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We investigate the algebraic structure of the supersymmetric ¢ —J model in one dimension.
We prove that the Bethe ansatz states are highest-weight vectors of an spl(2,1) superalgebra. By
acting with shift operators we construct a complete set of states for this model. In addition we
analyse the multiplet structure of the anti-ferromagnetic ground state and some low-lying
excitations. It turns out that the ground state is a member of a quartet.

1. Introduction

Since the pioneering work of Bethe [1] and a subsequent work of Faddeev and
Takhtajan [2] on the isotropic Heisenberg model, it is known that the Bethe ansatz
alone does not provide a complete set of states instead it only determines the
highest-weight vectors of multiplets of the underlying SU(2) symmetry group.
Recently, Essler et al. [3] proved that for the one-dimensional Hubbard model the
Bethe ansatz states are lowest-weight vectors with respect to the SO(4) symmetry.
In this paper we show that this feature, which is essential to construct a complete
set of states, also appears in the context of a supersymmetric integrable model.
However, the algebraic structure is more complicated and exhibits new interesting
properties, e.g. the anti-ferromagnetic ground state is not a singlet but a member
of a higher multiplet.

We investigate a model of classical statistical physics in two dimensions, an
spl(2,1)-supersymmetric 15-vertex model, which is a generalization of the 6-vertex
model. Each link in the lattice can assume one of three states where two are
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bosonic and one is fermionic. The results for the spl(2,1)-supersymmetric 15-vertex
model are easily translated to the one-dimensional ¢—J model (for special values of
the couplings ¢ and J). Recently this model has attracted much interest in
connection with high-7, superconductivity. It describes a quantum system of
electrons on a one-dimensional chain, where at a lattice point there may be an
electron with spin up or spin down or a hole. The hamiltonian for a lattice of L
sites is given by [4]

nn;, g
y/=P{—t2 (cloCinrot c}+1’acj’”)}P+JZ (sj-sj+1 - %) (1.1)

1o J

where the projector P=1I1/_,(1—n;,n, ) restricts the Hilbert space by the
constraint of no double occupancy at one lattice point.

We present an explicit construction of the eigenvalues and eigenvectors of the
transfer matrix of the spl(2,1)-supersymmetric 15-vertex model using the algebraic
nested Bethe ansatz method [5,6]. By this procedure the problem of finding the
spectrum is reduced to the problem of solving a system of coupled transcendental
equations, the Bethe ansatz equations (BAE). We find three different kinds of
BAE, which correspond to three different possible choices of pseudovacua. Two of
these forms of BAE were already obtained by Lai [7], Schlottmann [8], Sutherland
[9] and Sarkar [10] using similar methods. Moreover, we analyse in detail the
algebraic structure of the eigenvectors obtained by this nested construction. From
the invariance of the transfer matrix (and consequently of the one-dimensional -/
hamiltonian) with respect to the spl(2,1) superalgebra it follows that the eigen-
states are classified in terms of supermultiplets corresponding to irreducible
representations of this superalgebra. We analyse the structure of these representa-
tions. In addition, we prove that the Bethe ansatz states are highest-weight vectors
of the spl(2,1) superalgebra, which was investigated by Scheunert et al. [11].
Therefore, by acting with the spl(2,1) lowering operators on the Bethe states we
obtain additional eigenvectors. Finally, the total number of orthogonal eigenvec-
tors generated by this procedure leads to a complete set of states. This result has
been already announced in ref. [12].

The paper is organized as follows. In sect. 2 the spl(2,1) vertex model, as well as
its transfer matrix, is defined on a two-dimensional lattice. We also give the
relation between the transfer matrix and the one-dimensional supersymmetric ¢—J
model. In sect. 3 we diagonalize the transfer matrix using the quantum inverse-
scattering method. In sect. 4 the algebraic structure of the Bethe vectors is
investigated. Our results for lattices with small and large number of sites are
illustrated in sect. 5, where the structure of the ground state is also discussed. In
sect. 6 we give details of the proof of the completeness problem of the Bethe states
of this model and sect. 7 contains a summary of the main results.
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2. The spl(2,1) vertex model and Yang—Baxter algebra

The graded 15-vertex model is a lattice model of classical statistical physics in
two dimensions. Its partition function on a L XL’ (L columns and L’ rows)
periodic square lattice is given as

z=)Y 11 s(x), (2.1)

conf. x€LXL'

where the sum extends over all allowed “bond configurations”. Each bond can
accept one of three states characterised by & = 1, 2, 3, which can be bosonic (B) or
fermionic (F). In what follows we will adopt the convention 1=B, 2=B, 3=F.
We follow the general strategy of the algebraic Bethe ansatz of Faddeev et al. [5].
The vertex weights S(x) are determined by 15 bond configurations at the lattice
site x, and take the following values:

8
2
S(v)ip = Y—E—a = 0,085 — ;5555 (22)
B

The parametrization in terms of the spectral parameter “¢” has been introduced
for later convenience (see eq. (2.11)). The sign factor ¢ takes care of the statistics,

o = { —1, if y=248=3 (fermionic) (2.3)

5 .
Y 1, otherwise.

S can be considered as a matrix acting in the tensor product of two three-dimen-
sional auxiliary spaces C3 X C* and can be arranged as a 9 X 9 matrix,

a 0 0 0 0 0 00 0
0 b 0 c 0 0 0 0 0
0 0 b 0 0 0 c 0 0
0 ¢ 0 b 0 0 0 0 0
S¥(v)=10 0 0 0 a 0 0 0 0f, (2.4)
0 0 0 0 0 b 0 ¢ 0
0 0 c 0 0 0 b 0 0
0 0 0 0 0 ¢ 0 b 0
0 0 0 0 0 0 0 0 w
where
2 2 2
a=1-—, b=1, ¢c=—-——, w=-1—-—. (2.5)
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We define the monodromy matrix as the matrix product over the S’s in the
following way:

T)R () =82 0(v)S282(v) ... Se(v),

azf;

ol 5,8, 3
O e S 26
(B) B B, BL

This monodromy matrix acts in the tensor product of an auxiliary space and a
“quantum space” C3Xx C3 and can be regarded as a 3 X 3 matrix of matrices
acting in the “quantum space”,

A B, B,
IJ(v)=|C D, D, (2.7)
C; Dy D,

The transfer matrix is defined as a trace of the monodromy matrix in the
auxiliary space,

T((g;(v) = Z cx([?))(v) - Z aaUa(S}Tacz(;)}(U)’ (28)

[44

where

Toisy = HUMI. (2.9)
t

Here the o-factors take into account the fact that we are dealing with bosons and
fermions.

