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“The Lord is my shepherd, I lack nothing.

He makes me lie down in green pastures,

he leads me beside quiet waters,

he refreshes my soul.

He guides me along the right paths

for his name’s sake.

Even though I walk

through the darkest valley,

I will fear no evil,

for you are with me;

your rod and your staff,

they comfort me.

You prepare a table before me

in the presence of my enemies.

You anoint my head with oil;

my cup overflows.

Surely your goodness and love will follow me

all the days of my life,

and I will dwell in the house of the Lord

forever.”

— PSALM 23
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ABSTRACT

Since their appearance, programmable logic controllers (PLCs) are massively and pre-

dominantly used as the central controller in automation systems. Unfortunately, due to

the poor performance of the majority of these devices, the typical role of PLCs in au-

tomation systems is restricted to a controller, since applications with more sophisticated

computational requirements tend to be handled by external processing units along with

the PLCs. To solve this issue, this work improves novel architecture proposals based on

data flow machines, circuit simulation theory, and memoization technique to achieve a

performance boost based on the scan time reduction. Along with the architectural im-

provements, this dissertation evaluates the impact of different execution units’ types and

quantities in a cycle-accurate simulator (CAS) that was specially developed to simulate

the PLC cores. Furthermore, in order to perform a robust and complete evaluation, the

silicon areas of the simulated architectures are calculated using the McPAT framework

to establish the performance/area relationship of the simulated cores. Evaluation results

show best scan time reductions of up to 68% for cores with single execution units and up

to 89% for cores with multiple execution units, as well as a 50% scan time reduction with

a minor impact on the silicon area.

Keywords: Programmable logic controllers, special architecture, data flow machines,

circuit simulation theory, memoization technique, multi-cycle, pipeline, multicore, cycle-

accurate simulator, McPAT.



RESUMO

Desde a sua introdução, os controladores lógicos programáveis (CLPs) são massiva e

predominantemente usados como o controlador central em sistemas de automação. Infe-

lizmente, devido ao fraco desempenho da maioria desses dispositivos, o papel típico dos

CLPs nos sistemas de automação é restrito a um mero controlador, uma vez que aplica-

ções com requisitos computacionais mais sofisticados tendem a ser tratados por unidades

de processamento externas juntamente com os CLPs. Para resolver esse problema, este

trabalho aprimora novas propostas de arquitetura baseadas em máquinas data flow, teoria

de simulação de circuitos e técnica de memoização para obter um aumento de desempe-

nho com base na redução do tempo de scan. Juntamente com as melhorias arquitetônicas,

esta dissertação avalia o impacto de diferentes tipos e quantidades de unidades de execu-

ção em um simulador de precisão de ciclo, desenvolvido especialmente para simular os

núcleos de CLP. Além disso, para realizar uma avaliação robusta e completa, as áreas de

silício das arquiteturas simuladas foram calculadas usando o framework McPAT para es-

tabelecer a relação desempenho/área dos núcleos simulados. Os resultados da avaliação

mostram nos melhores casos reduções no tempo de varredura de até 68% para núcleos

com unidades de execução única e até 89% para núcleos com várias unidades de execu-

ção, além de uma redução de 50% no tempo de varredura com um pequeno impacto na

área de silício.

Palavras-chave: Controladores lógicos programáveis, arquiteturas especiais, máquinas

data flow, teoria da simulação de circuitos, técnica de memoização, multi-cycle, pipeline,

multicore, simulador de precisão de ciclo, McPAT.
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1 INTRODUCTION

Since their introduction at the end of the 1960s, programmable logic controllers

played an essential role in supporting industries to reach the high demanding levels of

productivity of the 21st century. Due to their flexibility, robustness, and reliability, PLCs

were massively used as the primary mechanism of control in several sectors in which

automation technology is required (BOLTON, 2015).

In short, PLCs are electronic devices that use inputs and outputs to control a pro-

cess using instructions defined in its programmable logic. Regarding performance, the

principal PLCs’ characteristic is the scan time, which is composed of the sum of the

times required to read the inputs, execute the logics, and write the outputs (WEBB; REIS,

1998). Short scan time is crucial to a reduced response time, which is essential to many

deterministic systems, such as motion control, for instance (LEWIS, 1998).

Since the first PLCs replaced the large, expensive, and not reliable relay logic sys-

tems, the first programming language adopted and still now popular among automation

designers is the ladder diagram (BOLTON, 2015). Ladder diagrams use graphical elec-

trical contacts to represent inputs, relay coils to represent outputs, and wires to represent

the logic connections, similarly to the old relay systems schematics, as can be observed

in Figure 1.1.

Figure 1.1: A symmetric ladder diagram

Figure 1.1 presents a ladder diagram example in which each line (also called rung)

controls the states of three outputs named as O/0, O/1, and O/2, based on the states of three

inputs designated as I/0, I/1, and I/2. Rungs in a ladder diagram may have normally open

and normally closed contacts. In the given example, the state of O/0 in the first rung is

set to "on" if input I/0 is "on" (normally open contact) and if input I/1 is "off" (normally

closed contact). Similarly, in the second rung, the output O/1 is set to "on" state if both

I/0 and I/2 inputs are in "on" state. Finally, in the third rung, if input I/1 is "off" and input
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I/2 is "on" then the output O/2 is set to the "on" state. Also in the example ladder diagram

presented in Figure 1.1, the three inputs interconnected in three independent logical rungs

are used to control the three outputs, where the PLC scan time can be measured as the

sum of the times required to read the three inputs, execute the three rungs, and update the

three outputs.

Controversially, after more than half a century since their introduction, and despite

their importance in the automation technology domain, somehow justified by protective

PLC patents, research efforts to improve PLC performance are not a recurrent subject in

the academic field. Recent and unavoidable trends like the Industry 4.0 and the Internet

of Things era will require more computational power from automation controller devices,

which will, unavoidably, cover the PLC design space. In this regard, for enhanced ap-

plications like motion control, model predictive controllers, cryptography, among others,

where a more complex computation is required, the current PLCs’ performance becomes

an issue. This problem tends to drive solutions towards adaptations with the addition

of external dedicated controlling/processing units, therefore pushing PLCs to a merely

complementary function as commander units, instead of their original role as central pro-

cessing units, ending up in an increase of the overall costs of the automation solutions as

a consequence.

As a response to this demand, to improve PLCs performance by reducing the scan

time, this dissertation uses two novel PLC architecture enhancements, namely Verify to

Execute (VE) and Search to Execute (SE). The VE improvement was inspired in data

flow machines (DENNIS, 1980) and circuit simulation theory (NAJM, 2010) and reduces

the scan time duration by only executing the rungs’ logic in which a variation occurs in

its inputs, in a similar approach as Chimel and co-workers (CHMIEL; HRYNKIEWICZ,

2009) (CHMIEL et al., 2016a) (CHMIEL; MOCHA; LECH, 2018). Along with VE, the

SE improvement searches for a cached memoized result before executing a rung with a

given inputs’ mask, shortening scan time in case of a cache memory hit by reusing the

result and skipping execution, in a similar line of work as Suresh et al. (SURESH et al.,

2015).

It is necessary to note that besides normally open/close contact inputs and regular

output blocks, several other block types are present in the ladder diagram, as well as other

PLC programming languages available and also many PLCs based on microprocessors

or microcontrollers. However, these alternatives were not considered in the scope of this

work, to the complexity in addressing all possibilities. Even within this limited scope, the
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proposed improvements still have their importance in improving PLC performance based

on scan time reductions.

Further to VE and SE architecture proposals, the present work evaluates the impact

of PLC performance based on the scan time metric using different execution units of

multi-cycle and pipeline types, along with multiple execution units quantities, to establish

the boundaries of the impact that each of these characteristics may have on the overall

PLC performance.

To evaluate the proposed improvements, a cycle-accurate simulator (CAS) was

developed and used to simulate the PLC core architectures. Namely, the standard, VE,

SE, and VE+SE cores were simulated with both multi-cycle and pipeline execution units

along with several quantities of execution units, thus composing a detailed picture of the

PLC architectural design space and performance improvement limits. Additionally, the

silicon areas of all simulated architectures were calculated using the McPAT framework

(LI et al., 2009) also to analyze the correlation of performance and silicon usage.

The experimental batch results show scan time reductions of up to 68% for cores

with single execution units and up to 89% for cores with multiple execution units. Re-

garding the silicon area usage, in some cases, the proposed improvements produced an

impressive 50% of reduction in scan time when compared to the standard PLC core,

with a minor acceptable increase in the silicon area. Finnaly, the impressive results also

justify the utilization and importance of the proposed improvements to enhance PLC per-

formance, instead of a simple increase in the number of execution units or operation

frequency of a standard PLC core.

