that the resulting pro-
gram is correct after the merge. To show the correctness of our method, we
present a case study with a firewall and a processing/monitoring module.

Resumo. Redes Definidas por Software (SDN) e o surgimento de planos de da-
dos programdveis permitem maior flexibilidade para a operacdo de redes. Es-
sas tecnologias permitem que os administradores de rede reconfigurem os pla-
nos de dados e de controle. A capacidade de reconfigurar e programar a rede
sob demanda oferece vdrios beneficios, em particular possibilitando melhorar
os mecanismos de seguranca de rede usando a capacidade de programacdao.
No entanto, além de promover um grau maior de flexibilidade, a programagcdo
do plano de dados levanta preocupacées em relagdo a erros que podem criar
inconsisténcias na fung¢do mais bdsica da rede, o encaminhamento de dados, in-
terrompendo politicas previamente definidas. Neste trabalho apresentamos um
framework para instalar funcoes em planos de dados programdveis de maneira
confidvel, garantindo que a instalacdo de tais funcoes preserve as propriedades
bdsicas de encaminhamento. Para isso, empregamos técnicas de composigdo de
programas para mesclar funcoes modulares em um tinico plano de dados agre-
gado, garantindo que o programa resultante seja correto apds a mesclagem.
Para mostrar a corretude de nosso método, apresentamos um estudo de caso
com um firewall e um modulo de monitoramento.

1. Introducao

Paradigmas de redes definidas por software (SDN) possibilitam o desacoplamento do
hardware (e.g. roteadores) e dos programas que nele executam (e.g. algoritmos de ro-

60

teamento) [Feamster et al. 2014]. Essa estratégia facilita a operacdo das redes, uma vez
que promove programabilidade no plano de controle da rede. Recentemente, a progra-
mabilidade foi estendida também para o plano de dados. Com o intuito de possibilitar
a programabilidade no hardware que reside no plano de dados, foi criada a linguagem
P4 [Bosshart et al. 2014], que permite aos administradores da rede definirem o compor-
tamento dos dispositivos de encaminhamento. Uma vantagem decorrente disso € a facili-
dade na criacdo e na implantacdo de novos protocolos de rede totalmente customizdveis,
sem depender da industria para que uma nova funcionalidade seja adicionada ao compor-
tamento do plano de dados.

Tal habilidade para reconfigurar e programar a rede possui varias aplicagdes, que
geralmente abrangem mecanismos governados pela dindmica e pelas mudangas frequen-
tes de politicas de rede. Isso pode envolver, por exemplo, a implantacao de fungdes de
rede adicionais e a reescrita da funcionalidade dos switches P4 de maneira que possam
suportar mais do que apenas um servico. Para que isso ocorra, é necessdrio o desen-
volvimento de técnicas abrangentes que permitam que a reconfiguracdo da rede ocorra
de maneira ripida e sem corromper propriedades basicas de operacdo. Alguns traba-
lhos recentes propdem a utilizagao de P4 para configurar fungdes virtualizadas no préprio
plano de dados [Hancock and van der Merwe 2016, Zhang et al. 2017]. Tais propostas,
porém, pecam de duas maneiras: em escalabilidade, devido ao uso excessivo de tabe-
las de controle e primitivas de recirculagdo de pacotes, atrasando o processamento € en-
caminhamento dos pacotes; e ndo fornecendo o isolamento necessario para as fungdes
[Dimitropoulos et al. 2018]. Diante disso, entendemos que sdo necessarias abstracoes e
estratégias que permitam que os administradores de rede possam implantar novas funci-
onalidades nos seus dispositivos programdveis, sem que isso impacte negativamente no
desempenho das func¢des de rede.

Neste trabalho, propomos uma estratégia baseada em P4 que permite que um ad-
ministrador de rede possa estender o comportamento de swifches programaveis. A nossa
estratégia € composta de duas etapas: (1) a composicdo de programas, que devera possi-
bilitar que o administrador de rede componha fun¢des modulares a um programa base, de
modo que a composi¢ao resulte em um novo programa com as funcionalidades tanto do
programa base como da extensao; (2) o isolamento 16gico dos programas, que evita que
as regras de match+action sejam sobrepostas e permite que a ordem em que 0s progra-
mas sdo executados seja alterada dinamicamente. Agregado a estratégia de composicao,
i1sso garante que as funcdes atuem de maneira isolada no processamento dos pacotes. A
estratégia proposta depende de um programa base com construtores bem definidos, que
permitem que as funcdes compostas possam ser gerenciadas de maneira dinamica. O
operador de rede poderd, entdo, compor o programa base com a configuracio desejada e,
enquanto estd em funcionamento, decidir qual a ordem em que as fun¢des serdo proces-
sadas por um tipo de trafego especifico.

A estrutura desse artigo esta dividida da seguinte maneira: na Secdo 2 apresenta-
mos um background sobre programabilidade no plano de dados e as restricdes no modelo
de encaminhamento. Na Sec¢do 3, apresentamos a estratégia de composicao de programas,
seguida pela estratégia de agregacao de fluxos de controle. Na Secdo 4 apresentamos um
estudo de caso e avaliagdo de nossa estratégia. Por fim, apresentamos uma visao geral dos
trabalhos relacionados e as conclusdes.

61

2. Background e Motivacao

Nesta secdo, revisamos P4 e programabilidade no plano de dados, seguido por uma
descricdo das caracteristicas principais que devem ser consideradas quando novas fun-
cionalidades sd@o implantadas ao plano de dados. Apresentamos também as principais
restricdes operacionais do modelo de encaminhamento, que dizem respeito as entradas
das tabelas de match+action e de parsers de cabegalhos de pacotes.

2.1. Abstracao da linguagem P4

P4 ¢ uma linguagem de especificacdio de plano de dados que permite a
configuracdo e programacdo de dispositivos de encaminhamento [Garcia et al. 2018,
Bosshart et al. 2014]. A sua abstracdo, apresentada na Figura 1, divide o comportamento
do plano de dados em um parser de cabecalhos de pacotes, um conjunto de tabelas de
match+action e fluxos de controle. O parser € uma méaquina de estados que descreve
como ler os cabecalhos de um pacote para as varidveis internas. Depois que um pacote
chega a um estado final da maquina de estados do parser, o pacote € processado pelos
construtores definidos no fluxo de controle. No fluxo de controle sdo definidas exclusi-
vamente as estruturas das tabelas, acdes e a ordem em que elas sdo executadas durante o
processamento dos pacotes.

switch configuration

forwarding

_ forwarding)
: rules

“rules

Packet-in Packet-out

Egress

Ingress

Figura 1. A abstracao da linguagem P4, adaptado de Bosshart et al.
[Bosshart et al. 2014]

A abstracdo P4 divide o modelo de encaminhamento em dois estidgios sequenciais,
(1) configuracdo do hardware, feita de maneira estatica no programa P4 e (2) populacdo
das regras, feita de maneira dinamica pelo controlador. Na configuragado, temos que escre-
ver o programa P4 que vai rodar no switch (incluindo parser, estagios do match+action e
deparser). Tal configuragdo € toda feita dentro de um fonte P4, que € compilado para uma
arquitetura especifica e carregado no switch. O estagio de populacdo das regras acontece
logo ap6s a configuracdo e se manterd durante todo o runtime do switch. No estagio de
populacdo, o controlador pode alterar as regras do swiftch livremente. Essa fase é realizada
pelo controlador e pelos programas que nele executam, cada um atualizando as regras que
lhes € pertinente.

62

2.2. Restricoes no modelo do plano de dados

Geralmente, programas sdo criados para executar no controlador, atualizando regras du-
rante a fase de populacdo. Para que evitemos bugs nesses programas, as atualizagdes
de regras por ele geradas t€ém que respeitar algumas propriedades bdésicas, tais como:
alcancabilidade e boa formacdo de pacotes. Na sequéncia, falaremos sobre cada uma
delas.

Propriedades fim-a-fim Sempre que uma nova entrada € inserida em uma tabela do
modelo do plano de dados, ela deve preservar propriedades (ou politicas) definidas previ-
amente, tais como

“pacotes do switch A devem chegar ao switch B”.
Ou propriedades de safety, como

“o fluxo i deve ser processado pelo switch X antes que ele alcance seu destino”.

[

NewModule.p4

Flow 0 ®
Flow 1 “ T_) /“\
(& (s] (& S

State i State i'

j
.

¢
N

Figura 2. Transicdo do estado de rede

Mudancas de politicas e de roteamento no plano de dados podem ser modeladas
como transi¢des entre estados das tabelas de match+action. Na Figura 2, apresentamos
um cendrio que descreve uma transicao entre dois estados de rede. No estado z, o Fluxo 1
é roteado através do caminho (S1, 53). Uma transicao 7" de um estado 7 para o estado i’ é
realizada implantando um mdédulo adicional ao switch S2 e mudando seu comportamento
de encaminhamento para o novo médulo interceptar pacotes do Fluxo 1. Entao, depois de
atualizar S'1, o mesmo fluxo é roteado por (S1, 52, 53), respectivamente.

Atualizar o plano de dados ndo € uma operacdo atdmica, porque swifches nao
sdo dispositivos sincronizados. Por isso, a ordem em que cada switch aplica mudangas é
um fator importante para alcangar uma transicao do estado da rede sem inconsisténcias.
Por exemplo, no cendrio da Figura 2, se, durante a transicdo 7' o switch S; atuali-
zar seu comportamento de encaminhamento antes de S, os pacotes do fluxo 1 irdo
enfrentar um ‘buraco negro’ quando alcancarem S, (ou os pacotes serdo enfileirados)
[Reitblatt et al. 2012][Katta et al. 2013] [Jin et al. 2014] [Nguyen et al. 2017].