The thermodynamic properties of the vertex model can be obtained from the
solutions of the eigenvalue problem of the transfer matrix,

TV =AW, (2.10)

This eigenvalue problem will be solved in sect. 3 by means of the nested Bethe
ansatz.

It can easily be shown that the matrix § given by eq. (2.2) fulfills the Yang—-Baxter
equation

S (v —v')S2Y (v)SEY (v') =S5 (v)SLY () SEE (v —0v'). (2.11)
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By means of iterations we can also prove the Yang-Baxter relation for the
monodromy matrix 7T,

SEE (v —v)TEUN )TN0 = TE ) TS 0N e)SeE (v —0v'). (2.12)

a’ {y}

In addition conservation of fermions imply the following property of the T-matrix:

g Taty T () (V) = X TE £,(0), (2.13)

for all e =1, 2 or 3.

The Yang-Baxter equation for the monodromy matrix (2.12) together with
property (2.13) imply the commutativity of the transfer matrix for different spectral
parameters,

[T(U),T(U')] =0. 2.14)

This reflects the integrability of the model. In fact, the eigenvalue problem (2.10)
can be solved exactly by the Bethe ansatz method.

At the end of this section we will show that the above defined transfer matrix is
related to the one-dimensional supersymmetric t—J model, such that if we solve
the eigenvalue problem of the transfer matrix 7 we will automatically diagonalize
the hamiltonian of the one-dimensional supersymmetric -/ model.

The hamiltonian of the r—J model for a one-dimensional lattice of L sites is
given as [4]

n.n.
= P{—tZ( ClaCivtatCliroc ,,,)}P+Jz(s S, %“) (2.15)

1.0

where the cj(l) are spin up or down annihilation (creation) operators, the §; spin
matrices and the n; occupation numbers of electrons at lattice site j. The projector
P=T1/_(1~n;,n; ) restricts the Hilbert space by the constraint of no double
occupancy at one lattice point. Therefore, at each lattice site we have three
possibilities (1,2, 3)=(1, |, 0), i.e. an electron with spin up or down or no
electron (hole). This hamiltonian can be rewritten in terms of Hubbard’s projec-
tion operators [13],

X =y (B (a,B=1,2,3), (2.16)

where [1,(2 ;)» denotes an electron with spin up (down) and 13,7 a hole at site J.
Using (2.16), up to a chemical potential the hamiltonian reads
2 L 3
F=—t ) L(XPX+X32X0)+ 30 X | X XX - XX

j+1
a=1j=1 j=1\a,B=1

(2.17)
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For convenience we will consider the hole operators as fermions and the spin
operators as bosons. In fact, this choice is possible since in one-dimension there
exists a transformation exchanging bosons and fermions. Therefore, the spectrum
of the r—J model with two fermions and one boson is equivalent to the spectrum of
the ¢~J model with two bosons and one fermion (for even L) [10].

For J =2t the t—J model is “supersymmetric” and connected to the previously
defined vertex model through the relation

d
¥ = —za—u‘ln(l)l‘T(U)) s (2.18)

The proof of this identity is analogous to the one for the isotropic Heisenberg
model [14].

3. Construction of Bethe eigenvectors

The main subject of this section will be solving the eigenvalue problem of the
transfer matrix

W =AW (3.1)

through an algebraic construction [5] based on the Yang-Baxter algebra of the
monodromy matrices

SeB (v =v)TEUH)TEYN vy = TE YN o) TE N 0)S25 (v —v"). (3.2)

The monodromy matrix 7 can be written as a 3 X 3 matrix,

A B, B,
¢, [, D, (3.3)
c, |b, D,

This suggests solving the problem by means of the nested Bethe ansatz with two
levels [6]. The transfer matrix is given by a trace of the monodromy matrix T (see
eq. (2.8)). For the first-level Bethe ansatz the operators B, (C,) (a = 2, 3) play the
role of creation (annihilation) operators of “pseudoparticles”. The first-level
“pseudovacuum” @ is defined by the equation
o =0,
By B BlL
y_:——'l—...—l—l HEY =0 for y=2,3. (3.4)

B, B BL
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Since at a vertex a generalized ““ice rule” holds (see eq. (2.2)) the solution of this
equation is

L Bi B B
PP = ]—[53[1 =1 | | . (3.9)
i=1 1 1 1
This pseudovacuum is an eigenstate of A,
AE(0) @) = a"(0) D,
B B B 1 1 1
1—}——{—...—:——1 = 1—}——}—...—!—1, (3.6)
1 1 1 1 1 1
and also of D, and D,,
D1(4)§2)’)( v) PPV =b"(v) PP,
B, B .B‘L 1 1 }
a—%——!——r—a = a——%——‘-———l—a (37)
1 1 1 1 1 1

(a =2 and 3, respectively). Because of the special form of the matrix § of eq. (2.2)
the summations over the internal lines in egs. (3.6) and (3.7) are trivial. In eq. (3.6)
they can assume only the value 1, and in eq. (3.7) only the fixed value a =2 or 3,
respectively. The action of B, (e =2 or 3) on the “pseudovacuum” yields new
states. So, the {B,} can be considered as “creation operators” and the eigenvector
of the transfer matrix can be obtained by successive application of the B’s
according to the first-level Bethe ansatz

O = B, (0 BTN - Bl () BV, (39)
where the summations over the a; ({ =1,..., N) are restricted to a; =2, 3. The

coefficients W[ are to be to be determined by the second-level Bethe ansatz. This
means the eigenvalue problem of the transfer matrix (3.1) will be solved in a
recurrent way (nested Bethe ansatz method). The requirement that ¥ is an
eigenvector of 7 leads to another eigenvalue problem for a new transfer matrix
7y as will be shown later. Now we start to solve eq. (3.1). Following the general
strategy of the algebraic Bethe ansatz [5] we apply the transfer matrix 7(v) (2.8) to
the state ¥ given by eq. (3.8),

()P = (4G v) + ) (0))wEY, (3.9)
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where
TDgg')}(U) = Z Taagg ;)(U) - Z Taa a{ﬂ 1 a{g:;)(u)' (310)
o=