1.1 Objectives

The main objective of this work is to propose improvements and enhancements in

the PLC architecture to increase performance through reduction in the scan time duration.

To reach this primary goal, an architecture was proposed in the context of this work,

which was designed in a tailor-made cycle-accurate simulator to evaluate the architecture

performance. Moreover, the specific objectives of this dissertation are:

• Propose and evaluate a novel PLC architecture improvements to achieve a perfor-

mance boost

• Evaluate the impact that different execution units types and quantities have in the
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PLC performance

• Analyze the relationship between performance and area by crossing the evaluation

results of these two aspects

1.2 Structure of the text

The remaining of this text is organized as follows. Chapter 2 discusses relevant

related works utilized during the development of this dissertation. Chapters 3 and 4 detail

the improvements proposed and the architecture developed in the context of this work,

respectively. In Chapter 5, the evaluation methodology and results are described, de-

tailed, and discussed. Finally, Chapter 6 provides conclusions and future directions of

this dissertation.
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2 RELATED WORK

As a sad fact of history, even though programmable logic controllers are still mas-

sively used in industries as was when they were introduced, improvements in PLC per-

formance is not a very explored scientific area despite the importance of PLCs in industry

automation technology during the 20th and 21st centuries. Nevertheless, essential contri-

butions in this area can be found in the technical literature, and the most relevant ones are

compiled in this Chapter.

As relevant structural concepts concerning theory, usage, and historical facts, sev-

eral researches (BOLTON, 2015) (WEBB; REIS, 1998) (LEWIS, 1998) were consulted

as the literature bases of PLC devices. The material that composes those volumes consti-

tutes the primary source of PLC information, which provides a substantial fundamental

basis to the background required by this dissertation.

Similarly to one of the improvements presented in this current work, namely to

avoid the execution of PLC’s rungs whose inputs values do not have a variation, Chmiel

et al. (CHMIEL; HRYNKIEWICZ, 2009) (CHMIEL et al., 2016a) (CHMIEL; MOCHA;

LECH, 2018) developed related proposals.

In their first proposal (CHMIEL; HRYNKIEWICZ, 2009), the edges of the inputs

are verified using the PLC’s logic itself without any hardware development. In more re-

cent efforts (CHMIEL et al., 2016a) (CHMIEL; MOCHA; LECH, 2018), a dual-processor

1bit/32bit PLC architecture was implemented by means of an FPGA where the 1bit part

checks the inputs’ edges for variations detections while the 32bit part executes the rungs’

logic appropriately, similarly to a standard PLC.

Regarding the evaluation presented in their work (CHMIEL; HRYNKIEWICZ,

2009), it uses a simple example composing a restricted design space in a standard PLC

to prove the benefits of the technique that is also explored in this study. Other works

from the same group (CHMIEL et al., 2016a) (CHMIEL; MOCHA; LECH, 2018) use

incomplete and somehow inaccurate commercial PLCs’ information to compare to the

proposed design at the instruction level, which is not appropriate since the architectures

are different both in datapath and operation frequency.

Despite adopting improvements that are similar to the ones proposed by Chmiel

et al., the present work also aims at other execution improvements, introducing different

types and quantities of execution units to evaluate the performance of the PLC’s enhance-

ment in different ways. As already mentioned, the Chmiel and coworkers’ related studies
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use data from commercial PLCs as a basis for a performance comparison with their ar-

chitecture, which is not the most appropriate approach due to the heterogeneity of the ar-

chitectures. Therefore, in this work, the improved cores are compared to a standard PLC

architecture defined following the literature patterns (BOLTON, 2015) (WEBB; REIS,

1998) (LEWIS, 1998) as a fair and unbiased comparison baseline.

Notwithstanding, as the proposal of data flow machines (DENNIS, 1980) (PELL

et al., 2013) as well as one of the principles of circuit simulation theory (NAJM, 2010)

(ZHUANG et al., 2016), the idea of avoiding the execution of unnecessary logic is not

new. Hence, using this paradigm to avoid rungs’ execution in the PLC design space is a

novel and promising approach which was developed and evaluated by this research.

Another improvement proposed by this dissertation is to avoid executing rungs by

storing and reusing previous execution results, a similar procedure to the one Suresh et al.

(SURESH et al., 2015) named memoization in their proposal, which was used to improve

the execution of transcendental functions like sine, cosine, tangent, etc.

The study of Suresh et al. obtained significant reductions in execution time by

benefiting from the static behavior of the transcendental functions. Likewise, the present

work uses a similar memoization procedure to store rungs’ results and reuse them to avoid

the unnecessary re-execution of rungs which aided in boosting the PLCs performance

during evaluations.

In the same line of research with this dissertation, several PLC architectures and

frameworks were proposed based on FPGAs (CHMIEL et al., 2016b) (HAJDUK; TRY-

BUS; SADOLEWSKI, 2015) (MILIK, 2016) (DU; XU; YAMAZAKI, 2010).

The proposals presented by Chmiel et al. (CHMIEL et al., 2016b) and Hajduk

et al. (HAJDUK; TRYBUS; SADOLEWSKI, 2015) establish novel FPGA architectures

to boost PLC’s performance by improving the hardware co-design, which is a different

approach from this work. The main focus of this research is in skipping useless executions

by adopting improvements in PLC cores and evaluating the performance of different types

and quantities of execution units.

Moreover, the current work also approaches the PLCs’ performance enhancement

problem by a different perspective from the ones presented by Milik (MILIK, 2016) and

Du et al. (DU; XU; YAMAZAKI, 2010), which directly convert PLC programs to a

hardware description language (HDL). Therefore, the results of those works are also not

comparable to this research.

Nevertheless, despite the impossibility of direct comparison of the above works
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(CHMIEL et al., 2016b) (HAJDUK; TRYBUS; SADOLEWSKI, 2015) (MILIK, 2016)

(DU; XU; YAMAZAKI, 2010) with the present dissertation, all those proposals are re-

lated to the current project in terms of limitations and challenges of designing an original

PLC architecture, thus providing relevant subsidies to the architectures proposed here.

As this work proposes a novel PLC architecture using multi-cycle and pipeline

execution units and takes advantage of the multiple execution units paradigm, which are

classical concepts, relevant references for this study areas may be found in several clas-

sic books and papers from the scientific community (PATTERSON; HENNESSY, 2013)

(BLAKE; DRESLINSKI; MUDGE, 2009) (PALACHARLA; JOUPPI; SMITH, 1997)

(OLUKOTUN et al., 1996). Those references compose relevant sources of information

that have helped the development of these execution units types in the multiple arrays

required by the context of this dissertation.

The work by Ikbal et al. (IQBAL; KHAN; KHAN, 2013) presents an innovative

evaluation method for PLCs. Despite the formal definition of a methodology to bench-

mark PLCs, it is a contribution that influenced the evaluation methodology of the cur-

rent work. Unfortunately, the Ikbal proposal does not consider the usage of third-party

benchmarks, like the proposal of the PLCOpen committee (PLCOPEN, 2019), which may

provide a neutral evaluation method for PLCs.

Differently from standard computer architectures, for which there are extensive

and standardized benchmark sets, there is a lack of reliable third-party benchmark defi-

nitions for PLCs, except for a unique proposal of the PLCopen committee (PLCOPEN,

2019). Unfortunately, the TC3 certification benchmark (WAL, 2009) initiative of the

PLCopen committee, initially proposed in 2006, which was a step towards a standard and

neutral manner to evaluate PLC’s performance instead of an ad-hoc set of test cases, was

recently removed from the PLCopen official reference site for unknown reasons. This

fact also highlights how PLCs’ performance evaluation is neglected by the scientific re-

search community, despite their importance in several automation applications, which the

Industry 4.0 revolution and the Internet of Things era will demand.

Also, due to the importance of PLC architecture’s design space exploration and

despite the lack of benchmarks for PLCs’ evaluation, several application proposals show

how significant contributions in PLC performance improvement, like the one here pre-

sented, are essential for the automation technology field. Process control applications like

proportional integral derivative (PID) controllers (MILIK, 2016), model predictive con-

trollers (MOKHTARNAME et al., 2015) as well as SIMON and SPECK cryptography
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algorithms (DUKA; GENGE, 2017) still require optimization or extra hardware adapta-

tions like detailed in these proposals to be appropriately executed along with commercial

PLCs due to the lack of performance of the currently available devices.

Lastly, Table 2.1 summarizes the contributions of the related work and in which

way the present work is compared to them. The table shows how contributions from

related works address four different themes: PLC architecture, PLC benchmarks, VE

improvements, and SE improvements. As shown in Table 2.1, the present work is the

only one in which all themes are covered.

