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ABSTRACT

Programmable Data Planes (PDP) enable more flexibility for the operation of networks.

The various benefits of programmability have led the community to develop new software

on both academic and industrial capacities. To fully reap the benefits of programmability,

it should be feasible to compose and operate multiple PDP functions into a single target

switch as needed. However, existing techniques are not suitable in the sense that they use

an excessive number of parser states and tables, and lack abstractions for the steering of

packets through the control flows. As such, they do not support modular composition of

PDP functions. This thesis proposes PRIME, a composition mechanism of in-network

functions that also addresses the fundamental needs of packet steering between PDP pro-

gram modules. PRIME enables network operators to specify compositions of network

functions written in P4 and how traffic traverses them. The composition employs a verifi-

cation phase to identify ambiguities at source code level and avoid loops inside the switch

pipeline. An additional table and a control plane management system enforce the steering

of packets through control flows. We present a prototype of PRIME, along with a proof

of the steering correctness. The results shows that it is possible to achieve module-wide

compositions at little additional cost in terms of delay and throughput.

Keywords: Software Defined Networks. Programmability. Data Plane. Consistency.



Composição Consistente de Código e Programação Modular do Plano de Dados

RESUMO

Planos de dados programáveis (PDP) permitem mais flexibilidade para a operação de

redes. Os vários benefícios da programabilidade levaram a comunidade a desenvolver

novos softwares, tanto na academia quanto na indústria. Para aproveitar plenamente os

benefícios da programabilidade, deve ser possível compor e operar várias funções do PDP

em um único switch de destino, conforme necessário. No entanto, as técnicas existentes

não são adequadas no sentido em que usam um número excessivo de estados e tabelas

de encaminhamento e não possuem abstrações para o direcionamento interno de pacotes

através dos fluxos de controle. Portanto, as técnicas existentes não suportam a compo-

sição modular de funções ao PDP. Esta dissertação propõe PRIME, um mecanismo de

composição de funções em rede que também atende às necessidades fundamentais do di-

recionamento interno de pacotes entre os módulos de um programa PDP. PRIME permite

que os operadores de rede especifiquem composições de funções de rede escritas em P4 e

como o tráfego as atravessa. A composição emprega uma fase de verificação para identi-

ficar ambiguidades em nível do código fonte e evitar loops dentro do pipeline do switch.

Uma tabela adicional e um sistema de gerenciamento para o plano de controle garantem

o direcionamento de pacotes através dos fluxos de controle. Apresentamos um protótipo

do PRIME, juntamente com uma prova da corretude do módulo de direcionamento de

tráfego. Os resultados mostram que é possível obter composições de módulos com pouco

custo adicional em termos de atraso e taxa de transferência.

Palavras-chave: Redes Definidas por Software, Programabilidade, Plano de Dados, Con-

sistência.
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1 INTRODUCTION

Software-based paradigms for networking enable decoupling software solutions

from the hardware in which they execute, making the management and operation of the

network infrastructure more flexible and adaptive. Software-Defined Networking (SDN)

(FEAMSTER; REXFORD; ZEGURA, 2014) promotes the separation of the control logic

from the forwarding behavior of network devices. More recently, Programmable Data

Planes (PDP) offer more flexibility in the development of protocols and network func-

tionality by allowing packet processing at the line rate in the switch itself. This motivated

many emerging applications, such as NetCache (JIN et al., 2017) and P4xos (DANG et

al., 2016), to bring part of the processing back to the data plane to achieve economies of

scale and lower operating costs. As such, operators can leverage programmable hardware

to, for instance, process or analyze data (MUSTARD et al., 2019), thereby enabling faster

reactions in contrast to packet mirroring to middleboxes or controller-based applications

(SONCHACK et al., 2016; ERAN et al., 2019).

1.1 Problem Statement

Rather than writing monolithic functions, it should be straightforward for PDP

software to be shared and composed into switches as needed (FREIRE et al., 2018)(LIU

et al., 2018)(BENSON, 2019). However, existing languages for data plane programming

do not support modular development. P4 (“Programming Protocol-independent Packet

Processors”) (BOSSHART et al., 2014), one of the most popular languages for PDPs,

requires developers to perform extensive modifications into the function source code to

deploy it on existing applications. For instance, if a network operator wants to install

a new program in a switch that is already running a P4 program, both programs would

require modifications. As a result, researchers have responded by offering composition

instances that dedicate multiple PDP functions to the same physical target (HANCOCK;

MERWE, 2016). Composition typically refers to code merging techniques or virtual-

ization techniques (SAQUETTI et al., 2019b; SAQUETTI et al., 2019a; KRUDE et al.,

2019; ZHANG et al., 2019; LI et al., 2017; LI et al., 2018), which can both be utilized as

a programming model (ZHOU; BI, 2017) or for the automation of development. Hence,

composition try to avoid rewriting code from different functions manually and maintains

the semantics of the system.
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Unfortunately, while composing multiple functions may promote better usage of

network resources, the management becomes more complex and error-prone. Current

efforts to compose various programs in a single target switch make use of an excessive

number of flow tables and parser states (HANCOCK; MERWE, 2016; ZHANG et al.,

2017; ZHENG; BENSON; HU, 2018). Consequently, these techniques can severely limit

throughput and increase latency in general-purpose hardware or do not fit in specialized

hardware, such as netFPGAs (SAQUETTI et al., 2019b) or ASICs (DANG et al., 2017).

Moreover, state-of-the-art techniques do not suffice to provide transitional con-

sistency between steering configurations. Without transitional consistency, changes in

the steering of flows through the program modules can create intermediary states, which

may cause misrouting and security holes (HAN et al., 2015) (REITBLATT et al., 2012)

(MATTOS; DUARTE; PUJOLLE, 2016). Thus, new techniques are required to allow new

applications to be composed, preserving transitional packet-consistency of traffic steering

and without degrading the performance of the data plane operation (HE et al., 2019).

1.2 Research Goals

We summarize the research goals of this thesis as follows:

Composition of Programs. We need to provide a data plane composition mech-

anism, allowing operators to use the mechanism on different scenarios. The composition

must allow different data plane programs to share the same switch resources, allowing

better resource usage compared to placing monolithic functions on sequences of different

switches. The process of sharing resources must provide intuitions about source code

merging to improve resource utilization.

Steering Definition. Composing multiple P4 programs into devices brings to-

gether the necessity of abstractions to steer flows through the composed modules. This,

in turn, creates new difficulties for the network operation. We must provide ways to steer

packets internally between composed programs. The steering configuration must be easy

to manage and semantically coherent with the policy specified by the network operator

(HAN et al., 2015), i.e., we must support dynamic steering of internal functions avoiding

that each update creates state configurations with intermediary states. For example, Figure

1.1 presents two different states of traffic steering. In the example, network state i steers

Flow 1 packets through programs (E1, E3) and Flow 0 through programs (E2, E3), re-

spectively. For some reason, it might be desirable to achieve a transition between the state
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configuration i to state i′, in which (E1, E2) process Flow 1. However, this change of

configuration is error-prone and can create undesirable intermediary states, i.e., a packet

may see part of state i and part of state i’. In the example, an intermediary state can

be created by performing the update of E1 before updating E2, leading a new packet to

reach E2 without having the proper instructions to process it.

Figure 1.1: Switch state transition

Source: The Author

1.3 Summary of Contributions

As programmers may want to instantiate programs without rewriting their con-

structs (e.g., tables, actions or parser states), we present a new mechanism to compose

P4 modules, which we call PRIME (Programming In-Network Modular Extensions). The

developer can perform the composition of functions placing an ordered set of programs

(e.g., security functions, including firewalls, access controls, and DPIs) and isolating re-

sources between them. A source code analysis phase detects and corrects ambiguities

between the control flow of modules, consequently avoiding undesired loops inside the

switch pipeline. Dynamically, PRIME allows network administrators to specify the steer-

ing of traffic through the composed programs. The key insight is to deploy programs

statically and use the per-packet state to steer flows using one single additional table.

PRIME then provides a control plane interface to specify steering updates and send the

necessary table entries to switches.

Overall, this thesis makes the following contributions:

• Identifies a set of requirements that network operators would require to compose

multiple functions at a single switch. Besides, it describes an architecture that can

be implemented without changes to the network hardware.

• Explores state machine composition techniques for providing an extension operator

for the P4 language that merges independent parsers.

• Designs a composition model for P4 programs and provides a control plane in-
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terface to steer flows through the composed programs. The interface provides the

means to update the configuration without creating intermediary states.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents a brief overview

of Software Defined Networks and Programmable Data Planes. Chapter 3 presents the

main design principles of PRIME, as well as its architecture and algorithms. Chapter

4 presents implementation details. Chapter 5 presents the evaluation methodology, use

cases we built using existing P4 applications, and results obtained using the bmv2 soft-

ware switch. Chapter 6 presents the main related work and discussions. Finally, Chapter

7 presents the conclusions and future work.
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2 BACKGROUND

In this chapter, we present the essential background for this work. Section 2.1

presents Software-Defined Networking (SDN) and its architecture. Next, Section 2.2

presents technical concepts about Programmable Data Planes (PDP). We finish the section

showing details of the P4 language and its configuration.

2.1 Software-Defined Networking

Software-Defined Networking (SDN) is a networking paradigm that brings soft-

ware abstractions to build network behavior. The main difference of SDN to traditional

networks is the decoupling of the control plane from the forwarding devices (data plane)

(FEAMSTER; REXFORD; ZEGURA, 2014). In SDN, network devices become simple

forwarding devices while the “brain” is implemented on the controller.

This paradigm brings several advantages compared to legacy methods. First, an

advantage of SDN is the simplification of the instantiation of new applications in the con-

trol plane when compared to traditional networks, where the data and control planes are

tightly coupled and typically operate in a distributed design (JARRAYA; MADI; DEB-

BABI, 2014). Second, with SDN, it is much easier to introduce new ideas to the network

through a software program, as it is easier to manipulate the network behavior through a

fixed set of commands (KIM; FEAMSTER, 2013). To this end, the architecture defines

conceptual planes and communication interfaces. Next, we discuss the architecture in

detail and how the conceptual planes are related.

2.1.1 SDN Architecture & Conceptual Planes

The SDN architecture, depicted in Figure 2.1, defines four conceptual planes and

communication interfaces.

The Management Plane is responsible for monitoring, configuring, and manag-

ing the network application behavior on each plane, e.g., making decisions according to

the network state. The management plane can be utilized to configure the data plane;

however, it does so infrequently.

The Application Plane is responsible for executing applications within the net-
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Figure 2.1: SDN High-level architecture
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work infrastructure. Applications can build on an abstract view of the network to gather

information and make decisions. Examples of such applications are interfaces for net-

work visualization, load balancers, or analytics applications to detect suspicious network

behaviors for security.

The Control Plane defines the control logic, such as the implementation of routing

mechanisms. It is important to say that a logically centralized programming model given

by SDN does not imply a physically centralized system (KOPONEN et al., 2010). In

general, the control plane is composed of one or more controllers that monitor and con-

figure the data plane behavior (KREUTZ et al., 2014). In fact, such distribution usually is

made to obtain adequate levels of performance and reliability for the network (HELLER;

SHERWOOD; MCKEOWN, 2012).

The Data Plane includes devices responsible for forwarding packets (generally re-

ferred to as switches). The data plane only forwards packets according to rules received

from the control plane, i.e., they only take one packet from an input port and send to an

output port according to the forwarding rules. Traditionally, switches have the function-

ality fixed by application-specific integrated circuits (ASICs).

The controller operating system can offer an API to application developers. This

API is a common interface for developing applications. Typically we refer to this API

as the Northbound interface. The northbound interface abstracts low-level details to pro-

gram forwarding devices. Besides, the Southbound API defines the instruction set of

forwarding devices, which composes the Southbound Interface. Furthermore, the South-

bound Interface formalizes the way that the control and data plane interact (KREUTZ et

al., 2014).
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2.1.2 OpenFlow

OpenFlow (MCKEOWN et al., 2008a) proposes a new protocol to perform exper-

imental tests on networks operators use every day. OpenFlow is the most widely accepted

and deployed open southbound standard for SDN (JAIN et al., 2013). The protocol pro-

vides three sources of information: First, event messages are sent when a link or port

change is triggered. Second, flow statistics are generated by the switch and collected by

the SDN controller. Thirty, a warning is sent to the controller when a new flow arrives,

and the switch does not know what to do with it, i.e., it still does not have rules to process

it (KREUTZ et al., 2014).

An OpenFlow switch is composed of three main parts: (1) the forwarding table,

which is associated with processing actions for each table entry; (2) a secure channel for

the switch to communicate with the control plane; and (3) the OpenFlow protocol, which

provides an open and standard way for the control plane to interact with the OpenFlow

switch. Each flow entry has simple actions associated with it: (1) forward, (2) encapsulate

and send to a controller, and (3) drop. The forward of packets map a flow to a given output

port. Such characteristics of the forwarding enable packets to be routed by the network.

Encapsulating packets to the control plane is typically performed for the first packet from

a flow in order to the controller to calculate a new route and install it on the forwarding

table (FOSTER et al., 2011). Finally, drop packets can be used for security reasons to

eliminate denial of service attacks or reduce discovery attacks to end hosts (SONCHACK

et al., 2016).

OpenFlow, however, is limited to a strict set of header fields and actions. To over-

come this limitation, the community is making efforts to make reconfigurable switches

(BIFULCO; RÉTVÁRI, 2018). Emerging switch architectures are enabling programmers

to reconfigure header fields and write their actions (HALEPLIDIS et al., 2015). The

reconfigurable architectures result in promising ways to leverage the network hardware

and their APIs to management. The main aspects of Programmable Data Planes are syn-

thetized next.

2.2 Programmable Data Planes

Data Plane Programmability has been proposed as a means to deploy new features

on forwarding devices without the need to buy new hardware. The development of speci-
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fication languages such as P4 (BOSSHART et al., 2014) enabled operators to change the

behavior of programmable switches without rewriting low-level instructions (e.g., the ker-

nel of OvS (PFAFF et al., 2015), integrated circuits of hardware switches, or components

of simulation environments).

2.2.1 Protocol Independent Switch Architecture

The Protocol Independent Switch Architecture (PISA) architecture is one of the

technologies which enabled programmability. Figure 2.2 presents the standard PISA ar-

chitecture. The architecture divides the forwarding model into a programmable packet

parser, a pipeline of match+action logic, and a packet deparser.

Figure 2.2: Protocol Independent Switch Architecture
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The match+action logic is a mix of SRAM and TCAM for lookup tables, coun-

ters, meters, and generic hash tables. The action logic is composed of ALU’s and stands

for standard boolean and arithmetic operations, header modification operations, hashing

operations, etc. Programmable forwarding devices do not understand any protocols until

they get programmed. Programming languages, such as P4 (BOSSHART et al., 2014),

Domino (SIVARAMAN et al., 2016) and POX (LI et al., 2017), can specify a logic data

plane view and be mapped to the physical resources. In this work, we focus on P4, which

is the most popular language for the PDP.

2.2.2 P4: High-Level Data Plane Programming Language

P4 allows programming and configuration of forwarding devices, including spe-

cific actions or control calls. In contrast to standard OpenFlow switches (MCKEOWN et

al., 2008b), P4 enables network developers to build programs that modify the structure of

packet headers and can store complex network state on the data plane.
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Figure 2.3: Abstract Packet Processing Model
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A P4 architecture model is a contract between the P4 developer and the switch

manufacturer. Therefore, each switch manufacturer must provide a P4 compiler as well as

an architecture pattern for their hardware. Figure 2.3 shows an example of a P4 abstraction

to configure a PISA-based switch. The abstraction divides the data plane behavior into

three main blocks: the Parser, Control flows, and the Deparser:

Parser. P4 declares a parser state machine that describes how to extract headers

from incoming packets. The programmer declares names for each header field, so the

parser can reference bit fields into typed data, which the programmer can reference next

(JOSE et al., 2015).