In order to commute A(v), Dy(v) and D,(v) through all B(v,) towards @ and then
apply (3.6) and (3.7) we use the property (2.13) and the following commutation
rules, derived from the Yang—Baxter relation (3.2):

A(U)Ba(v’)—agv;g B, (v") A(v )—L_z;Ba(v)A(v’), (3.11)
and
TH(v)B,(v') = ﬁ(Ba,(u')Tyx,(u)sgf’g’(u -v)
—c(v=0")B, ()T (v")) (3.12)
B, (v) B,;(v’)—a(vl_ y Be g (1)) B (0)STE (v —0"). (3.13)

All indices of the auxiliary space in egs. (3.11), (3.12) and (3.13) assume only the
values 2 and 3. Using eq. (3.11) two types of terms arise when A4 is commuted
through B,. In the first type A and B, preserve their arguments and in the second
type their arguments are exchanged. The first kind of terms are called “wanted
terms”’, since they will give a vector proportional to ¥ and the second type are the
“unwanted terms (u.t.)”. Then, using egs. (3.9), (3.8), (2.13), (3.11) and (3.6), we get

AEN0YPEY =) (0)P¥E +ut(A), (3.14)

where the coefficient A, is given by

Ad(0) =at(e) [T 2020

1) vpmrnd (3.15)

Correspondingly we obtain from eq. (3.12) the wanted and unwanted terms in the
form

. 1 "
Tugg ))(U)q’(ﬁ = bL(U) 11:11 ) a,ﬁl)’(vl)Bazm)( Uy) -

XB,, ‘"N 1)(UN)<D(”N)T(1)( })(b })11’(‘1‘;}+u.t.(D), (3.16)
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where we have introduced a new (the second-level) transfer matrix

3

Ty (05 {0i}) = X 0pp0pan Tl (v, {v:}) (3.17)
B=2

as a trace (over only 8 =2 and 3) of the second-level monodromy matrix. This is
given by T;, =S —vy)...S(v —v)) in analogy to eq. (2.6). Now, however, all
indices (the external and the internal ones) assume only the values 2 and 3, as in
the internal block of the matrix T denoted in eq. (3.3). In order to obtain in eq.
(3.16) a “wanted term” proportional to ¥, the vector ¥, has to fulfill the
eigenvalue equation

Tk (0> (WP =200, {0)) ¥, (3.18)

which is solved by the second-level Bethe ansatz. The monodromy matrix Ty,
belongs to an SL(1,1) 6-vertex model slightly modified compared to the SU(2) one
2_ 3_
due to the presence of fermions. If we identify T,;3=A,, T;;); = By, Ty =Cy,
and T,} =D, again B, (C,,) can be interpreted as a creation (annihilation)

operator with respect to the “pseudovacuum” @, which is now of the form
Y a, «,
o) = Hﬁaz P (3.19)
i 2 2 2

It is an eigenstate of A, and D), satisfying

N
A(l)iz)')(”" })‘p({f;) Ha(v—v)qf’(l),

N a & 2 2 2
2_=— "_E"*ll_2= —1——{—...—‘—2, (3.20)

2 22 2 2 2

N

D(l)((ﬂ (v, UD(D(%" [-[lb(U_U )‘D(l),

an @ N 2 2 2
3—}— --—{——}—3= —}——l—...—%—a (3.21)

2 2 2 2 2 2

The summations over the internal lines in egs. (3.20) and (3.21) are only over the
values 2 and 3, respectively. The eigenvector ¥, of 74, is given by the second-level
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Bethe ansatz
Vi = Bty {v) Bt (v2, {v}) - Bty (vag, {0:)) 9. (3:22)

Following a strategy analogous to the one above, we apply 7, to the state ¥, and
commute A4,(v, {v;}) and D, (v, {v]}) through the B (y,, {v;}) towards @, and
then use egs. (3.20) and (3.21). Since the Yang—Baxter algebra for the monodromy
matrices (3.2) is also valid in the inhomogeneous cases when 7(v) is replaced by
T(v, {v;}) [15], we derive the following commutation relations:

A(l)(U’ {Ui})B(l)(U’f {Ui}) = ZEZ,%Z;BU)(U” {Ui})A(l)(U’ {Ui})

C(U’—U) :
_ mB(l)(U, {Ui})A(])(b R {Ui})’ (323)
w(v—10v')

Dey(v, {v})Bay(v', {vi}) = m Buy(v', {ui})Day(vs {v})

c(v—0v')

-— B (v,
b(v—v") (])(L
(v—-v")

m%(v’, (v} Byy(v, {r}).  (3.25)

{v} )D(])(U:’ {v;}). (3.24)

Byy(v, {v}) Byy(v', {v}) =

Using eqs. (3.17), (3.22), (2.13), (3.23), (3.24), (3.20) and (3.21) as above we obtain
again wanted and unwanted terms,

T (v, (v} = (AA(“ v, {U}) + Ap, (v, {U,.}))qrgg) +uwt(Ag) + ut.(Dy),

(3.26)
where
_ o (YB_L)
)‘A(l)— t—I—-[la(U ) I_I b(')’B _U) (327)
Apy, = —(—1) nb<v—v>n b(U:jﬁ)) (3.28)

Substituting these equations in (3.16) and taking (3.8) into account we get, in case
the unwanted terms u.t.(A4;)) and u.t.(D,) cancel,

Tl ()P = (Ap (v) + A, (0)) PP +ut(D), (3.29)
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where Ap and Ap = are given by

M a(v-v) M aly, o)

Ap =b (u)i]:[1 N B]:[l by —0)’ (3.30)
(M I P
Ap,= —(=1)7b (f)BI:I] b(0—7s) (3.31)

Finally, combining egs. (3.14) and (3.29) we have, again if the unwanted terms
u.t.(A4) and u.t.(D) cancel,

BN )W = A(0) P, (3.32)
where
)\(U)=)\A(U)+/\D1(L')+)\D”(U). (3.33)

The cancellation of all unwanted terms ensure that ¥, as given by eq. (3.8), is an
eigenstate of the transfer matrix r (2.8) with eigenvalue A(v) of eq. (3.33).

