Universidade: presente!

XXXI SIC

21.25. OUTUBRO . CAMPUS DO VALE

AVALIAÇÃO DO CICLO DE VIDA APLICADA A MOBILIDADE URBANA: UM ESTUDO DE CASO EM PORTO ALEGRE, BRASIL

Autora: Acad. Michelle Zanettini Leichter I Orientadora: Prof^a. Ana Carolina Badalotti Passuello I Instituição de origem: UFRGS

POR QUE ACV DE MOBILIDADE?

O setor de transporte brasileiro é sutentado primordialmente por rodovias. De acordo com um estudo publicado no Observatório do Clima ", o transporte rodoviário, no Brasil, é protagonista na emissão de gases poluentes na atmosfera. Ao todo, 189 milhões de toneladas de poluentes saíram do transporte rodoviário no brasil em 2016.

COMO REVERTER ESSA SITUAÇÃO?

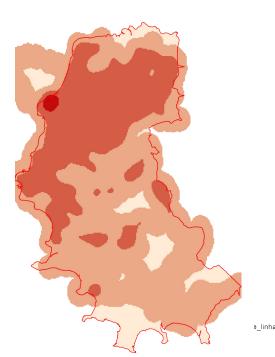
Nesse cenário, os tomadores de decisão devem ser apoiados com informações confiáveis sobre os impactos ambientais, sociais e econômicos, e a ferramenta de Avaliação do Ciclo de Vida (ACV) pode fornecer resultados adequados e um esclarecimento propulsor a elaboração de políticas públicas visando o desenvolvimento sustentável.

OBJETIVO DO TRABALHO

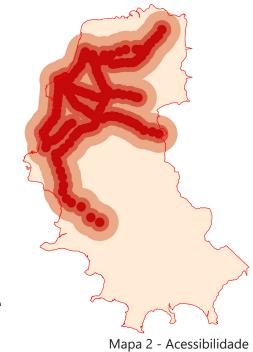
Nesse contexto, o objetivo da presente pesquisa é desenvolver um estudo de caso, baseado na metodologia de ACV territorial, com o intuito de auxiliar a visualização dos impactos ambientais presentes no cenário atual de transporte público (ônibus) da cidade de Porto Alegre.

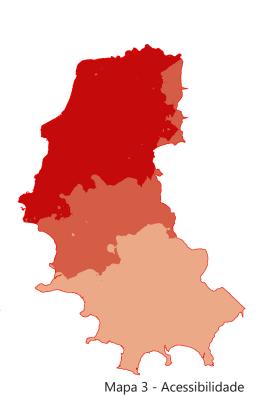
DEFINIÇÕES DE ANÁLISE

É definido um estudo de caso que propõe avaliar os impactos de deslocamento entre o centro comercial e um bairro residencial periférico de baixa renda.


METODOLOGIA

A metodologia adotada se dá num sequenciamento de quatro etapas básicas facilitadoras de uma estruturação geral para a presente análise. As fases iniciais reconhecem e embasam a problemática a ser desenvolvida sendo a mesma essencialmente delimitada pela metadologia já comprovada de ACV (Avaliação do Ciclo de Vida) como ilustrado abaixo:


FASE 1	FASE 2	FASE 3	FASE 4	
Revisão Bibliográfica e Definição do Estudo de Caso: Sendo definida após		Avaliação de impacto: Nesta fase, os fluxos definidos		
análises iniciais a escolha de bairros afastados do Centro da Cidade.	siderando o consumo de recursos (entradas) e as	no inventário são converti- dos em impactos ambientais através da multiplicação dos	busca-se identificar as questões significativas	
Objetivo e escopo: definição da unida- de funcional, as etapas do ciclo de vida a serem analisadas, estratégias para o inventário e da avaliação de impactos.	ACV do produto, dentro	valores brutos por fatores de equivalência que remetem a resultados em unidades co- muns, como por exemplo, kg de CO2 equivalentes.	conclusões, as limita- ções e as recomenda-	