Propriedades do switch O nivel de inconsisténcia torna-se ainda maior com progra-
mabilidade no plano de dados, que permite que esse tipo de bug possa ocorrer dentro
do pipeline de tabelas do switch, devido a possibilidade de mudangas da configuracao de

63

Flow 0

Flow 1

_)
Packet Packet T Packet Packet
in out in out
O — O

1
1
1
Swtich : Swtich
1
1
1

State i State i'
Packet Packet
in N\ out
\D=s

Intermediary State

Figura 3. Transigao do estado interno de um switch

tabelas e parsers de pacotes [Freire et al. 2018][Liu et al. 2018]. Ocasionalmente, se um
novo modulo inserido ndo possuir as instru¢des corretas para decodificar os cabegalhos
dos pacotes, os pacotes vao ser processados de uma maneira indesejada. Um exemplo
disso, € que pacotes chegariam ao pipeline sem nenhum valor instanciado ou seriam eli-
minados ainda no parser [Lopes et al. 2016].

A ordem em que as atualizagcdes sdo gerenciadas dentro do pipeline do switch
também estao sujeitas a falhas de configuracdo. A Figura 3 ilustra uma transi¢do entre
dois diferentes estados internos de um switch. No estado i, o Fluxo 1 € roteado pelos
moédulos (P, P3). Uma transi¢do do estado i ao i’ é realizada mudando a sequéncia
de médulos que processam o Fluxo 1. Depois da transi¢cdo, o mesmo fluxo é roteado
pelos médulos (P, P), respectivamente. Se o médulo P; atualizar seu comportamento
de encaminhamento antes de s, ird formar um estado intermedidrio inconsistente, onde
pacotes do Fluxo 1 irdo enfrentar um ‘buraco negro’ quando chegarem ao médulo 7.

Neste trabalho, propomos uma estratégia para compor programas P4 em redes
programdveis. Para isso, apresentamos um framework capaz de unir caracteristicas de
diferentes programas em um unico programa agregado, que contempla a funcionalidade
de ambos e pode ser gerenciado dinamicamente.

3. Abordagem de Composicao de Programas

Recentemente, diversas aplicacdes de redes voltaram a discussdo, o que t€ém motivado
a criacdo de vérios mecanismos para o plano de dados. Porém, a maioria dos trabalhos
trata os programas para plano de dados como monoliticos € com uma tnica funcionali-
dade especifica. Neste trabalho, apresentamos uma estratégia para compor mais do que
um programa em um switch P4. Nossa estratégia se utiliza de técnicas de composicao
de maquinas de estado para mostrar como realizar a extensao de parsers e deparsers de
pacotes. Nessa secdo, também apresentamos uma arquitetura base, que possui primitivas
para composi¢ao de fluxos de controle de vérios programas.

64

& D

NewModule.p4

,,,,,,,,,, —

fCoanic\s
1 Solver

SDN Controller

P4c
' Compiled
! @ Code
|

Controller Platform New Compiled
: C Code

Header

' Space
Data Plane 1| Verification
P4 Switches ! Deployment

Figura 4. Arquitetura do mecanismo de composigao

Visao geral da estratégia Dado um novo programa S, utilizamos uma técnica de
composi¢cao de maquinas de estado para criar uma nova especificagdo com um conjunto
de extensdes do programa S. A composi¢do € a unido do conjunto de estados terminais,
nao-terminais, transi¢oes e as defini¢des e instancias de cabecalhos definidos em cada pro-
grama. A estratégia proposta, ilustrada na Figura 4, compde a configuracao dos progra-
mas do plano de dados ainda no plano de controle, pelo administrador de rede. As fungdes
devem ser inseridas conforme as necessidades do operador. Assim que a composicao €
finalizada, uma etapa de verificagdo checa o espaco de cabecalhos para evitar loops e
nao determismo no cddigo final gerado. Por fim, o resultado é compilado e pode ser
implantado no switch. A implantacdo € realizada de maneira estatica, isto €, exige a
reinicializacao do switch. Depois que a implantagao € finalizada, o operador pode geren-
ciar dinamicamente a ordem em que as funcdes inseridas processam os pacotes. Isso se da
pela atualizacdo das regras de match+action das tabelas que fazem parte da composicao.

A composicao de programas € realizada estendendo o cédigo host (Figura 5, passo
1). Parsers e Deparsers sao unidos utilizando composi¢ao de maquinas de estados (Figura
5, passo 2). O novo fluxo de controle € posicionado no comego do pipeline do programa
Host, reescrevendo seu codigo fonte (Figura 5, passo 3). A seguir, essas etapas serao
descritas em maiores detalhes.

3.1. Extensao de parsers de pacotes

Ap6s a leitura do programa Host, o seu parser de pacotes € estendido para incluir as
funcionalidades do parser de pacotes pertencente a extensdao [Zheng et al. 2018]. O re-
sultado da composicao € uma nova maquina de estados que une os estados equivalentes
(i.e. estruturas de cabecalhos) e integra as transi¢des que ndo estao no parser do programa
a ser estendido. A Figura 5, Passo 2, apresenta a composi¢do entre esses dois parsers.
No exemplo da figura, o parser do programa Host é estendido para suportar a leitura do
cabecalho sec ap6s decodificar o cabecalho do IPv4. Depois que a composicao de parser
de pacotes € finalizada, o processo segue para a composi¢ao do fluxo de controle (passo
3). Essa estratégia permite que o administrador de rede altere dinamicamente a ordem

65

das fungdes processadas no plano de dados, simplesmente adicionando novas regras de
match+action ao switch.

Composicao de Maquinas de Estados

Parser Da .
Extensdo . O/\AQ/NO

. Ethernet Ilpv4 Sec

“_Eth
Parser Do t emet ipv4\to
Host Tep
Comportamento Sosemnene S
Padrdo do Host

Resultado da Composigao)
Reescrita do

Sec Fluxo de Controle

Ethernet cp

Arp

Parser Deparser

—>

Tabela Shadow Comportamento
Padrao

Figura 5. Visao geral da estratégia de composicao de programas P4

3.2. Agregacao de Fluxos de Controle

A composi¢ao de fluxos de controle permite incluir a¢des adicionais, definicdes de tabe-
las ou, até mesmo, ramificacdes adicionais ao programa Host. Uma maneira simples para
compor fluxos de controle € unir a especificacdo de tabelas com o mesmo nome e tipos de
atributos de match. Porém, isso cria a possibilidade de diferentes aplicacdes do plano de
controle inserirem regras conflitantes, permitindo que, eventualmente, pacotes da mesma
politica sejam roteados por mais do que um caminho. Como uma consequéncia disso, pro-
priedades basicas de processamento de pacotes podem ser violadas, como por exemplo, a
propriedade de coeréncia de pacotes (ou de fluxos), apresentada em [Reitblatt et al. 2012].
A adicao de um moédulo que gera regras conflitantes requer que as aplicagdes do plano de
controle sejam alteradas, o que, tecnicamente atrasaria o processo de desenvolvimento.
Nessa secdo, apresentamos o mecanismo que compde os médulos do fluxo de controle,
isolando os fluxos de controle especificos de cada aplicacao.

Impacto de isolamento Com o objetivo de prevenir o problema de insercao de regras
conflitantes, isolamos as tabelas e a¢des de cada novo moddulo inserido. Para isso, €

66

necessdrio renomear tabelas e acdes que tenham nomes ambiguos (para evitar loops no
pipeline). Por isso, resolvemos conflitos de nomes e fixamos o novo médulo no inicio
do pipeline do programa host. Essa estratégia isola as regras de match+action de cada
aplicagdo, tornando o comportamento do programa host independente do processamento
das funcionalidades inseridas. O isolamento garante que as regras instaladas nao irdo cor-
romper as regras especificas das aplicacdes que gerenciam as outras tabelas do programa,
preservando, assim, a ordem de execucao das fungdes.

Match

Flow 1
— Py Py

Flow 2
-

Where, jk <N

Table Params <P1 P2 ... PN>

Figura 6. Encadeamento de programas no plano de dados

Encadeamento de Programas Para compor vérios programas em nosso framework,
criamos a abstracdo de encadeamento de fun¢des. Essas possuem sua ordem de execugao
controlada a partir de regras adicionadas de uma aplicacao do plano de controle. Para isso,
utilizamos uma tabela, que chamamos de ‘Shadow’, a qual funciona como um grande
catdlogo de ponteiros para fungdes. Inicialmente, a tabela shadow € posicionada no inicio
do pipeline de tabelas e intercepta todos os pacotes, mapeando um conjunto de fluxos
para um conjunto sequencial de programas P, P, ..., Py. Dessa maneira, a ordem de
execug¢do das funcdes pode ser diferente para cada parametro de match da tabela e alterada
de maneira dindmica pelo operador de rede. Quando o operador deseja alterar as funcdes
executadas, ele apenas atualiza o conteudo da tabela Shadow, alterando os parametros que
dizem respeito a ordem de execucgdo dos programas. A Figura 6 apresenta a estrutura da
tabela Shadow. No exemplo da figura, Fluxo 1 é mapeado para ser processado apenas por
Py, Py e Pj, respectivamente. Enquanto o Fluxo 2 vai ser processado por P, Py e I, em
caso de match na tabela.

3.3. Composicao de Deparsers

A composicao de deparser € um processo mais simples. Porque o proprio deparser possui
uma estrutura mais simples. A composi¢ao do deparser se da apenas pela adicdo da
primitiva que emite os cabecalhos adicionais da extensao. Isto, €, os cabecalhos que foram
incluidos durante a extensao do parser, agora, devem ser emitidos na ordem correta.

4. Estudo de caso e Avaliacao

Para validar nossa estratégia, desejamos mostrar 0 impacto que o mecanismo de
composi¢do traz para virtualizagdo de varios programas P4. Para isso, construimos um

67

cendrio de estudo de caso utilizando mdédulos de monitoramento e de controle de acesso
(firewall) no proprio plano de dados. Adicionalmente, medimos o impacto de nossa es-
tratégia de composicao no processamento e encaminhamento de pacotes. Isso tudo, con-
forme a quantidade de funcdes (ou programas) inseridos aumenta. Como exemplo sim-
ples, apresentamos nessa se¢do a composicdo de um mddulo de monitoramento a um
switch simples, com encaminhamento de camada 2. Depois, mostramos como compor o
firewall a esse mesmo programa.