Figure 2.4: Example of Packet Parser

1 parser P a r s e r ( p a c k e t _ i n packet , . . . ) {
2 s t a t e s t a r t { t r a n s i t i o n p a r s e _ e t h e r n e t ; }
3

4 s t a t e p a r s e _ e t h e r n e t {
5 packet . e x t r a c t ( hdr . e t h e r n e t ) ;
6 t r a n s i t i o n s e l e c t ( hdr . e t h e r n e t . e t h e r T y p e ) {
7 TYPE_IPV4 : p a r s e _ i p v 4 ;
8 d e f a u l t : a c c e p t ;
9 }

10 }
11 s t a t e p a r s e _ i p v 4 { . . . }
12 }

Source: The Author

An example P4 parser is presented in Figure 2.4, where an ethernet header is

extracted, and a transition can be made to extract IPv4 header using the etherType

field value. After the parser processes a packet, the packet follows to a pipeline of control

flows.

Control Flows. Each control flow is composed of a set of logical match+action

tables implemented using match+action units (MAUs). An apply block specifies the se-
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mantics and order that each MAU processes packets, reads, and modifies the content of

header attributes instantiated by the parser.

Figure 2.5: Example Ingress Control Flow

1 c o n t r o l I n g r e s s ( i n o u t h e a d e r s hdr , . . . ) {
2 a c t i o n i p v 4 _ f o r w a r d ( macAddr_t ds tAddr ) { . . . }
3

4 t a b l e ipv4_lpm {
5 key = {hdr . i pv4 . d s tAddr : lpm ; }
6 a c t i o n s = { i p v 4 _ f o r w a r d ; }
7 s i z e = 1024 ;
8 }
9 apply { ipv4_lpm . apply ( ) ; }

10 }

Source: The Author

In the example of Figure 2.5, the ingress match+action pipeline implements a

single table that routes 32-Bit IPv4 addresses using least prefix matching with at most

1024 entries. After the pipeline of control flows processes a packet, it follows to the

deparser.

Deparser. The Deparser writes internal variables to the packet header and emits

the packet to an output port (or recirculates it back to the parser). In practice, typed data

are assembled into bit fields of the packet header. In the example of Figure 2.6, the switch

first assembles ethernet header and then IPv4.

Figure 2.6: Example Deparser

1 c o n t r o l MyDeparser ( p a c k e t _ o u t packet , i n h e a d e r s
hdr ) {

2 apply {
3 packet . emi t ( hdr . e t h e r n e t ) ;
4 packet . emi t ( hdr . i pv4 ) ;
5 }
6 }

Source: The Author

The PDP abstraction divides the forwarding model into two stages: the configura-

tion and the population.

During the configuration, developers can program the parser state machine, the

structure of MAUs, and the semantics of control flows. In this phase, the developer also

defines header structures and internal registers. Packets can carry variables during its pro-

cessing, called metadata. Examples of metadata are output ports, timestamps of opera-
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tions, and table-to-table states. Such examples are common in the underlying architecture

of P4, but developers can create their own metadata to develop new applications.

The population stage allows the operator to insert, remove, or modify entries of

the stateful objects, such as tables and registers that were created during the configuration

phase. In the case of P4, the language does not dictate table update behavior. Therefore

it is necessary to build tools on top of P4 to provide an update command for a different

target switch, i.e., when a packet matches a rule, an action is invoked with parameters

supplied by a control program.
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3 PRIME: DESIGN AND ALGORITHMS

This chapter presents the system design and the algorithms used in this work.

First, Section 3.1 presents an overview of PRIME, as well as the system architecture and

terminology. Next, Section 3.2 presents the composition of packet parsers and deparsers.

Section 3.3 describes the composition of control flows and a source code analysis method.

Finally, Section 3.4 presents how to perform the steering of packets, and a proof of con-

sistency.

3.1 Overview

In this section, we describe an overview of PRIME (Programming In-Network

Modular Extensions), a mechanism for network administrators to compose different PDP

programs in each switch of the network.

PRIME is responsible for two main tasks: providing an P4 program as a basis

for the composition of functions and generating a programming interface (API) to steer

packets through program modules (e.g., tables) at run-time. As such, the system enables

network operators to easily deploy only the necessary modules in each switch without

rewriting code to build different configurations with the available programs. PRIME has

a controller interface, which interacts through an API with an base program. The com-

ponents of the base program were based in P4 and provide a programming model to host

compositions of in-network functions written as P4 programs for the data plane. Finally,

this is all supported by the PISA architecture on a target switch.

The function composition must preserve the following constraints:

• Function Isolation: the arrangement and composition must isolate network func-

tions. The isolation ensures that variables from different programs do not overlap.

• Loop-Freedom: both the steering and composition must ensure packets do not loop

inside the switch.

• Consistent Updates: updating the set of compositions of flows must be made con-

sistently, i.e., must not create intermediary states.

To identify the elements of the system as unequivocally as possible, we now

present the essential terminology used in this work: A Program is a syntactically cor-

rect P4 program, which can be verified by the language compiler. A Program Module
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is a P4 program control block. A program module can be an ingress control or only a

packet parser that will be composed. Extensions are program modules required to be on

the host program. Each specific computation that can be invocated as part of a P4 program

is a Function. A Program may contain more than one function, and such information is

transparent for the composition mechanism.

Figure 3.1: High-Level Architecture of PRIME.

Source: The Author

Figure 3.1 presents the high-level architecture of PRIME. Firstly, network oper-

ators write separated and independent programs, running independently from each other

(Figure 3.1, Step 1). Secondly, the source code of multiple programs is merged into a

host program (Figure 3.1, Step 2), which provides primitives to steer packets through

them. The composition performs an analysis of the packet parsers and control flows to

ensure the program will operate with no loops or ambiguous states. If the merged code

passes this analysis, the new program is deployed on the switch (Figure 3.1, Step 3). Net-

work operators may define which sequences of programs will process a flow dynamically

by using a steering interface. The interface updates the switch state to multiplex packets

to a specific set of program modules (functions) (Figure 3.1, Step 4). Specifically, the

steering interface produces switch table entries and installs them on the switch (Figure

3.1, Step 5).

After discussing the design of the system, we now present in detail how to com-

pose data plane programs.
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3.2 Combining Header Instances

Given a set of program extensions and the host program, the composition aggre-

gates the functionalities of the set of extensions to the host program. The system assumes

that each extension is syntactically correct and verified by the standard P4 compiler to per-

form the composition. Then, the system computes the composition by scanning parsers

and control flows and merges the respective structure definitions according to the seman-

tics of the composition and the characteristics of the modules themselves. These aspects

are explained in detail below.

3.2.1 Extending Parsing Trees

We assume for the extensions a general definition of packet parser trees, which

can fit most usual composition techniques. A parser tree is defined as an oriented graph

PG = (V,E), where each node represents a packet header, and each transition represents

the next protocol header. Let the composition operation on packet parsers of an extension

E and a host program H be C : ΓE ×ΓH 7→ ΓL. We define the composition of parsers as

the union of the set of terminal states, non-terminals, transitions, and header definitions

of the extension.

Algorithm 1: Handling the extension of parsers
Data: PGE = (SE, TE), PGH = (SH , TH)
Result: parserout

1 begin
2 for state ∈ SE do
3 if (state /∈ SH) then
4 SH ← SH ∪ {state}
5 for transition ∈ TE do
6 if transition /∈ TH then
7 TH ← TH ∪ {transition}
8 Use in-depth search algorithm to identify loops and non-determinism
9 return Parserout

Algorithm 1 presents a pseudo-code for handling the extension between two parser-

state machines. The composition result is a new parser state machine ΓL, which merges

states with the same ID; and performs the union of state transitions from the extension

and the host parser.
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Conflict-Free State Machines. To ensure that the composition is correct, we

constrain the scope of extensions, requiring the resulting parser to be deterministic and

loop-free. It is difficult to find the equivalence between two headers, therefore we consider

that two vertices are equivalent when they have the same header ID. These are restrictions

we need to enforce in order to ensure the composition of parser operates correctly. We

say that ΓE extends ΓH if ΓE satisfies the restrictions imposed by ΓH . For this, after

the modules are interpreted and merged, PRIME performs a custom verification phase

(SCHWERDFEGER; WYK, 2009).

The verification performs an in-depth search in the result of the union of packet

parsers. Once each packet parser is a tree, the composition can create a graph with loops

and non-determinism, and in this case, the verification will find existing loops. If the

composed code passes this analysis, i.e., ΓE extends ΓH , then ΓL = ΓE C ΓH , it

can be considered “certified” and safely composed with the host program. Otherwise,

the administrator is notified with a warning. After receiving a warning, the administrator

should manually rename states and transitions that created the inconsistency. This would

also require to rewrite control flows invocations in the case that the object that created the

error is a header field. We intend to investigate ways to repair those cases automatically,

e.g., recirculating packets through a new independent parser that could not be merged

because of the host program restrictions (PRAKASH et al., 2015).

Figure 3.2: Graphic representation of packet parser trees composition
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Source: The Author

Figure 3.2 presents an example of the composition of the two parser state machines

that are shown in Figure 3.2a and Figure 3.2b. The composition result, depicted in Fig-

ure 3.2c, merges Ethernet, which now has the transition 0x8100 to Vlan and 0x1212

to INT. Finally, State ICMP is included in the parser with a transition 0x1 from already

known State IPv4. The inclusion of a new state also carries its header definitions, i.e.,

the composition merges the definitions of packet header and the state ICMP into the com-

posed program (GIBB et al., 2013).
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3.2.2 Deparsing

Each state composed with the program must be carefully emitted to ensure packets

are well-formed (LOPES et al., 2016). For instance, the system should not emit IPv4

headers before emitting TCP, which could impact on out-of-order read/writes on the next

network hop. Once the structure of deparsers does not convey sufficient information to

establish a dependency among them, we cannot infer the order in which packet headers

must be emitted in the composed program. To avoid that disruption, the composition of

deparsers must (1) unite the set of emitted headers from both programs, and (2) create a

new deparser that emits headers in the same order as they are instantiated by the parser

(SONI; TURLETTI; DABBOUS, 2018).

3.3 Control Flow Arrangement

Control flows of P4 programs include additional definitions of actions, tables and

conditional branches (if-else statements) inside of control blocks. To extend functionali-

ties of two control blocks, we present a programming operator to compose P4 programs,

enabling the network administrator to isolate control flow blocks in a static manner (JIN

et al., 2015)(SUN et al., 2017).

3.3.1 Function Cataloging

The composition aggregates ingress and egress modules into an additional table in

the host program, which we call the “steering table” according to the semantics of the

composition operator and the constructs of the P4 program. The composition operator can

be utilized between two P4 programs to place the control flow of a new extension to the

beginning of the pipeline of the steering table. In practice, control flows of the programs

appear in the host program in the order in which they were composed.

Merging tables may promote space optimization, but creates the possibility of

violating target-independent constraints, such as the equivalence between table structures,

table dependencies, and loop-freeness (which is a restriction imposed by the P4 language

and the data plane itself) (ZHENG; BENSON; HU, 2018). To ensure the merging does not

break target-independent constraints, the merging operator provides isolation of tables,
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registers, and actions. Therefore, the semantics of the host program is preserved by not

allowing a function to rewrite it.

3.3.2 Constructs Disambiguation

PRIME performs a source code analysis step to identify the equivalence of struc-

tures between the composed tables and ensure they do not violate table dependencies. For

tables with ambiguous IDs, PRIME renames their IDs and rewrites the “apply” construct

for the merged structure to use the proper ID and preserve dependencies of both modules

(SAHA; SAMANTA; SARANGI, 2009). The same isolation is performed for registers,

actions, and metadata definitions with ambiguous IDs.

Algorithm 2: Modules merging and verification
Data: host.p4,module.p4
Result: host

1 begin
2 Ambiguous = {}
3 //for all tables
4 for t ∈ pipeline do
5 if t ∈ Ht then
6 Ambiguous = Ambiguous ∪ {t};
7 else
8 Ht = Ht ∪ {t} ;
9 //for all actions

10 for a ∈ pipeline do
11 if a ∈ Ha then
12 Ambiguous = Ambiguous ∪ {a};
13 else
14 Ha = Ha ∪ {a}
15 //for all registers
16 for r ∈ pipeline do
17 if r ∈ Ht then
18 Ambiguous = Ambiguous ∪ {r};
19 else
20 Hr = Hr ∪ {r};
21 return host

Algorithm 2 traverses all tables, actions, and registers defined on the new function

and associates them with the host program. In order to do this, we first collect all defined

registers, actions, and tables in both pipelines. Afterward, we disambiguate repeated IDs

and rewrite the statements in the apply struct (Algorithm 3).
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Algorithm 3: Constructs Disambiguation
Data: newprogram.p4, Ambiguous
Result: host

1 begin
2 for each node n in pipeline do
3 if n is START or not a invocation statement then
4 continue;
5 if n ∈ Ambiguous then
6 rename.invocation(n, newprogram);

With the aid of the “steering table”, the composition produces a sequence of

program modules whose execution order can be altered dynamically. For instance, the

composition can change the order of execution of a firewall and a load balancing. Specif-

ically, a firewall must be applied before load balancing incoming packets as the firewall

must consider the original IP addresses. Conversely, the load balancer must first restore

the original IP address before the firewall handles outgoing packets (MONSANTO et al.,

2013).

The structure of the host program and the composition assures a data plane struc-

ture that allows the configuration of both directions. Each composition translates into a

configuration that works as a link for a sequence of program control flows. The steer-

ing table is positioned at the beginning of the switch pipeline and intercepts all incoming

packets. The table specification can match packets using wildcards, lpm or exact and

works as a large catalog of pointers from specific sets of packets to sequences of program

modules merged during the composition (CHEN; BENSON, 2017; SONCHACK et al.,

2016) (a process similar to service function chaining (SFC) in the context of Network

Function Virtualization (MIJUMBI et al., 2016)).

3.4 Traffic Control

When the network administrator wishes to steer packets for a specific sequence

of programs, s/he describes the identifier of the flow and the sequence of modules that

must process this flow. A configuration C is defined as a pair of switch programs P and

the steering function S. A switch state N is a pair (Q, C) containing a set of flows Q and

the configuration C. The system has two kinds of transitions: recirculations (rounds) and

updates transitions.

During a recirculation, a packet is retrieved from the egress and sent to the next
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program using the set of switch programs P, and the steering function S. A recirculation

denotes the traversing of a packet through the pipeline of programs. In each round, only

one of the programs process the packet. The host program utilizes a traffic control module

to deliver the packet to the program indexed by the next program of the catalog. After a

packet reaches the egress, the next program indicator is updated, and the packet recircu-

lates to start another round. This repeats until the packet is processed by all the programs

indexed by the configuration C.

3.4.1 Consistent Update

In an update transition, the switch forwarding is updated to a new behavior for a

specific flow. We represent an update as a partial function from local packets to a list of

programs. To apply an update, PRIME then translates the code to the tuple of parameters

of the steering table. When an incoming packet matches the table, an action that we

call ‘catalog’ loads the parameters supplied by the administrator to the internal state.

Subsequently, these user-supplied parameters will be stored as packet metadata and used

by the host program to determine the order in which program modules are processed.