In appendix A we show that the unwanted terms indeed vanish if the Bethe
ansatz equations hold,

a(v;) )L N oa(v,—v) b(v,—v) M b(y,—v;) _
b(v;) | =i b(v;—vy) alv;—v;) g=1 a(yg — 1))

(_1)M1N—[ a(va —v) &Y= Ya) b(va =) _

i=1 b(Ya_Ui) B=1 b(’YB_’ya) W(yﬂ_yﬁ)

—1, j=1,...,N, (334)

I, a=1,...,M, (335)

where N is the number of holes plus down spins and M is the number of holes.
Another way to obtain these equations is to require that the eigenvalue A(z) (3.33)
has no poles at v =v; and v = y,. Using (2.5) and making the change of variables
v—iv+1,y—iy+ 2 we obtain

L
v+ N p—p,+2i M p—y, —§
( J ) =_I—[ —, j=1,...,N, (3.36)

2 T, a=1,...,M. (3.37)

This form of the Bethe ansatz equations (BAE) was previously derived by Suther-
land [9] and later by Sarkar using a generalized permutation operator [10]. We
stress that this procedure could be repeated with two other choices of the
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pseudovacuum leading to two other forms of the BAE. The pseudovacua of both
levels of the Bethe ansatz @ and @, (see egs. (3.5) and (3.19)), which we used
above, consist of states of kind 1 = B and 2 = B, respectively. Basically, the change
of pseudovacuum is determined by altering the initial convention (1 =B, 2= B,
3=F). Using (1 =F, 2=B, 3=B) we get

L
v,+i M po— oy, +i
L =T12——, j=1..,N, (3.38)
L'j‘l B=1 Lj_‘)’B_l
N _ . M'-“_-"—_ -
‘}/a U; —1 ‘Y(x_‘y _Zl
o [Tt a=1,...M, (3.39)

=1 Ya T UL g=1 Yy Vg T2

where N is the total number of spins and M is the number of spins down. These
equations were already obtained by Lai [7] and Schlottmann [8] using the coordi-
nate Bethe ansatz method.

Finally, the choice (1 =B, 2=F, 3 = B) leads to a new form of the BAE *,

v, —i My — g i
- h :nj“ﬁ7 j=l""7N’ (3-40)
U}+l B=1 U] ’yﬂ+l
Vo Ut
[T——=1 a=1,....M, (3.41)

where N is the number of holes plus spin downs and M is the number of spins
down. In the following we will work with the BAE’s (3.36) and (3.37), since this is
the most convenient form for the present investigation.

We have reduced the eigenvalue problem of the transfer matrix (3.1) to a system
of coupled algebraic equations for the parameters {v;} (j=1,...,N) and
{y,) (@a=1,..., M). The basic procedure to solve eqgs. (3.36) and (3.37) is to adopt
the string-conjecture, which means that the v’s appear as strings and all roots y’s
are real,

U;’j=vc’j+i(n+1—2j), j=1...,n, a=1,...,N,, n=1,2,...,

yp = real, B=1,..., M, (3.42)

where v is the position of the center of the string on the real v-axis. The number
of n-strings N, satisty the relation

N=YnN,. (3.43)

* When this paper was in preparation the authors were informed about a preprint of Essler, Korepin
and Schoutens where this new form of the BAE also was obtained.
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This hypothesis for the v’s can be easily understood by heuristic arguments,
analogously to the isotropic Heisenberg model [2,16]. To understand absence of
complex roots for the y’s we apply the following argument, which is similar to that
one developed by Takahashi for the one-dimensional electron gas with a repulsive
delta function [17]. If all v; are real or appear as complex conjugate pairs,
Im -y, > 0 implies that the absolute value of the left-hand side of eq. (3.37) is larger
than unity. Therefore, Im vy, > 0 is not possible. In the same way we can prove that
Im vy, <0 is not possible. We can see here the great advantage of using this form
of BAE. In the other two forms not only the parameters v but also the roots vy
appear as strings. This means that counting the states is much more complicated.
Although we are not able to prove the string-conjecture rigorously, we will assume
it to be valid. Since Bethe [1], assumptions of this kind have been widely used by
many authors (ref. [16] and references therein). Applying this conjecture in (3.36)
and (3.37) and taking its logarithm we obtain the coupled equations for the ¢v” and

Ya>

Lo(u‘c) 2% @0 — 01 \Eo(——u‘f—y‘*) 277, (3.44)
—|- (V2 — UFY) + 2w, (3.
n m g=1 g =1 7
(m,B) # (n,a)
N, UZ_,YB
DD B(T) =27, (3.45)
n a=1

where 8(x) =2 arctan x and

x x X
YR PPV P
|n—m]| In—m|+2 n+m-—2

(O = +0(
(x) n+m

20(2)+20(Z) .20

) forn+m

) +9(i) for n=m. (3.46)

2n—-2 2n

Hence the solutions of eqs. (3.36) and (3.37) are parametrized in terms of the
numbers I and J,. Here, the I} are integers (half-integers) if L + M — N, is odd
(even) and the J, are integers (half-integers) if ¥, N, is even (odd). In addition
they are limited to the intervals

|11 < T = 1L+ M= TN, 1), (3.47)

gl <=2 ZN, -2), (3.48)
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where ¢, =2 min(n, m) —§,,,. In fact, all sets {I}, J,} where the I's and J’s are
pairwise different specify all the Bethe vectors (| ¢pgehe/nm). They are highest-
weight vectors of an spl(2,1) superalgebra, as we will show in sect. 4.

In order to avoid misunderstandings we should add some general remarks on
the string-conjecture (3.42) and the bounds I}, and J__, given by egs. (3.47) and
(3.48). Both statements are to be considered as assumptions, they cannot be proven
rigorously. In fact they are not exact. There are finite-size corrections of the string
configurations of order O(e ~*) for fixed string centers ¢ and of order O(1) near
to the boundary v}, (given by I..), producing “exotic solutions”. On the other
hand a naive estimate of I from eq. (3.44) would suggest additional solutions
(for n > 2) which are cancelled by assumption (3.47). However, both assumptions
together lead to the correct number of states, as is well known for the SU(2) case
[2] and will be proven below for the spl(2,1) case. Obviously, the effects of the two
phenomena mentioned above compensate for this computation. In addition to the
“exotic solutions” mentioned above, there exist also “wide pairs” and “quartets” if
the density of real roots is large enough. It is believed that these problems may be
avoided and exotic effects may be neglected, if one considers the following
thermodynamic limit. Introduce a symmetry breaking magnetic field B and take
first the limit L — o and then B — 0. It should be stressed that many features of
the Bethe ansatz are not well understood.