Modulo de processamento/Monitoramento O médulo de processamento € mo-
nitoramento adiciona capacidades de armazenamento ao pipeline do programa. Isso per-
mite que parte do processamento de funcdes de seguranga aconte¢a no proprio plano
de dados. Esse médulo armazena métricas sobre os fluxos (isto €, pacotes identificados
pelo endereco IPv4 de destino e origem) e dispara um alerta para o plano de controle
quando um determinado limite é atingido. O funcionamento deste mddulo € baseado em
estratégias de deteccdo de Heavy Hitter [Sivaraman et al. 2017] para identificar os fluxos
que ultrapassam o limite. A composi¢do do mddulo de monitoramento ao programa host,
estende os cabecalhos do programa principal com as defini¢des de cabegalho IPv4 e suas
respectivas defini¢des. O fluxo de controle € composto estendendo as agdes da tabela
shadow, de maneira que elas incluam uma nova a¢ao, a qual executa as operacdes do pro-
grama de monitoramento. Por fim, o deparser é estendido pela emissao do conteido do
cabecalho [Pv4.

Firewall com Estado Propomos um firewall que inspeciona os cabegalhos de ca-
mada 3. Ele funciona provendo uma interface para drop e reescrita de tipos especificos
de pacotes conforme eles sdo interceptados. O firewall armazena o estado de novas co-
nexdes TCP no proprio switch (SYN & ACK = 1) e somente permite que a conexao seja
emitida quando estabelecida. Ao contrario do que ocorre com alguns firewalls para redes
definidas por software [Hu et al. 2014], em nossa proposta nao hd necessidade de tratar
sobreposicoes de regras de match+action. Isso ocorre pois uma nova tabela € criada para
o firewall e isolada das tabelas de funcionamento padrdao do switch pela estratégia de
composi¢cdo. A composi¢do do firewall incorpora ao parser de cabegalhos o estado refe-
rente ao TCP. A definicao da acdo que reescreve os cabecalhos é adicionada e o deparser
comega a produzir cabecalhos TCP.

4.1. Overhead de desempenho

Para avaliar nosso framework, utilizamos o switch de software bmv?2 I em conjunto com o
emulador mininet. N6s executamos os experimentos em um Intel(R) Core(TM) i3-6006U
CPU @ 2.00GHz. O objetivo € mostrar o impacto da utilizacdao de nossa estratégia para
o0 atraso e a vazao dos fluxos processados pelo programa resultante da composi¢ao.

Para avaliar o atraso que a composicdo de novos programas traz para o comporta-
mento usual do switch, nés configuramos um experimento que realiza 100 requisi¢des e
medimos o tempo em que uma requisicdo leva pra ser processada. Comparamos o atraso
em um cendrio utilizando o programa host contendo os médulos enunciados acima com-
posto com o programa sem extensdes e utilizamos tabelas ’Shadow’ com 1024 entradas.
Na Figura 7, identificamos como ‘Shadow’ o atraso gerado quando os pacotes sdo in-
terceptados e combinam com alguma regra da tabela Shadow. Identificamos na figura

Thttps://github.com/p4lang/behavioral-model

68

como ‘P4’, o atraso gerado quando os fluxos sdo interceptados pela tabela Shadow, mas
nao combinam com nenhuma regra, consequentemente sendo processados apenas pelas
fungdes usuais do switch (i.e. encaminhamendo de nivel 2).

—
B shadow —_

Atraso (ms)

L2 L2 + Monitor L2 + Monitor + Firewall

Figura 7. Desempenho e Overhead da Estratégia de Composicao

Como pode ser visto na Figura 7, a utilizagdo do mecanismo de composi¢ao nao
parece demonstrar sacrificio de performance. A variagdao de desempenho entre os dois
cendrios € limitada a uma percentagem relativamente pequena, sem ultrapassar a diferenca
de mais do que 0.4 ms entre o experimento utilizando a tabela Shadow e o experimento
com P4 nativo. Isso mostra que a utilizacdo ta tabela Shadow para isolar novos progra-
mas nao degrada significativamente o desempenho das funcionalidades usuais do switch.
Vemos como uma possibilidade de trabalho futuro comparar nossa solucdo com outras
abordagens que proponham a composi¢ao de fungdes para plano de dados programéveis.

A Figura 8 apresenta o impacto que as novas funcionalidades trazem para a vazao,
em Mbits por segundo. Para cada programa resultante da composi¢ao, avaliamos tanto a
vazao pelo caminho usual do comportamento do switch (identificado como P4); e a vazao
quando os fluxos sdo encaminhados e processados pelos médulos estendidos. E possivel
observar que a vazao reduz conforme os médulos que leem contéudos de cabecgalhos de
camada mais alta sdo adicionados. A composi¢do do firewall agregado ao modulo de
monitoramento reduz pela metade a vazao quando € interceptado pela tabela Shadow (de
22Mbit/s para cerca de 12Mbit/s). Isso se deve tanto pela necessidade de decodificar mais
bytes do cabecalho, tanto pelo tempo de processando dos bytes no fluxo de controle. De
qualquer maneira, € um preco aceitdvel a se pagar quando se deseja uma rede mais segura.

5. Trabalhos Relacionados

Programabilidade no plano de dados tem sido tipicamente empregada na virtualizacao
de servicos que tradicionalmente eram engessados a middleboxes fechados ou ao cir-
cuito integrado dos switches. Nessa secdo, apresentamos estudos ja desenvolvidos sobre
virtualizacao de fun¢des do plano de dados e sobre estratégias de seguranga e monitora-

69

30 + P4
@ shadow
25 A
T 20 A
i
)
g
s 15 A
m
o
=
10 A
5
0
L2 L2 + Monitor L2 + Monitor + Firewall

Figura 8. Impacto da composicao dos modulos na vazao dos fluxos no plano de
dados

mento. O esclarecimento sobre o que ja foi produzido sobre o assunto ajudara a compre-
ender a contribui¢do de nossa proposta para essas areas.

Virtualizaciao de Plano de Dados Em [Hancock and van der Merwe 2016], os autores
propdem o Hyper4, um hypervisor para programas P4, cujo design permite a virtualizagao
de varios programas P4. Dessa maneira, o Hyper4 possibilita que o administrador da rede
altere dinamicamente a ordem légica dos programas. Para isso, todavia, faz-se necessario
um conjunto amplo de tabelas e primitivas de recirculacdo que permitam a execucio de
varios parsers. Em [Zhou and Bi 2017], os autores utilizam um nimero reduzido de tabe-
las, mas ainda exigem que 0s pacotes recirculem para novos programas serem inseridos.
Em [Dimitropoulos et al. 2018], os autores propdem a virtualizagao de programas sem
exigir recirculacdo de pacotes. Porém, eles ndo proveem isolamento entre as fungdes
inseridas. Em [Zhang et al. 2017], também encontramos uma proposta de hypervisor uti-
lizando P4, porém, empregando um nimero muito reduzido de tabelas para realizar o
ordenamento topoldgico de maneira dinamica. Diferentemente, nossa proposta utiliza
apenas uma tabela adicional para suportar varios programas e ndo recorre a primitiva de
recirculacao.

Seguranca no Plano de Dados Como qualquer outro paradigma, redes defini-
das por software necessitam de mecanismos para proteger seu funcionamento. Em
[Hu et al. 2014] os autores propdoem um firewall para redes SDN que executa em switches
e permite resolugdes efetivas de politicas de violacdo de firewall em redes OpenFlow.
Para evitar a inser¢do de regras conflitantes que violem as politicas de seguranca, os auto-
res propdem uma camada para o plano de controle que resolve ambiguidades entre regras
a serem inseridas. Em [Sonchack et al. 2016], os autores apresentam o OFX, sistema
que permite a disposi¢cdo de fungdes de seguranca em switches, mas cuja estratégia nao
€ adequada para processadores de pacotes genéricos. Em nosso trabalho, propomos um

70

mecanismo que permite implantar fun¢des de seguranga utilizando P4. Argumentamos
que nosso design evita regras conflitantes entre diferentes aplicagdes/servigos e pode ser
implantado em processadores genéricos de pacotes.

Monitoramento Trabalhos que permitem realizar o monitoramento de pacotes no
plano de dados, sdo divididos entre aqueles que tentam fornecer abstracdes para iden-
tificar e armazenar informagdes sobre fluxos de pacotes (heavy hitter e fluxos elefan-
tes) [Sivaraman et al. 2017] e aqueles que fornecem mecanismos eficientes para teleme-
tria e agregacao da informacao do plano de dados [Kim et al. 2015, Van Tu et al. 2017,
Marques and Gaspary 2018]. Embora nosso trabalho seja quase ortogonal ao que
propdem esses pesquisadores, acreditamos fornecer elementos que complementam seus
estudos. Ao passo que aqueles ndo demonstraram a implantac@o de suas funcionalidades
em um plano de dados de programdvel, entendemos que nossa proposta preenche essa
necessidade.

6. Conclusoes

Neste trabalho apresentamos uma estratégia de composicao de programas P4 para esten-
der a funcionalidade de dispositivos de planos de dados programdveis. A estratégia é
dividida em uma etapa de composicao da maquina de estados de parser de pacotes e em
uma outra etapa complementar, em que as acdes e os construtores do fluxo de controle
sdo estendidos em uma arquitetura modular e que permite configuragdo dinamica. NOs
apresentamos um estudo de caso, mostrando o funcionamento do mecanismo para dois
programas modulares: um mdédulo de monitoramento que utiliza técnicas de heavy hitter
e um firewall que armazena o estado de conexdes TCP. Os resultados das avaliagdes re-
alizadas mostram que é possivel compor programas para o plano de dados programdvel
utilizando nossa estratégia sem impactar significativamente no atraso e vazao de proces-
samento dos pacotes. N&s atribuimos isso ao uso muito reduzido de recursos, incluindo
tabelas e l6gica de controle.