Figure 3.3: Traffic steering through program modules

Source: The Author

Figure 3.3 presents an example of how the steering table can map flows to se-

quences of programs. In the example, packets that match 10.0.*.* are mapped to be

processed by programs P3, P1 and P2 respectively. For this, after matching the table, the
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catalog points to the ingress control-flow of P3 and follow to its egress. Next, the packet

recirculates and follows to P1 ingress and egress. Finally, the packet recirculates a third

time to P2. It is important to note that the same data plane structure supports the execution

in a different order if the network administrator wishes.

3.4.2 Enforcing Correctness

To ensure packets will not face intermediary states of steering configurations, we

reduce our problem to the transitional per-packet-consistent updates problem (HAN et al.,

2015). Per-packet states for a given packet are consistent if the traces generated during

the update are generated from the previous configuration, or from the new configuration,

but not from a mixture of the two (REITBLATT et al., 2012).

We explicitly state the invariants enforced by the host program and the merging

itself. The host program maintains the following invariants:

• (H1) All functions in the pipeline are ordered linearly in the order they are merged,

and each packet follows the pipeline in order. Effectively, the set of functions IDs

is the set of naturals numbers, and ordering follows directly from that.

• (H2) The configuration of steering is only loaded into a packet metadata in the first

round, thus preventing the configuration of a transient flow from being changed by

the table on other rounds.

• (H3) No changes are accepted into the steering configuration while it is already

updating (this occurs because the action that loads the configuration is atomic).

• (H4) Standard metadata (e.g, output ports) are copied into user-metadata before re-

circulating and restored into new standard values to index functions into the correct

processing order.

• (H5) The active steering configuration and packet header are recirculated only when

function ID < # of Programs. The next function to be processed is then updated

according to the values of steering.

To ensure the composition does not violate these invariants, the merging must act

accordingly. For this, the program merging satisfies the following invariants:

• (M1) Metadata definitions are verified and disambiguated to ensure no function

code modify the catalog structure.
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• (M2) Each table and action is disambiguated to ensure composed function code do

not rewrite the catalog of a packet or apply the steering table.

We now can use these invariants to prove transitional packet-consistent updates

for the steering configuration in the switch pipeline.

Lemma 1. If pkt carries C1 configuration, where |C1| > 1, it is not possible for any

update to change its configuration until the end of its processing.

Proof. We proceed by induction over m, the configuration length, noting that the base

case, m = 0, is consistent. Assume that an update occurs: H2, M1, M2 ensure that when

C1 is loaded, the steering trace of pkt is not modified until emitted by the egress. H4

ensures that pkt keeps the same steering configuration C after recirculating. Therefore,

to all processing rounds r0, ..., rn of pkt, the configuration in round n is the initial config-

uration C1. H5 ensures that packets do not recirculate forever. H1 ensures that a packet

pkt with steering configuration C always crosses every program in the pipeline and, by

the previous conclusions, finds each program in the steering configuration, C1.

Theorem 2. For all configurations C1 and C2(P [p1, ...pk], S)., updating from C1 to C2 is

per-packet consistent.

Proof. The proof proceeds by considering every trace generated during the execution of

the update. There are two cases: In case (1) the transient packet creates a new state

for disambiguation. In this case, PRIME has the C1 loaded into packet metadata. In

case (2) packets enter the switch with the new configuration C2. In case (1), the traces

can be generated by no update operations, and the definition of per-packet consistency

holds directly from Lemma 1. In case (2) we denote pkt as the first packet entering the

switch tagged with a new steering configuration C2, written [p1, ...pk]. H3 ensures that

while the steering table is loading C2, no other update can be performed into the steering

configuration of pkt. H1 proves that when pkt exists in the pipeline, all the programs in

the pipeline are updated to C2, even if pkt is marked to be dropped by a program in the

pipeline. Hence pkt and all subsequent packets tagged with C2 are processed with the

new configuration.

We claim that although the implementation of the composition of multiple pro-

grams in the same switch pipeline appears straightforward, configuring the traffic steering

requires the switch to preserve certain invariants. Consistency is made possible because
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P4 provides per-packet states (metadata). However, metadata still needs to be copied into

user-metadata before recirculating. We hope that our work provides a good motivation to

rethink the design of the metadata system to facilitate the correct steering conceptually. In

this section, we have shown what invariants to preserve, and why they suffice for a correct

implementation of a packet-consistent steering configuration (HAN et al., 2015).
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4 IMPLEMENTATION

This chapter summarizes the development details of PRIME. Section 4.1 presents

an overview of the main components of PRIME. Next, Section 4.2 presents details of the

programming API and the composition compiler. Finally, Section 4.3 shows how network

operators can use the programming API to define the steering of flows.

4.1 Prototype Overview

We have prototyped a system called PRIME that implements the composition and

steering abstractions presented earlier. Figure 4.1 illustrates the design details of PRIME.

PRIME is composed of two essential modules: The steering interface and a composition

compiler.

Figure 4.1: Description of Implementation of PRIME
(a) Programming Interface (b) Composition Compiler

Source: The Author

The composition compiler provides the means to assemble large P4 programs by

merging smaller ones. We call these programs “extensions” and the merged program the

“host” program. The host program is a P4 program that has an additional table, control

blocks, and metadata control, which works as a base to compose extensions. The network

operator can place network functions into the host program as a programming model.
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The host program has slots for functions and their primitives to steer packets through the

functions internally.

4.2 Composition Compiler

We implemented a prototype of the composition compiler to support the develop-

ment of programs written in P416 and using the V1 Switch model. The compiler works as

an extension for the p4c compiler, managing the source code between the p4c front-end

to verify the properties between programs. The system parses and composes the original

code to the P4 source code. Therefore it maintains compatibility with any target switch.

In the end, we build the new source with the p4c compiler to obtain the specific target

code. Thus, the output code is compatible with any programmable target with support to

the language.

Figure 4.2: Compilation and Program Building Methodology
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Figure 4.2 represents the program compiling flow chart of PRIME. First, devel-

opers build independent programs and compile them with the standard compiler. Next,

programs are linked through the algorithms presented earlier. In the case of the parser,

the composition has no success, and it can raise two different instances of errors: a parser

error can indicate repeated states with different structures or non-determinism.

4.3 Steering API

After the deployment, the operator can utilize the steering interface to specify the

steering of specific subsets of traffic through sequences of program modules during run-
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time. All insertion happens in a steering table that performs the first lookup of the traffic.

To avoid misrouting during updates of the steering configuration, we provide the means to

avoid intermediary states and show why they suffice for a correct implementation. These

properties make PRIME valuable for supporting bi-directional configurations.

The host program contains several lines of P4 code and supports P416 programs

written using the V1 Switch Model. The integration of programs inserts functions inside

the slots of the host program and can add more slots as we compose modules. PRIME

uses the standard p4runtime to provided by the P4 language consortiumm to create the

programming API after we compose programs. The programming API interacts with the

p4-bm target and enables control plane actions over the steering table through a python-

based language.

To specify sequences of functions in each switch, PRIME offers a simple API with

python-based operators. The API is based on P4runtime (P4RUNTIME, 2019) and en-

ables us to determine which sequence of functions will process specific packets. Instead

of match patterns, PRIME allows programs to write basic instructions using the proper

name of the function (FOSTER et al., 2011). PRIME also includes a standard switch that

specifies the rule’s current physical location in the network. Finally, PRIME program-

mers are free to define their function fields as modules are composed. For example, a

programmer may want to assign a packet to one of several functions through the network

switches.

The composition treats the output of one function as the input of another. Consider

a simple example:

Figure 4.3: Example flow composition

1 w r i t e S t e e r i n g ( p 4 i n f o _ h e l p e r , sw_id=s1 ,
d s t _ i p _ a d d r = " 1 0 . 0 . 1 . 3 " , n f1 = f i r e w a l l , n f2 =
l o a d b a l a n c e r , t t l _ r o u n d s =2)

Source: The Author

In Figure 4.3, switch S1 will filter packets with destination 10.0.1.3 and apply

the firewall and the load balancer in sequence. To this end, during the composition, the

system reads configuration files with the function ID and respective names and translates

to low-level rules of the S1 device.

These parameters are wrapped into gRPC requests by the P4runtime API and sent

for the target switch in question. Such parameters are translated to the catalog of func-

tions, as presented in Figure 4.4.
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Figure 4.4: Example catalog written in P4

1 a c t i o n c a t a l o g u e ( b i t <8> nf1 , b i t <8> nf2 , . . . ,
2 b i t <8> nfn , b i t <32> t t l _ r o u n d s ) {
3 meta . cu s tom_ me tada t a . n f _ 0 1 _ i d = nf1 ;
4 meta . cu s tom_ me tada t a . n f _ 0 2 _ i d = nf2 ;
5 .
6 .
7 .
8 meta . cu s tom_ me tada t a . n f _ 0 2 _ i d = nf8 ;
9 meta . cu s tom_ me tada t a . t o t a l _ r o u n d s =

t t l _ r o u n d s ;
10 }

Source: The Author

The figure presents the catalog parameters previously passed through P4runtime

API (Lines 1-2). Next, these parameters are copied into custom metadata, which will be

the steering configuration of each packet (Lines 3-9). Finally, the ttl_rounds is also

copied to custom metadata and works as an upper bound for the number of NFs that a

packet will be processed.

Figure 4.5: Example ingress host program written in P4

1 i f ( meta . cu s tom _me tada t a . r ou nd s > 0) {
2 / / r e s t o r e s t a n d a r d m e t a d a t a
3 standard_metadata . e g r e s s _ s p e c = meta . p o r t _ a u x ;
4 }
5 i f ( meta . cu s tom_ me tada t a . r ou nd s == 0) {
6 s t e e r i n g . apply ( ) ;
7 meta . cu s tom_ me tada t a . n e x t _ f u n c t i o n = meta .

cu s tom_ me tada t a . n f _ 0 1 _ i d ;
8 }
9 / / n e x t f u n c t i o n has ID=1?

10 i f ( meta . cu s tom_ me tada t a . n e x t _ f u n c t i o n == 1) {
11 / / F u n c t i o n _ 1 code
12 }
13 i f ( meta . cu s tom_ me tada t a . n e x t _ f u n c t i o n == 2) {
14 / / F u n c t i o n _ 2 code
15 }
16 .
17 .
18 .
19 i f ( meta . cu s tom_ me tada t a . n e x t _ f u n c t i o n == N) {
20 / / Func t ion_N code
21 }

Source: The Author

These metadata are used to define the processing order of composed functions.
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Figure 4.5 presents how we arrange functions sequentially on the host program. Firstly,

we ensure that standard metadata are restored before processing anything (Lines 1-4).

Next, we check if we are in the first round. In this case, we load the steering parameters

by performing a lookup on the steering table and setting up the first function to process

the packet (Lines 6-9). Finally, we may choose between composed functions, which are

those that will process the packet in the current round (Lines 10 - 21).



38

5 EXPERIMENTAL SETUP

This chapter summarizes the experimental evaluation scenarios of PRIME. Section

5.1 presents different use cases using PRIME. Section 5.2 presents metrics and the evalu-

ation methodology. Section 5.3 shows the results of experiments with a software switch to

show the impact of using PRIME to compose in-network functions. Finally, Section 5.4

compares PRIME with P4Visor (ZHENG; BENSON; HU, 2018) through simple compo-

sitions and comparing the host programs of both systems.

5.1 Use Cases

To validate the feasibility of PRIME, we composed existing P4 applications with

a simple L2 switch program that corresponds to our Host program. The code from use

cases and evaluation scenarios are available at github 1. Next, we discuss the details of

these existing applications and the final configuration of the compositions we performed.

FlowStalker. FlowStalker (CASTANHEIRA; PARIZOTTO; SCHAEFFER-FILHO,

2019) is a monitoring mechanism which encodes metrics and stores them on data plane

devices. Specifically, FlowStalker monitors per-flow and per-packet metrics (e.g., byte

counts, packet counts, timestamps) defined by the operator. FlowStalker employs a hash

table of registers to index information for the exact flow or packet. A reactive system

detects if specific flows violate local thresholds and raises a warning in the case that the

threshold is crossed. Thresholds are implemented as a Heavy Hitter Detection mechanism

(SIVARAMAN et al., 2017), which has a pipeline of registers indexed by a 5-tuple that

represents the flow. After the warning is sent, the controller can inject courier packets to

collect data from data plane registers.

In-Band Network Telemetry (INT). INT (KIM et al., 2015) is a framework that

allows the collection and reporting of network state by the data plane, without requiring

intervention from the control plane. INT is being utilized as a tool for several security

mechanisms to troubleshoot, perform congestion control, or even notify the control appli-

cations about traffic anomalies. INT extends the packet parser with a new header, which

encapsulates monitored items (e.g., timestamps, buffer times, and switch identification).

Monitored items are appended into a new header, which is unique for each switch. This

means that a new header is instantiated and emitted by all switches in the path to an end

1https://github.com/PRIMEb4/Prime
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host. The last hop removes INT headers and sends the standard packet to the end host.

LetFlow. LetFlow (VANINI et al., 2017) is a load balancer that executes on

switches. Letflow picks paths at random for each flowlet and balances traffic on dif-

ferent paths of the network. A flowlet is a burst of packets that is separated in time from

other bursts by a sufficient gap (timeout). When a packet arrives, LetFlow uses a table

to map flowlets to paths. Each table entry contains two fields: the last seen time and a

path id. When a packet arrives, the program computes a hash (CRC-16) of the source

IP, destination IP, source port and destination port. This hash is used as the key to the

flowlet table. If the packet is part of an already existing flowlet, the packet is sent on the

path identified by the path id, and last seen time is set to the current time. Otherwise, the

packet begins a new flowlet and may be assigned to a new path at random.

P4Xos. P4xos (DANG et al., 2016) is a consensus protocol that runs on the data

plane. P4Xos is divided into three different P4 programs: the coordinator (leader), the

acceptor and the learner. The coordinator ensures only one process sends messages to

instances of the protocol, guaranteeing message ordering: it writes the current instance

number and an initial round number into the message header; increments the instance

number for the next invocation; stores the value of the new instance number; and broad-

casts the packet to acceptors. Acceptors choose a value (vote) for each instance of the

consensus before forwarding them. Acceptors keep a history of votes to ensure they do

not vote for the same value on the same instance of consensus. Finally, learners require a

quorum of messages from acceptors and “deliver” a value.

We compose these programs incrementally to analyze the impact of each compo-

sition independently. Scenario 1 is a composition of FlowStalker with the host program.

The idea is to build a switch with support to the analysis of security threats using the

metrics collected by FlowStalker.

Scenario 2 composes scenario 1 with the In-Band Network Telemetry (INT). This

composition allows debugging the network state (e.g., identifying the source of bugs in

the network). Scenario 3 merges LetFlow to Scenario 2. The idea to compose LetFlow is

to allow flows to be balanced, mainly when the network performance is low.

Finally, we build scenarios 4, 5 and 6 by composing Scenario 3 with P4Xos. In

particular, Scenario 4 is a composition with the acceptor; Scenario 5 is a composition

with the coordinator; and Scenario 6 is a composition with the learner. The composition

of P4xos raised an error during compilation, because it uses different names for packet

instances. We renamed header instances of P4xos to the composition be correct.
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Table 5.1: Code metrics of the use cases
Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 Sce. 6

LoC 366 489 617 779 759 649
States 3 5 5 7 7 7
Tables 4 6 12 15 15 16

Source: The Author

Table 5.1 presents the respective number of states on the packet parser, tables and

lines of code (LOC) of the composed programs in each respective scenario. As PRIME

merges equivalent states between different programs, the composition tries to minimize

the number of states and lines of code. Next, we discuss in details a run-time analysis of

each scenario.