Table 2.1: Related works summary
PLC Architecture VE Improvement SE Improvement PLC Benchmark

CHMIEL et al., 2016a x x
CHMIEL et al., 2016b x
CHMIEL; HRYNKIEWICZ, 2009 x
CHMIEL; MOCHA; LECH, 2018 x x
DENNIS, 1980 x
DU; XU; YAMAZAKI, 2010 x
HAJDUK; TRYBUS; SADOLEWSKI, 2015 x
IQBAL; KHAN; KHAN, 2013 x
MILIK, 2016 x
NAJM, 2010 x
PELL et al., 2013 x
PLCOPEN, 2019 x
SURESH et al., 2015 x
WAL, 2009 x
ZHUANG et al., 2016 x
PRESENT WORK x x x x
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3 PROPOSED IMPROVEMENTS

To reach the goal of PLC scan time reduction, this work presents two new archi-

tectural improvements, namely the Verify to Execute (VE) and Search to Execute (SE),

which are detailed in this chapter. Aside from these improvements, the performance was

also evaluated using multi-cycle and pipeline execution units types, organized in single

and multiple execution units arrays, which are described along with other architectural

details in Chapter 4.

The Verify to Execute improvement verifies which inputs have value transitions

and only schedules for execution the rungs which had a change in its inputs from on to off

or vice-versa. The VE improvement is mainly inspired by data flow machines (DENNIS,

1980) and circuit simulation theory (NAJM, 2010). However, the introduction of this

approach is completely innovative in the PLC domain.

For instance, by executing the ladder diagram program presented in Figure 1.1

with the VE improvement, an edge detected at input I/0 would schedule the first two

rungs for execution. Similarly, a variation in input I/1 would program the first and third

rungs for execution, while the last two rungs would be scheduled for execution if input

I/2 has an edge transition.

Differently from the ladder diagram in Figure 1.1, where the inputs’ verification

order does not matter due to the symmetry of the diagram, the ladder diagram of Figure

3.1 may delay the first rung execution depending on the order of verification of inputs’

edges. As observed in Figure 3.1, a border in input I/3 would cause the execution of all

four rungs and a variation in input I/0 would schedule only the first rung for execution.

Therefore, a suitable verification order is essential to start the execution of rungs as soon

as possible.

The first problem in adopting the VE improvement is its dependency from the lad-

der diagram format. For symmetric diagrams like the one presented in Figure 1.1, the

verification order of the inputs is not so relevant since all rungs have the same logic size,

hence the only factor that may delay execution for a specific verification order is the in-

puts’ edge probability, which cannot be measured in pre-execution time. Conversely, in an

asymmetric ladder diagram, like the one presented in Figure 3.1, some possible verifica-

tion orders may certainly delay the first rung execution, once the diagram contains rungs

with several inputs and inputs that belong to several rungs. Thus, as already mentioned, a

smart approach to select the best input verification order is advised.



20

Figure 3.1: An asymmetric ladder diagram

In the context of the VE improvement, the time to detect the need and dispatch the

first rung to execution is here defined as execution trigger. Hence, the more time the VE

improvement takes to detect need and execute the first rung, the worse is the execution

trigger. Thus, to address the possible delay in the execution trigger detection, an algorithm

based on impact and probability criteria were adopted for defining the verification order of

the inputs. The impact criterion of an input is the ratio between the number of occurrences

of this input in all rungs and the total quantity of rungs, while the probability criterion of

an input is the ratio between the number of appearances of this input in all rungs and the

total number of all inputs appearances in all rungs. Using these criteria, the verification

order of the inputs of a ladder diagram is defined as the decreasing order of the sum of the

values of impact and probability criteria for each diagram’s input.

As an example, the verification order criteria for the diagram presented in Figure

3.1 can be observed in Table 3.1. Analyzing the data presented in the table, input I/3 has

impact 1.0 (4/4), since it appears in all rungs, while input I/0 has impact 0.25 (1/4) since

it is present in a single rung. In turn, input I/3 has probability 0.4 (4/10), since it has four

occurrences over the total of ten input occurrences in the whole diagram and the input

I/0 has probability 0.1 (1/10), since it has only one appearance over the same ten input

occurrences. As a consequence, the verification order for the inputs of the ladder diagram

in Figure 3.1, according to proposed verification order algorithm, is I/3 (sum is 1.4), I/2

(sum is 1.05), I/1 (sum is 0.7), and I/0 (sum is 0.35).
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Table 3.1: VE verification order for ladder diagram of Figure 3.1
Input Impact Probability Total

I/0 1/4 1/10 0.35
I/1 2/4 2/10 0.70
I/2 3/4 3/10 1.05
I/3 4/4 4/10 1.40

It is essential to clarify that besides the proposed heuristic based on these criteria

of impact and probability, several other heuristics could have been proposed to determine

the verification order of the VE improvement. Nevertheless, looking for an optimal pro-

cedure to determine the best verification order is out of the scope of this work, and so

the proposed criteria were adopted as an acceptable solution to reach the main objective,

which is to evaluate the proposed VE improvement.

Moreover, also in the example presented in Figure 3.1, once an edge occurs in

I/3 in a given scan cycle, all rungs of the ladder diagram will be scheduled for execution

following this detection. As a consequence, the verification of edges in the other three

inputs is no longer necessary for that particular scan cycle. Applying this procedure not

only shortens the delay in executing the first rung (execution trigger) but also decreases

the execution time of the edges’ verification procedure. The reduction happens because

once all rungs of a particular input are scheduled for execution, the edge verification for

that input is not necessary anymore.

The block diagram of the VE improved execution core is shown in Figure 3.2,

where it is shown that it contains a sequence of three components. The first component of

the chain is the edge detector, which uses the inputs’ verification order coming from the

Figure 3.2: VE improved execution core
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defined pre-execution algorithm and the rung definitions to check inputs edges. Once the

edge detector identifies an input value edge, it dispatches this input’s identification to the

rung scheduler, which acts as a FIFO but also retrieves the rung address corresponding

to the input identification and sends it to the execution unit. As the last element in the

chain, the execution unit executes the received rungs’ addresses in a similar form as a

standard execution core. It is imperative to note that the modules named Execution Unit

in all architecture figures may be of the multi-cycle or pipeline type and may come in an

array with multiple units. More details regarding the VE improvement architecture, along

with other ones, are further discussed in Chapter 4.

As the performance speedup introduced by the VE improvement results from

avoiding the execution of rungs that do not have value transitions in their inputs, its

usage is recommended for monotonous systems in which input edges occur only be-

tween long periods of idle time. The VE improvement application in systems that execute

monotonously may also provide a more prompt response in time-critical applications, like

inertial motion detection control, for instance.

From a negative perspective, the VE improvement may result in an increase of the

scan time in systems with a large number of occurrences of input variations in the worst

case of the verification order, due to the overhead of the verification of the inputs’ edges.

This drawback is further discussed in Chapter 5, in which it is demonstrated that the VE

improvement performance boost compensates this disadvantage in some cases. Moreover,

because of the algorithm that defines the verification order, the VE rungs’ execution order

may differ from a standard core. As a consequence, the VE improved core may present

an unexpected execution at not well-implemented ladder diagrams, where the logic of

different rungs overlaps each other.

The second architectural improvement adopted in this work is the Search to Exe-

cute, named so since it searches for previously-stored rungs’ execution results before any

execution. Hence, it dispatches for execution only the rungs whose previous execution

results for the same input values are not cached. Otherwise, the stored rung result value

is used, and the rung execution is entirely skipped. The approach explored by the SE

improvement is similar to the memoization technique of Suresh et al. (SURESH et al.,

2015). Nevertheless, using this technique in the PLC design space is a totally innovative

and novel approach.

As presented in Figure 3.3, the memoization checker is the central component of

the SE improved execution core block diagram. Once running, the memoization checker



23

Figure 3.3: SE improved execution core

verifies current input values and rung definitions for a match in its indexed memoization

memory. In the case of a hit, the cached value is used, and the rung execution is disre-

garded. Otherwise, in the case of a miss, the rung address is dispatched to the execution

unit. Similarly to the VE core, the SE core execution unit is equivalent to a standard PLC

core, with the exception that the execution results are written back to the memoization

checker to keep it updated for subsequent cached results verifications.

Due to its versatility, the block of components that compose the SE improve-

ment can be attached before any PLCs’ execution unit, thus eliminating the need for

re-execution of cached execution results. However, in a situation in which the SE im-

provement’s memoization memory is not large enough to store all possible results in a

system with a large number of edges occurrences in inputs, and therefore a high number

of different results, the search procedure plus the execution of rungs that repeatedly do

not have the results cached may increase the scan time duration.

Regardless of this potential drawback, the focus here is to analyze the impact of

the SE improvement along with other architectural characteristics. Therefore, the mem-

oization memory size impact was not considered in the context of this dissertation and

should be investigated as future work due to the complexity and importance of this sub-

ject. Nonetheless, indeed, the memoization memory size is a significant factor in the SE

improvement performance. However, since the evaluation process in this work considers

all probabilities of memoization hits and misses to obtain an overall performance metric,

the size of the memoization memory becomes somehow a secondary matter. Nonetheless,

respecting its importance, this subject is discussed again in more depth in Chapter 5.

