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Abstract

A general form factor formula for the scaling(~)-Ising model is constructed. Exact expressions of
all matrix elements are obtained for several local operators. In addition, the commutation rules for order,
disorder parameters and para-Fermi fields are derived. Because of the unusual statistics of the fields, the
quantum field theory seems not to be related to any classical Lagrangian or field equation.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The ‘form factor program’ is part of the so-called ‘bootstrap program’ for integrable quantum
field theories in I+ 1 dimensions. This programiassifiesintegrable quantum field theoretic
models and in addition it provides their explicit exact solutions in terms of all Wightman func-
tions. This means, in particular, that we do mptantizea classical field theory. In fact the
guantum field theory considered in this paper is not related (at least to our knowledge) to any
classical Lagrangian or field equations of massive particles. The reason for this seems to be the
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unusual anyonic statistics of the fields, turning this form factor investigation even more fasci-
nating. The bootstrap program consists of three main steps: First the S-matrix is calculated by
means of general properties as unitarity and crossing, the Yang—Baxter equations and the addi-
tional assumption of ‘maximal analyticity’. Second, matrix elements of local operators

Uy e, PHO@) PLs -y )"

are calculated using the 2-particle S-matrix as an input. As a third step the Wightman functions
can be obtained by inserting a complete set of intermediate states.
The generalized form factof&] are defined by the vacuums—particle matrix elements

01O p1,-oes pa)lt o =X PAHAPOED (91, ..., 6,),

where theq; denote the type (charge) and the are the rapidities of the particley; =
M; (coshy;, sinh6;)). This definition is meant fof; > --- > 0,, in the other sectors of the vari-
ables the functiorFO_f') ®) = FO  (61,...,6,)is given by analytic continuation with respect to

a]...0,
the ;. General matrix elements are obtained frﬁﬁ (9) by crossing which means in particular
the analytic continuatiof; — 6; £+ iw. Using general LSZ assumptions and maximal analyticity
in [2] the following properties of form factors have been derived

(o) The form factor functiorFo?(Q) is meromorphic with respect to all variables ... ., 6,,.
(i) It satisfies Watson’s equations

FOpar (s 00,0, ) =FC, 0 (.,0,,0;,..)S0a;0)).

QL

(i) The crossing relation means for the connected part (se¢4é)anf the matrix element

a1 (PO |2, ..., pa)hCOM = 6 (1) Feyy. o (01 +im, 02, ..., 6)
=F9 02,0, 00— iT0),

ap...0Q1

wheres © () is the statistics factor of the operai@rwith respect to the particle.
(i) The function FO?(Q) has poles determined by one-particle states in each sub-channel. In
particular, ifa; is the anti-particle ofro, it has the so-called annihilation pole@b = ix
which implies the recursion formula
Res FY (01, ....00) = 2iCayay Frg (03, ..., 61)

Oro=im =

x (1= 0 (02) Sayar, O20) - - - Sapes (023)).
(iv) Bound state form factors yield another recursion formula

JRes F$ (01,02,03,..) =~2F (8a2.03... )T
12=11

if in is the position of the bound state pole. The bound state intertwrjj@(see e.gl4,5])
is defined by

. _ pBapv
i ReSSup(0) = I Iy,

1 The formulae have been proposed3ihas a generalization of formulae [ih]. The formulae are written here for the
case of no backward scattering, for the general caspiee
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(v) Since we are dealing with relativistic quantum field theories Lorentz covariance in the form

F (01 0p) = ¢V F 1+ o, 6y + 1)

holds if the local operator transforms @s— ¢*# O wheres is the “spin” of O.

Note that consistency of (ii), (iii) and (v) imply a relation of spin and statigti@ga) = ¢~27i
and alsor © (@) = 1/09 (@) wherea is the anti-particle ofr, which has the same charge@s
All solutions of the form factor equations (i)—(v) should provide the matrix elements of all fields
in an integrable quantum filed theory with a given S-matrix.

Generalized form factors are of the foftj

FPO=k2©® [] F@ ©;=06-06), (1)
1<i<j<n

whereF (9) is the ‘minimal’ form factor function. It is the solution of Watson’s equatj6hand
the crossing relation for = 2

F)=F(—0)S©), F(in—0)=F(r+6) 2)

with no poles and zeros in the physical stripeOm 6 < = (and a simple zero & =0). In[4] a
general integral representation for tefunction K& (9) in terms of theoff-shell Bethe Ansatz

[7,8] has been presented, which transforms the complicated equations (i)—(v) for the form factors
to simple ones for the-functions(see[4] and(41) below)

K@ =Y cun [ dzx-+- [ danh(@.20° 0. 2000, 2). 3)
" Co Co

The symbol<’y denote specific contours in the complgxplanes. The function (6, z) is scalar
and encodes only data from the scattering matrix. The fungifdcg, z) on the other hand de-
pends on the explicit nature of the local operatdrWe discuss these objects in more detalil
below. For the case of a diagonal S-matrix, as in this paper, the off-shell Bethe Ansatz vector
¥, (0, 2) is trivial. The K-function KO(?(Q) is an meromorphic function and has the ‘physical
poles’ in 0< Im¢;; < = corresponding to the form factor properties (iii) and (iv). It turns out
that for the examples we consider in this paper there is only one term in the @jn of

In this paper we will focus on the determination of the form factors of the scalid)-Ising
guantum field theory in ¥ 1 dimensions. An Euclidean field theory is obtained as the scaling
limit of a classical statistical lattice model in 2-dimensions given by the partition function

1 .
7= ZexF)(_ﬁ ZE(U,-,UJ-)), o; € {1,a),...,a)N_l}, w = eZi/N
{o} (ij)

as a generalization of the Ising model. It was conjectured by Kéberle and Si@ietteat there
exists aZ (N)-invariant interactiorE (o;, ;) such that the resulting massive quantum field theory
is integrable. In particular foN = 2 the scalingZ (2)-Ising model is the well investigated model
[10-13] which is equivalent to a massive free Dirac field theory. In this paper we investigate
the generalZ(N)-model. It has also been discussed as a deform#tiéyi5] of a conformal
Z(N) para-Fermi field theor{16]. The Z(N)-Ising model in the scaling limit possess¥s— 1
types of particles =1,..., N — 1 of chargex, massM, = M sinz i; anda = N — « is the
antiparticle ofx. Then-particle S-matrix factorizes in terms of two-particle ones since the model
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is integrable. The two-particle S-matrix for ttg N)-1sing model has been proposed by Kéberle
and Swiecd9]. The scattering of two particles of type 1 is

sinh3 (6 + &)

_ N7 4
sinh3( — &) )

$(0) =
This S-matrix is consistent with the picture that the bound stat€ ef 1 particles of type 1 is
the anti-particle of 1. This will be essential also for the construction of form factors below. We
construct generalized form factors of an oper#&?qr) andn particles of type 1 and for simplicity
we write FO(G) FO 1(©). Note that all further matrix elements with different particle states
of the field operato@(x) are obtained by the crossing formula (ii) and the bound state formula
(iv). As an application of this form factor approach we compute the commutation relations of
fields. In particular, we consider the fiel%é(x), (0,0=0,..., N — 1) with chargeQ and

‘dual charge’Q. There are in particular the order parametefsx) = ¥ oo(x), the disorder
parametersuQ(x) = I/IOQ(X) and the para-Fermi fieldg o (x) = Yoo (x). We show that they
satisfy the space like commutation rules:

og(x)og(y) =09 (y)og(x),
1o G (¥) = B (Mg (),

1_ 19 06
15 (X)Te(y) =00y (x)el Y IFCON,

Vo@)Vo(y) = Yo()Prg)ec ™ I HZI/N, (5)

