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Abstract

We introduce an integrable model for two coupled BCS systems through a solution of the Yang–
Baxter equation associated with the Lie algebrasu(4). By employing the algebraic Bethe ansatz,
we determine the exact solution for the energy spectrum. An asymptotic analysis is conducted to
determine the leading terms in the ground state energy, the gap and some one point correlation
functions at zero temperature.
 2002 Published by Elsevier Science B.V.
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1. Introduction

The role of the Yang–Baxter equation in the study of quantum mechanical models
has a long and distinguished history. Notable examples are theXYZ chain [1], thet–J
model at supersymmetric coupling [2] and the Hubbard model [3], each of which is both
integrable and exactly solvable as a result of the formulation for each model through the
Quantum Inverse Scattering Method (QISM). The key concept of the QISM is the notion
of mutually commuting transfer matrices, the existence of which is a result of the Yang–
Baxter equation. In each of the above examples the Hamiltonian of the model is defined as
the logarithmic derivative of the transfer matrix, and by the nature of the construction this
yields a model defined on a one-dimensional lattice with nearest neighbour interactions,
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where it is possible for both integrability and solvability to hold for a variety of boundary
conditions.

The application of the QISM however can be applied on a much more general level.
In the context of the present work, it is appropriate to mention, for example, the work
of Gaudin [4] in relation to the construction of systems with long range interactions.
Very closely related to Gaudin’s Hamiltonians is the BCS model, the exact solution of
which was quite remarkably found in 1963 by Richardson [5], while integrability was
established much later by Cambiaggio et al. in 1997 [6]. The exact solution of the BCS
model has come under close scrutiny in recent years due to its application in the theory
of metallic nanograins [7]. Specifically, the experiments of Ralph, Black and Tinkham
[8] have shown that it is not valid to apply the BCS mean field theory for systems of
nanoscale size. As a result, one has to turn to the exact solution of Richardson in order to
conduct a reliable analysis. However, the approaches adopted in [5,6] make no reference
to the Yang–Baxter equation or the QISM (indeed QISM was not developed until many
years after Richardson’s work), and since historically the two facets of integrability and
solvability have been intimately linked in the QISM framework, it was a natural question
to ask whether the BCS model could be recast through this technique. An affirmative
answer was given in [9,10] with the surprising result that theR-matrix solution of the
Yang–Baxter equation which is needed in the construction of the BCS Hamiltonian is
one of the simplest known examples, being that associated with thesu(2) algebra. Given
that a great volume of literature exists devoted to solutions of the Yang–Baxter equation
associated with representations of simple Lie algebras, there is a vast opportunity to
investigate generalized models. An important step towards this has already been achieved
in [11] where a connection has been established between Chern–Simons theory and
integrability of models associated with an arbitrary Lie algebra, which is achieved through
the Knizhnik–Zamolodchikov–Bernard equations.

Such generalized models can be interpreted as coupled BCS systems, at least in the
sense that every simple Lie algebra can be generated by a system of simple roots which
each form ansu(2) subalgebra. An example of this was given in [12] where the Lie algebra
employed wasso(5). In this instance, the model constructed reproduces the one studied by
Richardson in 1966 [13] describing proton–proton and neutron–neutron pairing as well as
a coupling term for the scattering of proton–neutron pairs. Here we shall introduce a model
based on thesu(4) Lie algebra symmetry which can also be interpreted as a nuclear system
where there are now different types of pairing interactions. The Hamiltonian takes the
form of two BCS systems which individually describe pairing interactions for the protons
and neutrons and the scattering of bound proton pairs–neutron pairs, which is in contrast
to the proton–neutron pairs of [12]. This interpretation is possible because the number
operator for each system provides a good quantum number; i.e., the number operators are
conserved. Therefore we can identify each BCS system with a particular distinguishable
particle, which in this case are the protons and neutrons. It is worth remarking that this
situation is inherently different to the pairing models described in [14] based on higher spin
representations of thesu(2) algebra. In these cases, the only good quantum number is the
total number of particles in the combined system. There, individual particle numbers are
not conserved and thus the models can be interpreted as describing a Josephson tunneling
phenomena.