5.2 Metrics Formulation

Evaluating programmable switches requires new methodologies. Commonly, end-

to-end measurement tools are used, such as iperf and ping. However, this consid-

ers information which is not useful to assess PRIME, as the system operates exclusively

on the processing pipeline of the switch. Therefore we follow a different methodology

(DANG et al., 2017) to measure latency. We need to assess only the latency of the control

flows, as the time spent on parsing and deparsing is not important in this case.

When a packet enters the pipeline and matches the steering table, we store a lo-

cal timestamp, denoted as Timestampi . Timestampi is stored as part of a packet state

until the last program of the pipeline is concluded. On the last stage of the pipeline,

Timestampe is stored into a local register for further analysis. These correspond to

ingress time and egress time, respectively.

Throughput represents the amount of data the switch can process in a given time.

Similarly to what we did with the latency measurements, we do not consider parsing and

deparsing time on the calculation of throughput. Thus, throughput is calculated as the

effective throughput of processing a program’s control flows Tprocess less the time spent

on the parser Tparser. Removing Tparser is justified because it is not overhead of the

additional tables or the replacement actions. Therefore we define the number of packets

traversing the switch as n, and model the per-packet throughput, Pthroughput, as follows:

Pthroughput = PacketSize× (Tprocess − Tparser)/n (5.1)
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All experiments below are ideally based on a single source and destination flow

traversing the P4 switch. However, multiple flows with different packet sizes would tra-

verse the switch and consequently impact throughput. Therefore we need a more in-depth

monitoring mechanism to store metrics from multiple flows. We see the development of

a monitoring mechanism like this and more detailed evaluation as future work.

5.3 Assessing Compositions

To evaluate PRIME we need to assess the imposed penalty of steering packets us-

ing the final program. For this, we executed each specific scenario using the behavioral

model in an Intel(R) Core(TM) i3-6006U CPU 2.00GHz. We performed a thousand re-

quests, and collected packet timestamps to measure latency and throughput following the

methodology presented earlier.

Figure 5.1: Throughput

Source: The Author

Figure 5.1 presents the throughput that the composition achieves in the data plane.

When the switch steers packets through scenario 1 (i.e., packets match the steering table),

throughput is nearly 8 Mbits/sec. The throughput reduces as we compose more modules

in scenarios 2-6. The reduction occurs because of the amount of computation required by

the functions.

Figure 5.2 presents the latency in ms with only one rule installed on the steering

table (i.e., the rule that matches the end host). As we compose more program modules, la-

tency increases. This happens, similarly to what happens to throughput reduction, because
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Figure 5.2: Latency

Source: The Author

of the insertion of additional states to the parser. Behavior model runs on general-purpose

hardware, and additional states increase CPU consumption. The latency in scenario 1

is nearly 0.4ms. As we compose more program modules, such as in scenario 5, latency

increases to nearly 0.5ms. We see as future work deploying PRIME compositions into

high-performance packet-processing ASIC and FPGA.

5.4 Comparison with State-of-the-art

We compare PRIME with one of the state-of-the-art approaches, P4Visor (ZHENG;

BENSON; HU, 2018), to compose programs. P4Visor is a system to compose P4 pro-

grams. The system provides testing operators which compose two different versions of a

program using source code merging.

5.4.1 Code Metrics

Specifically, we utilized the Differential testing Operator of P4Visor to compose

programs. We could not build the case studies we presented earlier because P4Visor does

not currently support the composition of more than two programs. Thus we show two

simple scenarios: a production version of a router with a testing version of the same

program, and LetFlow with the simple router program.
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Table 5.2: Resource Overhead of PRIME and P4Visor
PRIME P4Visor

Router LetFlow Router LetFlow
Parser States 3 4 5 6

Tables 7 10 12 13
Source: The Author

Table 5.2 presents the number of states of the parser and tables of the programs.

The composition of the simple router creates fewer states using the PRIME approach.

P4Visor does not merge IPv4 states, therefore creating two different states for equivalent

header instances. The number of tables in PRIME is also smaller for these compositions.

Although PRIME does not support abstractions to merge tables between programs, the

traffic steering control has only one table. Other features to steer packets are performed

only by interacting on the catalog and if-else statements, without the need of more tables.

5.4.2 Steering Performance

Similarly to PRIME, P4Visor composes programs into a P4 base program which

has control structures to steer packets internally. In this section, we show how both host

programs impact on the latency of packets. Once every composition will be merged to the

host, the latency of the host will always sum to the latency of compositions. To compare

P4Visor with our program, we had to translate the P4Visor base program to P4v16. The

translation was required to support the same measurement methodology (presented earlier

on Section 5.2) to both systems, and perform a more reliable measurement.

Figure 5.3: P4Visor vs PRIME: Latency

Source: The Author

We performed an experiment that traversed a thousand packets through the pro-

grams with no table entries, i.e., we only assessed the standard host program forwarding

structure during the experiment. Figure 5.3 presents the latency of the base P4Visor base
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program and compared it with PRIME. P4Visor takes about 0.55ms to traverse one single

packet through the entire host program, while PRIME takes only about 0.45ms. This can

be explained because PRIME requires fewer lookup operations than P4Visor. Achiev-

ing less latency in the host program gives evidence that composing programs using the

PRIME host program has less penalty on latency than using P4Visor.

Figure 5.4: P4Visor vs PRIME: Throughput

Source: The Author

Additionally, Figure 5.4 presents the throughput of both base programs. P4Visor

takes about 8 Mbits/sec, while PRIME takes about 12Mbit/sec. This gives some evidence

that PRIME would attend flow demands faster.

Although we use only one table for internal packet addressing and handling, we

are still dependent on the switch architecture. The software switch used in the evaluations

has the table lookup with time corresponding to the number of rules. Therefore, when the

steering table has multiple flows, the overall switch latency will be reduced proportionally.

Therefore, we recommend operators to keep a small number of rules and, where possible,

split the network load on more than one device so that the network has small delays.
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6 RELATED WORK

PRIME is closely related to efforts on data plane composition. Section 6.1 reviews

the main research efforts in this field. Next, Section 6.2 discuss the differences of PRIME

to these efforts using a taxonomy of properties covered by each work.

6.1 Data Plane Composition

Hyper4 (HANCOCK; MERWE, 2016) is a hypervisor for programmable data

planes. It provides a virtualization layer that runs in software. This virtualization layer

runs inside the target switch and executes several instances of P4 programs. Although

Hyper4 enables modularization, the system imposes high overhead on the forwarding

of packets. The overhead occurs because composed modules are running on partially-

virtualized programs and because the Hyper4 base program includes several additional

tables to support composition. Conversely, PRIME runs as a single P4 program, thus

avoiding the virtualization-layer and utilizes only one additional forwarding table to com-

pose modules.

MPVisor (ZHANG et al., 2017) is a hypervisor that uses P4 but provides a base

program much smaller than Hyper4. The system offers high-level operators for program-

ming P4 targets. However, their operators produce large pipelines of programs and are

not sufficient for the correct operation of steering. This hinders the deployment of config-

urations that support multiple steering configurations. MPVisor also reduces the number

of tables required to virtualize P4 programs when compared to Hyper4, but the number is

still large compared with PRIME, which uses only one additional table.

ClickP4 (ZHOU; BI, 2017) is a programming architecture for P4 programs. ClickP4

enables program decomposition into modules and improve code reuse. The system or-

chestrates modules dynamically, granting more flexibility for the data plane. To this end,

ClickP4 uses recirculation to steer packets through programs. Although ClickP4 enables

dynamic orchestration of programs, the system may create intermediary states and com-

promise the forwarding during updates.

P4Bricks (SONI; TURLETTI; DABBOUS, 2018) is a system for multi-processing

P4 programs. The system provides parallel and sequential operators, but exclusively to

allow nodes to process packets at the same time. The system compiles programs to the

same target and restructures the logical pipeline according to control flow dependencies.
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P4Bricks provides a low-level compilation for the target switch, which makes the system

target specific and limits the utilization of the system. Although the operators proposed

by P4Bricks may enable multi-processing, P4Bricks performs out-of-order readings and

writes while processing packets, which can create inconsistencies and compromise the

developer logic.

P4Visor (ZHENG; BENSON; HU, 2018) is a system to merge and test P4 pro-

grams. The system provides AB and Differential testing operators, which both isolate

testing traffic from the composed programs. The traffic isolation requires parsers from

different program modules to have disambiguation states even if the merged states are

equivalent. The merging of control flows tries to minimize resource sharing between

modules by merging equivalent tables. The parser composition does not merge transitions

from equivalent states, and thus their approach creates a new state for disambiguation. In

contrast, PRIME merges equivalent states by uniting their transitions. This feature conse-

quently reduces the number of states necessary to parse the composed program.

Dejavu (WU et al., 2019) is a programming model to optimize resource utiliza-

tion of programmable switches. The system connects and hosts several functions in a

single switch. The system provides parallel and sequential operators, allowing different

functions to share the same pipeline. The system leverages recirculation to route packets

between chains of functions and tries to minimize the number of recirculations. However,

although allowing optimization of the number of recirculation, this can perform out-of-

order processing, once functions usually are composed of ingress and egress capabilities.

PRIME takes a more intuitive approach, which ensures the correct ordering of read/writes

between the functions.

6.2 Discussions

Among the related work, Hyper4 was the pioneer. However, the system has sev-

eral limitations, mainly because of the usage of an excessive number of tables. Despite

the table configuration enables the placement of functions dynamically, such configura-

tion creates a dependency on the hardware which must have an interface do place entire

programs dynamically. Such an interface is not common for all target programmable

forwarding devices. Such dynamic composition is important for the network, but can be

performed in different ways, such as migrating functions (LUO; YU; VANBEVER, 2017)

and rerouting traffic (KRUDE et al., 2019).
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Table 6.1: Scope of operation and characteristics of recent work

Work/
Goals

Multiple
Operators

Dynamic
Compositions

Parser
Merging

Hardware
Independence

(Partial)

Consistent
Composition

Hyper4 •
P4Bricks • •
P4Visor • •
MPVisor •
ClickP4 •
Dejavu • • •
PRIME • • •

Source: The Author

Other approaches, such as MPVisor and ClickP4, tried to mitigate these limitations

using a reduced number of tables compared to Hyper4. However, they still lack for merg-

ing optimizations, such as the parser composition. Moreover, the complexity of tables

and parser states is still considerably high, once they choose to compile new NFs without

data plane interruption by using an approach similar to Hyper4. While Hyper4 uses al-

most 400 tables to declare a program with 8 stages, MPvisor saves 5x to 8x. ClickP4, in

turn, requires developers to know ClickP4 code before they deploy a new function, and

additional source code is still required to deploy new modules.

Efforts such as P4Visor and P4Bricks introduced host programs with static num-

bers of tables. Both systems provide multiple operators with different semantics to com-

pose programs. P4Bricks yet enables parallel execution of P4 programs but requires spe-

cialized targets, which are not conventional P4 devices. P4Visor breaks barriers by intro-

ducing optimization techniques to reduce the resource consumption of control flows and

still preserve program isolation. Despite such techniques to optimize the number of tables

between modules (or functions) help reducing resource consumption, P4visor uses a fixed

amount of 8 tables. Conversely, PRIME uses just one table. P4Visor has limitations on

packet parsing because they always make copies of identical states. PRIME covers such

parser limitations by enabling the modular composition of parsers. Besides that, current

efforts support a limited number of functions. P4Visor, for instance, supports only two

compositions and requires modifications on the traffic control to allow more functions to

be composed.

More recently, Dejavu suggests the union of equivalent parser states. The union

is performed manually, creating limitations for the developer. To this end, PRIME allows

that the parser union to be made automatically. Once recirculating packets can generate a
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higher overhead on packet processing, Dejavu advocated that programs could divide the

same ingress or egress by using sequential and parallel operators. This optimizes some

recirculations and, consequently, can allow a higher throughput rate. The negative side of

this strategy is that allowing the dynamic changes in the execution order would require

multiple copies of the same source code and consequently have high resource consump-

tion. Therefore, the placement of multiple functions at the same control block requires a

previous analysis to avoid such a phenomenon. As PRIME composes programs sequen-

tially, as presented in Section 3.3, avoiding such analysis, and ensuring that ordering is

preserved.

Further, beyond these limitations of the composition, current research has several

limitations for the operation of the network. None of the work allows the consistency of

the inner steering updates, which can cause misrouting due to undesired intermediary con-

figurations formed during the update. Table 6.1 shows the properties covered by previous

work.
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7 CONCLUSIONS & FUTURE WORK

Software paradigms for networks promise to transform the network architecture

by softwarizing it, which can simplify network operations and simplify the development

life cycle of new solutions. SDN decouples the control logic from forwarding devices,

enabling simplified management of the network. OpenFlow is the standard communica-

tion protocol for SDN switches, allowing a standard way to program switches through the

control plane. However, OpenFlow still has fixed packet headers and is limited to simple

forwarding logic. Programmable Data Planes (PDP) enable more flexibility for the oper-

ation of networks. With PDP, we can define processing blocks that modify the structure

of header contents. Such flexibilization enables us to rethink the design of forwarding

devices, placing new functionalities inside the infrastructure.

7.1 Summary and Contributions

To fully reap the benefits of programmability, it should be feasible to compose and

operate multiple PDP functions into a single target switch as needed. However, existing

techniques are not suitable in the sense that they use an excessive number of parser states

and tables, and lack abstractions for the steering of packets through the control flows.

As such, they do not support the modular composition of PDP functions. In this thesis,

we presented the design and evaluation of PRIME, a composition mechanism to help the

modular development and management of P4 programs. PRIME provides a base p4 pro-

gram that is capable of hosting several functions. The deployment is made by composing

packet parsers using a P4 programming operator and by carrying out the placement of

functions on slots of the host program using source code merging. The usage of source

code merging is required both to allow functions to be implemented independently and

do not require developers to know how the base program works.

Furthermore, PRIME introduces the steering of packets through program modules.

The steering uses P4 metadata and additional recirculations to ensure that updating the

steering of packets is made consistent (i.e., without allowing the creation of intermediary

states during updates).

Although composing multiple functions may promote better usage of network re-

sources, the management becomes more complex and error-prone. Current efforts to com-

pose various programs in a single target switch make use of an excessive number of flow
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tables and parser states. Consequently, these techniques can severely limit throughput and

increase latency in general-purpose hardware or do not fit in specialized hardware, such

as netFPGAs or ASICs. To overcome these limitations, we reduce the number of tables

the host program needs to steer packets internally to just one table. We also described

how the table steers packets to the internal functions and how the composition avoids

intermediary states. State-of-the-art techniques do not suffice to provide transitional con-

sistency between steering configurations. Without transitional consistency, changes in

the steering of flows through the program modules can create intermediary states, which

may cause misrouting and security holes. PRIME provides techniques to allow new ap-

plications to be composed, preserving transitional packet-consistency of traffic steering

without degrading the performance of the data plane operation. We provide proof that the

merging does not rewrite basic steering control and show that composing new rules into

the steering table is always made consistently.

We presented a case study showing the operation of our abstractions for several

existing P4 programs. For the case studies, we took existing applications and composed

them into a host program using PRIME. Results of simulations in a software switch evi-

dence that the compositions have a moderate yet acceptable impact on delay and through-

put. We think that this is acceptable because other tools for composition (such as P4Visor

or Hyper4) require more tables, which increases the overhead linearly. The overhead ob-

tained is due to the steering table and the recirculations. Yet, we compare PRIME with

P4Visor and find that P4Visor has some drawbacks in the case studies performed. We

found through two simple compositions that PRIME uses fewer tables and uses fewer

parser states on these use cases. We also present the evaluation of the host programs of

PRIME and P4Visor to measure latency. We found that our host program achieves lower

latency on the data plane.

