
Evaluation of Compilers Effects on OpenMP Soft Error Resiliency
Autor: Jonas Gava¹ Orientador: Ricardo Reis²

 Instructions Profile

The occurrence of soft errors in multicore systems is a growing
reliability issue in several domains (e.g., automotive, medical, avionics)

Both programming models and compilers have a direct impact on
applications performance, power-efficiency and reliability

Necessity to investigate soft error resilience of parallel applications using
different compilers as HPC importance grows.

Contributions

Experimental Setup

Investigation of the impact of distinct compilers on the soft error reliability of
applications implemented with OpenMP library
Evaluation on single-core, dual-core and quad-core ARM processor.
Analysis of applications executed instructions
Analysis of registers usage
Analysis of the impact of code optimisation flags on reliability

FI Result for each Compiler/Flag (Single-Core) FI Result for each Compiler/Flag (Quad-Core)

Processor
Arm Cortex A72

Software Stack

Linux (kernel 4.3)

Clang 6.0, GCC 5.5, and 7.3

OpenMP LIbrary

Optimisation Flags

O1, O2, O3, Os, Ofast

Number of Applications: 16

Single Event Upset

Total Fault Injections: 691,200

This work evaluates the reliability of OpenMP application
executing on a multicore system through 864 scenarios using
three compilers, three processor-core variants (i.e., single-core,
dual-core, quad-core) and five optimisation flags. We conclude
that when the complexity of the system increases (e.g., more
cores) the difference of faults masked between compilers
reduce, but on average Clang is around 10% more reliable than
GCC for all experimental variations we did.

Departamento de Informática Aplicada

Grupo de Microeletrônica

Instituto de Informática

Campus do Vale, Bloco IV. Prédio 43413

¹ jfgava@inf.ufrgs.br

² reis@inf.ufrgs.br

Results

Introduction and Motivation

Results Mismatch for each Application Clang vs GCC 7 (Quad-Core) Conclusions

Instructions were classified as:
Mem, memory op. (e.g., ld, st, mov);
Ctrl, control flow (e.g., bne, jump);
Alu, arithmetic and logic op. (e.g., add, sub, mul)

In general, Clang generates more memory instructions while GCC
generates more control and arithmetic instructions.

The use of Clang brings stable reliability results. For all flags, the minimum
Vanished is 75.09%, and max is 75.33%. In turn, GCC compilers show a
direct correlation between optimisation flags and reliability. For instance,
when comparing the GCC5 O0 and Ofast, it is possible to identify an
improvement of 10.5% on Vanished.

When we increase the number of cores, it considerably decreases the
reliability of the system, increasing OMMs and reducing Vanishes. With
quad-core and maximum code optimisation, all compilers present similar
results, with a more considerable difference between Clang and
GCC7—Vanished (5.38%) and OMM (4.95%).

This figure shows the mismatches between the results of the fault injections
(i.e., Clang (%) − GCC 7 (%)) per application. The positive blue bars indicate
the reliability improvement from Clang comparing with GCC 7.