It turns out that the nontrivial statistics factar§’ («) in the form factor equations (i) and (iii)
lead to the nontrivial order—disorder and the anyonic statistics of the fields.
The form factor bootstrap program has been appligd3hto the Z(2)-model. Form factors
for the Z(3)-model were investigated by one of the present authofdih There the form
factors of the order parameteg were proposed for up to four particles. Kirilov and Smirnov
[18] proposed all form factors of th&(3)-model in terms of determinants. Some related work
can be found if19]. For generalVv form factors for charge-less statesyarticles of type 1 and
n particles of typeV — 1) were calculated if20]. In the present paper we present for the scaling
Z(N)-Ising model integral representations for all matrix elements of several field operators.
Recently, there has been a renewed interest in the form factors program in connection to
condensed matter physifal-23]and atomic physicf24]. In particular, applications to Mott
insulators and carbon nanotubes as well as in the field of Bose—Einstein condensates of ultra-
cold atomic gases have been discussed and in some instances correlation functions have been
computed.
The paper is organized as follows: In Sectibwe construct the general form factor formula
for the simplestN = 2 case, which corresponds to the well-known scalif{@)-Ising model,
and show that the known results can be reproduced by our new general approach. In$Bection
we construct the general form factor formula for tH€3) case, which is more complex due
to the presence of bound states, and discuss several explicit examples. We extend these results
in Section4, where the general form factors f@(N) are constructed and discussed in detail.
Section5 contains the derivation of the commutation rules of the fields and some applications of
this formalism are presented. Some results of the present article have been published previously
[25] without proofs.
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2. Z(2)-form factors

To make our method more transparent and with the hope that our construction will help to cal-
culate form factors for all primary and descendant fields, we start with the simples¥Vcasy
which corresponds to the well-known Ising model in the scaling limit. This model, already inves-
tigated in[10,11,13,20]is equivalent to a massive free Dirac field theory. The model possesses
one particle with masaf and the 2-particle S-matrix is= —1. In[13] the form factor approach
has been applied to this case with the result for the order parametes {ield

1
FJ @ =@)" D% T] tanh=6;; (6)
1<i<j<n

for n odd. It is easy to see that this expression satisfies the form factor equations (i)—(iii) with
statistics factow® = 1. For theZ(2) case in this section we skip the proof that the functions
obtained by our general formula satisfy the form factor equations (i)—(v), the reader may easily
reduce the proofs for th&(3) and the generd (N) case of the following sections to this simple
one. Rather, we present the results for several fields, in particular, we will show that our general
formula reproduces the known results.

2.1. The general formula for n-particle form factors

We propose tha-particle form factors of an operatdét(x) as given by(1) with the minimal
form factor function

F() = sinh%@ (7)

which is the minimal solution of Watson’s equations and crosgi)gfor S = —1. The K-
function is given by our general formu(&) where the Bethe Ansatz vector is trivial (because
there is no backward scattering) and the sum consists only of one term

KS(©) = Nulum (0. p©). ®)
Thefundamental building blocksf form factors are
1 dZ]_ dZm
@99 = [ S [ S0, 2,00. 0. ©
m! R R
Co Co
. 0=[][]ec -0 [] r@-zp. (10)
i=1j=1 1<i<j<m

The h-function does not depend on the operator but only on the S-matrix of the model, whereas
the p-function depends on the operator. Both are analytic functios Gf=1,...,n) andz;
(j=1,...,m) and are symmetric undéf < 6; andz; < z;. For all integration variables;

the integration contour = ) _ Cy, enclose clock wise oriented the points=06; (i =1, ..., n).

This means we assume thiat;) has a pole at = 0 such thaRk = fce dz ¢ (z—0). The functions

¢ (z) andz(z) are given in terms of the minimal form factor function as

—2i

PO = F e F@ i)~ sinhz’

11)
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1 1 .
T(Z) = m = ZSInhZz. (12)

The following properties of the-functions guarantee that the form factors satisfy (i)—(iii)

(in) pS,(0,2) is symmetric undes; <> 0;
(ii5) o€ p, 61+ 27i, 0, ... 2) = p, (01,62, 2)
(i) if o=1im

Pin©. 2, o =0 0.2, o =Py 5 103, 00,22 ) + s

71=02
whereo © is the statistics factor of the operat®rwith respect to the particle. The functigh
must not contribute after integration, which means in particular that is does not depend:pn the
(in most case® = 0). For convenience we have introduced the indjgeto denote the number

of variables. For the recursion relation (iii) in addition the normalization coefficients have to
satisfy

N, =iN,_>. (13)

One may convince oneself that the form factor satisfies (i) and (ii). Not so trivial is the residue
relation (iii), however, it follows from a simplified version of the proofs for tA€3) and the
generalZ(N) case below.

2.2. Examples of fields and theirfunctions

We present the following correspondence of operatorgafuhctions which are solutions of
(i5)—(iii%). For the order parametet(x), the disorder parametgr(x), the Fermi fieldy (x), and
the higher conserved currentg (x) (L € Z) we propose the following-functions and statistics
parameters

o(x) < py.(0,2)=1 forn =2m + 1 witho? =1,

1(x) < pl (0,2) = ime T30 for n=2m with o = —1,

E@) o pl@,2) =eFET72X0  forp=2m + 1witho¥ = -1,

JE@x) < p,{,ef ©.2)=Y Y et forn=2mwitho" =1. (14)

Note thatp # 0 in (iii%,) only for Jf. The motivation of these choices will be more obvious when
we investigate the commutation rules of fields in Secband will follow from the properties
of the form factors which we now discuss in more detail.

Explicit expressions of the form factorsNow we have to check that the proposedunctions
really provide the well-known form factors for the order, disorder and Fermi fields. In order to
get simple expressions for these form factors, we have to calculate the ir{@gsath (10) for
eachp-function separately.

For the order parameter Only for odd numbers of particles the form factors are non-zero. We
calculate
1
Iim(0,1) = 2" 1_[ ———— forn=2m+ 1 (]_5)

1lg..
1<iej<n coshz0;;
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The proof of this formula can be found &ppendix B The general formulagl), (3), (7), and
(13)with N,, = i®=D/2 then imply forn odd
F(0;5)

1
~\(n—1)/2
@z(a)“ | tanh=6;;, (16)

1<i<j<n

FFo)=2" T[]

1<i<j<n

which agrees with the known res@). The proof that the integrdy,,, (6, 1) vanishes for even
andm > 0 is simple: Ifm(m — 1) < n we may decompose for re@lthe contour€y = Co—Co—_;»
where R& goes from—oo to co and Im; + iw) < ImCo < Im(6;). The shiftz; — z; —im
impliesh (6, z) — (—1)"h(8, z) such that the integrals alordly andCo_;, cancel for evem.

For the disorder parameter Only for even numbers of particles the form factors are non-zero.
We calculate withp* as given in(14)

I,,m(Q,p“):Z" l_[ o forn = 2m.

1g..
1<i<j<n COShEQU

The proof of this formula is analog to that Appendix B therefore withN, = i”/2 the form
factors are fon even

1
Fl@=@)" [] tanhz;. 17)
1<i<j<n

Similar as above for the order parameter one can show that the infggrél p*) vanishes for

oddn andm > 0. It is also interesting to investigate the asymptotic behavior of the form factors
when one of the rapidities goes to infinity. From the integral representation it is easy to check
that

Fo© "2 F 0 P2 2 F ,0").

Of course, this result follows easily from the explicit expressid® and (17) This asymptotic
behavior is another motivation for our choi(®t) of the p-function foro (x) andu(x).

For the Fermi field Only for n = 1 the form factors are non-zero. We calculate V\;irt*ﬁi as
given in(14)

Lum (Q, Pwi) = (Snle:':%e forn=2m+ 1.