In the thermodynamic limit the BAE’s are written in terms of densities of roots
(p,(v), 0(A)) and BA-holes * (p2(v), a"(A)), such that egs. (3.44) and (3.45) can be
replaced by integral equations for the densitics.

At the end of this section we apply the results obtained for the spl(2,1) vertex
model to the supersymmetric -J model. Using the identity (2.18) it is possible to
obtain the energy eigenvalues of the ¢—J model from the eigenvalues of the
transfer matrix (3.33). The terms A, , given by egs. (3.30) and (3.31) do not
contribute and from eq. (3.15) we find

N4
E=L-1 1+0v?

j=1 J

(3.49)

Thermodynamic properties of the model were investigated in ref. [8] using the
second form of the BAE (3.38), (3.39). The ground state and the excitation
spectrum were discussed in ref. [18] using the first and second form of the BAE.

* Unfortunately, in this paper the meaning of the term hole is ambiguous: A “hole”, as denoted above
is a physical hole, i.e. a lattice site with no electron. A “BA-hole” corresponds to a non-occupied
place in the set of numbers {7"} or {J} for a solution of the BAE (see sect. 5 for examples).
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4. Algebraic properties of the Bethe states

In this section we analyse the algebraic properties of the Bethe states. By
asymptotic expansion (v — «) we obtain the generators of spl(2,1) as matrix
elements of a matrix M of operators in the “quantum space” defined as follows:

o e 2 S B
T (0) = 00y 0588 = 5 ey Ma 'O ). (4D

We prove the commutation relations of the entries of M using the Yang-Baxter
relation (3.2) for the monodromy matrix and the property (2.13). For v — «© we
have (in what follows we will omit the quantum space indices and write them only
whenever necessary)

10T (0') = 2(a”, B, a, BT ()M
=T (v')83 —3(a", B, a, B)SE T (v"). (4.2)
Here the sign function 3 is given by
S(a", B, @, B) = 0ypn0,mg0upn0ag. (4.3)

Furthermore, taking v’ — « we get

o~

MSME —3(a”, B, a, BYME'MS”

=MF'8s" —3(a”, B, a, B)SE'ME". (4.4)
This relation represents the commutation and anti-commutation rules of the
spl(2,1) superalgebra [11]. The generators M$, M (a # 3) are fermionic, whereas
the M3 and Mg (a, B # 3) are bosonic. The sign factors 3 take into account the

statistics, i.e. 3 = —1 (1) if we are dealing with odd (even) generators. Eq. (4.4)
can be written in the compact form

[ Mg, Mg"| = MEsg o8 Mg (4.5)

In addition, from eq. (4.2) it is easy to see that the transfer matrix v (2.8) is
invariant with respect to the spl(2,1) superalgebra, i.e.

(Mg, 7(0))] =0. (4.6)

Notice that the results (4.2), (4.4), (4.5) and (4.6) are also valid if we change the
convention (1 =B, 2 =B, 3 =F). The position of the fermion simply determine
which are the odd generators.
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Let us now consider the matrix M,

w, M} M
M=|M} w, M?|. (4.7)
MP MW,

The diagonal elements W, (a =1, 2, 3) generate the Cartan subalgebra with
weights w_ (a =1, 2, 3),

WW=ww. (4.8)

In terms of the -/ model the weights are related to the z-component of the
SU(2)-spin S, = 3(w; —w,) and the number of electrons Q =w, + w,. In order to
calculate these weights for Bethe ansatz states we substitute (2.5) in egs. (3.14),
(3.15), (3.29), (3.30) and (3.31) and obtain with eq. (4.1) and (4.7) for v >«

(1 - %WI)W+O(U‘2) = (1 - %(L—N))lp+0(u-2),
(1 - %Wz)ll’+0(u‘2) = (1 - %(N—M))IP+O(U‘2),

2 2
(—1—;W3)1P+O(u‘2)=(—1——M)1II+O(U‘2). (4.9)

v
Therefore, the weights can be expressed in terms of the quantities L (= number of
sites), N (= number of first-level roots) and M (= number of second-level roots),
w,=n,=L-N, wy,=n,=N-M, wy=n,=M, (4.10)

where 7, n , n, are the numbers of up-spins, down-spins and holes, respectively.
At the end of this section we will derive inequalities between these weights and
give a physical interpretation.

Next we show that the Bethe vectors are highest-weight vectors with respect to
the spl(2,1) superalgebra, i.e.

MEW =0, B>a. (4.11)

For a =1, 8 =2 or 3 we have, after using egs. (3.8) and (4.2),

,,,,

X [ME, B, ()], Bay (05c1) - Ba (o) DU, (4.12)
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where
[ME, B,(v)], =M$B,(v) — 05, B.(v)ME =58BA(0) — 05, TH(v). (4.13)

In order to commute A(v;) and T£(v,) through the B,’s toward @ we use the
commutation rules (3.11), (3.12) and the property (2.13). Although many terms
appear, it is possible to arrange them as follows:

MF‘[I/: Z }/jgj(vj’ {Ui})Bal(Ul)Baz(UZ) "'Ba],l(vj—l)

XBLYM(UJ.H) .B, (lN)¢> AT (4.14)
with yet unknown coefficients Yﬁ The first coefficient, Ylg, can be obtained by
using the first term in (3.11) and (3 12) when commuting A(L ) and T‘B(L ) with
B, (v,)B, (v;) . B, (vy), since otherwise the argument v, re-appears in the B,.
The contnbutlon of the A(v,)) term to Y,? is straightforward, whereas for the
T#(v,) term we shall use the relation

3 Res Sy(v—v')=28}82 (4.15)

to get the eigenvalue problem for the transfer matrix 7(v,, {r;}) (3.17). Once
again, we just take the first term in egs. (3.23) and (3.24) when commuting Ay,
and D, with the B,;’s. Then, after some manipulations we have

a( ;= Uy) a(v,—v;) Moa(yg—vy)
Y2 =88|al(v 1_[ — bt )
la |( ( l) —u) ( ‘)l_[b(v — ) po b(y'B vy)
(4.16)
Analogous expressions follow for the other coefficients ij/ (j=2),
) (=0) M aly—v)
Y,E adblat(v )H —bt(v )l_[ ’
T J( i+ ( ) i) _U) B=1 b(YB )
j=1,...,N. (4.17)