7.2 Limitations

PRIME still faces several limitations. In particular, inserting overlapping rules into

the table can generate conflicting directions on the switch pipeline. We see as future work

the development of a mechanism that filters and solves the overlaps before the insertion.

This feature can be designed similarly to what is presented in Hermes (CHEN; BENSON,

2017), combined with CacheP4 (MA et al., 2017), to achieve both low update times and

throughput. Another limitation is that PRIME still requires the developer of a module



51

to be responsible for the correctness of each independent module. There is a need for

a previous verification step during network operation to ensure the consistency of each

separate module. Furthermore, inner characteristics of modules, such as incrementing

TTL were not addressed. This can make one switch decrements TTL counters more than

once.

PRIME also requires several constraints for the composition to be correct. Firstly,

we do not allow the composition of programs that use recirculations or resubmissions.

These primitives rewrite the metadata being traversed and, therefore, can make the state

inconsistent. Secondly, we still require developers to know the parser states of differ-

ent programs and ensure their equivalence manually. Third, we also did not address the

composition of checksums, which means that if the program has different checksums, we

would require this composition to be manual. Fourthly, we did not do any experiment

on real hardware, which make our results far for real scenarios. Finally, we do not allow

dynamic compositions, requiring to shut down the device to make a switch composition.

7.3 Future Work and Perspectives

There are several other potential future research directions. In particular, explor-

ing new compilation techniques may allow more efficient use of data plane resources by

sharing resources between programs. The development of new operators to identify de-

pendencies between modules and a formal reasoning about the steering correctness are

also in perspective. Further, in addition to the local guarantees addressed in the composed

P4 program, we aim to investigate global path level guarantees for automatic virtualiza-

tion of PDP programs (YU et al., 2019), and placement heuristics similar to those used

with Virtual Network Functions (ANWER et al., 2015) (CHARIKAR et al., 2018).

After such challenges, we aim to investigate the use cases of functions distributed

on the data plane and identify end-to-end constraints to the orchestration of NFs/ICFs.

The orchestration model may deploy functions on switches organized as a cluster. To this

end, we can leverage checkpoint/restore (SHERRY et al., 2015) techniques to ensure that

already deployed functionalities keep working after the deployment of new functionali-

ties. This can be built using a new virtualization layer for the data plane by formalizing

the orchestration using optimization techniques. Finally, we also see as future work a full

exploration of distributed system replication techniques to handle failures.
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Redes definidas por software (SDN) e o surgimento de planos de dados pro-

gramáveis permitem maior flexibilidade para a operação de redes. Essas tecnologias são

capazes de permitir que os administradores de rede reconfigurem os planos de dados e de

controle. A capacidade de reconfigurar e programar a rede sob demanda oferece vários

benefícios, em particular possibilitando melhorar os mecanismos de segurança de rede

usando a capacidade de programação. No entanto, além de promover um grau maior de

flexibilidade, a programação do plano de dados levanta preocupações em relação a er-

ros que podem criar inconsistências na função mais básica da rede, o encaminhamento

de dados, interrompendo políticas previamente definidas. Neste trabalho apresentamos

um framework para instalar funções em planos de dados programáveis de maneira con-

fiável, garantindo que a instalação de tais funções preserve as propriedades básicas de en-

caminhando. Para isso, empregamos técnicas de composição de programas para mesclar

funções modulares em um único plano de dados agregado, garantindo que o programa

resultante seja correto após a mesclagem. Para mostrar a corretude de nosso método,

apresentamos um estudo de caso com um firewall e um módulo de monitoramento.
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Abstract. Software Defined Networks (SDN) and emerging programmable data
planes enable more flexibility for the operation of networks. Such technologies
are capable of allowing network operators to reconfigure networks on both con-
trol and data planes dynamically. Such an ability to reconfigure and program
the network on demand offers several benefits, in particular making it possible
to improve network security mechanisms by using programmability. However,
in addition to promoting a higher degree of flexibility, data plane programma-
bility raises concerns with respect to bugs that can create inconsistencies in
the network’s most basic function, the forwarding of data, disrupting previously
defined policies. In this work we present a framework to install functions on
programmable data planes in a reliable manner, ensuring that the installation
of such functions preserves basic forwarding properties. For this, we employ
program composition techniques to merge knowingly correct modular functions
into a single, aggregated data plane program, ensuring that the resulting pro-
gram is correct after the merge. To show the correctness of our method, we
present a case study with a firewall and a processing/monitoring module.

Resumo. Redes Definidas por Software (SDN) e o surgimento de planos de da-
dos programáveis permitem maior flexibilidade para a operação de redes. Es-
sas tecnologias permitem que os administradores de rede reconfigurem os pla-
nos de dados e de controle. A capacidade de reconfigurar e programar a rede
sob demanda oferece vários benefı́cios, em particular possibilitando melhorar
os mecanismos de segurança de rede usando a capacidade de programação.
No entanto, além de promover um grau maior de flexibilidade, a programação
do plano de dados levanta preocupações em relação a erros que podem criar
inconsistências na função mais básica da rede, o encaminhamento de dados, in-
terrompendo polı́ticas previamente definidas. Neste trabalho apresentamos um
framework para instalar funções em planos de dados programáveis de maneira
confiável, garantindo que a instalação de tais funções preserve as propriedades
básicas de encaminhamento. Para isso, empregamos técnicas de composição de
programas para mesclar funções modulares em um único plano de dados agre-
gado, garantindo que o programa resultante seja correto após a mesclagem.
Para mostrar a corretude de nosso método, apresentamos um estudo de caso
com um firewall e um módulo de monitoramento.

1. Introdução
Paradigmas de redes definidas por software (SDN) possibilitam o desacoplamento do
hardware (e.g. roteadores) e dos programas que nele executam (e.g. algoritmos de ro-
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teamento) [Feamster et al. 2014]. Essa estratégia facilita a operação das redes, uma vez
que promove programabilidade no plano de controle da rede. Recentemente, a progra-
mabilidade foi estendida também para o plano de dados. Com o intuito de possibilitar
a programabilidade no hardware que reside no plano de dados, foi criada a linguagem
P4 [Bosshart et al. 2014], que permite aos administradores da rede definirem o compor-
tamento dos dispositivos de encaminhamento. Uma vantagem decorrente disso é a facili-
dade na criação e na implantação de novos protocolos de rede totalmente customizáveis,
sem depender da indústria para que uma nova funcionalidade seja adicionada ao compor-
tamento do plano de dados.

Tal habilidade para reconfigurar e programar a rede possui várias aplicações, que
geralmente abrangem mecanismos governados pela dinâmica e pelas mudanças frequen-
tes de polı́ticas de rede. Isso pode envolver, por exemplo, a implantação de funções de
rede adicionais e a reescrita da funcionalidade dos switches P4 de maneira que possam
suportar mais do que apenas um serviço. Para que isso ocorra, é necessário o desen-
volvimento de técnicas abrangentes que permitam que a reconfiguração da rede ocorra
de maneira rápida e sem corromper propriedades básicas de operação. Alguns traba-
lhos recentes propõem a utilização de P4 para configurar funções virtualizadas no próprio
plano de dados [Hancock and van der Merwe 2016, Zhang et al. 2017]. Tais propostas,
porém, pecam de duas maneiras: em escalabilidade, devido ao uso excessivo de tabe-
las de controle e primitivas de recirculação de pacotes, atrasando o processamento e en-
caminhamento dos pacotes; e não fornecendo o isolamento necessário para as funções
[Dimitropoulos et al. 2018]. Diante disso, entendemos que são necessárias abstrações e
estratégias que permitam que os administradores de rede possam implantar novas funci-
onalidades nos seus dispositivos programáveis, sem que isso impacte negativamente no
desempenho das funções de rede.

Neste trabalho, propomos uma estratégia baseada em P4 que permite que um ad-
ministrador de rede possa estender o comportamento de switches programáveis. A nossa
estratégia é composta de duas etapas: (1) a composição de programas, que deverá possi-
bilitar que o administrador de rede componha funções modulares a um programa base, de
modo que a composição resulte em um novo programa com as funcionalidades tanto do
programa base como da extensão; (2) o isolamento lógico dos programas, que evita que
as regras de match+action sejam sobrepostas e permite que a ordem em que os progra-
mas são executados seja alterada dinamicamente. Agregado à estratégia de composição,
isso garante que as funções atuem de maneira isolada no processamento dos pacotes. A
estratégia proposta depende de um programa base com construtores bem definidos, que
permitem que as funções compostas possam ser gerenciadas de maneira dinâmica. O
operador de rede poderá, então, compor o programa base com a configuração desejada e,
enquanto está em funcionamento, decidir qual a ordem em que as funções serão proces-
sadas por um tipo de tráfego especı́fico.

A estrutura desse artigo esta dividida da seguinte maneira: na Seção 2 apresenta-
mos um background sobre programabilidade no plano de dados e as restrições no modelo
de encaminhamento. Na Seção 3, apresentamos a estratégia de composição de programas,
seguida pela estratégia de agregação de fluxos de controle. Na Seção 4 apresentamos um
estudo de caso e avaliação de nossa estratégia. Por fim, apresentamos uma visão geral dos
trabalhos relacionados e as conclusões.
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2. Background e Motivação

Nesta seção, revisamos P4 e programabilidade no plano de dados, seguido por uma
descrição das caracterı́sticas principais que devem ser consideradas quando novas fun-
cionalidades são implantadas ao plano de dados. Apresentamos também as principais
restrições operacionais do modelo de encaminhamento, que dizem respeito às entradas
das tabelas de match+action e de parsers de cabeçalhos de pacotes.

2.1. Abstração da linguagem P4

P4 é uma linguagem de especificação de plano de dados que permite a
configuração e programação de dispositivos de encaminhamento [Garcia et al. 2018,
Bosshart et al. 2014]. A sua abstração, apresentada na Figura 1, divide o comportamento
do plano de dados em um parser de cabeçalhos de pacotes, um conjunto de tabelas de
match+action e fluxos de controle. O parser é uma máquina de estados que descreve
como ler os cabeçalhos de um pacote para as variáveis internas. Depois que um pacote
chega a um estado final da máquina de estados do parser, o pacote é processado pelos
construtores definidos no fluxo de controle. No fluxo de controle são definidas exclusi-
vamente as estruturas das tabelas, ações e a ordem em que elas são executadas durante o
processamento dos pacotes.

Figura 1. A abstração da linguagem P4, adaptado de Bosshart et al.
[Bosshart et al. 2014]

A abstração P4 divide o modelo de encaminhamento em dois estágios sequenciais,
(1) configuração do hardware, feita de maneira estática no programa P4 e (2) população
das regras, feita de maneira dinâmica pelo controlador. Na configuração, temos que escre-
ver o programa P4 que vai rodar no switch (incluindo parser, estágios do match+action e
deparser). Tal configuração é toda feita dentro de um fonte P4, que é compilado para uma
arquitetura especifica e carregado no switch. O estágio de população das regras acontece
logo após a configuração e se manterá durante todo o runtime do switch. No estágio de
população, o controlador pode alterar as regras do switch livremente. Essa fase é realizada
pelo controlador e pelos programas que nele executam, cada um atualizando as regras que
lhes é pertinente.
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2.2. Restrições no modelo do plano de dados

Geralmente, programas são criados para executar no controlador, atualizando regras du-
rante a fase de população. Para que evitemos bugs nesses programas, as atualizações
de regras por ele geradas têm que respeitar algumas propriedades básicas, tais como:
alcançabilidade e boa formação de pacotes. Na sequência, falaremos sobre cada uma
delas.

Propriedades fim-a-fim Sempre que uma nova entrada é inserida em uma tabela do
modelo do plano de dados, ela deve preservar propriedades (ou polı́ticas) definidas previ-
amente, tais como

“pacotes do switch A devem chegar ao switch B”.

Ou propriedades de safety, como

“o fluxo i deve ser processado pelo switch X antes que ele alcance seu destino”.

S1

S2

S3

 State i 

S1

S2

S3

State i' 

Flow 0

Flow 1 T

NewModule.p4

Figura 2. Transição do estado de rede

Mudanças de polı́ticas e de roteamento no plano de dados podem ser modeladas
como transições entre estados das tabelas de match+action. Na Figura 2, apresentamos
um cenário que descreve uma transição entre dois estados de rede. No estado i, o Fluxo 1
é roteado através do caminho (S1, S3). Uma transição T de um estado i para o estado i′ é
realizada implantando um módulo adicional ao switch S2 e mudando seu comportamento
de encaminhamento para o novo módulo interceptar pacotes do Fluxo 1. Então, depois de
atualizar S1, o mesmo fluxo é roteado por (S1, S2, S3), respectivamente.

Atualizar o plano de dados não é uma operação atômica, porque switches não
são dispositivos sincronizados. Por isso, a ordem em que cada switch aplica mudanças é
um fator importante para alcançar uma transição do estado da rede sem inconsistências.
Por exemplo, no cenário da Figura 2, se, durante a transição T o switch S1 atuali-
zar seu comportamento de encaminhamento antes de S2, os pacotes do fluxo 1 irão
enfrentar um ‘buraco negro’ quando alcançarem S2 (ou os pacotes serão enfileirados)
[Reitblatt et al. 2012][Katta et al. 2013] [Jin et al. 2014] [Nguyen et al. 2017].

Propriedades do switch O nı́vel de inconsistência torna-se ainda maior com progra-
mabilidade no plano de dados, que permite que esse tipo de bug possa ocorrer dentro
do pipeline de tabelas do switch, devido a possibilidade de mudanças da configuração de
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Figura 3. Transição do estado interno de um switch

tabelas e parsers de pacotes [Freire et al. 2018][Liu et al. 2018]. Ocasionalmente, se um
novo módulo inserido não possuir as instruções corretas para decodificar os cabeçalhos
dos pacotes, os pacotes vão ser processados de uma maneira indesejada. Um exemplo
disso, é que pacotes chegariam ao pipeline sem nenhum valor instanciado ou seriam eli-
minados ainda no parser [Lopes et al. 2016].

A ordem em que as atualizações são gerenciadas dentro do pipeline do switch
também estão sujeitas a falhas de configuração. A Figura 3 ilustra uma transição entre
dois diferentes estados internos de um switch. No estado i, o Fluxo 1 é roteado pelos
módulos (P1, P3). Uma transição do estado i ao i′ é realizada mudando a sequência
de módulos que processam o Fluxo 1. Depois da transição, o mesmo fluxo é roteado
pelos módulos (P1, P2), respectivamente. Se o módulo P1 atualizar seu comportamento
de encaminhamento antes de P2, irá formar um estado intermediário inconsistente, onde
pacotes do Fluxo 1 irão enfrentar um ‘buraco negro’ quando chegarem ao módulo P2.

Neste trabalho, propomos uma estratégia para compor programas P4 em redes
programáveis. Para isso, apresentamos um framework capaz de unir caracterı́sticas de
diferentes programas em um único programa agregado, que contempla a funcionalidade
de ambos e pode ser gerenciado dinamicamente.

