
       Results 

We ran the ranking comparison without buckets and due to small prediction errors on F1-Scores the method position on the 
original and predicted rankings changed. As Kendall tau only considers the elements’ position in the ranking, values that are 
very close to each other may still impact on the distance despite a possibly insignificant difference. In this sense, we 
defined buckets’ intervals corresponding to the expected performance: [0.00; 0.50) very bad; [0.50; 0.75) bad; 
[0.75; 0.90) good; [0.90; 1.00] very good. The results with and without buckets are presented on Table 1. 

As expected, the results improved with buckets. There are cases, such as the Sloan digital sky survey and gesture 
classification that presented a higher distance between rankings. Thus, in order to understand if the higher distances have 
been caused by the lower or higher buckets’ intervals, we count the disagreements between buckets (Figure 3). The results 
show that the middle buckets are disagreeing more than the extreme ones, which suggest that better methods 
predicted are, in fact, in the first positions on the original ranking.

      Conclusion 

There is no aggregation method that performs better in every case… 

… its performance depends on the problem’s intrinsic characteristics as observed on previous work. 

With this information, we were able to create a model that can be used as practical tool to guide the 
choice of the aggregation method for vertically partitioned machine learning problems.  

However, we’ve ignored one important characteristic due to the difficulty of quantifying it— data pattern — which should 
explain the results outliers.

       Introduction 

Machine learning with vertically partitioned data happens when features are in distinct sites and due to 
computational costs or privacy issues cannot be shared. When that happens, state-of-the-art algorithms no longer have a 
satisfactory performance on local data. Therefore, aggregation methods can be applied to group local 
prediction rankings in order to generate a global one. 
Growing concern about obtaining globally meaningful data mining results without sharing original information among 
sources have led to different methodologies for vertically partitioned ML. However, it is still unclear if any of these 
methods is particularly better than its counterparts, and whether their performance depends, at least partially, on 
database's characteristics.
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       Goals 

Perform a comparative evaluation of aggregation methods for vertical data partitioning and investigate their relations to the 
problem's intrinsic characteristics. Understanding the scenarios in which certain methods are more effective when dealing 
with classification in vertically partitioned ML, this study should help build a model to guide the choice of the most 
promising aggregation methods given the problem’s intrinsic characteristics.

       Methodology 

 Data Extraction In order to extract the models' 
performance the following pipeline (Figure 1) was 
executed. Five vertically partitions were 
artificially generated from a given database 
representing five distinct sites. After data partitioning, 
each partition is assigned to a base classifier, which 
uses it as input. For training and testing the local and 
global models, an adapted 10-fold cross 
validation was used in order to minimize any bias in 
per formance eva luat ion and a l low proper 
comparison among results. This process was 
repeated ten times, aiming to avoid an evaluation 
biased by partitions composed solely with the most 
informative features. We ran the experiment over 
46 databases, whose main criteria for selection 
was the diversity in their characteristics, such as (i) 
number of instances, (ii) number of classes, (iii) 
number of features, (iv) imbalance degree between 
classes, (v) average silhouette coefficient, (vi) 
number of binary features, (vii) majority class size, 
and (viii) minority class size. The F1-Score micro-
average was used to evaluate the performance of 
the models. 

 Data Processing The F1-Score collected was 
summarised into its mean (Figure 2a) by dataset 
(Figure 2b) and grouped by aggregation method 
(Figure 2c). Each resulting group was joined with the 
respective datasets’ characteristics forming the input 
for the regression model (Figure 2d). The 
regression models trained were used to create 
a ranking of predicted mean F1-Score (Figure 
2e) for each of the 10 test datasets. The original and 
predicted rankings were ordered  (Figure 2f) and 
compared using Kendall tau distance. Intuitively, 
the Kendall tau distance measures the number of 
exchanges needed in a bubble sort to convert one 
ranking to the other. The concept of buckets of 
ranking elements was also used aiming to reduce 
the non-significant F1 Score differences. An element 
of a ranking belongs to a bucket if its F1-Score is in 
the bucket’s interval. Elements in the same bucket 
have the same ranking position.

Figure 1. Pipeline for collecting models’ performance.

Figure 2. Pipeline for data processing.

Figure 3. Buckets’ disagreements count (normalised). The cells with no value represent the lack of buckets.

Dataset Kendall tau distance (normalised) Kendall tau distance using 
buckets (normalised)

Sloan digital sky survey 0,54 0,44
Gesture classification 0,52 0,40

Steel plates’ fault prediction 0,50 0,41
First order theorem proving 0,59 0,44
Life expectancy prediction 0,47 0,25

Credit approval 0,58 0,20
Pulsar star prediction 0,48 0,47

Turkey political opinions 0,64 0,30

Speech recognition 0,44 0,29

Income classification 0,53 0,34
Table 1. Ranking comparison results. The lowest values are highlighted in green and the higher ones in red.
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