The proof that/,,,,, (6, p‘”i) =0 forn =2m + 1 odd andn > 0 is the same as for the disorder
parameter. Therefore with the normalizativip= +/M we obtain

_1p
FY@):<mwﬂ»w>=uw>=~ﬁﬁ<2§{) (18)

The property that all form factors of the Fermi field vanish except the vacuum one-particle matrix
element reflects the fact that(x) is a free field, in particular for the Wightman functions one
easily obtains

(Ol (x1) -~ ¥ (xn)[0) = (019 (x1) - - - ¥ (x) | O)free.
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For the infinite set of conserved higher current®nly for n = 2 the form factors are non-zero.
. + . .
We calculate withp’L as given in(14)

L6y L6y

e
- + —
sinhd12 ~ sinhfyq

e

Ly (Qa le‘i) = 8n2(€i91 + €i92)2i< ) for n = 2m.

The proof thatl,,, (0, pJLi) =0forn =2m > 2 is again similar as above. With the normalization
c21 = +i M the form factors are
1

+ i +6 +0: L6 L6
(O1J (0|01, ..., 00)" = F8,22M (e + €*72) (" — ¢ z)m

such that as ifi26] the charge®); = [dx Jf(x) satisfy the eigenvalue equation

n
(QL - Zewf>|91,...,9,,>i” =0 forL=+1 43 ....
i=1
Obviously we get the energy—momentum tensor f[bjf@(x).

The propertyF,}” =0 for oddn > 1 andF;/ = 0 for evenn > 2 is related to the fact that in
the recursion relation (jii) the factaf. — o' © [1S) is zero in both cases.

3. Z(3)-form factors

Let us now consideN = 3, which corresponds to the scali@g3)-Ising model. In this case
we have two particles, 1 and 2, and the bound state of two particles of type 1 is the particle 2,
which in turn is the anti-particle of particle 1. Conversely, the bound state of two particles of type
2 is the particle of type 1, which in turn is again the anti-particle of 2. So, our construction should
take into account this structure of the bound states. We construct the form factors for particles of
type 1, the others can then be obtained by the form factor bound state formula (iv).

3.1. The general formula for-particle form factors

In order to obtain a recursion relation where only form factors for particles of type 1 are
involved, we have to apply the bound state relation (iv) to get the anti-particle and then the
creation annihilation equation (iii) to obtain

Res Res Fi3;y 1(f1,..)= Res Fg; 1(0ay.6s,..)vV2I
O23=in b12=in O23=in

n
=2iFP (04....) (1 o] 5(93,-)) ver, (19)
i=4
wheref12 = %(91 + 6) is the bound state rapidity,= %n is the bound state fusion angle and
I' =i|Reg—y $11(9)|? is the bound state intertwiner (sg5]). In the following we use again

the short notatioF’ ; (61, ..., 6,) = FC(9) and also write the statistics factoraS (1) = 0.
We write the form factors again in the forgh) where minimal form factor function

o

dt 2coshit sinhZ¢ 6

F(0) = czexp —#O—cosw(l—,—)) (20)
J t sinkft in
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is the solution of Watson'’s equatioli®) with the S-matrix(4) for N = 3. The constants is
given by(A.1) in Appendix A Similar as above we make the Ansatz for #dunctions

Ky (©) = Ny Lk (6, p©) (1)
with the fundamental building blocks of form factors
dz dz, [ du du
Limi (8, p) = 'k'/ L. f —1 ~-/—kh(9 z,wp@,z,u), (22)
Co Co

h(0,z,u) = ]"[(1"[¢(z,—9>1"[¢(u,—9))

i=1\j=1
< I t@p [[ wwp [] JI »G—up. (23)
1<i<j<m 1<i<j<k 1<i<m 1<k

Again the integration contou = ) Cy, enclose the pointg; such thatrR = fc dz¢(z —0).
Equations (iii) and (iv), in particulaf19) lead to the relations

1 2
[Jo@+kin [[F@© +kin =1, (24)
k=0 k=0
()¢ ()P (—2) =1, x(2)¢(@) =1, (25)

as an extension ¢fil1) and (12Yor the Z(2) case. The solution fap is

1
#(z) = (26)

sinhizsinhi(z +in)
if the constants is fixed as in(A.1). The phi-function satisfies the ‘Jost function’ property

¢ (=0)

— =50). 27

50) ) (27)
We will now show again that by the Ansaf21)-(23)we have transformed the form factor

equations (i)—(v), in particular equati¢h9) to simple equations for thg-functions.

Assumptions for the-functions The functionpfl?nk(g, z, u) is analytic in all variables and sat-
isfies:

(i5) pC .0,z u) is symmetric undef; <> 6;,
(i) o poyO1+27i, 02, ..., 2,u0) = p (61,62, ..., 2, 1),
(iii é) if 010 =0623=1in

7= 91 =01 ank(9 2, U)| 2=t —01 Pn 3m—1k— 1(9 . u)+p, (28)

uy1=0p uq1=63

pnmk(e Z I/l)
(v pS, O+, z+puu+p) =erpl @, z,u),

wheref’ = (04, ...,60,).2' = (z2,....2m) @Ndu’ = (uz, ..., ux). In (ii5) and (jii;) 0,10 is the
statistics factor of the operat@? with respect to the particle of type 1 and irk)v is the spin
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of the operatoi0. Again p must not contribute after integration (in most cages 0). Again
one may convince oneself that the form factor satisfies (i) and @#df z) is symmetric under
0; < 0; and periodic with respect & — 6; + 27i. Not so trivial is the residue relation (iii)
which is proved in the following lemma.

Lemma 1. The form factorsF,fQ (9) defined by(1) and (20)—(23)satisfieq(i)—(v), in particular
(19), if the p-functions satisfyi5)—(v5) of (28), the functionsp, = and x the relations(24), (25)
and the normalization constants (B1) the recursion relation

Nu(Reso (=6))°p(in) F2(im) F(2in) = Ny-a2i/2" (29)
s

Proof. The form factor equations (i), (ii), and (v) follow obviously from the equations for the
p-functions (§), (ii5), and (), respectively. As already stated, we will prove properties (jii) and

(iv) together in the form o{19). Taking the residues Rgs_;, Re%,,—i, there will bemk equal

terms originating from pinchings far; andu;. We pick them fromz; anduy and rewrite the
products that appear in the expressionffgy; in a convenient form, such that the location of the
poles turns out to be separated from the general expression. Then, the essential calculation to be
performed is

dz2 dz, du2 duy
Res Res ] 0, — e —
6o3=in O10=in nmk( P ) m‘k' C_/ g ; R
(A (4 (4
XH(H¢(Z,—9)H¢(M —e))
=4\ j=2

X H 7(zij) l_[ T(Mij)nl_[%(li—”])

2<i<j<m 2<i<j<k i=2j=2

3 m k
X l_[<l_[¢(zl —Gi)l_[(f’(l/lj —Gi))r
j=2 j=2

with

O23=in O12=in

dzy [ duy ~
r= Res Res[%/TIizl_[l(¢(zl—9i)¢(u1—9i))

m k k m
X l_[ 7(z15) l_[ T(u1j)x(z1 — u1) l_[ x(z1 —uj) 1_[ x(zj — u)pS @, z,u).
j=2 j=2 j=2 j=2
ReplacingCy by Cy whered' = (6a, ..., 6,) we have used(0) = t(£in) = %(0) = x(—in) =0
and the fact that the;-, u1-integrations give non-vanishing results only faf, 1) at (91, 62)
and (62, 03). This is because fdi12, 023 — in pinching appears at = 62, u1 = 63 andz; = 61,
u1 = 6. Defining the function

m

k k m
frun) =[]r@p [ [reprcr—un) [ [r@—up [[ 2G5 —upd @ 2.0

j=2 j=2 j=2 j=2
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and using the property thei(z, z) = f(z, z — in) = 0, we calculate

O23=in 12=in i1

dz1 [d .
r= Res Res/ Zl/ﬂf(zl,ul)l_[(qs(zl—Qi)(f)(ul—@i))
Co

(Res¢( 0)) %6 (ln)l_[ ¢(92l)¢(931))<f(92,93)—f(91,92)]_[S(93i))-

i=4 i=4

We have used the symmetries of the phi-functio@) = ¢ (6 + 2i) = ¢(—6 — in) the Jost
property(27) andéi2. 23 = in = iz which imply that
Res ¢(621) Res ¢(632) = Res ¢ (f13) Res ¢ (620 = (Resp(—0))°,

O12=in Oro=in O23=in 0=in

¢ (023)¢ (031) = ¢>(912)¢(923) = ¢2(in),

¢0u) @Oz —in)  ¢(—03)

= = = 5(63).