ANÁLISE GLOBAL

A partir da adoção de Mobilidade Urbana e da cidade de Porto Alegre como como temáticas do estudo de caso e considerando o acesso universal a serviços de transporte desponta como meio imprescindível para inserção do cidadão na sociedade. Foram analisadas, através de softwares de GIS a relação de acessibilidade na Cidade de Porto Alegre. Abaixo são ilustrados os resultados divididos em 4 categorias:

das Paradas de Ônibus

das Paradas BRT

Sistema Viário

ENFOQUE

DINÂMICA DA MOBILIDADE

Deslocamento de pessoas e bens Meio de inserção do cidadadão na sociedade Infraestrutura

Segregação socioespacial

Transporte Público x Veícu-

lo Privado

AVALIAÇÃO DO CICLO DE VIDA

Informações quantitativas Impactos ambientais, sociais e econômicos Fases do ciclo de vida Comparação de cenários

ı Identificação dos pontos ı

críticos no ciclo de vida

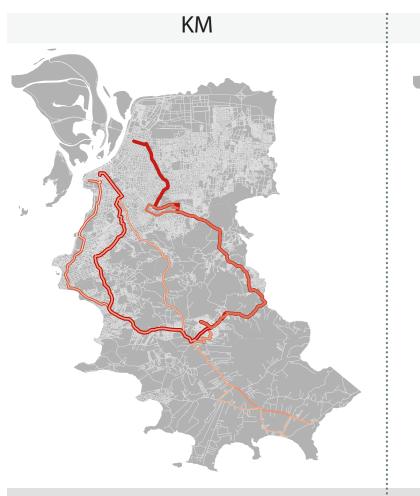
DINÂMICA **CONJUNTA**

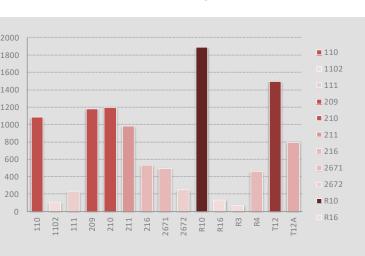
Maior conhecimento dos Impactos

Esclarecimento dos tomadores de decisão

Visualização gráfica e i quantitativa de cenários Indicação de caminhos para possíveis mudanças futuras

CENÁRIOS


		iiiii				\longrightarrow				
RESTINGA	→	172 passageiros	→	linha 110	→	26,6 km	\rightarrow	CENTRO		
RESTINGA	→	168 passageiros	→	linha 1102	→	21,6 km	→	CENTRO		
RESTINGA	→	81 passageiros	\rightarrow		→	26,7 km	\rightarrow	CENTRO		
RESTINGA	→	149 passageiros	\rightarrow		→	25,8 km	\rightarrow	CENTRO		
RESTINGA	→	111 passageiros	→	linha 210	→	26 km	→	CENTRO		
RESTINGA	→	197 passageiros	\rightarrow	linha 211	→	26 km	\rightarrow	CENTRO		
RESTINGA	\rightarrow	138 passageiros	\rightarrow	linha 216	→	19,2 km	\rightarrow	CENTRO		
RESTINGA	→	114 passageiros	\rightarrow	linha 2671	→	35,3 km	\rightarrow	CENTRO		
RESTINGA	→	178 passageiros	→	linha 2672	→	41,7 km	\rightarrow	CENTRO		
RESTINGA	→	205 passageiros	\rightarrow	linha R10	→	25,9 km	\rightarrow	CENTRO		
RESTINGA	→	169 passageiros	\rightarrow	linha R16	→	22,2 km	\rightarrow	CENTRO		
RESTINGA	→	177 passageiros	\rightarrow		→	24,9 km	\rightarrow	CENTRO		
RESTINGA	→	231 passageiros	→	linha T12	→	28,9 km	\rightarrow	ZONA NORTE		
RESTINGA	→	100 passageiros	\rightarrow	linha T12A	→	25 km	\rightarrow	PARTENON		
o horário entre 7:00 e 8:00 da manhã do automóvel de prefixo que apresenta maior lotação.										