Embora nossa estratégia garanta uma boa utilizagdo dos recursos do switch ao
compor mddulos distintos, principalmente por causa da utilizacdo de apenas uma tabela
adicional, ela ainda enfrenta vérias limitacdes. Em particular, a estratégia introduz al-
guns overheads ao plano de controle, exigindo que o desenvolvedor de um mddulo seja
responsdvel pela corretude do direcionamento dos pacotes.

Atualizacoes Consistentes Devido a essa limitacdo, existe a necessidade de uma ou-
tra etapa de verificacdo durante o funcionamento da rede para garantir que um pacote
ndo passe por duas configuracdes distintas enquanto é processado. Isso ocorre pois 0s
modulos internos podem possuir suas proprias tabelas e elas podem ser atualizadas de
maneira que corrompa a configuracao de direcionamento gerada pela tabela Shadow.

Regras Sobrepostas Embora a tabelha Shadow possa facilitar o direcionamento dos
fluxos, a insercdo de regras sobrepostas na tabela pode gerar dire¢des conflitantes dentro
do switch. N6s vemos como trabalho futuro o desenvolvimento de um mecanismo que
filtre e resolva as sobreposi¢des.

71

Operadores de Composicao Esse trabalho focou em apresentar uma estratégia para
compor e direcionar os fluxos pelos modulos compostos. Como parte de um trabalho em
andamento nods investigamos a utilizagdo de operadores de composicao para facilitar ao
administrador de redes a etapa de arranjo dos méudulos conforme suas necessidades.

Em trabalhos futuros, pretendemos utilizar a estratégia de composi¢ao em um hy-
pervisor para planos de dados, onde as extensOes possam ser adicionadas e removidas de
maneira automética pelo operador de rede. Também desejamos construir uma interface
adaptével para o plano de controle, eliminando a necessidade de reescrever as aplicacdes
do plano de controle ao inserir um novo moédulo no plano de dados. Também sdo ne-
cessarios mecanismos que garantam que as atualiza¢des dindmicas ndo permitam que um
fluxo passe por mais do que uma configuragdo enquanto o plano de dados € atualizado.

Referéncias

Bosshart, P, Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4: Program-
ming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87-95.

Dimitropoulos, X. A., Dainotti, A., Vanbever, L., and Benson, T., editors (2018). Procee-
dings of the 14th International Conference on emerging Networking EXperiments and
Technologies, CONEXT 2018, Heraklion, Greece, December 04-07, 2018. ACM.

Feamster, N., Rexford, J., and Zegura, E. (2014). The road to sdn: An intellectual history
of programmable networks. SIGCOMM Comput. Commun. Rev., 44(2):87-98.

Freire, L., Neves, M., Leal, L., Levchenko, K., Schaeffer-Filho, A., and Barcellos, M.
(2018). Uncovering bugs in p4 programs with assertion-based verification. In Procee-
dings of the Symposium on SDN Research, page 4. ACM.

Garcia, L. F. U, Villaga, R. S., Ribeiro, M. R. N., Martins, R. F. T., Verdi, F. L., and Mar-
condes, C. (2018). Minicurso introdugdo a linguagem p4 - teoria e pratica. In XXXVI
Simpdosio Brasileiro de Redes de Computadores e Sistemas Distribuidos (SBRC), Cam-
pos do Jordao, Brasil. SBC.

Hancock, D. and van der Merwe, J. (2016). Hyper4: Using p4 to virtualize the program-
mable data plane. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies, CONEXT ’16, pages 35-49, New York,
NY, USA. ACM.

Hu, H., Han, W., Ahn, G.-J., and Zhao, Z. (2014). Flowguard: building robust firewalls
for software-defined networks. In Proceedings of the third workshop on Hot topics in
software defined networking, pages 97-102. ACM.

Jin, X., Liu, H. H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M., Rexford, J., and
Wattenhofer, R. (2014). Dynamic scheduling of network updates. SIGCOMM Comput.
Commun. Rev., 44(4):539-550.

Katta, N. P., Rexford, J., and Walker, D. (2013). Incremental consistent updates. In Pro-
ceedings of the second ACM SIGCOMM workshop on Hot topics in software defined
networking, pages 49-54. ACM.

72

Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., and Wobker, L. J. (2015). In-band
network telemetry via programmable dataplanes. In ACM SIGCOMM.

Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang, H., Cascaval,
C., McKeown, N., and Foster, N. (2018). p4v: Practical verification for programmable
data planes.

Lopes, N., Bjgrner, N., McKeown, N., Rybalchenko, A., Talayco, D., and Varghese, G.
(2016). Automatically verifying reachability and well-formedness in p4 networks.
Technical report, Technical Report.

Marques, J. A. and Gaspary, L. P. (2018). Explorando estratégias de orquestracao de te-
lemetria em planos de dados programaveis. In Simpdsio Brasileiro de Redes de Com-
putadores (SBRC), volume 36.

Nguyen, T. D., Chiesa, M., and Canini, M. (2017). Decentralized consistent updates in
sdn. In Proceedings of the Symposium on SDN Research, SOSR ’17, pages 21-33,
New York, NY, USA. ACM.

Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., and Walker, D. (2012). Abstractions
for network update. In Proceedings of the ACM SIGCOMM 2012 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM 12, pages 323-334, New York, NY, USA. ACM.

Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., and Rexford, J.
(2017). Heavy-hitter detection entirely in the data plane. In Proceedings of the Sym-
posium on SDN Research, SOSR 17, pages 164-176, New York, NY, USA. ACM.

Sonchack, J., Smith, J. M., Aviv, A. J., and Keller, E. (2016). Enabling practical software-
defined networking security applications with ofx. In NDSS, volume 16, pages 1-15.

Van Tu, N., Hyun, J., and Hong, J. W.-K. (2017). Towards onos-based sdn monitoring
using in-band network telemetry. In Network Operations and Management Symposium
(APNOMS), 2017 19th Asia-Pacific, pages 76—81. IEEE.

Zhang, C., Bi, J., Zhou, Y., Dogar, A. B., and Wu, J. (2017). Mpvisor: A modular pro-
grammable data plane hypervisor. In Proceedings of the Symposium on SDN Research,
SOSR 17, pages 179-180, New York, NY, USA. ACM.

Zheng, P., Benson, T., and Hu, C. (2018). Shadowp4: Building and testing modular
programs. In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and
Demos, pages 150-152. ACM.

Zhou, Y. and Bi, J. (2017). Clickp4: Towards modular programming of p4. In Proceedings
of the SIGCOMM Posters and Demos, SIGCOMM Posters and Demos ’17, pages 100-
102, New York, NY, USA. ACM.

73

APPENDIX B — ACCEPTED PAPER - NOMS 2020

Programmable Data Planes (PDP) enable more flexibility for the operation of net-
works. The various benefits of programmability have led the community to develop new
software on both academic and industrial capacities. To fully reap the benefits of pro-
grammability, it should be feasible to compose and operate multiple PDP programs into
a single target switch as needed. However, existing techniques are not suitable in the
sense that they: (1) use an excessive number of parser states and tables; (2) lack abstrac-
tions for the steering of packets through the control flows of programs. As such, they do
not support modular composition of PDP programs. This paper proposes a composition
mechanism that also addresses the fundamental needs of packet steering between PDP
program modules. PRIME (Programming In-Network Modular Extensions) enables net-
work operators to specify compositions of P4 programs and how traffic traverses these
programs. The composition employs a verification phase to identify ambiguities between
applications and avoid loops inside the switch pipeline. An additional table and a control
plane management framework enforce the steering of packets through control flows. We
present a prototype of PRIME, along with a proof of the steering correctness. The pro-
totype shows that it is possible to achieve module-wide compositions at little additional

cost in terms of delay and throughput.

e Title: PRIME: Programming In-Network Modular Extensions
e Conference: NOMS 2020 - IEEE NOMS 2020 IEEE/IFIP Network Operations and

Management Symposium
e Type: Main Track (Full Paper)
e Qualis: A2

e Held at: Budapeste, Hungria

74

PRIME.: Programming In-Network
Modular Extensions

Ricardo Parizotto, Lucas Castanheira, Fernanda Bonetti, Anderson Santos, Alberto Schaeffer-Filho
Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Email: {rparizotto, lbcastanheira, fernanda.bonetti, assilva, alberto} @inf.ufrgs.br

Abstract—Programmable Data Planes (PDP) enable more
flexibility for the operation of networks. The various benefits
of programmability have led the community to develop new
software on both academic and industrial capacities. To fully
reap the benefits of programmability, it should be feasible to
compose and operate multiple PDP programs into a single target
switch as needed. However, existing techniques are not suitable
in the sense that they: (1) use an excessive number of parser
states and tables; and (2) lack abstractions for the steering
of packets through the control flows of programs. As such,
they do not support modular composition of PDP programs.
This paper proposes a composition mechanism that also ad-
dresses the fundamental needs of packet steering between PDP
program modules. PRIME (Programming In-Network Modular
Extensions) enables network operators to specify compositions
of P4 programs and how traffic traverses these programs. The
composition employs a verification phase to identify ambiguities
between applications and avoid loops inside the switch pipeline.
An additional table and a control plane management framework
enforce the steering of packets through control flows. We present
a prototype of PRIME, along with a proof of the steering
correctness. The prototype shows that it is possible to achieve
module-wide compositions at little additional cost in terms of
delay and throughput.

I. INTRODUCTION

Software-based paradigms for networking enable decou-
pling software solutions from the hardware in which they
execute, making the management and operation of the net-
work infrastructure more flexible and adaptive. Software-
Defined Networking (SDN) [1] promotes the separation of
the control logic from the forwarding behavior of network
devices. More recently, Programmable Data Planes (PDP)
offer more flexibility in the development of protocols and
network functionality by allowing packet processing at line
rate in the switch itself. This motivated many emerging
applications, such as NetCache [2] or P4xos [3], to bring part
of the processing back to the data plane to achieve economies
at scale and lower operating costs. As such, operators can
leverage programmable hardware to, for instance, process
or analyze data [4], thereby enabling faster reactions in
contrast to packet mirroring to middleboxes or controller-
based applications [5][6].