X.-W. Guan et al. / Nuclear Physics B 642 [FS] (2002) 501–514 503

The paper is organized as follows. In Section 2 we present the construction of the model
through the QISM. In Section 3 the exact solution of the model is given by means of
the algebraic Bethe ansatz. An analysis of the asymptotic solutions of the Bethe ansatz
equations is presented in Section 4, where the ground state energy, the gap in the spectrum
of elementary excitations, as well as the derivation of some correlation functions in this
asymptotic regime, are presented. A summary of the main results can be found in Section 5.

2. Coupled pairing Hamiltonian and integrability

Let us begin by introducing the following Hamiltonian

H = BCS(1)+ BCS(2)− g

Ω∑
j,k

b+
j (1)b

+
j (2)bk(2)bk(1)

+ g

Ω∑
j,k

b+
j (1)bk(1)

(
nj (2)− nk(2)

)2

(2.1)+ g

Ω∑
j,k

b+
j (2)bk(2)

(
nj (1)− nk(1)

)2
,

where

(2.2)BCS(a)=
Ω∑
j=1

2εjnj (a)− g

Ω∑
j,k

b+
j (a)bk(a).

Above the operatorsbj (a), b
+
j (a) are the annihilation and creation operators for the hard-

core bosons (or Cooper pairs) in systema, andj refers to the single particle energy level
with energyεj . We will assume that the valuesεj are distinct. Further,g is a coupling
strength constant for the scattering of Cooper pairs andnj (a)= b+

j (a)bj (a), is the Cooper
pair number operator. As in the case of the usual BCS system there is a blocking effect (e.g.,
see [7]), as there is no scattering of any unpaired states. For each levelj there are actually
sixteen local states, but the nature of the Hamiltonian means that only on a subspace
spanned by four of these states, where there are no unpaired states, is the scattering non-
trivial (see (2.7)). Hereafter we will restrict our analysis to this subspace.

On this restricted subspace the operatorsb+
j (a)= c

†
j↑(a)c

†
j↓(a), bj (a)= cj↓(a)cj↑(a),

wherecjσ , c
†
jσ , σ =↑,↓, are the familiar fermion operators, satisfy the hard-core boson

relations(
b+
j (a)

)2 = 0,
[
bj (a), b

+
k (b)

]= δabδjk
(
1− 2b+

j (a)bj (a)
)
,[

bj (a), bk(b)
]= [

b+
j (a), b

+
k (b)

]= 0, for k �= j.

We can see from the Hamiltonian expression that the exchange interaction of Cooper
pairs in one system depends on the number of Cooper pairs in the other system. For
example, if in system (1), the levelj is empty and the levelk is occupied by one Cooper
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Fig. 1.

Fig. 2.

pair, just for certain configurations of system (2) it is possible that this Cooper pair in (1)
scatters from levelk to j . This means that the Hamiltonian (2.1) presents naturally some
“selection rules” for the scattering of states. We illustrate these configurations to indicate
the possible pair scatterings in Fig. 1.

In addition, the double-pair scattering terms of the form (as shown in Fig. 2) are
also present. What the above indicates is that besides the number of Cooper pairs being
conserved in each system, the number of double pairs (to be more precise, the number of
energy levels which are completely filled) is also conserved. This can be seen in each of
the scattering processes depicted graphically above. In each case the scattering does not
overall change the number of completely filled levels. There are further symmetries in the
Hamiltonian. For example, there is a reflection symmetry which interchanges the labels 1
and 2 for the two BCS systems. This arises as a result of a globalso(3)⊕ u(1) symmetry
that the model possesses, which will be made more clear later. In that which follows we
shall first discuss the integrability of the Hamiltonian (2.1) in the context of the QISM.

In order to built up a mechanism to construct an integrablesu(4) pairing model, let us
first recall the quantumR-matrix associated with the Lie algebrasu(4), which acts in the
tensor product of two 4-dimensional spacesV ⊗ V and can be written as

(2.3)R(λ)= (λ.I ⊗ I + ηP)

(λ+ η)
.

