

Evento	Salão UFRGS 2019: SIC - XXXI SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2019
Local	Campus do Vale - UFRGS
Título	SÍNTESE DE PÓS NANOMÉTRICOS DE ÓXIDO DE ZINCO
	USANDO AMIDO DA CASCA DE MANDIOCA E DO MILHO
Autor	BRENDA CAMARGO BRAMBILLA
Orientador	VANIA CALDAS DE SOUSA

Universidade Federal do Rio Grande do Sul

SÍNTESE DE PÓS NANOMÉTRICOS DE ÓXIDO DE ZINCO USANDO AMIDO DA CASCA DE MANDIOCA E DO MILHO

Brenda Camargo Brambilla

Vânia Caldas de Sousa

A obtenção de processos de síntese de pós nanométricos para as diversas aplicações, que sejam ambientalmente sustentáveis e com custo cada vez menor, apresenta-se como grande motivador no campo da pesquisa em materiais na atualidade. Deste modo, este projeto se insere neste contexto com vistas à obtenção de ZnO nanométrico com a utilização de amido de mandioca e de milho. O óxido escolhido para síntese teve como motivador o fato de que o óxido de zinco é um material que pode ser usado para muitas aplicações, como por exemplo eletrodos para células solares, ativadores de aceleração química e fotocondutores. O ZnO também é considerado ambientalmente amigável e graças ao seu baixo custo dá uma nova perspectiva para a "eletricidade verde". Embora o amido natural já tenha sido utilizado para a síntese de óxidos, como o CeO₂, via processo sol gel, o mesmo ainda não foi utilizado para a síntese do ZnO pelo mesmo processo de síntese. Portanto, neste trabalho foi usado o amido de mandioca e o amido de milho como agente gelificante, objetivando um processo de baixo custo para obtenção de ZnO por rota sol-gel. A utilização do amido natural permitiu a síntese de pós nanométricos de ZnO na fase Zincita (50nm) após tratamento térmico a 500°C durante 2 horas, com dimensões semelhantes aos obtidos usando amido sintético.

Palavras chave: ZnO, síntese de pós, amido natural, sol-gel