Rather than writing one monolithic program, it should be
straightforward for PDP software to be shared and com-
posed into switches as needed [7][8][9]. However, existing
languages for data plane programming do not support mod-

978-1-7281-4973-820$31.00 (© 2020 IEEE

ular development. P4 (“Programming Protocol-independent
Packet Processors™) [10], one of the most popular languages
for PDPs, requires developers to perform extensive source
code modifications if they want to deploy multiple appli-
cations into a single switch. As a result, researchers have
responded by offering virtualization instances that dedicate
multiple PDP programs to the same physical target [11]. Vir-
tualization typically refers to code composition techniques,
which can both be utilized as a programming model [12]
or for the automation of code merging. Hence, virtualization
avoids rewriting code from different programs manually and
maintains the semantics of the system.

While composing multiple programs may promote better
usage of network resources, the management of programs
becomes more complex and error-prone [13]. Current efforts
to virtualize various programs in a single target switch make
use of an excessive number of flow tables and parser states
[11][14][15]. Consequently, these techniques can severely
limit throughput and increase latency in general-purpose
hardware or do not fit in specialized hardware, such as
netFPGAs or ASICs [16]. Additionally, state-of-the-art tech-
niques do not suffice to provide transitional consistency
between steering configurations. Without transitional consis-
tency, changes in the steering of flows through the program
modules can create intermediary states, which may cause
misroutings and security holes [17] [18] [19]. New techniques
are required to allow new applications to be composed,
preserving transitional packet-consistency of traffic steering
without degrading performance of the data plane operation.

In this work, we present PRIME, a composition mecha-
nism for P4 programs. Instead of building only monolithic
applications, we provide abstractions for code reuse and
traffic steering in a consistent manner. Specifically, PRIME
implements an interpreter to parse and merge P4 programs
(e.g., security functions, including firewalls, access controls,
and DPIs), in the manner defined by the network operator.
As programmers may want to instantiate programs without
rewriting their constructs (e.g., tables, actions or parser
states), the composition extends P4 programs, placing an or-
dered set of programs and isolating resources between them.
A custom verification phase detects and corrects ambiguities
between the control flow of modules, consequently avoiding
undesired loops inside the switch pipeline. Dynamically,
PRIME allows network administrators to specify the steering

of traffic through the composed programs. The key insight
is to deploy programs statically and use per-packet state to
steer flows using one single additional table. PRIME then
provides a control plane interface to specify steering updates
and send the necessary table entries to switches.

Overall, this paper makes the following contributions:

« Identifies a set of features that network operators would
require in order to compose multiple programs at a
single switch.

« Explores state machine composition techniques for pro-
viding a programming operator for the P4 language that
merges independent programs.

o Designs a composition model for P4 programs and
provides a control plane interface to steer flows through
the composed programs. The interface provides the
means to update the configuration without creating
intermediary states.

« Implements use-cases with existing applications written
as P4 programs and provides initial evidence of the
feasibility and benefits of using PRIME.

The remainder of this paper is organized as follows:
Section II provides a brief overview of Programmable Data
Planes and traffic steering constraints. Section III describes
the design of PRIME and the composition mechanism. Sec-
tion IV provides a preliminary evaluation of PRIME. Finally,
Section V presents related work and Section VI presents
concluding remarks and future work.

II. BACKGROUND

This section summarizes the P4 abstraction for PDP. We
show that configuring the composition of P4 programs re-
quires the developer to preserve steering constraints.

A. Programmable Data Planes

Data Plane Programmability has been proposed as a means
to deploy new features without the need to buy new hardware.
The development of specification languages such as P4 [10]
enabled operators to change the behavior of programmable
switches without rewriting low-level instructions (e.g., the
kernel of OvS [20], integrated circuits of hardware switches,
or components of simulation environments). P4 allows pro-
gramming and configuration of forwarding devices, including
specific actions or control calls. In contrast to standard
OpenFlow switches [21], P4 enables network developers to
build programs that modify the structure of packet headers
and can store complex network state on the data plane.

The PDP abstraction divides the data plane behavior into
three main blocks: The packet Parser, Control Flows and the
Deparser. The Parser is a state machine that describes how to
read headers from incoming packets, where the state is the
header structure and transitions are a function from header
attributes to another state. Therefore, the parser specifies
the order each header is instantiated to local variables.
After a packet is processed by the parser it follows to a
pipeline of Control Flows. Each control flow is composed
by a set of logical match+action tables implemented using

75

match+action units (MAUs). An apply block specifies the
semantics and order that each MAU processes packets and
modifies the content of header attributes instantiated by the
Parser. The Deparser writes internal variables to the packet
header and emits the packet to an output port (or recirculates
it back to the parser).

The PDP abstraction divides the forwarding model into
two stages: the configuration and the population. During
the configuration, developers can configure the parser state
machine, the structure of MAUs and the semantics of con-
trol flows. In this phase, the developer also defines header
structures, metadata, and internal registers. The population
stage allows the operator to insert, remove, or modify entries
of the stateful objects, such as tables and registers that were
created during the configuration phase. In the case of P4, the
language does not dictate table update behavior. Therefore
it is necessary to build tools on top of P4 to provide an
update command for a different target switch, i.e., when a
packet matches a rule, an action is invoked with parameters
supplied by a control program.

B. Traffic Steering Constraints

Virtualizing multiple P4 program modules into devices
brings together the necessity of abstractions to steer flows
through the composed program modules. This, in turn, cre-
ates new difficulties for the network operation. The steering
configuration must be easy to manage and semantically
coherent with the policy specified by the network operator

[17].
In Oout |
Q @ (@) 1
riowo, &7 5
Flow 1 1

State i

Fig. 1: Switch state transition

Figure 1 presents two different states of traffic steering.
In the example, the network state ¢ steers Flow 1 packets
through extensions (E1, E3) and Flow 0 through extensions
(E2, E3), respectively. For some reason, it might be desirable
to achieve a transition between the state configuration i
to state i’, in which (F1, E2) process Flow 1. However,
this change of configuration is error-prone and can create
undesirable intermediary states, i.e., a packet may see part of
state i and part of state i’. In the example, an intermediary
state can be created by performing the update of E'1 before
updating E2, leading a new packet to reach E2 without
having the proper instructions to process it.

III. DESIGN

Data Plane programmability allows network administrators
to modify the behavior of their forwarding devices. However,
it is challenging to compose data plane programs deploying
only the necessary functionalities in each switch without
rewriting code for each different device [22] [9]. In this

76

section, we describe an overview of PRIME, a mechanism for
network administrators to compose different PDP programs
in each switch of the network. PRIME enables network
operators to easily deploy only the necessary modules in
each switch without rewriting code to build different con-
figurations with the available programs.

Network
Operator @ Composition N\ [\
-------------- > cee
@ Updates i (Q Code Merging
PRIME Y
Steering Composition
Interface Engine
Add Table
® Entries * Q) Deployment

Steering Table

Host Program
PDP Target

Fig. 2: High-level system architecture of PRIME

Figure 2 illustrates the scope of operation of PRIME. The
functionality of PRIME is divided into two different com-
ponents: a composition engine and a steering interface. The
composition engine allows the network operator to compose
modular P4 programs (Figure 2, Step @). Specifically, the
system interprets P4 programs and merges them into a single
code (Figure 2, Step) to be deployed on the physical
devices. During the composition, PRIME performs an ad-
ditional verification step to identify and correct ambiguities
between program modules. After the code is merged, the
deployment of a new composition is performed statically,
i.e., requires the switch to be rebooted to instantiate a new
functionality (Figure 2, Step @). After the deployment,
the operator can utilize the steering interface to specify the
steering of specific subsets of traffic through sequences of
program modules during run-time (Figure 2, Step @). To
avoid misrouting during updates of the steering configuration,
we provide the means to avoid intermediary states and show
why they suffice for a correct implementation (Figure 2, Step

). Next, we present these components in details.

A. Composing PDP Programs

The composition engine provides the means to assemble
large P4 programs by merging smaller modules. We call
these programs “extensions” and the merged program the
“host” program. The host program is a P4 program which
has an additional table, control blocks and metadata control
which works as a base architecture to compose extensions.

Given a set of program extensions and the host program,
the composition aggregates the functionalities of the set of
extensions to the host program. The system assumes that each
extension is syntactically correct and verified by the standard
P4 compiler to perform the composition. Then, the system
computes the composition by scanning parsers and control
flows and merges the respective structure definitions accord-
ing to the semantics of the composition and the characteristics
of the modules themselves. These aspects are explained in
detail below.

Extending Parser Trees. Let the composition operation
on packet parsers of an extension F and a host program
Hbe C:TgxT'yg — I't. We define the composition
of parsers as the union of the set of terminal states, non-
terminals, transitions, and header definitions of the extension.
The composition result is a new parser state machine I'y,, that
(1) merges states with the same ID; (2) performs the union
of state transitions from the extension and the host. Figure
3c presents an example of the composition of the two parser
state machines that are shown in Figure 3a and Figure 3b.
The composition result merges Ethernet, which now has the
transition 0x8100 to Vlan and 0x1212 to INT. Finally,
State ICMP is included in the parser with a transition Ox1
from already known State IPv4. The inclusion of a new state
also carries its header definitions, i.e., the composition merges
the definitions of packet header and the state ICMP into the
composed program [23].

Ethernet

Ethernet

0x1212

(c) Parser Composition

Fig. 3: The composition of parsers outputs a new parser state
machine that merges state transitions and state definitions

Parser Verification. To ensure that the composition is
correct, we constrain the scope of extensions, requiring the
resulting parser to be deterministic and loop-free. These
are restrictions we need to enforce in order to ensure

the composition of parser operates correctly. We say that
I'g extends I'y if 'y satisfies the restrictions imposed
by I'y. For this, after the modules are interpreted and
merged, PRIME performs a custom verification phase [24].
The verification performs an in-depth search in the result
of the union of packet parsers. Once each packet parser is
a tree, the composition can create a graph with loops and
non-determinism, and in this case the verification will find
existing loops. If the composed code passes this analysis,
ie, I'p extends I'g, then 'y, = T'g C Ty, it can
be considered ‘“certified” and safely composed with the
host program. Otherwise, the administrator is notified with
a warning. We intend to investigate ways to repair those
cases automatically, e.g., recirculating packets through a new
independent parser that could not be merged because of the
host program restrictions [25].