Aboveλ is the usual spectral parameter,P is the permutation operator with matrix elements
Pαβ,γ δ = δαδδβγ , α,β, γ, δ = 1,2,3,4 andη is the quasiclassical limit parameter; i.e.,

lim
η→0

R(λ)= I ⊗ I.
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It is known that thisR-matrix satisfies the Yang–Baxter equation (YBE)

(2.4)R12(λ−µ)R13(λ)R23(µ)=R23(µ)R13(λ)R12(λ−µ).

The R-matrix may be viewed as the structural constants for the Yang–Baxter algebra
generated by the monodromy matrixT (λ), namely,

(2.5)R12(λ−µ)
1
T (λ)

2
T (µ)= 2

T (µ)
1
T (λ)R12(λ−µ).

Consequently, theR-matrix (2.3) allows us to construct a realization of the monodromy
matrix through

(2.6)T (λ)=G0R0Ω(λ− εΩ) · · ·G0R01(λ− ε1).

Here the subscript 0 denotes the auxiliary space andG satisfying

[R, G⊗G] = 0,

is a class ofc-valued solutions of the YBE (2.4). As a consequence of the Yang–Baxter
algebra (2.5), the transfer matricest (λ)= tr0T (λ) mutually commute for different values
of the spectral parameterλ. This transfer matrix is the starting point in the construction of a
su(4)-type Gaudin Hamiltonian, from which we can obtain thesu(4) pairing Hamiltonian,
as will be shown below. For this purpose we make the following identification for the basis
states

|1〉 = |0〉 = ,

|2〉 = b+(1)b+(2)|0〉 = ,

|3〉 = b+(1)|0〉 = ,

(2.7)|4〉 = b+(2)|0〉 = ,

and choose theG-matrix to be given by

(2.8)G≡ exp

[
2η(1− n(1)− n(2))

Ωg

]
=




exp( 2η
Ωg
) 0 0 0

0 exp(−2η
Ωg
) 0 0

0 0 1 0
0 0 0 1


 ,

to construct the transfer matrixt (λ). It can be verified that

t (εj )= tr0
{
G0R0Ω(εj − εΩ) · · ·G0P0j · · ·G0R01(εj − ε1)

}
=GjRj,j−1(εj − εj−1) · · ·GjRj1(εj − ε1)

×GjRj,Ω(εj − εΩ) · · ·GjRj,j+1(εj − εj+1)Gj {tr0P0j }
=GjRj,j−1(εj − εj−1) · · ·GjRj1(εj − ε1)

(2.9)×GjRj,Ω(εj −Ω) · · ·GjRj,j+1(εj − εj+1)Gj .
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Above tr0P0j = 1. Next, taking the quasiclassical limit, we find

(2.10)Rj,k(λ)|η→0 = I ⊗ I + ηrj,k(λ)+ O
(
η2),

(2.11)Gj |η→0 = I + 2η

Ωg

(
1− nj (1)− nj (2)

)+ O
(
η2),

whererj,k(λ)= Pj,k−1
λ

. Thus it follows that

(2.12)t (εj )|η→0 = 1+ η

(
τj −

Ω∑
k=1
k �=j

1

εj − εk

)
+ · · · ,

where

(2.13)τj = 2

g

(
1− nj (1)− nj (2)

)+
Ω∑
k=1
k �=j

∑4
α,β E

αβ

j E
βα

k

εj − εk
.

HereEαβ = |α〉〈β|, α,β = 1, . . . ,4 are the Hubbard operators. An immediate conse-
quence from the Yang–Baxter algebra (2.5) is that[τj , τk] = 0. In addition, as a result
of theso(3)⊕ u(1) symmetry mentioned earlier, it can be shown that there are extra con-
served operatorsK andχ such that

[τj ,K] = [τj ,χ] = [K,χ] = 0.

Above,K is the Casimir operator of anso(3) subalgebra acting on theΩ-fold tensor
product

(2.14)K =
Ω∑
j,k

(
L+
j L

−
k +L−

j L
+
k + 1

2L
0
jL

0
k

)
,

where (L0,L+,L−) are the basis elements of this canonicalso(3) subalgebra

L+ =E34 = b+(1)b(2),
L− =E43 = b+(2)b(1),

(2.15)L0 = E33 −E44 = n(1)− n(2).