Notwithstanding, when the memoization memory size fits the requirements of the
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system, the SE improvement provides superior performance for rungs with recurrent com-

binations of input values, even in applications with a high incidence of input edges. As

also further discussed in Chapter 5, it is demonstrated that the significant SE speedup

factor somehow compensates its drawback of higher usage of silicon area.

Lastly, Figure 3.4 details the block diagram of the VE+SE execution core, which

includes both the VE and SE improvements. The VE+SE improved execution core reuses

the same components of the standalone versions of VE and SE cores but in a different

organization. Hence, the only noticeable difference between the VE+SE improved core

and the standalone VE and SE cores is the SE memoization checker inserted between the

rung scheduler and the execution unit. With this minor modification in the datapath, the

rung scheduler delivers a rung identification to the memoization checker instead of the

rung address.

In the best case, the execution time of a standard architecture executing the ladder

diagram presented in Figure 3.1 will be the sum of the execution times for all the four

rungs. For a design with the VE improvement, the best-case occurs when there are no

edges, where the system only spends the verification time for all the inputs and does not

need to execute any rung. The best scenario for the SE improved architecture occurs when

the execution contexts of the four rungs are already cached at the memoization memory,

where the system spends only the search and result reuse time for all four rungs stored

in the memoization memory. Finally, in an implementation with both improvements VE

and SE, the shortest execution time is equal to the design with the VE improvement alone,

which consists of the verification time for all the four inputs when there are no input edges

occurrences.

Figure 3.4: VE+SE improved execution core
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As well for the ladder diagram presented in Figure 3.1, the worst-case for a stan-

dard architecture is the same as the best case: the sum of the execution times for all the

four rungs. For a design with the VE improvement, the worst scenario occurs when there

are edges at I/2 and I/0, when the system needs to spend the verification time for I/3, I/2,

and I/0, plus the execution time for all the four rungs. In an architecture with the SE im-

provement, the most extended execution time occurs when there is no memoization stored

for any of the rungs, and the system needs to spend the search time for all the four rungs

plus the execution time also for all the four rungs. At last, in architecture with both VE

and SE improvements, the worst-case scenario occurs when there is a variation at inputs

I/2 and I/0 with no stored memoization. This situation composes the worst-case execution

time, with the verification time for I/3, I/2, and I/0 plus the memoization search time for

all the four rungs and the execution time for all the four rungs.

Ultimately, since the proposed improvements do not modify the execution unit of

the standard architecture, to mitigate the overhead of the worst cases discussed above,

the edges’ verification and the memoization search operations must occur in parallel by

separate dedicated hardware. This design option is explained along with architecture

details in the next Chapter 4.
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4 ARCHITECTURE DETAILS

To explore the proposed improvements detailed in Chapter 3, a novel PLC archi-

tecture was developed to evaluate the performance of the proposed enhancements. Since

the developed PLC architecture has several organizations to address the various combina-

tions of Standard, VE and/or SE improvements, along with different types and quantities

of execution units, the top-level architecture was planned to be the same independently

of the kind of the execution core, as presented in Figure 4.1. This design option not only

simplifies the experimental evaluation since the whole batch of tests is entered the same

form but also ensures that all organizations are tested in the same external components

environment.

Figure 4.1: Proposed PLC architecture

The main component of the architecture is a control block that uses several flag

signals and buses to coordinate a memory unit and an execution core. The memory unit

contains all data related components: the registers to store input and output states, a

PROM for the rungs’ logic data, and a RAM for general data storage. As can be observed

in Figure 4.1, the architecture’s execution core may be implemented as a standard core,

a VE improved core, a SE improved core, or a VE+SE core. This characteristic allows

four different execution cores implementations to be compared in similar conditions since

scan cycle phases for reading the inputs and writing the outputs are executed the same way

independently of the execution core.
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4.1 Standard Execution Core Architecture

The standard execution core, detailed in Figure 4.2, behaves like a traditional PLC

execution core. The read input values are used to execute all the rungs and update the

outputs according to the results generated by the execution unit. It is composed of an

execution unit, which, as already explained, might be of the multi-cycle or pipeline type

and come in an array with multiple units, that directly interfaces with PLC core control

block signals. A remarkable difference compared to other types of execution cores is

that the standard execution core does not use the RI (read inputs) and WO (write outputs)

signals (which are represented as dashed lines in Figure 4.2) since it is not an improved

organization and then its execution unit merely executes all rungs along.

Figure 4.2: Standard execution core architecture

4.2 VE Execution Core Architecture

Following its definition in Figure 3.2, the VE execution core implements three ex-

ecution phases, each one executed by one of its main components, respectively the edge

detector, the rung scheduler, and the execution unit, each of these requiring some cycles to

dispatch the execution to next element in the execution chain. The most noticeable char-

acteristic of the VE execution core shown in Figure 4.3 is that it contains three dedicated

PROM components, each one storing part of the VE execution core’s additional program

data. This design option was necessary to achieve the required parallel speedup factor

required by an improved execution core by avoiding shared PROM memories buses.

In the first cycle, once it receives the RUN command, the VE execution core’s edge

detector loads the value of the inputs using the RI (read inputs) and DB (data bus) inter-

faces. In the second cycle, a variation in all the input values is checked, and if no global

edge is detected, any further execution is skipped with the edge detector DONE signal

is set to high. Otherwise, during the third cycle, the first of the inputs in the execution
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Figure 4.3: VE execution core architecture

order priority list is loaded from the edge detector’s PROM using its RPM (read program

memory), DB (data bus) and ADD (address) signals. In the fourth cycle, in the case of

current input’s edge detection, the input is dispatched to the rung scheduler through the

IN-ID (input identification) and W-IN-ID (write input identification) ports. Along with the

fourth cycle, it is verified if all inputs of the verification list were checked. If so, the edge

detector DONE signal is set to high. Otherwise, the third and fourth cycles are repeated

until this condition is reached.

As observed in Figure 4.3, the VE execution core’s rung scheduler contains two

PROMs because it is internally divided into two other components. The first component is

named rung decoder, and the second one is the rung addresser, each of these responsible,

respectively, for decoding which rungs belongs to each input and for retrieving rungs’

initial addresses.

Once the rung decoder receives an input identification through IN-ID and W-IN-ID

signals, it uses the first cycle to retrieve from its PROM the number of rungs in which this

input identification is present, using the RPM, DB and ADD ports. It then uses as many

cycles as the number of rungs to dispatch the rungs to the rung addresser via the R-ID

(rung identification) and W-R-ID (write rung identification) signals.

From its side, once the rung addresser receives a rung identification through the

R-ID and W-R-ID signals, it requests the rung’s initial address, which is read from its

PROM using the RPM, DB, and ADD signals, to finally dispatch the retrieved address to



29

the execution unit using RUN and PC-IN (program counter input) interfaces.

At last, once the rung decoder, the rung addresser, and the execution unit of the

VE execution core finish their executions, the VE core’s control block outputs a value

high at the DONE signal to notify to the PLC core control block that the execution phase

has reached the end.

4.3 SE Execution Core Architecture

Following the SE core improved guidelines defined in Figure 3.3, the SE execu-

tion core main component is the memoization checker, which is composed of its internal

control block and a rung addresser. Similarly to the rung scheduler in the VE execution

core, these two components explain the two dedicated PROMs that are present in the SE

execution core architecture shown in Figure 4.4.

Figure 4.4: SE execution core architecture

In the SE execution core’s first cycle, once it receives the RUN command, the

memoization checker control block reads the total quantity of rungs from its PROM, us-

ing the RPM, DB, and ADD ports. In the first run of the second cycle, all rungs are queued

to verify if their execution is needed, and the first rung is set for verification in the mem-

oization checker’s memoization memory. In the third cycle, the memoization verification

result is checked, and, in case of a memoization hit, the memoized value is updated in the

outputs register, and the rung execution is discarded. Otherwise, the rung identification is
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dispatched to the rung addresser via R-ID and W-R-ID ports. In any case, after cycle three

is completed, cycles two and three are repeated until all queued rungs were checked.

The behavior of the rung addresser present in the SE execution core is the same

as explained for the VE execution core, with a minor difference. In the SE execution

core, the rung identification is passed by the rung addresser to the execution unit using

the ID-IN (identification input) signal along with the other RUN and PC-IN signals. Once

the execution unit finishes the rung execution, the rung identification is notified back to

the memoization checker control block through the ID-DONE (identification done) and

ID-OUT (identification output) interfaces. This back and forth procedure with the rung

identification is necessary to allow the memoization checker’s control block to store the

execution results in the appropriate memoization memory address.