Deparsing. Each state composed with the program must
be carefully emitted to ensure packets are well-formed [26].
For instance, the system should not emit IPv4 headers before
emitting TCP, which could impact on out-of-order read/writes
on the next network hop. Once the structure of deparsers does
not convey sufficient information to establish a dependency
among them, we cannot infer the order in which packet
headers must be emitted in the composed program. To avoid
that disruption, the composition of deparsers must (1) unite
the set of emitted headers from both programs, and (2) create
a new deparser that emits headers in the same order as they
are instantiated by the parser [27].

Control Flow Arrangement. Control flows of P4 pro-
grams include additional definitions of actions, tables and
conditional branches (if-else statements) inside of control
blocks. To extend functionalities of two control blocks, the
composition operator introduced earlier enables the network
administrator to isolate control flow blocks in a static man-
ner [28][29]. The composition aggregates program modules
into an additional table to the host program, which we
call the “steering table” according to the semantics of the
composition operator and the constructs of the P4 program.
The composition operator can be utilized between two P4
programs to merge the control flow of a new extension to the
beginning of the pipeline of the steering table. In practice,
control flows of the programs appear in the host program in
the order in which they were composed.

Constructs Disambiguation. Merging tables may promote
space optimization, but creates the possibility of violating
target-independent constraints, such as the equivalence be-
tween table structures, table dependencies, and loop-freeness
(which is a restriction imposed by the P4 language and
the data plane itself) [15]. To ensure the composition does
not break target-independent constraints, this process isolates
tables and registers. For this, PRIME performs a verification
step to identify the equivalence of structures between the
composed tables and ensure they do not violate table de-
pendencies. For tables with ambiguous IDs, PRIME renames
their IDs and rewrites the “apply” construct for the merged

77

structure to use the proper ID and preserve dependencies
of both modules [30]. The same isolation is performed for
registers, actions, and metadata definitions with ambiguous
IDs.

With the aid of the “steering table”, the composition pro-
duces a sequence of program modules whose execution order
can be altered dynamically. For instance, the composition
can change the order of execution of a firewall and a load
balancing. Specifically, a firewall must be applied before load
balancing incoming packets as the firewall must consider the
original IP addresses. Conversely, the load balancer must first
restore the original IP address before the firewall handles
outgoing packets [31]. The structure of the host program and
the composition assures a data plane structure that allows the
configuration of both directions. Each composition translates
into a configuration that works as a link for a sequence
of program control flows. Next, we discuss the steering
configuration in details.

B. Steering Configuration

After statically composing all the necessary modules using
the technique described in Section III-A, we now discuss
how to steer specific traffic flows through a subset of these
programs. PRIME provides a data structure for PDP pro-
grams written in P4 and a new management system to avoid
transient states between configurations. The steering opera-
tion is motivated by earlier works on testing configurations
for switches and routers [32], which enable multiple testing
configurations inside the switch. The steering table employed
by the composition is positioned at the beginning of the
pipeline of the switch and intercepts all incoming packets.
The table specification can match packets using wildcards,
Ipm or exact and works as a large catalog of pointers from
specific sets of packets to sequences of program modules
merged during the composition [33], [5] (a process similar
to service function chaining (SFC) in the context of Network
Function Virtualization [34]).

Traffic Control. When the network administrator wishes
to steer packets for a specific sequence of programs, s/he
describes the identifier of the flow and the sequence of
modules that must process this flow. PRIME then translates
the code to the tuple of parameters of the steering table.
When an incoming packet matches the table, an action
which we call ‘catalog’ loads the parameters supplied by
the administrator to the internal state. Subsequently, these
user-supplied parameters will be stored as packet metadata
and used by the host program to determine the order in
which program modules are processed. After loading a packet
metadata, the packet will be processed by several rounds.
A round denotes the traversing of a packet through the
pipeline of programs. In each round, only one of the programs
processes the packet. The host program utilizes a traffic
control module to deliver the packet to the program indexed
by the next program of the catalog. After a packet reaches
the egress, the next program indicator is updated and the
packet recirculates to start another round. This repeats until

78

the packet is processed by all the programs indexed by the
catalog.

Next Program
Pointer

Catalog Traffic Control

Match Program Pipeline

10.0.* *

v
Program n

Program 1
Program 2

Steering Table

Recirculate (3x)

Fig. 4: Traffic steering through program modules

Example. Figure 4 presents an example of how the steer-
ing table can map flows to sequences of programs. In the
example, packets that match 10.0.%.x are mapped to be
processed by programs Ps, P; and P, respectively. For this,
after matching the table, the catalog forwards the packet
to the ingress control-flow of P; and then to its egress.
Next, the packet recirculates and follows to P; ingress and
egress. Finally, the packet recirculates a third time to Ps. It is
important to note that the same data plane structure supports
the execution in a different order if the network administrator
wishes.

Enforcing Correctness. To ensure packets will not face
intermediary states of steering configurations, we reduce
our problem to the fransitional packet-consistent updates
problem [17]. We explicitly state the invariants enforced by
the host program and the merging itself. The host program
maintains the following invariants:

o (H1) All programs in the pipeline are ordered linearly
in the order they are merged, and each packet follows
the pipeline in order.

o (H2) The configuration of steering is only loaded into a
packet metadata in the first round, thus preventing the
configuration of a transient flow from being changed by
the table on other rounds.

o (H3) No changes are accepted into the steering config-
uration while it is already updating (this occurs because
the action that loads the configuration is atomic).

o (H4) Standard metadata (e.g, output ports) are copied
into user-metadata before recirculating and restored into
new standard values to index programs into the correct
processing order.

o (HS5) The active steering configuration and packet header
are recirculated only when program ID < Total # of
Programs. The next program to be processed is then
updated according to the values of steering.

To ensure the composition does not violate these invariants,
the merging must act accordingly. For this, the program
merging satisfies the following invariants:

e (M1) Metadata definitions are verified and disam-
biguated to ensure no program modifies the catalog
structure.

e (M2) Each table and action is disambiguated to ensure
composed programs do not rewrite the catalog or apply
block of the steering table.

We now can use these invariants to prove transitional
packet-consistent updates for the steering configuration in the
switch pipeline.

Proof. We denote pkt as the first packet entering the switch
tagged with a new steering configuration S, written S; —

o H2, M1, M2 ensure that when S is loaded, the steering
of pkt is not modified until emitted by the egress.

« HI ensures that a packet pkt with steering configuration
S always crosses every program in the pipeline and,
by the previous conclusions, finds each program in the
steering configuration S.

o H3 ensures that while S is being loaded by the steering
table, no other update can be performed into the steering
configuration of pkt.

o H4 ensures that pkt keeps the same steering configura-
tion S after recirculating.

o HS5 ensures that packets do not recirculate forever.

o HI1 proves that when pkt exists in the pipeline, all
the programs in the pipeline are updated to a new
configuration, even if pkt is marked to be dropped by a
previous program in the pipeline.

o Hence pkt and all subsequent packets tagged with S are
processed with the new configuration.

O

We claim that although the implementation of the composi-
tion of multiple programs in the same switch pipeline appears
straightforward, configuring the traffic steering requires the
switch to preserve certain invariants. Consistency is made
possible because P4 provides per-packet states (metadata).
However, metadata still needs to be copied into user-metadata
before recirculating. We hope that our work provides a good
motivation to rethink the design of the metadata system to
facilitate the correct steering conceptually. In this section, we
have shown what these invariants are, and why they suffice
for a correct implementation of a packet-consistent steering
configuration [17].

IV. EVALUATION

In this section, we present in detail the evaluation of
PRIME. We implemented a prototype of the composition
mechanism to support development of programs written in
P416. The interpreter is still in development, given that the
P4 language is also in constant change. The system parses
and composes the original code to P4 source code. Therefore

it maintains compatibility with any target switch. In the
end, we build the new source with the p4dc compiler to
obtain the specific target code. We take large P4 programs
in which we compose in different use case scenarios. Next,
we present simulation results in which we show the steering
performance.

A. Use Case Compositions

To validate the feasibility of PRIME, we composed exist-
ing P4 applications with a simple L2 switch program which
corresponds to our Host program. Next, we discuss the details
of these existing applications and the final configuration of
the compositions we performed.

FlowStalker. A monitoring mechanism which encodes
metrics and stores them on data plane devices. Specifically,
FlowStalker [35] monitors per-flow and per-packet metrics
(e.g., byte counts, packet counts, timestamps) defined by the
operator. The storage system employs a hash table of registers
to index information for the exact flow or packet. A reactive
system detects if specific flows violate local thresholds and
raises a warning in the case that the threshold is crossed.
Thresholds are implemented as a Heavy Hitter Detection
mechanism [36], which has a pipeline of registers indexed
by a 5-tuple that represents the flow. After the warning is
sent, the controller can inject courier packets to collect data
from data plane registers.

In-Band Network Telemetry (INT). A framework that
allows the collection and reporting of network state by the
data plane, without requiring intervention from the control
plane. INT [37] is being utilized as a tool for several security
mechanisms to troubleshoot, perform congestion control, or
even notify the control applications about traffic anomalies.
INT extends the packet parser with a new header, which
encapsulates monitored items (e.g., timestamps, buffer times,
and switch identification). Monitored items are appended into
a new header, which is unique for each switch. This means
that a new header is instantiated and emitted by all switches
in the path to an end host. The last hop removes INT headers
and sends the standard packet to the end host.