Theu(1) operatorχ explicitly reads

(2.16)χ =
Ω∑
j=1

(
E33
j +E44

j

)=
Ω∑
j=1

(
nj (1)− nj (2)

)2
.

Any Hamiltonian which is defined in terms of the mutually commuting set of operators

(2.17){τj ,K,χ}
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will necessarily be integrable where the operators in (2.17) represent the constants of the
motion. By making the following choice

H = −g
Ω∑
j=1

εj τj + g3

16

Ω∑
j,k=1

τj τk + 3g2

4

Ω∑
j=1

τj + g

2
K

(2.18)+ g

2
χ(χ −Ω)+ 2

Ω∑
j

εj + gΩ2

4
− 2gΩ,

we produce the Hamiltonian (2.1). In order to determine the energy spectrum of this model,
we will need to determine the eigenvalues of the conserved operators, to which we turn
next.

3. Bethe ansatz solutions

Besides proving the integrability of the model, we can also obtain its exact solution
from the algebraic Bethe ansatz for the standardsu(4) vertex model constructed from
theR-matrix (2.3). Employing the nested algebraic Bethe ansatz [15] we can obtain the
eigenvalue of the transfer matrix (2.6) as

Λ
(
v, {λj }{ui}

)= e
2η
g

N∏
i=1

v − vi − η

v − vi

+ e
− 2η

g

Ω∏
i=1

v − εi − η
2

v − εi + η
2

N∏
i=1

v− vi + η

v − vi

M∏
l=1

v − ul − η
2

v − ul + η
2

+
Ω∏
i=1

v− εi − η
2

v− εi + η
2

M∏
l=1

v − ul + 3η
2

v − ul + η
2

Q∏
j=1

v −wj

v −wj + η

(3.1)+
Ω∏
i=1

v− εi − η
2

v− εi + η
2

Q∏
j=1

v −wj + 2η

v −wj + η
.

Above the parametersvj , um andwk satisfy the Bethe ansatz equations

e
− 4η

g

Ω∏
i=1

vj − εi − η
2

vj − εi + η
2

N∏
l=1
l �=j

vj − vl + η

vj − vl − η

M∏
l=1

vj − ul − η
2

vj − ul + η
2

= 1,

e
− 2η

g

N∏
i=1

um − vi + η
2

um − vi − η
2

=
M∏
i=1
i �=m

um − ui + η

um − ui − η

Q∏
l=1

um −wl − η
2

um −wl + η
2

,

M∏
l=1

wk − ul + η
2

wk − ul − η
2

=
Q∏
l=1
l �=k

wk −wl + η

wk −wl − η
,
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j = 1, . . . ,N, m= 1, . . . ,M, k = 1, . . . ,Q.

DefiningN(a)=∑Ω
j=1nj (a), we can readily determine that the quantum numbersN,M

andQ are given by

N =N(1)+N(2)−N(1)N(2),

M =N(1)+N(2)− 2N(1)N(2),

(3.2)Q=N(2)−N(1)N(2).

The eigenvalues of the integrals of motionτj (2.13) can be obtained from the expansion of
the eigenvalue of the transfer matrix (3.1) in the parameterη. Explicitly, the eigenvalues of
τj are given by

(3.3)Λj = 2

g
+

N∑
l=1

1

vl − εj
+

Ω∑
k=1
k �=j

1

εj − εk
,

where the parameters satisfy the following equations

4

g
+

Ω∑
i=1

1

vj − εi
+

M∑
l=1

1

vj − ul
= 2

N∑
l=1
l �=j

1

vj − vl
,

2

g
−

N∑
i=1

1

um − vi
− 2

M∑
l=1
l �=m

1

ul − um
=

Q∑
l=1

1

um −wl
,

M∑
l=1

1

wk − ul
= 2

Q∑
l=1
l �=k

1

wk −wl
,

(3.4)j = 1, . . . ,N, m= 1, . . . ,M, k = 1, . . . ,Q.

We will also need the eigenvalues of the operatorsK andχ . Through use of (2.15), (2.16),
(3.2) we find thatχ has eigenvalueM while the eigenvalues ofK are

1

2
(M − 2Q)(M − 2Q+ 2).