3. Abordagem de Composição de Programas

Recentemente, diversas aplicações de redes voltaram à discussão, o que têm motivado
a criação de vários mecanismos para o plano de dados. Porém, a maioria dos trabalhos
trata os programas para plano de dados como monolı́ticos e com uma única funcionali-
dade especı́fica. Neste trabalho, apresentamos uma estratégia para compor mais do que
um programa em um switch P4. Nossa estratégia se utiliza de técnicas de composição
de máquinas de estado para mostrar como realizar a extensão de parsers e deparsers de
pacotes. Nessa seção, também apresentamos uma arquitetura base, que possui primitivas
para composição de fluxos de controle de vários programas.
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Visão geral da estratégia Dado um novo programa S, utilizamos uma técnica de
composição de máquinas de estado para criar uma nova especificação com um conjunto
de extensões do programa S. A composição é a união do conjunto de estados terminais,
não-terminais, transições e as definições e instâncias de cabeçalhos definidos em cada pro-
grama. A estratégia proposta, ilustrada na Figura 4, compõe a configuração dos progra-
mas do plano de dados ainda no plano de controle, pelo administrador de rede. As funções
devem ser inseridas conforme as necessidades do operador. Assim que a composição é
finalizada, uma etapa de verificação checa o espaço de cabeçalhos para evitar loops e
não determismo no código final gerado. Por fim, o resultado é compilado e pode ser
implantado no switch. A implantação é realizada de maneira estática, isto é, exige a
reinicialização do switch. Depois que a implantação é finalizada, o operador pode geren-
ciar dinamicamente a ordem em que as funções inseridas processam os pacotes. Isso se dá
pela atualização das regras de match+action das tabelas que fazem parte da composição.

A composição de programas é realizada estendendo o código host (Figura 5, passo
1). Parsers e Deparsers são unidos utilizando composição de máquinas de estados (Figura
5, passo 2). O novo fluxo de controle é posicionado no começo do pipeline do programa
Host, reescrevendo seu código fonte (Figura 5, passo 3). A seguir, essas etapas serão
descritas em maiores detalhes.

3.1. Extensão de parsers de pacotes

Após a leitura do programa Host, o seu parser de pacotes é estendido para incluir as
funcionalidades do parser de pacotes pertencente à extensão [Zheng et al. 2018]. O re-
sultado da composição é uma nova máquina de estados que une os estados equivalentes
(i.e. estruturas de cabeçalhos) e integra as transições que não estão no parser do programa
a ser estendido. A Figura 5, Passo 2, apresenta a composição entre esses dois parsers.
No exemplo da figura, o parser do programa Host é estendido para suportar a leitura do
cabeçalho sec após decodificar o cabeçalho do IPv4. Depois que a composição de parser
de pacotes é finalizada, o processo segue para a composição do fluxo de controle (passo
3). Essa estratégia permite que o administrador de rede altere dinamicamente a ordem
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das funções processadas no plano de dados, simplesmente adicionando novas regras de
match+action ao switch.

Figura 5. Visão geral da estratégia de composição de programas P4

3.2. Agregação de Fluxos de Controle

A composição de fluxos de controle permite incluir ações adicionais, definições de tabe-
las ou, até mesmo, ramificações adicionais ao programa Host. Uma maneira simples para
compor fluxos de controle é unir a especificação de tabelas com o mesmo nome e tipos de
atributos de match. Porém, isso cria a possibilidade de diferentes aplicações do plano de
controle inserirem regras conflitantes, permitindo que, eventualmente, pacotes da mesma
polı́tica sejam roteados por mais do que um caminho. Como uma consequência disso, pro-
priedades básicas de processamento de pacotes podem ser violadas, como por exemplo, a
propriedade de coerência de pacotes (ou de fluxos), apresentada em [Reitblatt et al. 2012].
A adição de um módulo que gera regras conflitantes requer que as aplicações do plano de
controle sejam alteradas, o que, tecnicamente atrasaria o processo de desenvolvimento.
Nessa seção, apresentamos o mecanismo que compõe os módulos do fluxo de controle,
isolando os fluxos de controle especı́ficos de cada aplicação.

Impacto de isolamento Com o objetivo de prevenir o problema de inserção de regras
conflitantes, isolamos as tabelas e ações de cada novo módulo inserido. Para isso, é
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necessário renomear tabelas e ações que tenham nomes ambı́guos (para evitar loops no
pipeline). Por isso, resolvemos conflitos de nomes e fixamos o novo módulo no inı́cio
do pipeline do programa host. Essa estratégia isola as regras de match+action de cada
aplicação, tornando o comportamento do programa host independente do processamento
das funcionalidades inseridas. O isolamento garante que as regras instaladas não irão cor-
romper as regras especı́ficas das aplicações que gerenciam as outras tabelas do programa,
preservando, assim, a ordem de execução das funções.

Figura 6. Encadeamento de programas no plano de dados

Encadeamento de Programas Para compor vários programas em nosso framework,
criamos a abstração de encadeamento de funções. Essas possuem sua ordem de execução
controlada a partir de regras adicionadas de uma aplicação do plano de controle. Para isso,
utilizamos uma tabela, que chamamos de ‘Shadow’, a qual funciona como um grande
catálogo de ponteiros para funções. Inicialmente, a tabela shadow é posicionada no inicio
do pipeline de tabelas e intercepta todos os pacotes, mapeando um conjunto de fluxos
para um conjunto sequencial de programas P1, P2, ..., PN . Dessa maneira, a ordem de
execução das funções pode ser diferente para cada parâmetro de match da tabela e alterada
de maneira dinâmica pelo operador de rede. Quando o operador deseja alterar as funções
executadas, ele apenas atualiza o conteúdo da tabela Shadow, alterando os parâmetros que
dizem respeito à ordem de execução dos programas. A Figura 6 apresenta a estrutura da
tabela Shadow. No exemplo da figura, Fluxo 1 é mapeado para ser processado apenas por
P1, P4 e Pj , respectivamente. Enquanto o Fluxo 2 vai ser processado por P3, P4 e Pk em
caso de match na tabela.

3.3. Composição de Deparsers
A composição de deparser é um processo mais simples. Porque o próprio deparser possui
uma estrutura mais simples. A composição do deparser se dá apenas pela adição da
primitiva que emite os cabeçalhos adicionais da extensão. Isto, é, os cabeçalhos que foram
incluı́dos durante a extensão do parser, agora, devem ser emitidos na ordem correta.

4. Estudo de caso e Avaliação
Para validar nossa estratégia, desejamos mostrar o impacto que o mecanismo de
composição traz para virtualização de vários programas P4. Para isso, construı́mos um
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cenário de estudo de caso utilizando módulos de monitoramento e de controle de acesso
(firewall) no próprio plano de dados. Adicionalmente, medimos o impacto de nossa es-
tratégia de composição no processamento e encaminhamento de pacotes. Isso tudo, con-
forme a quantidade de funções (ou programas) inseridos aumenta. Como exemplo sim-
ples, apresentamos nessa seção a composição de um módulo de monitoramento a um
switch simples, com encaminhamento de camada 2. Depois, mostramos como compor o
firewall a esse mesmo programa.

Módulo de processamento/Monitoramento O módulo de processamento e mo-
nitoramento adiciona capacidades de armazenamento ao pipeline do programa. Isso per-
mite que parte do processamento de funções de segurança aconteça no próprio plano
de dados. Esse módulo armazena métricas sobre os fluxos (isto é, pacotes identificados
pelo endereço IPv4 de destino e origem) e dispara um alerta para o plano de controle
quando um determinado limite é atingido. O funcionamento deste módulo é baseado em
estratégias de detecção de Heavy Hitter [Sivaraman et al. 2017] para identificar os fluxos
que ultrapassam o limite. A composição do módulo de monitoramento ao programa host,
estende os cabeçalhos do programa principal com as definições de cabeçalho IPv4 e suas
respectivas definições. O fluxo de controle é composto estendendo as ações da tabela
shadow, de maneira que elas incluam uma nova ação, a qual executa as operações do pro-
grama de monitoramento. Por fim, o deparser é estendido pela emissão do conteúdo do
cabeçalho IPv4.

Firewall com Estado Propomos um firewall que inspeciona os cabeçalhos de ca-
mada 3. Ele funciona provendo uma interface para drop e reescrita de tipos especı́ficos
de pacotes conforme eles são interceptados. O firewall armazena o estado de novas co-
nexões TCP no próprio switch (SYN & ACK = 1) e somente permite que a conexão seja
emitida quando estabelecida. Ao contrário do que ocorre com alguns firewalls para redes
definidas por software [Hu et al. 2014], em nossa proposta não há necessidade de tratar
sobreposições de regras de match+action. Isso ocorre pois uma nova tabela é criada para
o firewall e isolada das tabelas de funcionamento padrão do switch pela estratégia de
composição. A composição do firewall incorpora ao parser de cabeçalhos o estado refe-
rente ao TCP. A definição da ação que reescreve os cabeçalhos é adicionada e o deparser
começa a produzir cabeçalhos TCP.

4.1. Overhead de desempenho

Para avaliar nosso framework, utilizamos o switch de software bmv2 1, em conjunto com o
emulador mininet. Nós executamos os experimentos em um Intel(R) Core(TM) i3-6006U
CPU @ 2.00GHz. O objetivo é mostrar o impacto da utilização de nossa estratégia para
o atraso e a vazão dos fluxos processados pelo programa resultante da composição.

Para avaliar o atraso que a composição de novos programas traz para o comporta-
mento usual do switch, nós configuramos um experimento que realiza 100 requisições e
medimos o tempo em que uma requisição leva pra ser processada. Comparamos o atraso
em um cenário utilizando o programa host contendo os módulos enunciados acima com-
posto com o programa sem extensões e utilizamos tabelas ’Shadow’ com 1024 entradas.
Na Figura 7, identificamos como ‘Shadow’ o atraso gerado quando os pacotes são in-
terceptados e combinam com alguma regra da tabela Shadow. Identificamos na figura

1https://github.com/p4lang/behavioral-model
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como ‘P4’, o atraso gerado quando os fluxos são interceptados pela tabela Shadow, mas
não combinam com nenhuma regra, consequentemente sendo processados apenas pelas
funções usuais do switch (i.e. encaminhamendo de nı́vel 2).

Figura 7. Desempenho e Overhead da Estratégia de Composição

Como pode ser visto na Figura 7, a utilização do mecanismo de composição não
parece demonstrar sacrifı́cio de performance. A variação de desempenho entre os dois
cenários é limitada a uma percentagem relativamente pequena, sem ultrapassar a diferença
de mais do que 0.4 ms entre o experimento utilizando a tabela Shadow e o experimento
com P4 nativo. Isso mostra que a utilização ta tabela Shadow para isolar novos progra-
mas não degrada significativamente o desempenho das funcionalidades usuais do switch.
Vemos como uma possibilidade de trabalho futuro comparar nossa solução com outras
abordagens que proponham a composição de funções para plano de dados programáveis.

A Figura 8 apresenta o impacto que as novas funcionalidades trazem para a vazão,
em Mbits por segundo. Para cada programa resultante da composição, avaliamos tanto a
vazão pelo caminho usual do comportamento do switch (identificado como P4); e a vazão
quando os fluxos são encaminhados e processados pelos módulos estendidos. É possı́vel
observar que a vazão reduz conforme os módulos que leem contéudos de cabeçalhos de
camada mais alta são adicionados. A composição do firewall agregado ao módulo de
monitoramento reduz pela metade a vazão quando é interceptado pela tabela Shadow (de
22Mbit/s para cerca de 12Mbit/s). Isso se deve tanto pela necessidade de decodificar mais
bytes do cabeçalho, tanto pelo tempo de processando dos bytes no fluxo de controle. De
qualquer maneira, é um preço aceitável a se pagar quando se deseja uma rede mais segura.

5. Trabalhos Relacionados
Programabilidade no plano de dados tem sido tipicamente empregada na virtualizacão
de serviços que tradicionalmente eram engessados a middleboxes fechados ou ao cir-
cuito integrado dos switches. Nessa seção, apresentamos estudos já desenvolvidos sobre
virtualização de funções do plano de dados e sobre estratégias de segurança e monitora-

68



Figura 8. Impacto da composição dos módulos na vazão dos fluxos no plano de
dados

mento. O esclarecimento sobre o que já foi produzido sobre o assunto ajudará a compre-
ender a contribuição de nossa proposta para essas áreas.

Virtualização de Plano de Dados Em [Hancock and van der Merwe 2016], os autores
propõem o Hyper4, um hypervisor para programas P4, cujo design permite a virtualização
de vários programas P4. Dessa maneira, o Hyper4 possibilita que o administrador da rede
altere dinamicamente a ordem lógica dos programas. Para isso, todavia, faz-se necessário
um conjunto amplo de tabelas e primitivas de recirculação que permitam a execução de
vários parsers. Em [Zhou and Bi 2017], os autores utilizam um número reduzido de tabe-
las, mas ainda exigem que os pacotes recirculem para novos programas serem inseridos.
Em [Dimitropoulos et al. 2018], os autores propõem a virtualização de programas sem
exigir recirculação de pacotes. Porém, eles não proveem isolamento entre as funções
inseridas. Em [Zhang et al. 2017], também encontramos uma proposta de hypervisor uti-
lizando P4, porém, empregando um número muito reduzido de tabelas para realizar o
ordenamento topológico de maneira dinâmica. Diferentemente, nossa proposta utiliza
apenas uma tabela adicional para suportar vários programas e não recorre à primitiva de
recirculação.

Segurança no Plano de Dados Como qualquer outro paradigma, redes defini-
das por software necessitam de mecanismos para proteger seu funcionamento. Em
[Hu et al. 2014] os autores propõem um firewall para redes SDN que executa em switches
e permite resoluções efetivas de polı́ticas de violação de firewall em redes OpenFlow.
Para evitar a inserção de regras conflitantes que violem as polı́ticas de segurança, os auto-
res propõem uma camada para o plano de controle que resolve ambiguidades entre regras
a serem inseridas. Em [Sonchack et al. 2016], os autores apresentam o OFX, sistema
que permite a disposição de funções de segurança em switches, mas cuja estratégia não
é adequada para processadores de pacotes genéricos. Em nosso trabalho, propomos um
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mecanismo que permite implantar funções de segurança utilizando P4. Argumentamos
que nosso design evita regras conflitantes entre diferentes aplicações/serviços e pode ser
implantado em processadores genéricos de pacotes.

Monitoramento Trabalhos que permitem realizar o monitoramento de pacotes no
plano de dados, são divididos entre aqueles que tentam fornecer abstrações para iden-
tificar e armazenar informações sobre fluxos de pacotes (heavy hitter e fluxos elefan-
tes) [Sivaraman et al. 2017] e aqueles que fornecem mecanismos eficientes para teleme-
tria e agregação da informação do plano de dados [Kim et al. 2015, Van Tu et al. 2017,
Marques and Gaspary 2018]. Embora nosso trabalho seja quase ortogonal ao que
propõem esses pesquisadores, acreditamos fornecer elementos que complementam seus
estudos. Ao passo que aqueles não demonstraram a implantação de suas funcionalidades
em um plano de dados de programável, entendemos que nossa proposta preenche essa
necessidade.

6. Conclusões

Neste trabalho apresentamos uma estratégia de composição de programas P4 para esten-
der a funcionalidade de dispositivos de planos de dados programáveis. A estratégia é
dividida em uma etapa de composição da máquina de estados de parser de pacotes e em
uma outra etapa complementar, em que as ações e os construtores do fluxo de controle
são estendidos em uma arquitetura modular e que permite configuração dinâmica. Nós
apresentamos um estudo de caso, mostrando o funcionamento do mecanismo para dois
programas modulares: um módulo de monitoramento que utiliza técnicas de heavy hitter
e um firewall que armazena o estado de conexões TCP. Os resultados das avaliações re-
alizadas mostram que é possı́vel compor programas para o plano de dados programável
utilizando nossa estratégia sem impactar significativamente no atraso e vazão de proces-
samento dos pacotes. Nós atribuı́mos isso ao uso muito reduzido de recursos, incluindo
tabelas e lógica de controle.

Embora nossa estratégia garanta uma boa utilização dos recursos do switch ao
compor módulos distintos, principalmente por causa da utilização de apenas uma tabela
adicional, ela ainda enfrenta várias limitações. Em particular, a estratégia introduz al-
guns overheads ao plano de controle, exigindo que o desenvolvedor de um módulo seja
responsável pela corretude do direcionamento dos pacotes.