Lastly, once the memoization checker, rung addresser, and execution unit finish

their executions, the SE core’s control block notifies the PLC core control block using the

DONE flag.

4.4 VE+SE Execution Core Architecture

Finally, the VE+SE execution core presented in Figure 4.5 contains the same com-

ponents and contains the same behavior as described for the VE and SE execution cores,

but in a different organization with minor modifications in the datapath. The most notable

Figure 4.5: VE+SE execution core architecture
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and crucial difference is that the memoization checker receives the rung identification

from the rung decoder through the R-ID and W-R-ID signals. With this modification, not

all rungs are queued for verification as in the SE execution core since the memoization

checker’s RUN signal does not receive any stimulus.

4.5 Execution Unit Architecture and ISA

Regarding the execution units’ architecture, it is supported by a register bank,

and a small control block is responsible for fetching the instructions from the program

memory, decoding, and executing them according to the decoded value. For this purpose,

a specific ISA (instruction set architecture) was developed for the execution unit to meet

the requirements of the PLC programs.

As can be observed in Table 4.1, each instruction is characterized by a type and

format. Instructions of register type (R) define operations in the register bank, a memory

type instruction (M) executes a data transfer from/to the memory unit, while a control

type instruction (C) characterizes an instruction that deviates the execution unit from its

standard behavior. Subsequently, the instruction format defines how each instruction is

organized. It is subdivided into an instruction code (represented by a mnemonic) and zero

up to three arguments.

Table 4.1: Instructions of the developed ISA
Instruction Type Format
And 1 bit R AND-1 RD RS1 RS2
Or 1 bit R OR-1 RD RS1 RS2
Not 1 bit R NOT-1 RD RS

Load single input M LI-1 RD INPUT ID
Store single output M SO-1 RS OUTPUT ID

Done C DONE

The AND-1, OR-1, and NOT-1 register type instructions execute respectively a

boolean AND, OR, and NOT operation at the register bank. Each of these instructions has

a destination register (RD) and one or two source registers (RS). The memory type LI-1

instruction loads the value of an input of the inputs register located in memory with a given

identification (INPUT ID) into a destination register (RD) while the SO-1 instruction

stores the value of a source register (RS) to the outputs register located in memory with

the given output identification (OUTPUT ID). The only control type instruction defined

in the ISA is the DONE instruction which performs an essential role in the execution unit,
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by notifying the execution core control block that the execution of a rung or the entire

program has finished, depending on the execution core organization.

Still regard the DONE instruction, when a program is developed for a standard

PLC architecture, this instruction must be added as the last instruction to notify the control

block about the execution end. Therefore, to adapt the program to the proposed improved

execution cores, a minor modification must be made, which consists of adding a DONE

instruction at the end of each rung’s instructions. This adjustment is required since, in

the proposed cores, not all rungs will be executed in each scan cycle. In other words,

the DONE instruction represents the end of the execution step of the scan cycle in the

standard architecture and the end of a single rung execution for other execution cores.

4.6 Program Memories Structures

Besides adding additional DONE instructions, the proposed VE, SE, and VE+SE

execution cores require extra data in the program memory to achieve a performance boost,

differently from the program memory structure of the standard execution core, which

needs the instructions only.

As can be observed in Figure 4.6, the VE execution core requires additional pro-

gram memory fields: the quantity of inputs and rungs, which determine the addresses and

size of the other fields; the preprocessed inputs’ verification order in which the edge de-

tector unit should check for edges; the identification of the rungs associated to each input,

which are used by the rung scheduler to identify which rungs should be executed when

the edge detector detected an input edge; the initial addresses of the program fragments

corresponding to each rung, which are passed from the rung scheduler to the execution

unit; and the program instructions themselves in the developed ISA.

As detailed in Figure 4.7, the program memory structure of the SE execution core

contains the following fields: the quantity of rungs, which determines the addresses and

size of the other fields; the rungs’ inputs masks, to isolate inputs that should be checked by

the memoization checker during the verification of each rung; the rungs’ outputs masks,

to modify only the outputs related to a specific rung; the initial addresses of the program

fragments corresponding to each rung, which are passed from the memoization checker

to the execution unit once it detects a memoization miss; and the program instructions

themselves in the developed ISA.

Finally, the VE+SE improved core program memory structure is a merge of the
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Figure 4.6: Program memory structure of the VE core

Figure 4.7: Program memory structure of the SE core
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presented VE and SE structures, since this execution core shares the same units of the VE

and SE improved execution cores in a different organization. The only difference is that

the rung scheduler takes three cycles instead of four to dispatch the rung identification

to the memoization checker, since, as may be observed in Figure 3.4, the rung scheduler

does not need to retrieve the initial address as it does in VE execution core.

4.7 Multiple Execution Units Architecture

Besides the proposed improvements, another main goal of the present research

is to analyze the impact of the type of the execution unit on the PLC architecture’s per-

formance, by using multi-cycle and pipeline execution units, in schemes with single and

multiple execution units. To achieve this goal, the proposed architecture was developed in

a way that the execution units contain the same basic interfaces observed in Figures 4.2,

4.3, 4.4 and 4.5, independently of the type and/or quantity of execution units used. This

design choice for a single execution unit is straightforward, but for multiple execution

units, it requires modifications in the execution unit’s organization and signals.

In Figure 4.8, the architecture with multiple execution units is detailed, in which

several execution units, which can be of multi-cycle or pipeline type, are represented

along with the dispatcher. The dispatcher is responsible for selecting which of the avail-

able execution units will receive a rung to be executed.

Figure 4.8: Multiple execution units architecture

Regarding the multiple execution units interface, although the dispatcher guaran-

tees the same execution unit’s trigger interface with other components of the architecture,

the multiple execution units require enlarging the buses for coupling them to the memory
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unit, a detail that is marked as dashed lines in Figure 4.8. These modifications have a

minor, but an essential impact in the coupling with other architecture components and,

very importantly, with the requirements for the development of a multi-bus memory unit.
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5 EXPERIMENTAL EVALUATION

For experimental evaluation of the present work, the primary choice to develop

the proposed PLC architectures would be a real-world FPGA environment. However, this

option is hard to deploy due not only to the development of specialized hardware but

also due to the effort to build a peripheral rig necessary to produce several stimuli for

the simulation batches. In the second place, an FPGA simulation would be an option if

the available tools for academic propose could satisfactorily input data from an extensive

simulation batch data into them. Finally, traditional widely known cycle-accurate simula-

tors (CAS) and discrete event simulators (DES), like Gem5 (BINKERT et al., 2011) and

SystemC (LIAO; TJIANG; GUPTA, 1997), respectively, would be excellent simulation

options if those tools were not too sophisticated to map new architectures from scratch.

Since available simulation tools do not fully satisfy the simulation requirements

for assessment of this study, a tailor-made CAS software was developed. The designed

CAS was carefully adapted to all the complex requirements of a PLC architecture’s sim-

ulation with its extensive parameters list:

• Inputs count

• Rungs count

• Instructions per rung

• Edges and memoization occurrences

• PLC core type (standard, VE, SE or VE+SE)

• Execution unit type (multi-cycle or pipeline)

• Number of execution units

To speed up the CAS development, the Java framework was selected due to its ro-

bustness, versatility, and all the advantages that an object-oriented language has in saving

development time, benefiting from the use of hierarchical classes to model PLC archi-

tecture’s components. In this regard, a complete set of class diagrams developed are

demonstrated in Appendix A, which are related to the architecture specified in Chapter 4.

Furthermore, independently of the preference for the Java framework, the adop-

tion of the CAS model, in which the behavior is accurate at cycle level, is adequate for a

straightforward future work in porting of the architectural model to any current or future

hardware description language (HDL) in a commercial FPGA or even to an application-

specific integrated circuit (ASIC) environment. Therefore, this future language porting
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would automatically inherit all the characteristics of the proposed improvements as mod-

eled in the CAS.

Furthermore, one of the main reasons to select simulation as the method chosen

for the validation procedure is that it can be easily modified to execute batches of exper-

imental runs as well as generate data organized according to the needs of the validation

process, as further discussed later on. Lastly, the CAS uses cycle counts as the metric for

performance, without considering the frequency of maximum critical path in each stage of

the pipeline. Despite the importance of this matter, this evaluation was considered out of

the scope of this work, and so it must be addressed as a future work due to its complexity.

5.1 Single Execution Unit and Type Evaluation

There is a lack of official or widely known PLCs’ benchmarks, except for the ini-

tiative TC3 of the PLCopen committee (WAL, 2009), which, unfortunately, was unavail-

able at the PLCopen official site (PLCOPEN, 2019) at the time this document was written.