¢ (63i) ¢ (63i) ¢ (63i)

With the help of the defining equatiof®5) for T andx which imply

3 -1
<H¢(Z - 91’)) =1(th —2)x(z —02) = 1(62 — 2)x(01 — 2)

=102 —2)x(z —03) = 1(03 — 2)x(01 — 2),
we obtain the relations fof (62, 63) and f (61, 62)

3 m k
]"[(H¢(z, —6)[[ow; —e»)f(el,ez) =x(012)ps (0, 01,7, 62,u),

i=1\ j=2 j=2

3 m k
]"[(]"[qs(Zj -] - 9,->)f<92, 03) = x(023)py, (0, 02, 2, 03, ).

i=1\ j=2 j=2

Finally we obtain using the defining relati¢®4) for the phi-function

Res Res Ly (0. p©) = (Res¢(- 6))’¢ (ln)%(ln)l_[]_[ F(0:)~

O23=in O012=in i=1 ja

* In-am-u-1(0'. p©) (1 —oy 1"[ 3(93,-)>

i=4
if the p-function satisfies (ifj). Therefore the form factor given ki) and (20)—(23)atisfies
(14) and (iii) if the normalization constants satigB9). O

3.2. Examples of fields angfunctions

We present solutions of the equations for ghéunctions (k)—(v;3) of (28) and some explicit
examples of the resulting form factors. We identify the fields by the properties of their matrix el-
ements. In Sectiob we show that the field satisfy the desired commutation rules. This motivates

to propose a correspondence of fiefds) andp—functionSpfmk(Q, z,u).
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The order parameteso(x) We look for a solution of ¢)—(v;) with

chargeQ =1, 2,
spins =0,
statisticso; ¢ = 1.

Since the fields carry the chargethe only non-vanishing form factors withparticles of type 1
are the ones with = Q0 mod 3. We propose the correspondence of the field ang-fioection:

m=I+1, k=1 for0=1,

90 _ i —
0Q<_)pnmk_1 withn =3l + 0, {m:l—}—Lk:l—{—l foro =2

The normalization constantg, follow from (29).

Examples forQ =1 The form factors of the order parametaix) for one and four particles
of type 1 are

= (0l01(0)|p)1 = N1l110=1,

1111(9)—(0|U1(0)|P1, P2, P3, pa)ii11= Nala21(6, 1) l—[ F(0;)),
1<i<j<4

where we calculate from our integral representafii2)

1
I421(0, 1) = constx eIy el 1 : — —
<Z 2 >Esmh%(9,-j —in)sinh(6;; +in)

This result has already been obtainedlii] where also the form factor equation (iv) has been
discussed, in particular (up to normalizations)

. ReS (0|01(0)Ip1, P2, P3, pa)ii11=constx (0l61(0)|p1, p2, p3 + pa)iis
34=2m

with

constx F(612) 2 F min(6;3)

sinh3 (012 — in) sinh3 (612 + in) ;_7 coshg;s”

(0101(0)| p1. p2. p3) 1=

whereFlr‘;in is the minimal form factor function for the S-matrsq». Further it has been found
in [17] that

JRes (0010)1p1. p2. p3)1, = constx (0/o1(0)|p1 + p2. p3)5y

12—
with

i constx F(612)
(Olo1(0)|p1, p2)gp = ——7 —— : (30)
sinh3 (612 — in) sinh5 (012 + in)

and the form factor equation (iii) has been checked

Res (0jo1(0)| p1, p2, pa)iyo = constx (S(612) — 1).
23—
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Example forQ =2 The form factor of the order parametei(x) for two particles of type 1 is

F2(0) = (0102(0)| p1, p2)'y = Nal211(0, 1) F (612),
where we calculate
1

1511(0, 1) = constx — - ,
sinh3 (612 — in) sinh3 (612 + in)

which agrees with the result (30) fif7]. This is to be expected because of charge conjugation.

The disorder parametet 5 (x) We look for a solution of @)—(v3) with

chargeQ =0,
spins =0, ) i
statisticso; ¢ = w2,
wherew = ¢!, n = 2/3. We call the numbe@ = 1, 2 the ‘dual charge’ of the fielyiQ(x). Since

the fields carry the charg@ = 0 the only non-vanishing form factors withparticles of type 1
are the ones with = 0 mod 3. We propose the correspondence of the field angd-fliaction Q

sl Sa - §TL0) I
MQ k . 2 n 0 k=
pnmk - pexdztzlzl + Zi:lul -3 Zi:l l)

wherep = JEQ(Q_N+2)m. Again the normalization constans, follow from (29).

Examples forD = 1,2 The form factors of the disorder parametey (x) for 0 and 3 particles
of type 1 are

F'o = (0l (0)]0) = 1,

F15©) = (0l 5O p1. p2. pa)yy = Nalana(6. p*e) [ Fua@y.
1<i<j<3

We calculate from our integral representat{@g)

0,
I311(6, p"¢) = constx e:FSi Zeﬁ 1_[

l<j

1
sinh3(6;; — in) sinh3((@;; +in)’

where the upper sign is fap = 1 and the lower one fo@ = 2. Using the form factor bound
state formula (iv) we obtain (up to a constant)

Fyf (@) =780 FI3"(612).

cosh%@lz

It is interesting to note that for R — oo we have the relation of order and disorder parameter
form factors (up to constants)

lim  (0lo1(0) p1, p2, p3, pa)ig1= (Ol2(0)| p2, p3. pa)iys,
Ref1— o0
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which follows from the asymptotic behavior

F(0y) — 3%,
1

4
I4220.1 e
22100, 1) > e (Ze )jl:[; [1 sinh3(6;; — a)sinh3(0;; +a)

1<i<j

The para-Fermi fieldyo (x) We look for a solution of ¢)—(v;) with

chargeQ = Q,
spins = Q(3— Q)/3,
statisticsaf’ ¢ — e,

These fields have charge= 1, 2 and dual charg® = Q. The only non-vanishing form factors
with n particles of type 1 are the ones with= 0 mod 3. We propose the correspondence of the

field and thep-function:
1 n n=3+ Q,
e —iyn e .
Vo © pq;,mk PO Yz 3201 ’)2 ] with {m=1+1,
Pt = P XO( XLy 2 + g i — 5 271 60) k=14+0Q0—-1,

wherep = ﬂQ(Q_l)l. Again the normalization constants, follow from (29).