Atualizações Consistentes Devido a essa limitação, existe a necessidade de uma ou-
tra etapa de verificação durante o funcionamento da rede para garantir que um pacote
não passe por duas configurações distintas enquanto é processado. Isso ocorre pois os
módulos internos podem possuir suas próprias tabelas e elas podem ser atualizadas de
maneira que corrompa a configuração de direcionamento gerada pela tabela Shadow.

Regras Sobrepostas Embora a tabelha Shadow possa facilitar o direcionamento dos
fluxos, a inserção de regras sobrepostas na tabela pode gerar direções conflitantes dentro
do switch. Nós vemos como trabalho futuro o desenvolvimento de um mecanismo que
filtre e resolva as sobreposições.
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Operadores de Composição Esse trabalho focou em apresentar uma estratégia para
compor e direcionar os fluxos pelos modulos compostos. Como parte de um trabalho em
andamento nós investigamos a utilização de operadores de composição para facilitar ao
administrador de redes a etapa de arranjo dos móudulos conforme suas necessidades.

Em trabalhos futuros, pretendemos utilizar a estratégia de composição em um hy-
pervisor para planos de dados, onde as extensões possam ser adicionadas e removidas de
maneira automática pelo operador de rede. Também desejamos construir uma interface
adaptável para o plano de controle, eliminando a necessidade de reescrever as aplicações
do plano de controle ao inserir um novo módulo no plano de dados. Também são ne-
cessários mecanismos que garantam que as atualizações dinâmicas não permitam que um
fluxo passe por mais do que uma configuração enquanto o plano de dados é atualizado.
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Abstract—Programmable Data Planes (PDP) enable more
flexibility for the operation of networks. The various benefits
of programmability have led the community to develop new
software on both academic and industrial capacities. To fully
reap the benefits of programmability, it should be feasible to
compose and operate multiple PDP programs into a single target
switch as needed. However, existing techniques are not suitable
in the sense that they: (1) use an excessive number of parser
states and tables; and (2) lack abstractions for the steering
of packets through the control flows of programs. As such,
they do not support modular composition of PDP programs.
This paper proposes a composition mechanism that also ad-
dresses the fundamental needs of packet steering between PDP
program modules. PRIME (Programming In-Network Modular
Extensions) enables network operators to specify compositions
of P4 programs and how traffic traverses these programs. The
composition employs a verification phase to identify ambiguities
between applications and avoid loops inside the switch pipeline.
An additional table and a control plane management framework
enforce the steering of packets through control flows. We present
a prototype of PRIME, along with a proof of the steering
correctness. The prototype shows that it is possible to achieve
module-wide compositions at little additional cost in terms of
delay and throughput.

I. INTRODUCTION

Software-based paradigms for networking enable decou-
pling software solutions from the hardware in which they
execute, making the management and operation of the net-
work infrastructure more flexible and adaptive. Software-
Defined Networking (SDN) [1] promotes the separation of
the control logic from the forwarding behavior of network
devices. More recently, Programmable Data Planes (PDP)
offer more flexibility in the development of protocols and
network functionality by allowing packet processing at line
rate in the switch itself. This motivated many emerging
applications, such as NetCache [2] or P4xos [3], to bring part
of the processing back to the data plane to achieve economies
at scale and lower operating costs. As such, operators can
leverage programmable hardware to, for instance, process
or analyze data [4], thereby enabling faster reactions in
contrast to packet mirroring to middleboxes or controller-
based applications [5][6].

Rather than writing one monolithic program, it should be
straightforward for PDP software to be shared and com-
posed into switches as needed [7][8][9]. However, existing
languages for data plane programming do not support mod-

ular development. P4 (“Programming Protocol-independent
Packet Processors”) [10], one of the most popular languages
for PDPs, requires developers to perform extensive source
code modifications if they want to deploy multiple appli-
cations into a single switch. As a result, researchers have
responded by offering virtualization instances that dedicate
multiple PDP programs to the same physical target [11]. Vir-
tualization typically refers to code composition techniques,
which can both be utilized as a programming model [12]
or for the automation of code merging. Hence, virtualization
avoids rewriting code from different programs manually and
maintains the semantics of the system.

While composing multiple programs may promote better
usage of network resources, the management of programs
becomes more complex and error-prone [13]. Current efforts
to virtualize various programs in a single target switch make
use of an excessive number of flow tables and parser states
[11][14][15]. Consequently, these techniques can severely
limit throughput and increase latency in general-purpose
hardware or do not fit in specialized hardware, such as
netFPGAs or ASICs [16]. Additionally, state-of-the-art tech-
niques do not suffice to provide transitional consistency
between steering configurations. Without transitional consis-
tency, changes in the steering of flows through the program
modules can create intermediary states, which may cause
misroutings and security holes [17] [18] [19]. New techniques
are required to allow new applications to be composed,
preserving transitional packet-consistency of traffic steering
without degrading performance of the data plane operation.

In this work, we present PRIME, a composition mecha-
nism for P4 programs. Instead of building only monolithic
applications, we provide abstractions for code reuse and
traffic steering in a consistent manner. Specifically, PRIME
implements an interpreter to parse and merge P4 programs
(e.g., security functions, including firewalls, access controls,
and DPIs), in the manner defined by the network operator.
As programmers may want to instantiate programs without
rewriting their constructs (e.g., tables, actions or parser
states), the composition extends P4 programs, placing an or-
dered set of programs and isolating resources between them.
A custom verification phase detects and corrects ambiguities
between the control flow of modules, consequently avoiding
undesired loops inside the switch pipeline. Dynamically,
PRIME allows network administrators to specify the steering978-1-7281-4973-820$31.00 c© 2020 IEEE
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of traffic through the composed programs. The key insight
is to deploy programs statically and use per-packet state to
steer flows using one single additional table. PRIME then
provides a control plane interface to specify steering updates
and send the necessary table entries to switches.

Overall, this paper makes the following contributions:
• Identifies a set of features that network operators would

require in order to compose multiple programs at a
single switch.

• Explores state machine composition techniques for pro-
viding a programming operator for the P4 language that
merges independent programs.

• Designs a composition model for P4 programs and
provides a control plane interface to steer flows through
the composed programs. The interface provides the
means to update the configuration without creating
intermediary states.

• Implements use-cases with existing applications written
as P4 programs and provides initial evidence of the
feasibility and benefits of using PRIME.

The remainder of this paper is organized as follows:
Section II provides a brief overview of Programmable Data
Planes and traffic steering constraints. Section III describes
the design of PRIME and the composition mechanism. Sec-
tion IV provides a preliminary evaluation of PRIME. Finally,
Section V presents related work and Section VI presents
concluding remarks and future work.

II. BACKGROUND

This section summarizes the P4 abstraction for PDP. We
show that configuring the composition of P4 programs re-
quires the developer to preserve steering constraints.

A. Programmable Data Planes

Data Plane Programmability has been proposed as a means
to deploy new features without the need to buy new hardware.
The development of specification languages such as P4 [10]
enabled operators to change the behavior of programmable
switches without rewriting low-level instructions (e.g., the
kernel of OvS [20], integrated circuits of hardware switches,
or components of simulation environments). P4 allows pro-
gramming and configuration of forwarding devices, including
specific actions or control calls. In contrast to standard
OpenFlow switches [21], P4 enables network developers to
build programs that modify the structure of packet headers
and can store complex network state on the data plane.

The PDP abstraction divides the data plane behavior into
three main blocks: The packet Parser, Control Flows and the
Deparser. The Parser is a state machine that describes how to
read headers from incoming packets, where the state is the
header structure and transitions are a function from header
attributes to another state. Therefore, the parser specifies
the order each header is instantiated to local variables.
After a packet is processed by the parser it follows to a
pipeline of Control Flows. Each control flow is composed
by a set of logical match+action tables implemented using

match+action units (MAUs). An apply block specifies the
semantics and order that each MAU processes packets and
modifies the content of header attributes instantiated by the
Parser. The Deparser writes internal variables to the packet
header and emits the packet to an output port (or recirculates
it back to the parser).

The PDP abstraction divides the forwarding model into
two stages: the configuration and the population. During
the configuration, developers can configure the parser state
machine, the structure of MAUs and the semantics of con-
trol flows. In this phase, the developer also defines header
structures, metadata, and internal registers. The population
stage allows the operator to insert, remove, or modify entries
of the stateful objects, such as tables and registers that were
created during the configuration phase. In the case of P4, the
language does not dictate table update behavior. Therefore
it is necessary to build tools on top of P4 to provide an
update command for a different target switch, i.e., when a
packet matches a rule, an action is invoked with parameters
supplied by a control program.

B. Traffic Steering Constraints

Virtualizing multiple P4 program modules into devices
brings together the necessity of abstractions to steer flows
through the composed program modules. This, in turn, cre-
ates new difficulties for the network operation. The steering
configuration must be easy to manage and semantically
coherent with the policy specified by the network operator
[17].

State i

E1

E2

E3

Flow 0

Flow 1

In Out

State i'

E1

E2

E3

In Out

Fig. 1: Switch state transition

Figure 1 presents two different states of traffic steering.
In the example, the network state i steers Flow 1 packets
through extensions (E1, E3) and Flow 0 through extensions
(E2, E3), respectively. For some reason, it might be desirable
to achieve a transition between the state configuration i
to state i′, in which (E1, E2) process Flow 1. However,
this change of configuration is error-prone and can create
undesirable intermediary states, i.e., a packet may see part of
state i and part of state i’. In the example, an intermediary
state can be created by performing the update of E1 before
updating E2, leading a new packet to reach E2 without
having the proper instructions to process it.

III. DESIGN

Data Plane programmability allows network administrators
to modify the behavior of their forwarding devices. However,
it is challenging to compose data plane programs deploying
only the necessary functionalities in each switch without
rewriting code for each different device [22] [9]. In this
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section, we describe an overview of PRIME, a mechanism for
network administrators to compose different PDP programs
in each switch of the network. PRIME enables network
operators to easily deploy only the necessary modules in
each switch without rewriting code to build different con-
figurations with the available programs.

Fig. 2: High-level system architecture of PRIME

Figure 2 illustrates the scope of operation of PRIME. The
functionality of PRIME is divided into two different com-
ponents: a composition engine and a steering interface. The
composition engine allows the network operator to compose
modular P4 programs (Figure 2, Step 1 ). Specifically, the
system interprets P4 programs and merges them into a single
code (Figure 2, Step 2 ) to be deployed on the physical
devices. During the composition, PRIME performs an ad-
ditional verification step to identify and correct ambiguities
between program modules. After the code is merged, the
deployment of a new composition is performed statically,
i.e., requires the switch to be rebooted to instantiate a new
functionality (Figure 2, Step 3 ). After the deployment,
the operator can utilize the steering interface to specify the
steering of specific subsets of traffic through sequences of
program modules during run-time (Figure 2, Step 4 ). To
avoid misrouting during updates of the steering configuration,
we provide the means to avoid intermediary states and show
why they suffice for a correct implementation (Figure 2, Step
5 ). Next, we present these components in details.

A. Composing PDP Programs

The composition engine provides the means to assemble
large P4 programs by merging smaller modules. We call
these programs “extensions” and the merged program the
“host” program. The host program is a P4 program which
has an additional table, control blocks and metadata control
which works as a base architecture to compose extensions.

Given a set of program extensions and the host program,
the composition aggregates the functionalities of the set of
extensions to the host program. The system assumes that each
extension is syntactically correct and verified by the standard
P4 compiler to perform the composition. Then, the system
computes the composition by scanning parsers and control
flows and merges the respective structure definitions accord-
ing to the semantics of the composition and the characteristics
of the modules themselves. These aspects are explained in
detail below.

Extending Parser Trees. Let the composition operation
on packet parsers of an extension E and a host program
H be C : ΓE × ΓH 7→ ΓL. We define the composition
of parsers as the union of the set of terminal states, non-
terminals, transitions, and header definitions of the extension.
The composition result is a new parser state machine ΓL, that
(1) merges states with the same ID; (2) performs the union
of state transitions from the extension and the host. Figure
3c presents an example of the composition of the two parser
state machines that are shown in Figure 3a and Figure 3b.
The composition result merges Ethernet, which now has the
transition 0x8100 to Vlan and 0x1212 to INT. Finally,
State ICMP is included in the parser with a transition 0x1
from already known State IPv4. The inclusion of a new state
also carries its header definitions, i.e., the composition merges
the definitions of packet header and the state ICMP into the
composed program [23].

(a) Vlan Parser (b) Int Parser

(c) Parser Composition

Fig. 3: The composition of parsers outputs a new parser state
machine that merges state transitions and state definitions

Parser Verification. To ensure that the composition is
correct, we constrain the scope of extensions, requiring the
resulting parser to be deterministic and loop-free. These
are restrictions we need to enforce in order to ensure
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the composition of parser operates correctly. We say that
ΓE extends ΓH if ΓE satisfies the restrictions imposed
by ΓH . For this, after the modules are interpreted and
merged, PRIME performs a custom verification phase [24].
The verification performs an in-depth search in the result
of the union of packet parsers. Once each packet parser is
a tree, the composition can create a graph with loops and
non-determinism, and in this case the verification will find
existing loops. If the composed code passes this analysis,
i.e., ΓE extends ΓH , then ΓL = ΓE C ΓH , it can
be considered “certified” and safely composed with the
host program. Otherwise, the administrator is notified with
a warning. We intend to investigate ways to repair those
cases automatically, e.g., recirculating packets through a new
independent parser that could not be merged because of the
host program restrictions [25].

Deparsing. Each state composed with the program must
be carefully emitted to ensure packets are well-formed [26].
For instance, the system should not emit IPv4 headers before
emitting TCP, which could impact on out-of-order read/writes
on the next network hop. Once the structure of deparsers does
not convey sufficient information to establish a dependency
among them, we cannot infer the order in which packet
headers must be emitted in the composed program. To avoid
that disruption, the composition of deparsers must (1) unite
the set of emitted headers from both programs, and (2) create
a new deparser that emits headers in the same order as they
are instantiated by the parser [27].

Control Flow Arrangement. Control flows of P4 pro-
grams include additional definitions of actions, tables and
conditional branches (if-else statements) inside of control
blocks. To extend functionalities of two control blocks, the
composition operator introduced earlier enables the network
administrator to isolate control flow blocks in a static man-
ner [28][29]. The composition aggregates program modules
into an additional table to the host program, which we
call the “steering table” according to the semantics of the
composition operator and the constructs of the P4 program.
The composition operator can be utilized between two P4
programs to merge the control flow of a new extension to the
beginning of the pipeline of the steering table. In practice,
control flows of the programs appear in the host program in
the order in which they were composed.

Constructs Disambiguation. Merging tables may promote
space optimization, but creates the possibility of violating
target-independent constraints, such as the equivalence be-
tween table structures, table dependencies, and loop-freeness
(which is a restriction imposed by the P4 language and
the data plane itself) [15]. To ensure the composition does
not break target-independent constraints, this process isolates
tables and registers. For this, PRIME performs a verification
step to identify the equivalence of structures between the
composed tables and ensure they do not violate table de-
pendencies. For tables with ambiguous IDs, PRIME renames
their IDs and rewrites the “apply” construct for the merged

structure to use the proper ID and preserve dependencies
of both modules [30]. The same isolation is performed for
registers, actions, and metadata definitions with ambiguous
IDs.

With the aid of the “steering table”, the composition pro-
duces a sequence of program modules whose execution order
can be altered dynamically. For instance, the composition
can change the order of execution of a firewall and a load
balancing. Specifically, a firewall must be applied before load
balancing incoming packets as the firewall must consider the
original IP addresses. Conversely, the load balancer must first
restore the original IP address before the firewall handles
outgoing packets [31]. The structure of the host program and
the composition assures a data plane structure that allows the
configuration of both directions. Each composition translates
into a configuration that works as a link for a sequence
of program control flows. Next, we discuss the steering
configuration in details.