We observe that the requirement ngj =0(j=1...N, B =2, 3)is equivalent to the
Bethe ansatz equations (3.34), therefore Bethe states fulfill the highest-weight
condition MP¥ =0 (B8 =2 or 3).
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To calculate M;¥ we use the relation
73 — \ | 3 a
qu’“0'3(a')Ba;(b1)Ba§(L2) BaN( LN)‘PMmz& 1I’(‘l))’ (4.18)

which follows from (4.2). M(l) is defined by asymptotic expansion of the mono-
dromy T,,), in analogy with M given by eq. (4.1). From (3.22) and commutation
relations for M(]) and T, analogous to eq. (4.2) we get

M(l)z = Z (_1)B (1)(71’ {Ui})-~- B(l)(73~17 {Ui})

X [M(l)g’ B(l)(YB? {Uz})] +B(1)('YB+1’ {Ui})"‘B(l)(’yM’ {Ui})(p(l)’ (4.19)

where
[M(l)g’ B(l)(Y)] +:A(1)(7) + 7:(1);(7’)- (4.20)

Analogously, by commuting A4, + T~(1)§ through the B,’s we have

M

(1)2 (1) Z (1);3(73’ o) {Ui})B(l)(Yl, {Uz})

XB(])(‘YBf]’ {Ui})B(l)(YBH’ {Ui})"‘B(l)(7M7 {Ui})q)(l)' (4.21)

The coefficients Yj;, ; can be derived in a straightforward way by taking the first
terms of the commutation relations (3.23) and (3.24). We get

Y, ﬁa(?’ﬁ ;) l—[ )

B arp D(va—vp)

M w(¥s~ Ya)
(=) [Ty, =) T] 5 22 s

B=1,....M. (4.22)

The requirement Y, ;=0 (,B =1,..., M) is equivalent to the Bethe ansatz equa-
tions (3.35), which implies M} W = O We stress that the property (4.11) can also be
proved for the other two choices of pseudovacuum in a similar way.

At the end of this section we derive some inequalities between the weights w,
(a =1, 2, 3). From eq. (4.5) we have

MB, M2l =We+WB, B>a. 423
« B + o B
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Using (M#)" = Mg and the highest-weight property of the Bethe vectors (4.11) we
obtain

Wiz Wy > —ws. (4.24)

Combining (4.10) with w; >0 (i =1, 2, 3) and (4.24) we find conditions for the
numbers N and M of roots in the first- and second-level Bethe ansatz, respec-
tively,

L+M

M<N< ,
2

0<M<L. (4.25)

This means in terms of physical quantities that the magnetization S, = %(nT -n,)
=1(L —2N+M) and the number of electrons Q =n,+n, =L—-M are re-

stricted to 0< S, <Q/2<L/2.

5. Results for small and large lattices

In this section we illustrate the algebraic properties of the Bethe states. We
begin with a lattice of two sites and then discuss the case of lattices with a large
number of sites.

The simple case of one lattice point corresponds to the fundamental representa-
tion of spl(2,1) which is given by the following weight diagram in the (S, Q) plane,
where Q is the number of electrons and S, the total magnetization of the system:

Q
1F e °
0+ . S,
T o

By diagonalization of the t—/ hamiltonian (2.17) (or of the transfer matrix 7) on
a lattice with two sites we obtain

W1=lTT>7 E:2’
1
‘I’2=W(IH>+IH>), E=2,

1P3=|\Li>’ E=27
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1
‘1’4=W(IOT>+ [10)), E=2,
1
qf5=ﬁ(|0¢>+ [10)), E=2, (5.1)
1
1

1

v, = 00), E=-2, (5.1)

where 0 denotes a hole. This result can be visualized in terms of the following
spl(2,1) weight diagrams in the Clebsch—Gordan series 3® 3 =35 & 4:

) o0 ) [] L] *

The numbers in the weight diagrams specify the eigenvectors according to egs.
(5.1) and (5.1'). The symbol * denotes the highest-weight vectors according to eq.
(5.2) below. Notice that the ground state is degenerate and given by a quartet. All
states of an irreducible representation can be generated by repeated application of
the shift operators 1\715 (B # a) to any one of the states. Graphically, the effect of
the shift operators on a general state of a representation of spl(2,1) is given by

b \ /m

M} . Mi
7

hYe / \M;

On the other hand, if we solve the Bethe ansatz equations (3.36) and (3.37) for two
sites we obtain only two eigenvectors, ¥, =@ and ¥y =B, (v, = 0)PP{, with
energy eigenvalues 2 and — 2, respectively (see eq. (3.49)). In the language of the
nested Bethe ansatz @ and @, are the first- and second-level pseudoground
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states, respectively. We can easily check that these eigenvectors are highest-weight
vectors of the spl(2,1) superalgebra, in agreement with our general proof in sect. 4.

MPY, =MFW, =0, B>a. (5.2)

Furthermore, the seven missing eigenvectors can be obtained by successive appli-
cations of the shift operators,

1II2=]\/~[211P1,

v, = (M) W,

v, =MV,

Vs = leMslq’h

v, =M}Y,,

W, =MV,

W, = MIM2Y,. (5.3)

Therefore, the Bethe ansatz together with the supersymmetry of the model provide
all 9 eigenvectors for the two-sites model.

We remark that by solving all three different forms of the BAE we get all
highest-weight vectors of the SU(2) algebra. Solving egs. (3.38) and (3.39) we get
the eigenvectors ¥, and ¥, and from egs. (3.40) and (3.41) we obtain the
eigenvectors ¥, and V..

In the case of lattices with a large number of sites the Bethe ansatz method
turns out to be crucial, since the effort of an exact diagonalization growths
exponentially with the number of sites L. As already pointed out in sects. 3 and 4,
by this method, the problem of finding the spectrum of the r—/ hamiltonian
reduces to the solution of the BAE’s (3.36) and (3.37) for the parameters ©’s and
v’s. Adopting the string-conjecture, which has an accuracy of O(e %), the solutions
of the BAE'’s are parametrized in terms of the numbers 1] and J;. Moreover, each
set {17, Jﬁ} where the I's and J’s are pairwise different specify a Bethe vector,
which is the leading vector of an spl(2,1) multiplet.