Examples forQ = 1,2 The form factors of the para-Fermi fiefd (x) for 1 and 4 particles of

type 1 are
FM6) = (0191(0)| p)1 = N1l110(0, p¥*) =

2p

3

ala1(9, p¥* 1_[ F(6i)

Fl41©) = 010 p1, pa, p3, pa)iys= N
1<i<j<4
4
2
o3 Zei F 9
—constx e =t St ] — .(U.) : |
i<j 1<i< j<a SINN3(0;j — in) sinh3(6;; + in)

and the one of the para-Fermi figlg(x) for 2 particles of type 1 is

F{2(0) = (0192(0)| p1, p2)11 = Nal211(6, p¥?) F (612)
F(612)

— constx ¢3@1+02) )
sinh (612 — in) sinh3 (612 + in)

All these examples agree with the result$18].
The higher currents]fE (x) We look for a solution of g)—(v;) with
chargeQ =0,
spins =L i 1,

StatIStICSO’l =1
Since the currents ar&(3)-charge-less the only non-vanishing form factors witparticles of
type 1 are the ones withh = 0 mod 3. We propose the correspondence of the currents and the
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p-functions forL € Z

+ n m m _
e $or | oD o N Vit
i=1 i=1 '

i=1

Note that for this case the functignin (28) is non-vanishing, however, it does not contribute be-
causel,,,, (6, 1) = 0 forn = 3m. The proof of this fact is similar to the one givenAppendix B
The higher charge®; = [ dx Jf(x) satisfy the eigenvalue equations

i=1

Obviously, fromjfl(x) we obtain the energy—momentum tensor.

Examples The form factors of the energy momentum tensor tha(fin) for L =41 for0and
3 particles of type 1 are

FIi = (0]7;£(0)[0) =0,

JE i +
Fi5©) = (01JF (0) pa. p2. pa)fhy = canlzna(0. p’t) [ F6ij)

1<i<j<3
= fconstx (eigl +etf2 4 ei93)(ewl +elf2 4 ew3)
F(6;;
I | e AR
1<i<j<3 sinh3(6;; — in) sinh5(6;; +in)

By (iv) we obtain the bound state form factor (up to a normalization)fer +1

JiE 1 i
F;5 (8) = £constx 2LV proin g, o),

Notice that this last expression agrees with the resul@@fwhenN = 3.
4, Z(N)-form factors

The scalingZ (N)-Ising model possesses particles of type 1, ..., N — 1 with Z(N)-charge
Qq = « such that the anti-particle of is@ = N — «. The bound state fusion rules awes8) =
a + BmodN, in particular the bound state of — 1 particles of type 1 is the anti-particle
Therefore applyingv — 2 times formula (iv) and once (iii) we obtain the recursion relations for
form factors where only particles of type 1 are involved

Res ... Res F,(01,...,6,)

On-—in=in  612=in

n N-2
- 2iFn_N(9N+1,...,9,,)<1— of ] S(eN,-)) []vary™. (31)
i=N+1 a=1
wheren = 2 and thel -t = i| Reg—i,, S1.(6)|Y/? are the bound state intertwiners of the
fusion (1lo) = 1+ «. We will construct the form factors of particles of type 1, all the others are

then obtained by the bound state formula (iv).
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4.1. The general Z(N)-form factor formula

Following[1] we write the form factors again in the forgh)
o =kS® [] Fep. (32)
1<i<j<n

where minimal form factor functiofil7]

dt Zcosh—tsmh 0
FO@)=cyexp| — (1—coshr<1— —>> (33)
0

smh2t i

is the solution of Watson’s equatio(f) with the S-matrix4). The constanty is given by(A.1)

in Appendix A The K -function K,?(el, ..., 0,) is totally symmetric in the rapidities;, 2ri
periodic, containing the entire pole structure and determines the asymptotic behavior for large
values of the rapidities. Similar as above we make the Ansatz foK tfignctions

KO©) = Nulun (6. °) (34)

with the fundamental building blocks of form factors

d
L 0. p©) = ( [1— o 1—[/ Zk/)h(g,z)po(ﬁ,g), (35)

ch

N-1/mr n
h(@.2) = H(H [[e@i—00 T[] f(z;a—z;q))
k=1 \j=1i=1 1<i<j<my
my  m

X l_[ 1_[ H%(Zki —21j)s (36)

1<k<IKN-1i=1 j=1

wherem = (m1,...,my_1) andz = (zx;),k=1,...,N = 1,i =1,...,my. Again the integra-
tion contours’y = ZCg enclose the point§ such thatR fc dz¢(z —0). Equations (iii) and
(iv), in particular(31) lead to the relations

N-2 N-1
[[oG+kin [] Fe+kin =1, (37)
k=0 k=0
T(—2)¢(z + iJT)¢(z) - x(2)¢(2) = (38)
N-1 N-2N-2
Na(Resp (~0) Vo H¢ (kin) ] F¥*kin) = No—y2i [] [] vorge.  39)
k=1 k=1 k=1 a=1

wherem —1=(m1—1,...,my—_1 — 1). The solution of37)for ¢ is again

1
sinhizsinhi(z +in)

#(2) = (40)
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if the constant is fixed as in(A.1). The phi-function satisfies again the ‘Jost function’ property
o (—0)/p(0) = S(). Thep-functionp,?ﬂ(g, z) is analytic in all variables and satisfies:

(") p© (0. z) is symmetric undes; <—>9,,

(i") of P,(,Qm(91+2m,92, D) =P (01,02, 2),
(ii") if Op1=in=2mi/Nfork=1,...,.N—1

p,%(@, Dlz=6, = U]?P;g?ﬂ@» Dlzga=611 = G]?pr(lg—Nm—l(Q/’ Z/) +p, (41)
V) PO @+, z+ ) =e*pS 0.2),

whered’ = @y+1,-..,60), 2 = (i) k=1,...,N = 1,i =2,...,my. In (ii’) and (i) o is
the statistics factor of the operat©rwith respect to the particle of type 1 and iri)(v is the spin
of the operato). Again p must not contribute after integration (in most cages 0).

By means of the off-shell Bethe Ansat2) and (35)we have transformed the complicated
form factor equations (i)—(v) to simple equations for thdunctions (i)—(v'). Again one may
convince oneself that the form factor satisfies (i) and (ih@#, z) is symmetric undeé; < 6;
and periodic with respect #® — 6; 4+ 2i. Not so trivial is again the residue relation (iii) which
is proved in the following lemma.

Lemma 2. The form factors given by equatio(@2)—(36)satisfy the form factor equatior{g—
(v) if the functionsp, 7, » satisfy(37)and (38), the normalization constants satig89) and the
p-functions satisfyi’)—(v') of (41).

The proof of this lemma follows the same strategy of the previod(® case. Here, however,
the essential calculation is much more involved, due to the existence more types of particles.
Details of this proof can be found #ppendix C

4.2. Examples of fields angfunctions

We present solutions of the equations for ghéunctions (i)—(v') of (41) and some explicit
examples of the resulting form factors. We identify the fields by the properties of their matrix ele-
ments. In Sectiod we show that the fields satisfy the desired commutation rules. This motivates
to propose a correspondence of fiedds) and p-functionsp? (9, z).

The ﬁe|d3l/fQ’Q(x) These fields have the charge=0, ..., N — 1 and the dual chargé =
0,..., N — 1. We look for a solution of (}—(v') with

chargeQ modNn,

spins” =min(Q, 0) — QQ/N, (42)
statisticwl"’ =¥

with @ = /" = ¢2"//N | The phase factoari” is the statistics factor of the fiel, ;(x) with

respect to the particle of type 1. Since the fields carry the ch@rtfee only non- van|sh|ng form
factors withn particles of type 1 are the ones witk= Q9 modN. We propose the correspondence
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of the field and the-function:

0 my
V0.6 <—>anmQ =pexp<z D uj - —Z9>

k=1 j=1

mp=I14+1 fork<OQ,

my =1 for O <k, (43)

withn=3/+0,1=0,1,2,... and {

wherep = ﬁQ(Q_N+2)”/N. One easily checks that thisfunction satisfies the equation$){i
(v") and the requiremen{#@?2). The normalization constanté, follow from (39). In particular
we have for

0 =0 theorder parametesg (x) = Y go(x),

Q=0 thedisorder parametﬁré x) = 1//0Q ),

0 =0 the para-Fermi fieldg o (x) = Voo (x).
They satisfy space like commutation rul&3, derived in the next section. The para-Fermi fields
Yo (x) are the massive analogs of the para-Fermi fields in the conformal quantum field theory
of [14,15] One obtains a second set of fmhﬂa Q(x) by changing the sign in the exponent of
(43).