Therefore, as an initial evaluation procedure in the developed CAS, the results from the

simulations of the VE, SE, and VE+SE execution cores with a single execution unit of

the multi-cycle type were compared against each other using the standard execution core

following the literature patterns (BOLTON, 2015) (WEBB; REIS, 1998) (LEWIS, 1998)

as a fair and unbiased comparison baseline. The total duration of the execution cycle

of a program was calculated as the arithmetic mean of the number of execution cycles

obtained for all the possible combinations of input edges and/or rungs’ memoization.

For instance, in example 1 presented in Figure 1.1, there are eight possibilities

of edges’ occurrences in its three inputs, so the duration of the execution cycle for the

VE execution core is calculated as the arithmetic mean of the eight simulation results

obtained for all the eight possible combinations of input edges. Similarly, the duration

of the SE execution cycle is calculated as the arithmetic mean of the simulation results

corresponding to the eight possibilities of hit or miss in the memoization memory for each

of the three rungs. Finally, the duration of the execution cycle of the VE+SE execution

core is calculated as the arithmetic mean of the simulation results obtained for the forty-

five possible combinations considering both input edges and memoization occurrences

possibilities.

Although this research utilizes the arithmetic mean as a standardization parameter,

it is noteworthy that not all input edges and/or memoization occurrences have the same
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probability of happening. This measurement choice was taken to get the overall perfor-

mance of the results without introducing a bias that may arise by selecting a best or worst

case scenario in the simulation executions.

As didactic ladder diagram test cases, along with the example 1 presented in Fig-

ure 1.1, which represents a balanced example with rungs of same sizes, and example 2

presented in Figure 3.1, which contains unbalanced rung sizes, a third test case, refer-

enced as example 3 at Figure 5.1, containing rungs with larger sizes, was also used for the

initial evaluation purposes.

Figure 5.1: A large rungs ladder diagram

The results regarding the arithmetic mean of the execution cycles and speedup for

the selected didactic test cases are summarized in Tables 5.1 and 5.2. These results show

that a substantial speedup is achieved even for example 1, which is the simpler test case

diagram. These initial results also seem to show that the higher the rungs’ complexity is,

the larger the achieved speedup since the best results are achieved with example 3, which

has the largest and more complex rungs. This trend is further evaluated in additional

experiments, shown later in this chapter.

Tables 5.3, 5.4 and 5.5 present the results for the speedup probability, average pos-

itive speedup and average negative speedup, respectively. The speedup probability rep-

resents the percentage of all possible executions that have a positive speedup when com-
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pared to the standard core execution. The average positive/negative speedup represents

the arithmetic mean of the speedups of all executions that result in a positive/negative

speedup when compared to the standard core execution. By analyzing the data in these

tables, it is noteworthy that, except for VE, all proposed execution cores have a high

probability of positive speedup, although, even for VE, that has the highest probability of

negative speedup, values of those speedups are always low.

Table 5.1: Mean execution cycles of didactic test cases
Example 1 Example 2 Example 3

Standard 69.00 114.00 109.00
VE 59.25 102.06 90.75
SE 40.50 65.50 60.50

VE+SE 47.53 74.36 64.85

Table 5.2: Mean speedup of didactic test cases
Example 1 Example 2 Example 3

VE 1.16 1.12 1.20
SE 1.70 1.74 1.80

VE+SE 1.45 1.53 1.68

Table 5.3: Speedup probability of didactic test cases
Example 1 Example 2 Example 3

VE 0.50 0.38 0.53
SE 0.88 0.94 0.88

VE+SE 0.91 0.95 0.91

Table 5.4: Average positive speedup of didactic test cases
Example 1 Example 2 Example 3

VE 1.61 1.60 1.59
SE 1.92 1.84 2.05

VE+SE 1.57 1.60 1.84

Table 5.5: Average negative speedup of didactic test cases
Example 1 Example 2 Example 3

VE -0.09 -0.05 -0.06
SE -0.04 -0.04 -0.03

VE+SE -0.19 -0.14 -0.13

From the results from these three small didactic examples, it is possible to iden-

tify a trend that SE is the best execution core regarding speedup, while VE+SE is the

best one for speedup probability. However, it is simplistic to draw firm inferences from
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such a small design space. To bring more robust conclusions to the initial evaluation,

this study evaluated the proposed execution cores in a larger simulation execution batch,

which ranges from 1 up to 8 inputs, 5 up to 20 rungs, and 10 up to 200 cycles to execute

each rung. The number of simulated programs was limited to 100,000 programs for each

group of those criteria due to the impossibility of simulating, in reasonable computation

time, all the 1.532E+74 possibilities from the combinations of numbers of inputs, rungs,

rungs’ execution cycles, and edges and/or memoization occurrences. Also, programs with

less than 5 rungs were not included in the batch, since they have less than 100,000 possi-

bilities of different programs and so could cause a bias in the results.

The batch execution results in the graph presented in Figure 5.2 shows the rela-

tionship between program size in cycles of the multi-cycle execution unit and effectively

required execution cycles. The graph in Figure 5.2 also confirms the hypothesis proposed

when analyzing the results from the didactic test cases: the higher the complexity of the

rungs is (large program size in cycles), the more significant is the speedup. The graph

also shows that the SE execution core has less speedup scalability than VE and VE+SE

since it does not benefit from scenarios with no input edges. Also, despite the very close

behavior of VE and VE+SE, it is possible to state that the memoization memory boosts

performance in VE+SE by observing that it outperforms VE in programs with less than

600 cycles in program size.

In complement to Figure 5.2, by analyzing scan time reduction in Figure 5.3, it

is noticeable the exponential speedup provided by the proposed execution cores. In a su-

perior performance in this aspect, the VE and the VE+SE execution cores reach a top of

95% of reduction when compared to the standard execution core. Moreover, this graph

also denotes that SE speedup is not equally scalable as the didactic test cases had indi-

cated. Nevertheless, the SE execution core reaches a top scan time reduction of around

43%.

Program size versus performance (positive/negative speedup) graphs shown in

Figures 5.4, 5.5 and 5.6 also provide evidence that the higher the complexity of the rungs

is, the better is the achieved positive speedup. Although these graphs reinforce this find-

ing, SE does not show to be the best execution core, differently from the three didactic test

cases. SE shows, in fact, a plateau in the speedup around 175%. On the other hand, VE

and VE+SE have an exponential speedup growth as a function of program size. At last,

similarly to the trends previously identified, when there is a negative speedup, its value is

low and tends to zero as program size increases in all proposed improved cores.
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Figure 5.2: Program size vs. performance results

The graphs in Figures 5.7, 5.8 and 5.9 present the relationship between input count

and performance. The results show that the performance of VE and VE+SE degrades as

the input count grows. However, due to the memoization boost provided by the SE part

of the VE+SE execution core, it decreases a bit slower than VE. The almost constant

speedup of the SE execution core in Figure 5.8 is justified since this execution core is not

affected by edge occurrences, and so, neither by the input count variation.

Figures 5.10, 5.11 and 5.12 show the graphs of the relationship between rung count

and performance. The SE speedup value plateau, already observed in Figure 5.5, can also

be observed in Figure 5.11. The zigzag pattern in VE and VE+SE results is justified due to

the heterogeneity of the programs used in the batch simulation. The limitation of 100,000
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Figure 5.3: Program size vs. scan time reduction results

programs causes a larger step in the program simulation count, since the larger the rung

count is, the larger the number of different possible programs. A bigger simulation step

makes different program forms be simulated for each rung count, thus causing the zigzag

pattern. This conclusion was verified by simulating the same batch with a limitation of

10,000 programs, which resulted in a more pronounced zigzag with the same shape of

the tendency lines also observed in the presented graphs. Therefore, it is reasonable to

conclude that a larger number of tests will reduce the zigzag pattern following the graphs’

tendency lines.
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Figure 5.4: Program size vs. performance VE results
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Figure 5.5: Program size vs. performance SE results
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Figure 5.6: Program size vs. performance VE+SE results
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Figure 5.7: Input count vs. performance VE results
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Figure 5.8: Input count vs. performance SE results
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Figure 5.9: Input count vs. performance VE+SE results
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Figure 5.10: Rung count vs. performance VE results
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Figure 5.11: Rung count vs. performance SE results
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Figure 5.12: Rung count vs. performance VE+SE results
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Subsequently, by analyzing the minimum, average, and maximum speedup prob-

ability of batch results presented in Table 5.6, it is possible to notice that the SE core is

the best one in this attribute, followed by VE+SE, which has the best average speedup

probability value. VE execution core was considered the worst execution core also by

its minimum speedup value of -11% justified by the overhead in verifying several input

edges in the worst scenario. Nevertheless, the VE core has an average performance simi-

lar to the other execution cores, benefiting from the widespread scenarios where no input

variations occur, as can be observed in their results graphs.