Now we illustrate our results for the ground state and some elementary
excitations at “half-filling” F = Q /L = 1. The following holds true for any lattice
size, especially in the thermodynamic limit L — . The ground state involves only
real roots. This can be proved as usual by minimizing the free energy for finite
temperature T and taking T — 0 [18]. For example, for a lattice of size L = 40 we
find N = 20 first-level real roots and no BA-holes. There are no second-level real
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roots (M = 0), but 19 BA-holes. Therefore, we have the following distribution of
I’'s and J’s:

where the numbers corresponding to roots are denoted by X and those corre-
sponding to BA-holes by ©. On the r.h.s. the associated spl(2,1) representation is
shown. The quantum numbers of the ground state are S,=0 and Q=L =40,
which means vanishing magnetization and half-filling F = 1. The Bethe vector
specified by this set of numbers {7} is the highest-weight vector of the irreducible
representation of dimension 4, depicted by *. Notice that the ground state is not a
singlet but a member of an spl(2,1) quartet. Of course, the state is a singlet with
respect to the SU(2) subgroup.

One kind of elementary excitation over the ground state is the “spinon”. It is
obtained by removing a root from the I'-axis or introducing a first-level BA-hole,
which corresponds to a spin flip. For a lattice of size L =41 * we have N =20
first-level roots and one BA-hole, M = 0 second-level roots and 19 BA-holes. The
distribution of /I’s and J’s and the corresponding irreducible representation
generated by the Bethe vector () determined by this set of I’s and J’s are for
example illustrated by

> < ©—3 I

—o—6-—6—66—66—606-6606066-6-6606-06-6—J

The quantum numbers of this state are S, =1,/2 and Q =L = 41, which means a
spinon is a particle-like excitation with spin 1/2 and charge 0.

Another excitation is given by the presence of a two-string in the complex
v-plane. For L =40 we have N' =18, N>=1and M =0,

X 12 >*
— o S~ Vi ¢ 3¢ Il
x r ° .
60— oo 56 o o N J L4

* Note that a one-spinon state exists only on lattices with an odd number of lattice sites, otherwise
spinons appear pairwise.
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(To support the visual perception we have drawn the I°-axis twice in order to
obtain a picture similar to the corresponding one in the complex v-plane). The
quantum numbers are §, =0 and Q = L = 40, which means vanishing magnetiza-
tion and half-filling F = 1. The interpretation of this state is that we have the
spin-0 contribution of a two-spinon state.

By filling a vacancy in the J-axis we get another excitation called “holon”, i.e.
we are removing an electron from the system or introducing a physical hole. For
L =41 we have N! =21 first-level roots, M = 1 second-level root and 19 holes,

*

e I

o S OO G —O— —O—K o oS 5 J
S oo A4 el

The quantum numbers of this state are S, =0 and Q = 40 = L. — 1, which means a
holon is a particle-like excitation with spin 0 and charge —1.

At arbitrary filling F < 1, for the ground state the distribution of the roots in
the v-plane also involves only real roots. In contrast to the half-filling case there is
now in addition a “sea” of real roots in the y-plane, such that there appears a
nontrivial Fermi level. For example, for a lattice of L = 40 sites we find a Bethe
ansatz state with N = 25 first-level real roots and M = 10 second-level real roots
and 14 BA-holes,

*
VEVEY: AVAVEVEVE RV AVAVE NEVEV] Il
[ ] L ]
-0 NI AN KN NN OO0 ]
[ ]

Also here the ground state is member of a quartet. The quantum numbers are
S.=0 and Q= 30, which means spin 0 and filling F=1—- 10/40 = 0.75. Due to
the nontrivial Fermi level there exist “holon-antiholon” excitations in this case.

6. Completeness of the Bethe vectors

In this section we show how to construct a complete set of eigenvectors of the
t—J hamiltonian for arbitrary chain of length L. This is obtained by combining the
Bethe ansatz with the supersymmetry of the model.

From the sect. 3 we know that all collections {/;, J;} where the I's and J’s are
pairwise different specify all the Bethe vectors (| g eon.m)- The number of
admissible values for the 1] and the J, (for fixed {N,} and M) is 2712 +1) and

(2J . + 1), respectively. I, and J,,. are given by egs. (3.47) and (3.48). Taking
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into account that many different string configurations N, give the same number of
roots N (see eq. (3.43)), the number of possible Bethe vectors for fixed N, M is
given by

2In +1

|

n

Z(N,M)=Y,
(N}

, (6.1)

2+ 1
M

where the sum over {N,} is constrained to X, nN,=N. It is convenient to
introduce the quantity ¢ = £, N,. Using egs. (3.47) and (3.48) we write this sum as

zvon+ ¥ (7, o 11 (62)

(L -, t,,mNm+M)
a=0 (N 7

N,

n

where the inner sum is constrained to fixed values of N and ¢q. This expression
resembles the one calculated by Bethe in the isotropic Heisenberg model [1,2] and
can be simplified to

il L+M—2N+1(q—l)(L+M—N+1)(N—

Z(N, M) =
( ) q§0L+M—N+l M q qa-

1

) ) (6.3)
The total number of Bethe vectors is obtained by summing Z(N, M) over all N, M
restricted to (4.25). However, this number is less than 3%, so that the Bethe ansatz
does not yield all the states of the model. In order to construct a complete set we
shall invoke the supersymmetry of the transfer matrix. First, from eq. (4.6) it
follows that the Bethe vectors are classified by multiplets corresponding to irre-
ducible representations of the superalgebra spl(2,1). Furthermore, from eq. (4.11)
follows that the Bethe vectors are highest-weight vectors. Then by acting with the
spl(2,1) lowering operators A;[f(ﬁ < a) on the Bethe states we obtain additional
states. Each Bethe state (with fixed N, M in the interval (4.25)) is the highest-weight
vector in a multiplet of dimension [11]

45, +1=2L+1 fN=M=0

N, M) =
AN M) = (S, 11/2) =4(L —2N+ M+ 1) otherwise. (6.4)