LetFlow. LetFlow [38] is a load balancer that executes
on switches. Letflow picks paths at random for each flowlet
and balances traffic on different paths of the network. A
flowlet is a burst of packets that is separated in time from
other bursts by a sufficient gap (timeout). When a packet
arrives, LetFlow uses a table to map flowlets to paths. Each
table entry contains two fields: the last seen time and a path
id. When a packet arrives, the program computes a hash
(CRC-16) of the source IP, destination IP, source port and
destination port. This hash is used as the key to the flowlet
table. If the packet is part of an already existing flowlet, the
packet is sent on the path identified by the path id, and last
seen time is set to the current time. Otherwise, the packet
begins a new flowlet and may be assigned to a new path at
random.

P4Xos. A consensus protocol running on the data plane.
P4Xos [3] is divided into three different P4 programs: the

79

coordinator (leader), the acceptor and the learner. The coor-
dinator ensures only one process sends messages to instances
of the protocol, guaranteeing message ordering: it writes the
current instance number and an initial round number into
the message header; increments the instance number for the
next invocation; stores the value of the new instance number;
and broadcasts the packet to acceptors. Acceptors choose
a value (vote) for each instance of the consensus before
forwarding them. Acceptors keep a history of votes to ensure
they do not vote for the same value on the same instance of
consensus. Finally, learners require a quorum of messages
from acceptors and “deliver” a value.

Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Sce.6
LoC 366 489 617 779 759 649
States 3 5 5 7 7 7
Tables 4 6 12 15 15 16

TABLE I: Code metrics for PRIME compositions

We compose these programs incrementally to analyze the
impact of each composition independently. Scenario 1 is
a composition of FlowStalker with the host program. The
idea is to build a switch with support to the analysis of
security threats using the metrics collected by FlowStalker.
Scenario 2 composes scenario 1 with the In-Band Network
Telemetry (INT). This composition allows debugging the
network state (e.g., identifying the source of bugs in the
network). Scenario 3 merges LetFlow to scenario 2. The idea
to compose LetFlow is to allow flows to be balanced, mainly
when the network performance is low. Finally, we build
scenarios 4, 5 and 6 by composing scenario 3 with P4Xos.
In particular, scenario 4 is a composition with the acceptor;
scenario 5 is a composition with the coordinator; and scenario
6 is a composition with the learner. The composition of P4xos
raises a warning during compilation, because it uses different
names for packet instances. We renamed header instances of
P4xos manually for the composition to be correct. Table I
presents the respective number of states on the packet parser,
tables and lines of code (LoC) of the composed programs
in each respective scenario. As PRIME merges equivalent
states between different programs, the composition tries to
minimize the number of states and lines of code. Next, we
discuss in details a run-time analysis of each scenario.

B. Benchmark

To evaluate PRIME we executed each scenario using the
behavioral model in an Intel(R) Core(TM) i3-6006U CPU @
2.00GHz. We performed a thousand requests, and collected
packet timestamps to measure latency, and utilized iperf
to measure throughput [16].

Figure 5 presents the throughput that the composition
achieves in the data plane. When the switch steers packets
through scenario 1 (i.e., packets match the steering table),
throughput is nearly 8 Mbits/sec. Throughput reduces as we
compose more modules in scenarios 2-6.

Figure 6 presents the latency in ms with only one rule
installed on the steering table (i.e., the rule that matches the

Throughput (Mbits/sec)
w H O N W

A A A A A
¥ = £ ¥ &
3 Y @ & &
£ A N
& ¥ <
~
Fig. 5: Throughput
0.7
T 0.6
£
g 0.51
o)
Q
©
5 04 ﬁ
0.3 T y ; " .
& A S A A IS
& 5) 14 ¥ &
F N i & &L S
£ y & ¥
‘_‘-\D ke] o d
R

Fig. 6: Latency

end host). As we compose more program modules, latency
increases. This happens because the insertion of additional
states to the parser increases CPU consumption. The latency
in scenario 1 is nearly 0.4ms. As we compose more program
modules, such as in scenario 5, latency increases to nearly
0.5ms. We see as future work deploying PRIME compo-
sitions into high-performance packet-processing ASIC and
FPGA.

C. Comparison to State-of-the-Art

We compare PRIME with one of the state-of-the-art ap-
proaches, P4Visor [15], to compose programs. Specifically,
we utilized the Differential testing Operator of P4Visor to
compose programs. We could not build the case studies we
presented earlier because P4Visor does not currently support
the composition of more than two programs. Thus we show
two simple scenarios: a production version of a router with
a testing version of the same program, and LetFlow with the
simple router program.

PRIME P4Visor
Router LetFlow Router LetFlow
Parser States 3 4 5 6
Tables 7 10 12 13

TABLE II: Metrics of PRIME and P4Visor Compositions

Table II presents the number of states of the parser and
tables of the programs. The composition of the simple router
creates fewer states using the PRIME approach. P4Visor

does not merge IPv4 states, therefore creating two different
states for equivalent header instances. The number of tables
in PRIME is also smaller for these compositions. Although
PRIME does not support abstractions to merge tables be-
tween programs, the traffic steering control has only one
table. Other features to steer packets are performed only by
interacting on the catalog and if-else statements and metadata
access.

V. RELATED WORK

In this section, we review the main research efforts in data
plane virtualization.

Hyper4 [11] is a hypervisor for programmable data planes.
It provides a virtualization layer to run several instances of
P4 programs. Although Hyper4 enables modularization, the
system imposes high overhead on the forwarding because
the Hyper4 base program includes several additional tables
to support composition. Conversely, PRIME runs as a single
P4 program, thus avoiding the virtualization-layer and utilizes
only one additional forwarding table to compose modules.

MPVisor [39][40] is a hypervisor that uses P4 but provides
a base program much smaller than Hyper4. The system offers
high-level operators for programming P4 targets. However,
their operators produce large pipelines of programs and are
not sufficient for the correct operation of steering. This hin-
ders the deployment of configurations that support multiple
steering configurations. MPVisor also reduces the number of
tables required to virtualize P4 programs when compared to
Hyper4, but the number is still large compared with PRIME,
which uses only one additional table.

P4Bricks [27] is a system for multi-processing P4 pro-
grams. The system provides parallel and sequential operators,
and restructures the logical pipeline according to control flow
dependencies. P4Bricks provides a low-level compilation for
the target switch, which makes the system target specific and
limits the utilization of the system. Although the operators
proposed by P4Bricks may enable multi-processing, P4Bricks
performs out-of-order readings and writes while processing
packets, which can create inconsistencies and compromise
the developer logic.

P4Visor [15] is a system to merge and test P4 programs.
The system provides AB and Differential testing opera-
tors, which both isolate testing traffic from the composed
programs. The merging of control flows tries to minimize
resource sharing between modules by merging equivalent
tables. The traffic isolation requires parsers from different
program modules to have disambiguation states even if the
merged states are equivalent. In contrast, PRIME merges
equivalent states by uniting their transitions. This feature
consequently reduces the number of states necessary to parse
incoming packets.

Dejavu [41] is a programming model that connects and
hosts several functions in a single switch pipeline. The system
leverages recirculation to route packets between chains of
functions and tries to minimize the number of recirculations.
However, although allowing optimization of the amount

of recirculation, this can perform out-of-order processing,
as functions usually are composed of ingress and egress
capabilities. PRIME takes a more intuitive approach, which
ensures the correct ordering of read/writes between programs.

PRIME is similar to works on virtualization, but the
steering operation provides the means to achieve per-packet
consistency, which is, to the best of our knowledge, a new
contribution to the data plane virtualiazation.

VI. CONCLUSIONS

In this paper, we presented the design and evaluation
of PRIME, a composition mechanism to help the modular
development and management of P4 programs. The de-
ployment is made by composing parsers and employing a
new table into the PDP program. Furthermore, it introduces
the steering of packets through the modules by using P4
metadata. We presented a case study showing the operation
of our abstractions for several modular programs. Simulation
results evidence that the compositions have a moderate yet
acceptable impact on delay and throughput.

PRIME still faces several limitations. In particular, insert-
ing overlapping rules into the table can generate conflicting
directions on the switch pipeline. We see as future work
the development of a mechanism that filters and solves the
overlaps before the insertion. This feature can be designed
similarly to what is presented in Hermes [33], combined
with CacheP4 [42], to achieve both low update times and
throughput. PRIME also requires the developer of a module
to be responsible for the correctness of each independent
module. There is a need for a previous verification step during
network operation to ensure the consistency of each separated
module.

There are several other potential future research direc-
tions. In particular, exploring new compilation techniques
may allow more efficient use of data plane resources by
sharing resources between programs. The development of
new operators to identify dependencies between modules and
a formal reasoning about the steering correctness are also
in perspective. Further, in addition to the local guarantees
addressed in the composed P4 program, we aim to investigate
global path level guarantees for automatic virtualization of
PDP programs [43], and placement heuristics similar to those
used with Virtual Network Functions [44] [45]. Finally, we
also see as future work a full exploration of distributed
system replication techniques to handle failures.

ACKNOWLEDGMENTS

We would like to thank Theophilus Benson for his helpful
feedback. We would like to thank CNPq for research grants
407899/2016-2 and 312091/2018-4. This study was financed
in part by the Coordenacdo de Aperfeicoamento de Pessoal
de Nivel Superior - Brasil (CAPES) - Finance Code 001, and
also by NSF CNS-1740911 and RNP/CTIC (P4Sec) grants.

(1]

[2]

[3]

[4]

[5

[6]

[7

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

81

REFERENCES

N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An
intellectual history of programmable networks,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87-98, Apr. 2014. [Online].
Available: http://doi.acm.org/10.1145/2602204.2602219

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP "17. New York, NY, USA: ACM,
2017, pp. 121-136. [Online]. Available: http://doi.acm.org/10.1145/
3132747.3132764

H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made
switch-y,” SIGCOMM Comput. Commun. Rev., vol. 46, no. 2, pp.
18-24, May 2016. [Online]. Available: http://doi.acm.org/10.1145/
2935634.2935638

C. Mustard, F. Ruffy, A. Gakhokidze, I. Beschastnikh, and
A. Fedorova, “Jumpgate: In-network processing as a service for
data analytics,” in //th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19). Renton, WA: USENIX Association,
Jul. 2019. [Online]. Available: https://www.usenix.org/conference/
hotcloud19/presentation/mustard

J. Sonchack, J. M. Smith, A. J. Aviv, and E. Keller, “Enabling practical
software-defined networking security applications with ofx.” in NDSS,
vol. 16, 2016, pp. 1-15.