Table 5.6: Speedup probability of results
Minimum Average Maximum

VE 39.00 96.44 100.00
SE 93.75 98.76 99.87

VE+SE 50.10 99.22 100.00

Finally, since all proposed execution cores have pros and cons, the selection of

which improved core to use will be determined by the application requirements, leaving

to the developer of the solution the selection of the most appropriate one. In any way,

proposed enhanced cores can contribute as a step ahead in enhancing PLC performance

by reducing the scan time.

5.2 Multiple Execution Units and Types Evaluation

As already mentioned, there is a lack of official or widely known PLCs’ bench-

marks, except for the initiative TC3 of the PLCopen committee (WAL, 2009) which is

unavailable and so does not apply to this research. Moreover, it is computationally unfea-

sible to evaluate all the large sets of all possible PLC programs in a continuation of the

evaluation method of Section 5.1, but for a larger batch. Then, as a middle-point solution,

to cover both extremes of PLC program formats, the second evaluation round considers

two types of PLC programs for evaluation: the full balanced and unbalanced ones.

The full balanced PLC program type is the most extensive possible program com-

posed of all the possible inputs of a given set in a given number of rungs. On the contrary,

the full unbalanced PLC program type is the smallest possible program with a minimum

of only one input of a provided set per each rung of a given number of rungs. By opting

for those two PLC program types as benchmark limits, the overall performance can be

evaluated since any other PLC program shape will be an intermediary category between
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those two extreme types.

Besides adopting the full balanced/unbalanced program types as benchmarks, the

second evaluation round also chooses the arithmetic mean of the number of execution

cycles obtained for all the possible combinations of inputs’ edges and/or rungs’ mem-

oization events as a performance evaluation parameter. As already justified, arithmetic

mean it is a fair metric to evaluate the overall performance of the proposed improvements

which avoids introducing any bias in the evaluation that may emerge by selecting the best

or worst case of any simulation scenario.

Therefore, the arithmetic mean of execution cycles of the improved architectures

obtained from different simulation cases is computed in the CAS and then compared

against the standard architecture performance as a baseline following the literature pat-

terns (BOLTON, 2015) (WEBB; REIS, 1998) (LEWIS, 1998). Afterward, the calculated

percentage difference in cycles is taken as the scan time reduction for the corresponding

core. This calculation is a reasonable assumption since the execution phase of the scan

cycle is the only part of the scan cycle that was enhanced in this research (the stages of

reading from the inputs and writing to the outputs were not modified), and, consequently,

a change in the execution time is the single aspect that affects the scan time duration.

Moreover, as discussed above, the developed CAS requires several input parame-

ters to execute. Then, to cover all those requirements, as an advantage of the custom-made

CAS development, and to speed up the generation of necessary simulation data, additional

modules of the CAS were coded to streamline the execution of batches by simplifying

batch execution parameters to a fewer count. Additionally, improvements in the accuracy

of the CAS were made for the simulations of this Section, which result in an average

difference of 5% in performance when compared to Section 5.1 results. Therefore, the

results shown in this Section were the ones considered for the conclusions of this work.

As shown in the simulation workflow in Figure 5.13, the CAS assembly builder

module receives from the batch executor module the rungs’ definition values (input count,

rung count, and instructions per rung) to generate the assembly programs using all in-

structions available in the ISA for both full balanced and unbalanced PLC program types.

The assembler module takes the assembly program and not only produces machine code

for the instructions themselves but also additional program data required by VE and SE

improved cores. Then, generated program data are appropriately loaded into the cur-

rent PLC’s core, which may be of multi-cycle or pipeline execution unit type, and for a

standard or improved core type with a defined count of execution units. Next, the batch
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executor generates the control signals necessary to the PLC core that is currently in sim-

ulation and, once finished, collects the performance data to store into result files. Finally,

once all possible simulations were completed, the results analyzer module obtains the

simulations’ result files and generates new filtered result files for graphical presentation.

Figure 5.13: Simulation work flow
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The adoption of the simulation workflow of Figure 5.13 allows that any simulation

batch may be initiated with a simple set of four parameters: inputs count, rungs count,

instructions per rung and execution units count. This small group of parameters is enough

for the CAS to generate all required performance results for all the cores, programs, and

execution unit types. Hence, the simulation parameters were set starting with initial val-

ues of 5 for inputs and rungs, 10 for instructions per rung, and 1 for execution unit count,

with increments of 5 for inputs and rungs, 10 for instructions per rung, and 2 times the

previous value for execution units count. Then, simulations were executed until perfor-

mance values reached stagnation in the scan time reduction, which had occurred with 15

inputs, 15 rungs, 100 instructions per rung, and 16 execution units count, thus avoiding

the need to execute simulation batches with larger values.

Keeping the same strategy to avoid introducing deviations into the evaluation of

the results, the computed scan time reductions were classified into worst and best case

values. This categorization approach not only simplifies the presentation of results but

also situates within which boundaries the performance boost of the execution cores was

established since any other result will be a value between the worst and best case limits.

As can be observed in Figures 5.14 and 5.15, the VE core is quite affected by

the PLC program type, since its performance boost comes from avoiding the execution

of rungs. With several inputs belonging to each rung in a full balanced PLC program

type, every single detected edge results in several rungs to be scheduled to execute. Thus,

an extensive verification process culminates in an increase in the scan time. Although

this increase in the scan time may be considered as an overhead, the perceived overhead

tends to zero with the increase in the number of instructions per rung. Nevertheless,

in a full unbalanced PLC program type, the VE core partially outperforms the SE core

with substantial reductions already with lower values of instructions per rung, as can be

observed in Figures 5.14 versus 5.16 and 5.15 versus 5.17. Hence, with the increase in

the number of instructions per rung, the scan time reductions tend to the same plateau for

both the VE and SE cores.

Since the SE core is not affected by input edges and, consequently, neither by

PLC program type, similar results are observed for both balanced and unbalanced PLC

program types, as displayed in Figures 5.16 and 5.17. Notwithstanding, performance

deviations observed in Figure 5.16 are justified by the poor multi-cycle execution unit

performance, since in the results for the pipeline execution unit those performance differ-

ences tend to zero, denoted by the fact that the performance curves overlap each other in
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Figure 5.17.

Finally, a stable scan time reduction is observed in Figures 5.18 and 5.19, where

the combination of the VE and SE improvements presents a better overall performance

than the VE and SE improved cores alone. Only with the pipeline execution unit in a

full balanced PLC program type scenario, the VE+SE core presents a worse performance

than the SE core alone, which is explained by the poor performance of its VE section.

However, the performance difference is not so significant as in the standalone versions of

the VE and SE core types. As a performance evaluation conclusion, the VE+SE core can

be highlighted as superior to the VE and SE cores alone, especially considering that in

real applications the PLC programs tend to be more unbalanced than balanced.

As can be observed in the results for the single execution unit cores, in general, the

proposed improvements result in substantial scan time reductions compared to a standard

PLC architecture. However, considering the type of the execution unit, the pipelined

unit has a lower scan time reduction, since it is an already enhanced execution unit, so

its standard baseline has a higher performance value than the multi-cycle execution unit.

From another perspective, in the analysis of both full balanced/unbalanced PLC program

types, the difference in performance between the VE and SE improvements presented in

the results is remarkable.

Likewise, the performance differences between VE and SE cores in single execu-

tion unit types, considering the PLC program type, are also observed in the performance

of multiple execution units. Notwithstanding, a small scan time reduction is perceived in

the VE+SE core with more than one execution unit, where even its SE part is insufficient

to keep its performance, as shown in Figure 5.25. Even though, similarly to cases with

one execution unit, this result is better than in the case with a single VE core, as can be

observed in Figure 5.21.

By analyzing the scan time reductions for single and multiple execution units, it

is possible to draw relevant conclusions. The VE+SE core is, in general, a better solu-

tion, with better values in the best cases and average numbers in the worst cases of scan

time reductions. The SE core is a balanced solution, with similar numbers for both the

best and worst scan time reductions. Finally, the VE core may be considered the worst

improvement with a substantial execution overhead in full balanced PLC program types,

which is not entirely compensated by its partially superior performance in full unbalanced

program types with small values of instructions per rung.
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Figure 5.14: Single execution unit multi-cycle VE results
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Figure 5.15: Single execution unit pipeline VE results



59

Figure 5.16: Single execution unit multi-cycle SE results



60

Figure 5.17: Single execution unit pipeline SE results
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Figure 5.18: Single execution unit multi-cycle VE+SE results
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Figure 5.19: Single execution unit pipeline VE+SE results
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Figure 5.20: Multiple execution units multi-cycle VE results
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Figure 5.21: Multiple execution units pipeline VE results
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Figure 5.22: Multiple execution units multi-cycle SE results
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Figure 5.23: Multiple execution units pipeline SE results
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Figure 5.24: Multiple execution units multi-cycle VE+SE results
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Figure 5.25: Multiple execution units pipeline VE+SE results
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5.3 Trade-off analysis of performance and area

Higher execution performance is not the only desired characteristic since it typi-

cally demands a large silicon area, so this requirement must also be evaluated to reach a

robust inference on which PLC core is the best from a more global perspective. To obtain

a silicon area measurement for the various core types, the McPAT framework (LI et al.,

2009) was selected due to its simple utilization and substantial accuracy.