With these considerations, the total number of eigenvectors is

L (L+M)/2
Z=) Y d(N,MYZ(N,M)=2L+1+2Z,-1+2,
M=0 N=M

& L-2N+1 Y (] _Nt+1\(N—-1
—2L+1+4Y (L-2N+1)———
,E]( )L—N+1 ( q )(q—l)

g=1
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L (L+M)/2 L+M-2N+1
+4) (L-2N+M+1)
Mo N L+M-N+1
N
g—1\(L+M-N+1\(N-1
qul( M )( q )(q-l ‘ (6)

The first sum in eq. (6.5) can be performed (see ref. [2]) to give
Z,=4-2-—4(L+1). (6.6)

The second sum Z, deserves special attention. We present the main necessary
steps for its evaluation. First, performing the sum over g we get

L (L+M)/2
Z,=4Y Y (L-2N+M+1)
M=1 N=M

L+M—2N+1(N_1)(L)

X . .
L+M—-N+1 M N (6.7)

Employing some combinatorics and making the substitution N ->x=N—-M we
obtain

L (L-M)/2
Z,=4 ) Y (L-2x-M+1)
M=1 x=0
X[(fo)(H%_l)‘(xfl)(LA}x)]- (6.8)

After some re-arrangements this expression can be rewritten as

L (L=-M)2
2= 2 E () ()

ol Al LR e

Substituting x - L —x — M + 1 in the second and fourth terms of eq. (6.9) we get

R0 [ A B A (N i |

(6.10)
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Using the binomial formula we obtain after some re-arrangements

L 1

£ 4L!MZ:1 ML-2-M)! fol”M[U’ + 1) (1-p)] dp. (6.11)

Interchanging the sum and the integral and performing the sum gives

L!

2= (L—'2)!

fo'(l—p)[(1+2p)“2—(1+p)“] dp.  (6.12)

This integral can be easily performed, resulting in
Z,=3L—4.28+21 +3. (6.13)

Substituting eqs. (6.6) and (6.13) into (6.5) we get
Z =3k, (6.14)

Thus we have shown that the number of eigenvectors of the r—/ hamiltonian is 3%,
which is precisely the number of states in the Hilbert space of a chain of length L,
where at each site there may be either a spin-up or a spin-down electron or a hole.

7. Conclusions

In this paper we have shown that the Bethe ansatz states for the one-dimen-
sional supersymmetric t—J model are highest-weight vectors of an spl(2,1) superal-
gebra. Then by acting with the spl(2,1) lowering operators on the Bethe states we
have obtained a complete set of eigenvectors of the r—/ hamiltonian.

An interesting extension of this work is an analysis of the spl q(2,1) “quantum-
group” structure of a “g-deformed” version of this model (see also ref. [19]). This
is presently under investigation.

Appendix A

3

In this appendix we show that the cancellation conditions of the ‘“unwanted
terms” u.t.=w.t.(A) + u.t.(D) and u.t.;, = u.t(A4,) + ut(D,,) are equivalent to
the Bethe ansatz equations (3.34) and (3.35). As already pointed out in sect. 3 all
terms whose arguments are exchanged when A(v) and 7,(v) is commuted through
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H,N:l Baj(vj) using egs. (3.11) and (3.12) are called u.t{(A4) and u.t.(D), respec-
tively. They can be arranged as follows [15]:

N
ut(A4) = Z KJ(A)(U]” {Ui})Ba,(U1)Ba2(U2) -~-Ba,,1(Uj—1)Ba,-(U)

j=1

XB%H(L'}-+])...BaN(UN)(p‘I’((IO;), (A1)

N
wt(D)= Y KP(v;, {v})B,(v))Bo(v2) B, (1,_1)B, (V)

j=1

X Bam( Uip1) - By ( vy )PV (A2)
Here K{* and K{ (j=1,...,N) are coefficients to be determined. The first
coefficient of eq. (A.1) can be computed using the second term in (3.11) when
commuting A4(v) with B,(v,) and then using the first term in eq. (3.11) when
commuting A(rv,) with the remaining B,’s, since otherwise the argument v,
reappears in the B_’s. We get

(v, —v) Na(y—v)

KM= —agl(v . A3
! Db =0y b b(o e (A

In order to calculate K}D) we rewrite the second term of eq. (3.12) as
- Res (82 (v" —v") B, (v)T)(v")), (A.4)

v—uer=r

by means of eqs. (2.5) and (4.15). Then, proceeding along the same lines as in the
calculation of K{* we get the eigenvalue problem for the transfer matrix 7,
(3.17). In addition, just taking the first term in egs. (3.23) and (3.24) when passing
A, and T; through the B;)’s we obtain, after some re-arrangements,

c(v—vy) NMoa(v,—v) M a(Yﬁ_Ul)
b(v—uvy) ixi b(vy—u;) g=1 b(vg —vy)

K®P) = —b*(v)) (AS)

To get the other coefficients K and K{? (j=2,...,N) we use the commuta-
tion rule for the B_’s (3.13) and put Ba,-(U) in the first place. Then, repeating the
same procedure we obtain analogous expressions with j in the place of 1.
Furthermore, the requirement K{(® +K{?=0 (j=1,..., N) together with the
fact that ¢(v)/b(v) is an odd function (see eq. (2.5)) leads to the Bethe ansatz
equation (3.34).
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The “unwanted terms” that appear in the second level of the Bethe ansatz
method can be arranged as follows:

M

wt.g,= ) (Ké"ﬂﬁ +KED(1)))B(1)(‘Y1, {v)Bay(v2, {vi})--.
B=1

XB(l)(Yg—la {Ui})B(l)(U’ {Ui})B(l)(Yﬁ+17 {Ui})-“B(l)(YM’ {Ui})¢(1)~ (A.6)

By similar arguments as above, the coefficients K{4® + K{Pw) can be computed
using the second term in egs. (3.23) and (3.24) when commuting A(])(U {v;}) and

(1)3(0 {vgii}) through B (y,, {v}) and then using the first term in (3.23) and
(3.24) when commuting A, (y,, {v;}) and T(m(yl, {v;)) with the remaining B,,’s.

N

c(ys—v)Y M a(y,—vy
ko kP — Llaty -y =2 4 200 =)

i=1 b(Ys —0) a#p b(Ye = ¥s)
-(- 1)Mb§ By TTo(v - u)Hb%’%. (A7)

Once again, the other coefficients can be obtained using the commutation rules
(3.25). The requirement K§® + K§P0? =0 (B =1,..., M) together with the fact
that ¢(v)/b(v) is an odd function yields the Bethe ansatz equation (3.35).
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