Finally, utilizing (3.3) and noting the following identities which can be derived from
(3.4):

Q∑
k=1

M∑
l=1

1

wk − ul
= 2

Q∑
k=1

Q∑
l=1

1

wk −wl
= 0,

M∑
m=1

N∑
i=1

1

um − vi
= 2M

g
,
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N∑
j=1

Ω∑
i=1

1

vj − εi
= −2(2N −M)

g
,

Q∑
k=1

M∑
l=1

ul

ul −wk
−

Q∑
k=1

M∑
l=1

wk

ul −wk
=MQ,

M∑
m=1

N∑
i=1

vi

vi − um
−

M∑
m=1

N∑
i=1

um

vi − um
=MN,

N∑
j=1

Ω∑
i=1

εi

εi − vj
−

N∑
j=1

Ω∑
i=1

vj

εi − vj
=NΩ,

Q∑
k=1

M∑
l=1

wk

wk − ul
=Q(Q− 1),

−2

g

M∑
m=1

um +
M∑
m=1

N∑
i=1

um

um − vi
+

M∑
m=1

Q∑
l=1

um

um −wl
=M(M − 1),

4

g

N∑
j=1

vj −
N∑
j=1

Ω∑
i=1

vj

εi − vj
+

N∑
j=1

M∑
l=1

vj

vj − ul
=N(N − 1),

we can present from the relation (2.18) the eigenvalue of the Hamiltonian (2.1) as

(3.5)E = 4
N∑
i=1

vi − 2
M∑
m=1

um − g(2N − 3M).

Let us make some small remarks about the degeneracies of the spectrum. Though the
eigenstates of the Hamiltonian have not been made explicit here, it can be deduced by
the standard arguments (e.g., [16]) that each is a highest weight state with respect to the
so(3) symmetry algebra (2.15). In particular, the highest weight which is given by the
eigenvalue of the operatorL0 isM − 2Q, so we can conclude that the multiplet generated
by (2.15) acting on this highest weight state has dimensionM−2Q+1. Therefore for each
solution of (3.4) with givenN,M andQ, the corresponding energy level has degeneracy
M − 2Q+ 1.

4. Asymptotic solutions

As the Bethe ansatz equations (3.4) take the form of coupled non-linear equations it
is unlikely to find analytic solutions, and one tends to resort to numerical analysis. It
is however possible to conduct an asymptotic analysis for small values of the coupling
parameterg. Below we undertake this for the ground state of the system and some
elementary excitations.
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Fig. 3.

For the ground state, we consider first the caseg = 0. LettingN1 andN2 denote the
number of Cooper pairs in each system, then it is clear that the ground state corresponds
to filling the Fermi sea, which is illustrated in Fig. 3, where without loss of generality we
assume thatN1 >N2. For smallg �= 0 we see that the ground state will be described by a
solution of (3.4) withN =N1,M =N1 −N2,Q= 0.

Thus the Bethe equations (3.4) reduce to two levels for the parametersvj andum. For a
smallg > 0 it is appropriate to consider the asymptotic solution

(4.1)vj = εj + gδj + g2σj , j = 1, . . . ,N1,

(4.2)um = εN1−m+1 + gαm + g2βm, m= 1, . . . ,N1 −N2.

Substituting these into the Bethe equations (3.4) with the configurationN = N1,M =
N1 −N2,Q= 0, one can find that

(4.3)vj ≈ εj − g

4
+ g2

16

[
Ω∑

i=N1+1

1

εj − εi
−

N2∑
l=1
l �=j

1

εj − εl

]
, j �N2,

(4.4)vj ≈ εj − g

2
+ g2

4

[
Ω∑

i=N1+1

1

εj − εi
−

N1∑
l=N2+1
l �=j

1

εj − εl

]
, j > N2,

(4.5)

um ≈ εN1−m+1 + g2

4

[
Ω∑

i=N1+1

1

εN1−m+1 − εi
+

N2∑
i=1

i �=N1−m+1

1

εN1−m+1 − εi

−
N1∑

l=N2+1
l �=N1−m+1

2

εN1−m+1 − εl

]
, m= 1, . . . ,N1 −N2.