The higher currentsILi(x) These fields are charge-less, have bosonic statistics and spin
The only non-vanishing form factors withparticles of type 1 are the ones with=0 modN.
We propose the correspondence of the currents ang-faections forL € Z

N-1 m

Ji <—>pnm_:|:Zei0 ZZeLZ"f for n = 3m.

k=1 j=1
The higher charge®; = [ dx Jf(x) satisfy again the eigenvalue equations
n
(QL —~ Ze“‘) p1.-.., pa)" =0.
i=1
Obviously, fromel(x) we obtain the energy—momentum tensor.
Examples Up to normalization constants we calculate for the order parametérsando,(x)

(Olo1(0)10)1 =1,

, F@®
(0l02(0)[61, 62)!y = —— 12 _
sinh3 (012 — 2i/N) sinh5 (612 + 27i /N)

and for the para-Fermi fieldgg (x) andy(x)

Oy (0)0) g == 727,

: 1= O1+62) [ (g, )
(01¥2(0)[01. 62) 1y = —— o (44)
Slnh—(912—2ﬂl/N)SIﬂh—(912+2711/N)

where|0)o denotes a one-particle state of cha@eand |61, 92) a state of two particles of
charge 1.
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5. Commutation rules
5.1. The general formula

Techniques similar to the ones used in this section have been applied for the simpler case of
no bound states and bosonic statistic§3j27]. A generalization for the case of bound states
has been discussed &8]. Here we generalize these techniques for the case of more general
statistics and also discuss the contribution of poles related to the double poles of bound state
S-matriceg In order to discuss commutation rules of two fielglér) and ¥ (y) we have to
use a general crossing formula for form factors which was derived]irfsee alsd3]). For
guantum field theories with general statistics we introduce assumptions on the statistics factor of
a fieldy (x) and a particlex. It is easy to see that for consistency of (ii) and (iii) the condition
¥ (a)o¥ (@) = 1 has to hold ifx is the anti-particle of. We assume that

oV(@)=0"(Q4) (45)

depends on the charge of the particle such 8HatQ + Q') = oV (Q)o ¥ (Q'). A stronger as-
sumption (which holds for th& (N)-model) is the existence of a ‘dual chargey, of the fields
such that

oV (o) = a)Q‘”Q“, (46)

where|w| = 1.

In order to write the following long formulae we introduce a short notation: For a €Xld
and for ordered sets of rapiditi®s > --- > 6, andei < .-+ < 6] we write the general matrix
element of0(0) as

OE(Q};, 0,) =B (0}). ... B1(6pD|Olera (@), ... 0n (6))", (47)

wheref, = (01, ...,6,) andQ;g =(01,...,0,,). The array of indices = (a1, ..., ,) denote a

set of particlesd; € {types of particlel and correspondingly fo8 (we also writeja| = n, etc.).
Similar as for form factors this matrix element is given for general order of the rapidities by the
symmetry property (i) for both the in- and out-states which takes the general form:

B B
0505, 8,) = S505)05(05.0,)Sx(8,,)

if 0, is a permutation of, andgj a permutation o@’ﬁ. The matringZ(Qa) is defined as the rep-
resentation of the permutation@,) = o, generated by the two-particle S—matritﬁjégé (612),

for exampleSJ3ii2 (61, 62, 03) = ST (013) Sush2 (023) (cf. [4]).

We consider an arbitrary matrix element of prOdl:ICIS of fiellls= ¢ (x)¥ (y) and O =
¥ (y)¢ (x). Inserting a complete set of intermediate st@gs';‘ we obtain

i P, x—i ) l /A A —i~ xX—y
(SY(1))5@), 0,) = ””; / By (O 0,05 @, 0,0 Fre), (48)
6

=Y

2 For bound state form factors there are also higher order ‘physical poles’ (s¢29%-82).
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where ¢ = ¢(0), ¥ = ¥ (0), P, = the total momentum of the staié,, )i etc. andfe~ =

o

"" e 4%  Einstein summation convention over all setds assumed. We also define =

]'[ na' whereno, is the number of particles of typein y. . We apply the general crossing for-
mula (31) of[4] which is obtained by taking into account the disconnected terms in (ii) and
iterating that formula. Strictly speaking, we apply the second version of the crossing formula to
the matrix element o

ﬁ ~
605 0,)= Y S50,.0050..0,—in )CPPILWE,.§,)S57@,),  (49)
U0, =0,
8.0d,=0,
wherep = (pjp), - - -, p1) With p = antiparticle ofp and@l — ir— means that all rapidities are
taken a®’ — i (w —€). The matrixly - (0", %) is defined b)(47)WIth O = 1the unit operator. The

summation is over all decompositions of the sets of rapldﬁgeandgy. To the matrix element
of ¢ we apply the first version of the crossing formula

Va@,.0) =0l S S50,.0,)1:0,.0,)C 5,05 +in-.0,)S;©,),
,u8,=4,
8,00, =0, (50)
where we assume that the statistics fa@tg(); of the fieldy with respect to all particles i
is the same for alj which contribute to(48) (see below). Inserting49) and (50)in (48) we
use the product formuls— (9 )SW (GU, n) = Sv—,, (ev, n) Let us first assume that the sets of
rapidities in the initial staté and the ones of the final staag have no common elements which
implies that alsaﬁ N 9 = (). Then we may use (ii) to gétm («9 Q ) =1 and we can perform
thed - andd —mtegratlons The remaining-integration variables are, = 9 Nng., then we

may wnte for the sets of particles= uw, * = wr andy = pwr and S|m|lar for the rapidities
and momenta. Eq48) simplifies as

(¢<x>w<y))—<e;3, Qa)

M& [ - —1i . — Py
— Z o Spt(9p7 T)/ g (Qa)el(P’D PM)X i(Py Pr))’ (51)
0,8, =0/,
0,10, =0,
where
x—A = o(y)¢#wp(eﬂ, 0,05 —im_)CELCECe?
X Yegn (O + im0 +im_,0,)e  Poley), (52)

The integrand’(ﬁ may be depicted as

. V]
X = o
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Similarly, if we apply for the operator produgt(y)¢ (x) again the second crossing formula to
the matrix element op and the first one the matrix elementyfwe obtain Eq(51) whereXﬁ
is replaced by -

pr_ ¥ _ 7] ; I PP CIT WD
Y@_a(é)%%(gu,gw—m,,gﬁ—m,)c_c C

X Y (0% +im_. 0,0, )e o) (53)

which means that only(’é) is replaced bw‘p

Gy P,, by —P,, and the integration variablds, by

Q(I) —IT_.

No bound states In this case there are no singularities in the physical strip and we may shift
in the matrix element of/ (y)¢ (x) (51) with (53) for equal times and*! < y* the integration

variables byj; — ; +im_. Note that the factor’ Fo*=>) decreases for @ Ref; < rr if x* < y1.
BecauseP,, — — P, we get the matrix element af(x)v (y) (51) with (52) up to the statistics
factors. Therefore we conclude

POV () =¥ Mo’ forxt <y, (54)
wheres V% = o('”z)/o(%). Using the assumptio5) we have withQ; = Zyez oy

ol =[To" M =0%0p) =0 (Q5- Q).

YEY

which is the same for al/, as assumed above. The last equation follows f@m= —Q,
and charge conservation which means that the matrix elenwérits (48) are non-vanishing if
0p+ Q¢ =0y. Therefore the statistics factor of the fielgiswith respect tap is
o Y(0Qy)
B U"’(Qé)

which is in general not symmetric under the exchange @nd¢. Finally, we obtain the space
like commutation rules

Rz =¥ (~0p) =1/" (Qp). 59)

1/0‘”(Q¢) for x1 < y1,
od’(Qw) for x> y1,
where the second relation is obtained fr@®) by exchangingp <> ¢ andx <> y. The same
result appears when there are bound states. This is proygapendix Dwhere also the existence
of double poles in bound state S-matrices is taken into account.