H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein, “NICA:
An infrastructure for inline acceleration of network applications,”
in 2019 USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, Jul. 2019, pp. 345-362. [Online].
Available: https://www.usenix.org/conference/atc19/presentation/eran
L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and
M. Barcellos, “Uncovering bugs in p4 programs with assertion-based
verification,” in Proceedings of the Symposium on SDN Research.
ACM, 2018, p. 4.

J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Cagcaval, N. McKeown, and N. Foster, “p4v: Practical
verification for programmable data planes,” 2018.

T. A. Benson, “In-network compute: Considered armed and
dangerous,” in Proceedings of the Workshop on Hot Topics in
Operating Systems, ser. HotOS 19. New York, NY, USA: ACM,
2019, pp. 216-224. [Online]. Available: http://doi.acm.org/10.1145/
3317550.3321436

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker, “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87-95, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/
2656877.2656890

D. Hancock and J. van der Merwe, “Hyper4: Using p4 to virtualize the
programmable data plane,” in Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies,
ser. CONEXT ’16. New York, NY, USA: ACM, 2016, pp. 35-49.
[Online]. Available: http://doi.acm.org/10.1145/2999572.2999607

Y. Zhou and J. Bi, “Clickp4: Towards modular programming of
p4,” in Proceedings of the SIGCOMM Posters and Demos, ser.
SIGCOMM Posters and Demos ’17. New York, NY, USA: ACM,
2017, pp. 100-102. [Online]. Available: http://doi.acm.org/10.1145/
3123878.3132000

R. Parizotto, L. Castanheira, and A. Schaeffer-Filho, “Abordagem de
composicdo de programas P4 em redes programdveis,” in Anais do
XXXVII Simpdsio Brasileiro de Redes de Computadores e Sistemas
Distribuidos. Porto Alegre, RS, Brasil: SBC, 2019, pp. 1028-1041.
[Online]. Available: https://sol.sbc.org.br/index.php/sbrc/article/view/
7420

C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “Mpvisor: A
modular programmable data plane hypervisor,” in Proceedings of the
Symposium on SDN Research, ser. SOSR "17. New York, NY, USA:
ACM, 2017, pp. 179-180. [Online]. Available: http://doi.acm.org/10.
1145/3050220.3060600

P. Zheng, T. Benson, and C. Hu, “P4visor: Lightweight virtualization
and composition primitives for building and testing modular
programs,” in Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, ser. CONEXT
’18. New York, NY, USA: ACM, 2018, pp. 98-111. [Online].
Available: http://doi.acm.org/10.1145/3281411.3281436

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

82

H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A p4 language
benchmark suite,” in Proceedings of the Symposium on SDN Research,
ser. SOSR ’17. New York, NY, USA: ACM, 2017, pp. 95-101.
[Online]. Available: http://doi.acm.org/10.1145/3050220.305023 1

J. H. Han, P. Mundkur, C. Rotsos, G. Antichi, N. Dave, A. W.
Moore, and P. G. Neumann, “Blueswitch: Enabling provably consistent
configuration of network switches,” in 2015 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS).
IEEE, 2015, pp. 17-27.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’12. New York, NY, USA: ACM, 2012, pp. 323-334.
[Online]. Available: http://doi.acm.org/10.1145/2342356.2342427

D. M. E. Mattos, O. C. M. B. Duarte, and G. Pujolle, “Reverse update:
A consistent policy update scheme for software-defined networking,”
IEEE Communications Letters, vol. 20, no. 5, pp. 886-889, 2016.

B. Pfaft, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar er al., “The design and
implementation of open vswitch,” in /2th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), 2015,
pp. 117-130.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69-74, 2008.

D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053—
1058, 1972.

G. Gibb, G. Varghese, M. Horowitz, and N. McKeown, “Design
principles for packet parsers,” in Architectures for Networking and
Communications Systems. 1EEE, 2013, pp. 13-24.

A. C. Schwerdfeger and E. R. Van Wyk, “Verifiable composition of
deterministic grammars,” ACM Sigplan Notices, vol. 44, no. 6, pp.
199-210, 2009.

C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. New York, NY, USA: ACM,
2015, pp. 29-42. [Online]. Available: http://doi.acm.org/10.1145/
2785956.2787506

N. Lopes, N. Bjgrner, N. McKeown, A. Rybalchenko, D. Talayco,
and G. Varghese, “Automatically verifying reachability and well-
formedness in p4 networks,” Technical Report, Tech. Rep., 2016.

H. Soni, T. Turletti, and W. Dabbous, “P4Bricks: Enabling
multiprocessing using Linker-based network data plane architecture,”
Feb. 2018, working paper or preprint. [Online]. Available: https://hal.
inria.fr/hal-01632431

X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor:
A compositional hypervisor for software-defined networks,” in
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI'15. Berkeley, CA, USA:
USENIX Association, 2015, pp. 87-101. [Online]. Available: http://
dl.acm.org/citation.cfm?id=2789770.2789777

C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 43-56.

D. Saha, A. Samanta, and S. R. Sarangi, “Theoretical framework for
eliminating redundancy in workflows,” in 2009 IEEE International
Conference on Services Computing. 1EEE, 2009, pp. 41-48.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software defined networks,” in 10th USENIX

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Symposium on Networked Systems Design and Implementation
(NSDI 13). Lombard, IL: USENIX Association, 2013, pp. 1-
13. [Online]. Available: https://www.usenix.org/conference/nsdil3/
technical-sessions/presentation/monsanto

R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a

network management primitive,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 111-122, Aug. 2008. [Online]. Available: http://

doi.acm.org/10.1145/1402946.1402972

H. Chen and T. Benson, “Hermes: Providing tight control over high-
performance sdn switches,” in Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies,
ser. CONEXT ’17. New York, NY, USA: ACM, 2017, pp. 283-295.
[Online]. Available: http://doi.acm.org/10.1145/3143361.3143391

R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 236-262, 2016.

L. Castanheira, R. Parizotto, and A. Schaeffer-Filho, “Flowstalker:
Comprehensive traffic flow monitoring on the data plane using p4,”
in 2019 IEEE International Conference on Communications (ICC).
IEEE, 2019.

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: ACM, 2017, pp. 164-176. [Online]. Available:
http://doi.acm.org/10.1145/3050220.3063772

C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, 2015.

E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it
flow: Resilient asymmetric load balancing with flowlet switching,”
in [4th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). Boston, MA: USENIX Association,
Mar. 2017, pp. 407—420. [Online]. Available: https://www.usenix.org/
conference/nsdil7/technical-sessions/presentation/vanini

C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “Hyperv: A
high performance hypervisor for virtualization of the programmable
data plane,” in 2017 26th International Conference on Computer
Communication and Networks (ICCCN). 1EEE, 2017, pp. 1-9.

X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou, “P4sc: Towards
high-performance service function chain implementation on the p4-
capable device,” in 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). 1EEE, 2019, pp. 1-9.

D. Wu, A. Chen, T. S. E. Ng, G. Wang, and H. Wang, “Accelerated
service chaining on a single switch asic,” in Proceedings of the 18th
ACM Workshop on Hot Topics in Networks, ser. HotNets 19. New
York, NY, USA: ACM, 2019, pp. 141-149. [Online]. Available: http://
doi.acm.org/10.1145/3365609.3365849

Z. Ma, J. Bi, C. Zhang, Y. Zhou, and A. B. Dogar, “Cachep4: A
behavior-level caching mechanism for p4,” in Proceedings of the
SIGCOMM Posters and Demos. ACM, 2017, pp. 108-110.

H. Yu, A. M. Peters, A. Akshintala, and C. J. Rossbach, “Automatic
virtualization of accelerators,” in Proceedings of the Workshop on
Hot Topics in Operating Systems, ser. HotOS '19. New York, NY,
USA: ACM, 2019, pp. 58-65. [Online]. Available: http://doi.acm.org/
10.1145/3317550.3321423

B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming
slick network functions,” in Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, ser. SOSR
’15. New York, NY, USA: ACM, 2015, pp. 14:1-14:13. [Online].
Available: http://doi.acm.org/10.1145/2774993.2774998

M. Charikar, Y. Naamad, J. Rexford, and X. K. Zou, “Multi-commodity
flow with in-network processing,” arXiv preprint arXiv:1802.09118,
2018.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Research Goals
	1.3 Summary of Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Software-Defined Networking
	2.1.1 SDN Architecture & Conceptual Planes
	2.1.2 OpenFlow

	2.2 Programmable Data Planes
	2.2.1 Protocol Independent Switch Architecture
	2.2.2 P4: High-Level Data Plane Programming Language

	3 PRIME: Design and Algorithms
	3.1 Overview
	3.2 Combining Header Instances
	3.2.1 Extending Parsing Trees
	3.2.2 Deparsing

	3.3 Control Flow Arrangement
	3.3.1 Function Cataloging
	3.3.2 Constructs Disambiguation

	3.4 Traffic Control
	3.4.1 Consistent Update
	3.4.2 Enforcing Correctness

	4 Implementation
	4.1 Prototype Overview
	4.2 Composition Compiler
	4.3 Steering API

	5 Experimental Setup
	5.1 Use Cases
	5.2 Metrics Formulation
	5.3 Assessing Compositions
	5.4 Comparison with State-of-the-art
	5.4.1 Code Metrics
	5.4.2 Steering Performance

	6 Related Work
	6.1 Data Plane Composition
	6.2 Discussions

	7 Conclusions & Future Work
	7.1 Summary and Contributions
	7.2 Limitations
	7.3 Future Work and Perspectives

	References
	Appendix A — PUBLISHED PAPER – SBRC 2019
	Appendix B — ACCEPTED PAPER – NOMS 2020