To determine the impact in the silicon area of the proposed architecture in Mc-

Pat, the selected strategy was to outline the differences between the various improved

PLC cores. The main differences between proposed cores regard execution unit quantity,

register count, number of arithmetic logic units (ALUs), and memoization memory size.

Considering these differences, the architectures were mapped into appropriate parameters

in McPat, where at the particular case of the memoization memory size, it was consid-

ered as L1 cache size. Then the area overheads were calculated based on the variation

concerning the corresponding architecture of the same type containing a single execution

unit.

As observed in Figures 5.26 and 5.27, the cores with the pipeline execution unit

type has a lower impact on the area overhead since this type of execution unit is already

an enhanced architecture component, thus requiring a more extensive area in the baseline

core. Naturally, for both multi-cycle and pipeline execution unit types, the area overhead

increases as the number of execution units increases (the number of execution units is

denoted by the small number inside each symbol of the graphs). Figures 5.26 and 5.27

also demonstrate that the superior average performance of the SE core, and consequently

also of the VE+SE core, has a high cost in terms of silicon area when compared to the

standalone VE core.

Moreover, the results presented indicate that the VE core may be considered the

best one in the trade-off between performance and silicon area. The advantage of the VE

core is even more pronounced when considering that the memoization memory size of

128KB used for silicon area calculation of the SE and VE+SE cores is sufficient to merely

store a whole set of memoization cases of a fully balanced program type of 2 rungs with

10 inputs each since each memoization key has 64 bits. There is an even more significant

advantage for the VE core when we consider that the batch performance measurements

were based on a simulation option with an unlimited memoization memory size. This

simulation option was chosen because determining the optimal size of the memoization
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memory is a subject out of the scope of this work. The precise determination would

require a more detailed study; thus, no specific value was also adopted to avoid a biased

simulation that could emerge depending on the chosen memoization memory size.

Other aspects that must be addressed as future work are the implementation of the

function to be used to search for an item in the memoization memory and the number of

cycles spent in the memoization checker verification process, with a realistic value for the

miss penalty in cycles, which was considered as just one cycle for this experimental study.

Similar to precise size determination, search function implementation and determination

of verification/miss penalty cycles are also out of the scope of present work. With this

simplified assumption, this work indicates a maximum performance that SE improvement

can achieve, which will guide the direction of future work.

From another perspective, the memoization memory does not need necessarily to

accommodate the full range of possible memoization events to achieve its best perfor-

mance in a real PLC application, since only the most recurrent memoization events need

to be cached. Therefore, the memoization memory size can be reduced to decrease the

area overhead, thus moving the values of the cores containing the SE improvement to the

left on the X-axis of Figures 5.26 and 5.27.

5.4 Final Considerations from the Experimental Results

Lastly, after analyzing batch results for the proposed improvements, along with

the trade-off between area overhead and average performance, it is possible to assess the

pros and cons of the proposed VE and SE improvements, execution unit types, number of

execution units, and then reach some firm conclusions.

The VE core presents a significant performance boost, particularly in unbalanced

PLC program types, thus partially compensating its worst performance in balanced PLC

program types. It offers the best trade-off between performance and area overhead among

the proposed cores. Hence, the VE core is the first choice to improve PLC architectures,

at least for the best cases of the most unbalanced program types, with a minor impact on

silicon area overhead.

Despite its stable performance, the SE core has a substantial area overhead corre-

lated with the size of its memoization memory. This drawback could be partly avoided

with an enhancement in the memoization memory, with the addition of a ranking mecha-

nism that keeps cached the top requested values, thus allowing to reduce the memoization
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memory size. This new enhancement would maintain the performance benefits of the SE

core, but certainly with a smaller silicon area usage.

The implementation of an enhanced ranked memoization memory would also be

favorable to the VE+SE core, also reducing its bad trade-off between area overhead and

performance. Moreover, since the VE+SE core includes all the proposed improvements, it

would be perfect for a refined execution model in which the usage of its SE and VE parts

could be enabled/disabled in the PLC program development stage or on-the-fly during

execution. This dynamic switching could help avoid the disadvantages of both VE and

SE cores in specific PLC programs, by turning off architectural components at a particular

state of the workload or by PLC program developer decision.

Simulation batch results and calculated silicon area values delimited the pros and

cons of the proposed architectural improvements and allowed this research to draw con-

crete conclusions in this regard. By its superior performance in unbalanced program

types, combined with its low silicon area impact, the VE improvement is the first choice

for low-end PLC devices, especially for monotonous systems, where a prompt response

not found in standard PLCs is required. In middle-end PLC devices, compensating its

downside of increment in the silicon area, the SE improvement is ideal to obtain supe-

rior performances by keeping reduced scan times even in applications with several input

edges, where a standard PLC does not show adequate performance. Lastly, for high-end

PLC devices, for which performance and low scan times are mandatory requirements at

any cost, the VE+SE improvement has a balanced performance independently of PLC

program type, keeping performance at superior overall levels when compared to standard

PLC cores.

Finally, since all proposed improved cores have, in general, superior performance

over standard PLC architecture cores, they can be used to achieve scan time reduction

even if based on execution units with weak performance, like the multi-cycle one, avoid-

ing more complex execution units or even multiple execution units. Consequently, with

a fraction of the area of more complex solutions, the proposed improved cores can be

adopted with advantages in commercial PLC devices.
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Figure 5.26: Multiple execution units multi-cycle area vs performance results
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Figure 5.27: Multiple execution units pipeline area vs performance results
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6 CONCLUSIONS AND FUTURE WORK

Despite their importance in the industrial automation design space, the perfor-

mance of PLCs is not a recurrent or widespread subject in current scientific research.

Contrary to general-purpose processors, whose performance exponentially grew accord-

ing to Moore’s law in the last decades, the absence of improvements in PLCs’ computa-

tional power has reduced them to mere controllers, instead of central processing units in

automation systems. In an attempt to increase its performance, this work used enhance-

ments for PLC architectures, namely VE and SE, along with different types and quantities

of execution units, to boost PLC execution performance based on scan time reduction.

The proposed improvements have different pros and cons, so the applications for

them are different. The VE improvement is advised for low-end PLC devices due to its

low silicon area impact combined with substantial performance improvement in unbal-

anced diagrams and monotonous systems. By its superior performance in any diagram

but with a high silicon area cost, the SE improvement is recommended for middle-end

PLC devices. Lastly, high-end PLC devices should use the VE+SE improvement for its

superior performance, justifying its more substantial silicon area cost.

Moreover, independently of the adopted type of execution unit, all proposed im-

provements in the PLC architecture show superior performance boosts when compared to

standard architectures, even using multiple execution units. This experimental conclusion

justifies the usage and importance of these improvements to enhance PLC performance,

instead of a simple increase in the number of execution units of a standard PLC core.

Besides a study to determine the best SE memoization memory check/miss cycles

and size, another future work for this research is the development of an enhanced ranking

mechanism for the memoization memory to keep cached the most requested values, thus

allowing a reduction of its size and, consequently, of its silicon area usage. Another

extension of the present work would be adding the functionality to enable/disable each

part of the improved VE+SE core, thus allowing it to benefit from the standalone VE

or SE characteristics, according to the developer’s option or even on the fly depending

on execution workload. Finally, the translation of the developed CAS simulator to real-

world hardware in an FPGA, or even as an ASIC, is a future priority task of this research

as a step ahead to bring the PLC devices back to their role as central processing units in

automation technology contexts.
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APPENDIX A — CLASS DIAGRAMS OF THE CAS

Figure A.1: CAS high level classes diagram
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Figure A.2: CAS single execution unit multi-cycle classes diagram

Figure A.3: CAS single execution unit pipeline classes diagram
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Figure A.4: CAS multiple execution units multi-cycle classes diagram

Figure A.5: CAS multiple execution units pipeline classes diagram
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Figure A.6: CAS single execution unit VE improvement classes diagram
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Figure A.7: CAS multiple execution units VE improvement classes diagram
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Figure A.8: CAS single execution unit SE improvement classes diagram
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Figure A.9: CAS multiple execution units SE improvement classes diagram
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Figure A.10: CAS single execution unit VE+SE improvement classes diagram
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Figure A.11: CAS multiple executions unit VE+SE improvement classes diagram
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