The asymptotic ground state energy is deduced to be given by
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E0 ≈ 4
N1∑
j=1

εj − 2
N1∑

l=N2+1

εl − (N1 + 2N2)g

+ g2

4

[
N2∑
j=1

Ω∑
i=N1+1

1

εj − εi
+

N1∑
j=N2+1

(
Ω∑

i=N1+1

2

εj − εi
−

N2∑
i=1

2

εj − εi

)]
.

It is important to point out that from the above ground state energy we can infer
some results about the asymptotic behaviour of zero temperature correlation functions.
Specifically, by employing the Hellmann–Feynman theorem we have that

〈
ni(1)+ ni(2)

〉= 1

2

∂E0

∂εi
.

The result obtained is

〈
ni(1)+ ni(2)

〉
≈ g2

8

(
N2∑
j=1

1

(εj − εi)2
+

N1∑
j=N2+1

2

(εj − εi)2

)
, for i > N1,

〈
ni(1)+ ni(2)

〉
≈ 1− g2

8

(
Ω∑

j=N1+1

2

(εj − εi)2
−

N2∑
j=1

2

(εj − εi)2

)
, for N1 � i > N2,

〈
ni(1)+ ni(2)

〉
≈ 2− g2

8

(
Ω∑

j=N1+1

1

(εj − εi)2
+

N1∑
j=N2+1

2

(εj − εi)2

)
, for i �N2.

Next let us consider a possible excitation which can be obtained by breaking one Cooper
pair in BCS(2). In theg = 0 case, the excited state is depicted in Fig. 4.

For non-zerog, we chooseN = N1 − 2,M = N1 −N2 − 1 and block the levels with
energyεN2, εN2+1. From the asymptotic solutions (4.3)–(4.5), we obtain the excitation
energy

E1 ≈ 4
N1∑
j=1

εj − 2
N1∑

l=N2+2

εl − εN2 − εN2+1 − (N1 + 2N2 − 4)g

+ g2

4

[
N2−1∑
j=1

Ω∑
i=N1+1

1

εj − εi
+

N1∑
j=N2+2

(
Ω∑

i=N1+1

2

εj − εi
−
N2−1∑
i=1

2

εj − εi

)]
.

Therefore the gap obtained through the breaking a Cooper pair in BCS(2) is given by
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Fig. 4.

Fig. 5.

∆1 ≈ εN2+1 − εN2 + 4g+ g2

4

[
Ω∑

i=N1+1

1

εi − εN2

+
Ω∑

i=N1+1

2

εi − εN2+1

+
N1∑

j=N2+2

2

εj − εN2

+
N2∑
i=1

2

εN2+1 − εi

]
.

Another possibility for an excitation atg = 0 is to break the Cooper pair at level
εN1 in BCS(1) (see Fig. 5). Forg �= 0, the configuration should be accommodated as
N =N1 − 1,M =N1 −N2 − 1 with the levelsεN1, εN1+1 blocked.

We find the gap obtained in this case to be given by

∆2 ≈ εN1+1 − εN1 + g+ g2

4

[
N2∑
j=1

1

εN1+1 − εj
+

N2∑
i=1

2

εN1 − εi

+
N1−1∑
j=N2+1

2

εN1+1 − εj
+

Ω∑
i=N1+1

2

εi − εN1

]
.

For the above asymptotic analysis to be valid, we require that the coefficients of the
terms ing2 must be much smaller thang−1, imposing a stringent constraint ong. In each
case this will depend explicitly onΩ,N1,N2 and the distribution of the single particle
energy levelsεi . For the case of the usual BCS model such a constraint was studied in [18].
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5. Conclusion

To summarize, we have constructed an integrable pairing Hamiltonian based on the
su(4) Lie algebra. This model can be interpreted as describing two coupled BCS systems
of different types, such as for protons and neutrons in a nuclear system. The Bethe
ansatz equations and the energies of the model have been calculated. For small values of
the coupling parameterg, we asymptotically analyzed the ground state and elementary
excitations, and the expectation values for the occupation numbers. An open problem
that we will address in the future is the exact calculation of form factors and correlation
functions using the techniques developed by Babujian et al. in [17].
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