Y () =¥ ()P (x) { (56)

5.2. Application to theZ (N)-model

The statistics factors in this model are of the fof#6) o ¥ () = w%% %« where Oy is the

dual charge of the fielgr and Q, is the charge of the particte, therefores V¢ = w=Cv2¢. The
general equal time commutation ryfe6) for fields Voo™ defined by(43) in Section4 reads
as

w RQ — o=27IRQ/N  for x1 _ 1.

B . 57
w@R = (2miQR/N for x> yl. (57)

Voo MYz = VMV {
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Notice that in this model we have a more general anyonic statistics.
Examples

(1) The order parameters have bosonic commutation rules with respect to each other

op(X)og(y) =09 (y)og(x).

(2) The disorder parameters have again bosonic commutation rules with respect to each other.
(3) Forthe order-disorder parameters we obtain the typical commutation rule

for xt < y1,

1
oo (y) =00y (x) { 000 — 2Ti0O/N for ;15 L.

(4) The para-Fermi fields have anyonic commutation rules
1_,1 ;
VoYR() = Yr(Y) Yo x)e ™ IZHCRN, (58)
These results prove the commutation ry&sin the introduction.

The 2-point Wightman functionin order to compare these commutation rules with the explicit
results of the previous section we calculate the 2-point Wightman function for the para-Fermi
fields yp andyry_g (with spins = Q(N — Q)/N) in 1-particle (chargeD) intermediate state
approximation. Using the resy#4) we obtain

deo
(Ol o(x)¥n-0(0)]0) = / 2 Ao MI0) 00O 1¥N-0(0)0) + -

- v/2
1 (x ’6) Ko(MyiGt —ien/ic— —ie)) + -,

2r \xtT —ie

wherev = 2Q(N — Q)/N andx® =t F x. This agrees with the commutation r&8), because
for t = 0 andx > 0 using the symmetry < N — Q, x — —x and translation invariance we
obtain
Oy o(x)¥nN—-0(0)[0) = (0¥ -0 (x) ¥ (0)[0)
=" (0lYN—o(=x) ¥ (0)|0)
=™ (0lYn—0 (0¥ (x)|0),

where((x — i€)/(—x — i€))"/2 = ¢/™V€W)/2 has bee used. The asymptotic behavior is obtained
from

rw(3) " +T(-v)(5)" forz—0,

2K, (z) — {\/Z .

e for z — oo,

for v #£ 0. Therefore the leading short distance behavior is up to constants
Oy o) Yn—0(0)|0) ~ (x+ —ie) ™",
(0o () PN—0(0)0) ~ (x~ —i€)™",

where the fields/ (x) are obtained by changing the sign in the exponei(48}.
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Appendix A. Some useful formulae

In this appendix we provide some explicit formulae for the scattering matrices and the minimal
form factors which we frequently employ in the explicit computations. The S-matrix of two
‘fundamental’ particles (i.e. of type 1) [9]

sinh3 (6 + &L ¥ ; _
s@) = INIOT ) _ gy [ oSN 2/N)

= — = . sinhzx,
sinh3 @ — &) ) sinhr

wheref is the rapidity difference defined by
p1p2 = M?coshy.

A particle of typea (0 < a < N) is a bound state = (a1 - - - ) of particles of typex; where
a=a1+---+a,inparticulare = (1---1) for all o; = 1. For the scattering of the bound state

o

a andg we have[17]

o
dx coshx(1— %) — coshx(1— ﬂ% .
Sap(0) =exp2 [ — . sinhx —.
= ©) P X sinhx tanh(x/N) i
0

The minimal form factor functions, which satisfies Watson’s equations, are obtained from the
S-matrix formulad1] and are given agf(> «)

; T sinht (1 — £ sinhr (%
F"(0) =exp ﬂ2 _( n) (N)<1—coshf<1— i))
t sink? ¢ tanhr /N i

in particulaf17]

o0
- dr _sinht(1— L)cosh: 6
Fing) :exp/ ) 1~ %) N <1— cosh(l— —))
0

t sinkéz i

o0
1 dt sinhr(1— 2 9
= —isinh=6 exp —IM@—cosw(l— —>>
2 t  sinkt i
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- 1 _x 1 14\ 2
— _isinhi e]‘[”"+1 vt Lk+2-7 2>(F<k+ +N)>
o Thk+5+% Thk+l+z-3) Fk+3-3)

and withl = (N — 1)

o
, dr sinht 2 9
FMN@g)=e /— N{1—cosh(1— —
11 @) Xpo ; sinl’?t( ( in))

l_[F(k+ Tt A+ o) Tk+3+4 - 2m)(r(k+1 N))Z
T+ A+ Tk +3 -2 - )\ Mk +1+ )

There are simple relations between the minimal form factors which we essentially use in our
construction which are up to constants

] 1 im 1 im
m|n len i inh= YT sinh= mm
<9+N) (9 N o sin 5 9+N sin > 0 — i @)
N-2
k 1 k k+1
]_[ F”““(@ + NZni) o EJ sinh§<9 + ﬁ27ri) sinh= <9 + %2711)
min min . N S .
Frp (0)Fj7 (0 +im) <x5|nh§9 smhz(e +2i7/N).

In Egs.(20) and (33we used the functiod (9) = cy F{i"(9) with

o
= dt 2\ sinht(1—2)
oy =" ex p(/tsinht((l_ﬁ)_ sinhz ) ’ A1
0

such that the normalizations {87) and (40hold.

Appendix B. Integralsfor the Z(2)-model
The claim(15) follows from the following lemma

Lemma 3. For n = 2m + 1 odd andx; = %

tanh%@,-j
F(6:j)

@) =L ©.D) = @) " P2 T —o.

1<i<j<n

Proof. Again as in the proof of Lemma 2 i{83] we apply induction and Liouville’s theorem.
One easily verifiesf1(x) = f3(x) = 0. As induction assumptions we talgg_» = 0. The func-
tions f,,(x) are a meromorphic functions in terms of thewith at most simple poles at = —x;
since pinchings appear fof = 6; = 6; & in. The residues of the poles are proportionaffo;
as follows from the recursion relations (iii) for both terms. Furthermfie) — 0 for x; — oo.
Thereforef, (x) vanishes identically by Liouville’s theorem.O
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Note that the integrations in the definiti¢®) of 1,,,, can easily be performed and witi =
{1,...,n}and|K| =

2
Lim0,1) = Z 1_[ 1_[ sinf:é’ki.

KN keKieN\K

Appendix C. Proof of themain lemma

In this appendix we prove the mairemma 2which provides the genera (N)-form factor
formula.

Proof. Similar as in the proof okemma 1we calculate

Res . Res Inm (Qv pl?m)

On_in=in  61=in

e (111 52)

1
MN-1 k=1 j=2¢,,

n my
H( 1_[ H¢(ij—9i) l_[ T(Zki—ij))

i=N+1 j=2 2<i<j<my

my  my N-1 N m
X 1_[ H H}t(zki —25) (H l_[ 1_[¢(Zk/ 6i) )

1<k<IKN-1i=2 j=2 1i=1j=2
with

r= Re§' Res(l_[/dzkl) <H¢(zk1—9) l_[ ‘L’(Zkl—Zk]>

On—iN=in  b12=in 2<j<m

mp
< J] (M(Zkl — 1) [ [ #Gui — 211) l_[ x(zk1 — Zzﬂ) Pim (@, 2).