B. Steering Configuration

After statically composing all the necessary modules using
the technique described in Section III-A, we now discuss
how to steer specific traffic flows through a subset of these
programs. PRIME provides a data structure for PDP pro-
grams written in P4 and a new management system to avoid
transient states between configurations. The steering opera-
tion is motivated by earlier works on testing configurations
for switches and routers [32], which enable multiple testing
configurations inside the switch. The steering table employed
by the composition is positioned at the beginning of the
pipeline of the switch and intercepts all incoming packets.
The table specification can match packets using wildcards,
lpm or exact and works as a large catalog of pointers from
specific sets of packets to sequences of program modules
merged during the composition [33], [5] (a process similar
to service function chaining (SFC) in the context of Network
Function Virtualization [34]).

Traffic Control. When the network administrator wishes
to steer packets for a specific sequence of programs, s/he
describes the identifier of the flow and the sequence of
modules that must process this flow. PRIME then translates
the code to the tuple of parameters of the steering table.
When an incoming packet matches the table, an action
which we call ‘catalog’ loads the parameters supplied by
the administrator to the internal state. Subsequently, these
user-supplied parameters will be stored as packet metadata
and used by the host program to determine the order in
which program modules are processed. After loading a packet
metadata, the packet will be processed by several rounds.
A round denotes the traversing of a packet through the
pipeline of programs. In each round, only one of the programs
processes the packet. The host program utilizes a traffic
control module to deliver the packet to the program indexed
by the next program of the catalog. After a packet reaches
the egress, the next program indicator is updated and the
packet recirculates to start another round. This repeats until
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the packet is processed by all the programs indexed by the
catalog.

Fig. 4: Traffic steering through program modules

Example. Figure 4 presents an example of how the steer-
ing table can map flows to sequences of programs. In the
example, packets that match 10.0.*.* are mapped to be
processed by programs P3, P1 and P2 respectively. For this,
after matching the table, the catalog forwards the packet
to the ingress control-flow of P3 and then to its egress.
Next, the packet recirculates and follows to P1 ingress and
egress. Finally, the packet recirculates a third time to P2. It is
important to note that the same data plane structure supports
the execution in a different order if the network administrator
wishes.

Enforcing Correctness. To ensure packets will not face
intermediary states of steering configurations, we reduce
our problem to the transitional packet-consistent updates
problem [17]. We explicitly state the invariants enforced by
the host program and the merging itself. The host program
maintains the following invariants:

• (H1) All programs in the pipeline are ordered linearly
in the order they are merged, and each packet follows
the pipeline in order.

• (H2) The configuration of steering is only loaded into a
packet metadata in the first round, thus preventing the
configuration of a transient flow from being changed by
the table on other rounds.

• (H3) No changes are accepted into the steering config-
uration while it is already updating (this occurs because
the action that loads the configuration is atomic).

• (H4) Standard metadata (e.g, output ports) are copied
into user-metadata before recirculating and restored into
new standard values to index programs into the correct
processing order.

• (H5) The active steering configuration and packet header
are recirculated only when program ID < Total # of
Programs. The next program to be processed is then
updated according to the values of steering.

To ensure the composition does not violate these invariants,
the merging must act accordingly. For this, the program
merging satisfies the following invariants:

• (M1) Metadata definitions are verified and disam-
biguated to ensure no program modifies the catalog
structure.

• (M2) Each table and action is disambiguated to ensure
composed programs do not rewrite the catalog or apply
block of the steering table.

We now can use these invariants to prove transitional
packet-consistent updates for the steering configuration in the
switch pipeline.

Proof. We denote pkt as the first packet entering the switch
tagged with a new steering configuration S, written Si →
... → Si′ .

• H2, M1, M2 ensure that when S is loaded, the steering
of pkt is not modified until emitted by the egress.

• H1 ensures that a packet pkt with steering configuration
S always crosses every program in the pipeline and,
by the previous conclusions, finds each program in the
steering configuration S.

• H3 ensures that while S is being loaded by the steering
table, no other update can be performed into the steering
configuration of pkt.

• H4 ensures that pkt keeps the same steering configura-
tion S after recirculating.

• H5 ensures that packets do not recirculate forever.
• H1 proves that when pkt exists in the pipeline, all

the programs in the pipeline are updated to a new
configuration, even if pkt is marked to be dropped by a
previous program in the pipeline.

• Hence pkt and all subsequent packets tagged with S are
processed with the new configuration.

We claim that although the implementation of the composi-
tion of multiple programs in the same switch pipeline appears
straightforward, configuring the traffic steering requires the
switch to preserve certain invariants. Consistency is made
possible because P4 provides per-packet states (metadata).
However, metadata still needs to be copied into user-metadata
before recirculating. We hope that our work provides a good
motivation to rethink the design of the metadata system to
facilitate the correct steering conceptually. In this section, we
have shown what these invariants are, and why they suffice
for a correct implementation of a packet-consistent steering
configuration [17].

IV. EVALUATION

In this section, we present in detail the evaluation of
PRIME. We implemented a prototype of the composition
mechanism to support development of programs written in
P416. The interpreter is still in development, given that the
P4 language is also in constant change. The system parses
and composes the original code to P4 source code. Therefore
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it maintains compatibility with any target switch. In the
end, we build the new source with the p4c compiler to
obtain the specific target code. We take large P4 programs
in which we compose in different use case scenarios. Next,
we present simulation results in which we show the steering
performance.

A. Use Case Compositions

To validate the feasibility of PRIME, we composed exist-
ing P4 applications with a simple L2 switch program which
corresponds to our Host program. Next, we discuss the details
of these existing applications and the final configuration of
the compositions we performed.

FlowStalker. A monitoring mechanism which encodes
metrics and stores them on data plane devices. Specifically,
FlowStalker [35] monitors per-flow and per-packet metrics
(e.g., byte counts, packet counts, timestamps) defined by the
operator. The storage system employs a hash table of registers
to index information for the exact flow or packet. A reactive
system detects if specific flows violate local thresholds and
raises a warning in the case that the threshold is crossed.
Thresholds are implemented as a Heavy Hitter Detection
mechanism [36], which has a pipeline of registers indexed
by a 5-tuple that represents the flow. After the warning is
sent, the controller can inject courier packets to collect data
from data plane registers.

In-Band Network Telemetry (INT). A framework that
allows the collection and reporting of network state by the
data plane, without requiring intervention from the control
plane. INT [37] is being utilized as a tool for several security
mechanisms to troubleshoot, perform congestion control, or
even notify the control applications about traffic anomalies.
INT extends the packet parser with a new header, which
encapsulates monitored items (e.g., timestamps, buffer times,
and switch identification). Monitored items are appended into
a new header, which is unique for each switch. This means
that a new header is instantiated and emitted by all switches
in the path to an end host. The last hop removes INT headers
and sends the standard packet to the end host.

LetFlow. LetFlow [38] is a load balancer that executes
on switches. Letflow picks paths at random for each flowlet
and balances traffic on different paths of the network. A
flowlet is a burst of packets that is separated in time from
other bursts by a sufficient gap (timeout). When a packet
arrives, LetFlow uses a table to map flowlets to paths. Each
table entry contains two fields: the last seen time and a path
id. When a packet arrives, the program computes a hash
(CRC-16) of the source IP, destination IP, source port and
destination port. This hash is used as the key to the flowlet
table. If the packet is part of an already existing flowlet, the
packet is sent on the path identified by the path id, and last
seen time is set to the current time. Otherwise, the packet
begins a new flowlet and may be assigned to a new path at
random.

P4Xos. A consensus protocol running on the data plane.
P4Xos [3] is divided into three different P4 programs: the

coordinator (leader), the acceptor and the learner. The coor-
dinator ensures only one process sends messages to instances
of the protocol, guaranteeing message ordering: it writes the
current instance number and an initial round number into
the message header; increments the instance number for the
next invocation; stores the value of the new instance number;
and broadcasts the packet to acceptors. Acceptors choose
a value (vote) for each instance of the consensus before
forwarding them. Acceptors keep a history of votes to ensure
they do not vote for the same value on the same instance of
consensus. Finally, learners require a quorum of messages
from acceptors and “deliver” a value.

Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 Sce. 6
LoC 366 489 617 779 759 649
States 3 5 5 7 7 7
Tables 4 6 12 15 15 16

TABLE I: Code metrics for PRIME compositions

We compose these programs incrementally to analyze the
impact of each composition independently. Scenario 1 is
a composition of FlowStalker with the host program. The
idea is to build a switch with support to the analysis of
security threats using the metrics collected by FlowStalker.
Scenario 2 composes scenario 1 with the In-Band Network
Telemetry (INT). This composition allows debugging the
network state (e.g., identifying the source of bugs in the
network). Scenario 3 merges LetFlow to scenario 2. The idea
to compose LetFlow is to allow flows to be balanced, mainly
when the network performance is low. Finally, we build
scenarios 4, 5 and 6 by composing scenario 3 with P4Xos.
In particular, scenario 4 is a composition with the acceptor;
scenario 5 is a composition with the coordinator; and scenario
6 is a composition with the learner. The composition of P4xos
raises a warning during compilation, because it uses different
names for packet instances. We renamed header instances of
P4xos manually for the composition to be correct. Table I
presents the respective number of states on the packet parser,
tables and lines of code (LoC) of the composed programs
in each respective scenario. As PRIME merges equivalent
states between different programs, the composition tries to
minimize the number of states and lines of code. Next, we
discuss in details a run-time analysis of each scenario.

B. Benchmark
To evaluate PRIME we executed each scenario using the

behavioral model in an Intel(R) Core(TM) i3-6006U CPU @
2.00GHz. We performed a thousand requests, and collected
packet timestamps to measure latency, and utilized iperf
to measure throughput [16].

Figure 5 presents the throughput that the composition
achieves in the data plane. When the switch steers packets
through scenario 1 (i.e., packets match the steering table),
throughput is nearly 8 Mbits/sec. Throughput reduces as we
compose more modules in scenarios 2-6.

Figure 6 presents the latency in ms with only one rule
installed on the steering table (i.e., the rule that matches the
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Fig. 5: Throughput

Fig. 6: Latency

end host). As we compose more program modules, latency
increases. This happens because the insertion of additional
states to the parser increases CPU consumption. The latency
in scenario 1 is nearly 0.4ms. As we compose more program
modules, such as in scenario 5, latency increases to nearly
0.5ms. We see as future work deploying PRIME compo-
sitions into high-performance packet-processing ASIC and
FPGA.

C. Comparison to State-of-the-Art

We compare PRIME with one of the state-of-the-art ap-
proaches, P4Visor [15], to compose programs. Specifically,
we utilized the Differential testing Operator of P4Visor to
compose programs. We could not build the case studies we
presented earlier because P4Visor does not currently support
the composition of more than two programs. Thus we show
two simple scenarios: a production version of a router with
a testing version of the same program, and LetFlow with the
simple router program.

PRIME P4Visor
Router LetFlow Router LetFlow

Parser States 3 4 5 6
Tables 7 10 12 13

TABLE II: Metrics of PRIME and P4Visor Compositions

Table II presents the number of states of the parser and
tables of the programs. The composition of the simple router
creates fewer states using the PRIME approach. P4Visor

does not merge IPv4 states, therefore creating two different
states for equivalent header instances. The number of tables
in PRIME is also smaller for these compositions. Although
PRIME does not support abstractions to merge tables be-
tween programs, the traffic steering control has only one
table. Other features to steer packets are performed only by
interacting on the catalog and if-else statements and metadata
access.

V. RELATED WORK

In this section, we review the main research efforts in data
plane virtualization.

Hyper4 [11] is a hypervisor for programmable data planes.
It provides a virtualization layer to run several instances of
P4 programs. Although Hyper4 enables modularization, the
system imposes high overhead on the forwarding because
the Hyper4 base program includes several additional tables
to support composition. Conversely, PRIME runs as a single
P4 program, thus avoiding the virtualization-layer and utilizes
only one additional forwarding table to compose modules.

MPVisor [39][40] is a hypervisor that uses P4 but provides
a base program much smaller than Hyper4. The system offers
high-level operators for programming P4 targets. However,
their operators produce large pipelines of programs and are
not sufficient for the correct operation of steering. This hin-
ders the deployment of configurations that support multiple
steering configurations. MPVisor also reduces the number of
tables required to virtualize P4 programs when compared to
Hyper4, but the number is still large compared with PRIME,
which uses only one additional table.

P4Bricks [27] is a system for multi-processing P4 pro-
grams. The system provides parallel and sequential operators,
and restructures the logical pipeline according to control flow
dependencies. P4Bricks provides a low-level compilation for
the target switch, which makes the system target specific and
limits the utilization of the system. Although the operators
proposed by P4Bricks may enable multi-processing, P4Bricks
performs out-of-order readings and writes while processing
packets, which can create inconsistencies and compromise
the developer logic.

P4Visor [15] is a system to merge and test P4 programs.
The system provides AB and Differential testing opera-
tors, which both isolate testing traffic from the composed
programs. The merging of control flows tries to minimize
resource sharing between modules by merging equivalent
tables. The traffic isolation requires parsers from different
program modules to have disambiguation states even if the
merged states are equivalent. In contrast, PRIME merges
equivalent states by uniting their transitions. This feature
consequently reduces the number of states necessary to parse
incoming packets.

Dejavu [41] is a programming model that connects and
hosts several functions in a single switch pipeline. The system
leverages recirculation to route packets between chains of
functions and tries to minimize the number of recirculations.
However, although allowing optimization of the amount
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of recirculation, this can perform out-of-order processing,
as functions usually are composed of ingress and egress
capabilities. PRIME takes a more intuitive approach, which
ensures the correct ordering of read/writes between programs.

PRIME is similar to works on virtualization, but the
steering operation provides the means to achieve per-packet
consistency, which is, to the best of our knowledge, a new
contribution to the data plane virtualiazation.

VI. CONCLUSIONS

In this paper, we presented the design and evaluation
of PRIME, a composition mechanism to help the modular
development and management of P4 programs. The de-
ployment is made by composing parsers and employing a
new table into the PDP program. Furthermore, it introduces
the steering of packets through the modules by using P4
metadata. We presented a case study showing the operation
of our abstractions for several modular programs. Simulation
results evidence that the compositions have a moderate yet
acceptable impact on delay and throughput.

PRIME still faces several limitations. In particular, insert-
ing overlapping rules into the table can generate conflicting
directions on the switch pipeline. We see as future work
the development of a mechanism that filters and solves the
overlaps before the insertion. This feature can be designed
similarly to what is presented in Hermes [33], combined
with CacheP4 [42], to achieve both low update times and
throughput. PRIME also requires the developer of a module
to be responsible for the correctness of each independent
module. There is a need for a previous verification step during
network operation to ensure the consistency of each separated
module.

There are several other potential future research direc-
tions. In particular, exploring new compilation techniques
may allow more efficient use of data plane resources by
sharing resources between programs. The development of
new operators to identify dependencies between modules and
a formal reasoning about the steering correctness are also
in perspective. Further, in addition to the local guarantees
addressed in the composed P4 program, we aim to investigate
global path level guarantees for automatic virtualization of
PDP programs [43], and placement heuristics similar to those
used with Virtual Network Functions [44] [45]. Finally, we
also see as future work a full exploration of distributed
system replication techniques to handle failures.
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I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: ACM,
2017, pp. 121–136. [Online]. Available: http://doi.acm.org/10.1145/
3132747.3132764

[3] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made
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