*dados fornecidos pela EPTC; valores considerando rota no h

AMOSTRA DE RESULTADOS PRELIMINARES

Foram analisados diversos cenários levando em consideração difentes categorias de impacto, bairros, rotas e trechos. Os mapas abaixo são uma amostragem dessas análises, sendo os mesmos referentes a média diária dos dias úteis do mês de agosto de 2018 das linhas circulantes no bairro Restinga - Porto Alegre, considerando o sentido bairro centro. Foi detalhado mais profundamente os impactos de tal localidade considerando as características do mesmo, como um dos mais populosos da capital, com renda por domicílio baixa e poucos postos de trabalho em sua delimitação geográfica e entorno imediato. Por conseguinte um dos que mais demanda mobilidade em si, em especial transporte coletivo de qualidade.

PASSAGEIROS

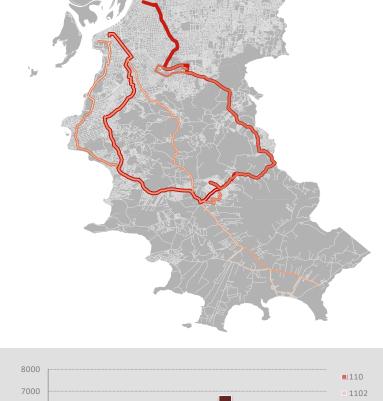
No gráfico e figura acima percebe-se que a

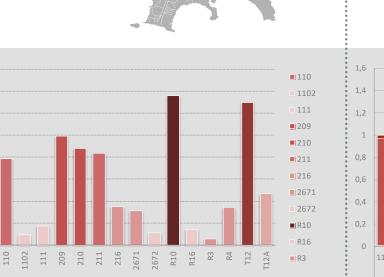
linha R10 é a que percorre mais km, apesar de

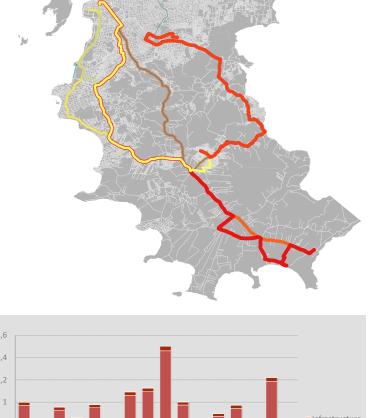
não ser a rota mais longa. Tal fato se dá pela

maior quantidade de ônibus circunlantes des-

sa linha em horários próximos, a partir dessa


informação pode-se hipotetizar que há mais


Outro aspecto a ser considerado é que tal


linha apresenta número significativamente

menor de paradas e por conseguinte menor

demanda de passageiros para essa linha.

GWP

No gráfico e figura acima percebe-se que a linha R10 é a linha mais utilizada pela população, seguida pela linha T12, 209, 210, etc. Pode-se hipotetizar que existe dois fatores prepoderantes para a existência de tal realidade: a linha R10 tem mais fluxo de ônibus como ilustrado na figura ao lado e a linha T12 é a única linha a fazer a conexão direta entre o bairro Restinga e o eixo zona norte (Assis - Brasil -Sertório) local com grande quantidade de postos de trabalho, só sendo vencido obviamente pela zona central.

Os impactos consideram a unidade funcional passageiro.trecho e consideram a categoria de impacto de GWP (Potencial de Aquecimento Global) considerado em kg eq- de CO2. Percebe-se obviamente uma correlação da diminuição do impacto com o aumento do número de passageiros e diminuição quanto ao menor o número de quilômetros percorridos. As linhas 2671 e 2672 apresentam maior impacto considerando que percorrem as maiores distâncias partindo do Lami ao Centro. A linha T12A parte da Restinga até o Partenon, circulando em locais de baixa densidade po-

AGRADECIMENTOS

tempo para chegada até os destinos.

pulacional.