1<k<IKN-1 i=2 j=2

ReplacingCy by Cy where ' = (Oy41,...,6,) we have usedr(0) = t(in) = x(0) =
x(—in) = 0 and the fact that they;-integrations give non-vanishing results only fqf = 6;
and 611, k=1,...,N — 1. This is because fof1o,...,0y_1ny — in pinching appears at
(211, -+, ZN—11) = (B2, ...,0x) and (@, ..., Oy_1). Defining the function

N-1
fe..oavw =] [ t@a-=up) ] *@ai—a

k=1 2< <my 1<k<I<N—-1
my
X 1_[ < l_[ %(Zk1 — Zii) H%(Zkz - Zu))l?nm @,2)
1<k<IKN=-1\ j=2 i=2

one obtains by means (88) after some lengthy but straightforward calculation
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d
r= Res .. ReS(H/ Zkl) <H¢(Zk1—9))f(zn,...,zzv—ll)

On-an=in  O12=in

N-2 N-1/N-1
(Res¢< 9)1_[¢(kln)) (]_[ I1 ¢(9k+li)>

k=1 k=1 i=N+1

n 91
x (f(Gz,...,GN)—< I1 (‘;’((91 ))f( l,...,eNl)).

i=N+1

It has been used that(...,z,...,z...) = f(...,z,...,z —in...) = 0 because of(0) =
x(—in) = 0. Using further the defining relation gfin terms of F (37), the Jost propert{27) of
the ¢-function and the properties (jiof (41) for the p-function we get

Res ... Res Inm(e pnm)

On_in=in  61=in

= (Resa(-)"™ ]"[ ¢* (kin)

k=1

N n -1 n
< Inm-1(€, p,?_Nm_l)<1"[ I1 F(om) (1—01‘9 I S(em),

k=1i=N+1 i=N+1
which together with the relation for the normalization const&8® proves the claim. O

Appendix D. Proof of the commutation rules

In this appendix we prove that we find the same commutation rules for two fdsand
¥ (y) when there are bound states poles or even when the S-matrix has doubl@ poles.

Bound states We now show that the same res(f#) appears when there are bound sthtes
which means that there are poles in the physical stripjlet(«f) be a bound state ef and

B with fusion anglen, s which means that al,s = in,,; the S-matrixSes(6) has a pole. The
momentum and the rapidity of the bound state are

Py = Pa + DB,
0, =64 —l(n—nya) G,f;—i-l( n%),

wherenga and ngy are the fusion angles of the bound stafes (y«) anda = (87), respec-
tively.

We start matrix element af (y)¢ (x) (given by(51) with (53)). First we consider the contri-
bution in the sum over the intermediate states whetao andg € 1. All the particles which are
not essential for this discussion will be suppressed. Then the fungtipf®, , 05) has a pole at
O — 6 = in},, such that by shifting the integratidly — 6, + iz there will be the additional

3 These poles appear typically for bound state—bound state scattering. The case of higher order poles may be discussed
similarly and will be published elsewhere.
4 Here we follow the arguments of Quel28].
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contribution

lééRegs b (éo[ - iﬂf)camlwaﬁ (éa, Qﬂ)eiﬁa(X—y)e—inlg

i ‘ _ o
= 5%a(0a —in)C*y, OV 2 el Pamir Py

with 6, = 0p + in) g, 0y = 6 +i( —n% ) and the fusion intertwiner, (see e.g[33]). Next

we consider the contribution to the sum over the intermediate states wheg and8 = .

Then the functios; (95, 6, — i) has a pole ag — 6, +im = ing)7 such that by shifting the

integrationd, — 6, + ix_ there will be the additional contribution

lE Res gy (0. 8, — im_)CTV 1, (B,)e! Pr =9 =ixPs

6,=b,
- _l§¢5‘(9“ — i N2IE,CTY (8, )e* P Ey

with 6,,6, as above and the fusion intertwinéfy. From the crossing relation of the fusion
intertwiners

ao Y _ o VY
we conclude that these residue terms form bound state poles cancel. The steps of the argumen
may be depicted as

Double pole8 Form factors have additional poles which are not related to bound states, they
belong to higher poles of the S-matrix. First we consider the contribution to the sum over the
intermediate states where the particled € @, 2 € u. Again we suppress all particles which
are not essential for our discussion. Then the funcien (0, 6 —im, 6 —im) has a pole at
6 =6, =6 + in/N which correspond to the bound stgi) = 1 with the fusion angle;;i =
m(1—1/N). We shift the integration8 — 6 +ix_ andd’ — 6’ +ix_ such that during the shift
0 <Im(® — 6") < €. From thef-integration there will be the additional contribution

%éthsqﬁzil(e, §—in,§ —im)CH Ly 1 (@, 6)el P emixP

=01

= 56110 — im/N. 6 —im)V2rFCH @ opel PV

Further the functiog11(6 —in/N, 6’ — i) has a pole &’ = 6, = 6 +in (1 — 3/N) which cor-
respond to the bound statgl) = 2 with the fusion angla:;fl = m2/N. From thed’-integration

5 This discussion is new.
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there will be the additional contribution

.\ 2 T .5 .
<_l§> V2 Resg11(0 —in /N, 0’ — im)V 25 CH Y3 (07, 0 Ve P
G

/=02
1 . _ |
= _§¢2(9 - l7T2/N)F121F211C11n'(//11(92’ Ql)el(Pl""PZ)(X_y)e—lXP.

This procedure may be depicted as

We show this the additional term is cancelled by a contribution to the sum over the intermediate
states wher@ € @, 2 € 1. Then the function);,(0, 0) has a pole a =63 =0 +in(1—2/N)
which correspond to the double pole of the S-matrix

i 0 N-=-2 2 . 0 N_a
(g
sing (& — 2%/ sing (L - &5

atg = im(1—2/N). From thed-integration there will be the additional contribution

2 Resga(d — im)CRypy(@, 0)e! P e i0P
2 9~=03

- ’Enpz(e — in2/N)YCB (i) (Y13(02, 00) TH1C1 ) e BV =P,

This procedure may be depicted as

The crossing relation of the fusion intertwiners
F121 lelcli _ Czé Fzﬁcil F211

implies that this contribution again cancelled the one above. It has been used that the form factor
of bound stateg2 has a simple pole where the S-matfix has a double pole and the residue is

éRczsl/féz(é .0) = —i(Y11(02,03) 13 C1, 131,
=b3
This may be calculated as follows. By the form factor equation (iv) we have

Res Res 1,101, 02, 63, 02) = 255012, O(3a) I3 T

010=in3, Oa4=in3,
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Therefore using the form factor equation (iii) and the definition of the fusion intertwiners
Res S = I'I" we obtain

Res 502, 0@a) AT
Oazay =iz (1—2/N) 22\Y(12, Y34 ) 111 11

1
=5 Res Res Res j;(62, 01,64, 63)571(612)S11(034)
014=iT 01p=in2, Oza=in?,

1
== Res Res 2iCjq(1i1(62,03)S7i(012) S11(034) — ¥ri1 (62, 63))
2 0r4=im 010=in3,

= iCyy (Y102, 03) (=) 3 T3 (=) I3 TH).

which implies the residue formula used above. This procedure may be depicted as

Res Res

. . 9

012=in?, O34=in?,
—

Note that the last graph, as an on-shell graph, resembles (half of) the ‘box’ Feynman diagram
which was used to investigate the double poles of bound state S-matrices (§26,8Q).

The general cas€&inally we consider the general case that the sets of rapidities in the initial
stated,, and the ones of the final stai, have also common elements. Then after inserting

(49) and (50)n (48) there will be S-matricesg_f(év, Qn) which produce additional poles in the
physical strip which would produce additional residue contributions while shifting the integration
contours. However, we can remove these S-matrices by using again the crossing relation (ii) and
move all the lines of common rapidities to the left or right as depicted as follows

Then we can apply the procedure as above.
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