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Abstract

We construct integrable generalized models in a systematic way exploring different representations of
the gl(N) algebra. The models are then interpreted in the context of atomic and molecular physics, most of
them related to different types of Bose–Einstein condensates. The spectrum of the models is given through
the analytical Bethe ansatz method. We further extend these results to the case of the superalgebra gl(M|N),
providing in this way models which also include fermions.
© 2007 Elsevier B.V. All rights reserved.

PACS: 75.10.Jm; 71.10.Fd; 03.65.Fd

1. Introduction

Exactly solvable models are a fascinating issue that continue to attract considerable interest in
physics and mathematics. Although the integrability of quantum systems is usually restricted to
one dimension, there are many reasons that turn this study relevant for physical applications. It
serves as a test for computer analysis and analytical methods for realistic systems to which, until
now, only numerical calculations and perturbative methods may be applied. In addition, a non-
trivial solvable model reveals the essence of the phenomena under consideration. For instance,
many concepts established in critical phenomena were inspired by the exact solution of the Ising
model. From the experimental point of view, there are some real spin-1 compounds (e.g. NENC,
NDPK, or NBYC, etc.) [1] and strong coupling ladder compounds (such as (5IAP)2CuBr4·2H2O,
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or Cu2(C5H12N2)2Cl4, etc.) [2] that can be well described by integrable models. The necessity
of using exactly solvable models has been also demonstrated through experimental research on
aluminium grains at nanoscale level [3].

A significant aspect of integrable systems is its interdisciplinary character, i.e., they can be
found in different areas of physics. The Ising and the Heisenberg models [4] in statistical me-
chanics, the t–J and Hubbard models [5] in condensed matter physics, the nonlinear σ -model [6]
in quantum field theory, the interacting Boson model [7] in nuclear physics and more recently the
two-site Bose–Hubbard model [8] in atomic and molecular physics are just some representative
examples of the high impact and potentiality of these systems. Let us remark also the emergence
of integrable systems in high energy physics, more particularly in gauge theories [9–11] (for a
recent review, see [12]), or string theory, through the recent analysis in super-Yang–Mill theories,
see e.g. [13,14].

Therefore, new exactly solvable models are highly welcome and constitute the main focus of
the present article. In particular we will concentrate on the construction of integrable generalized
models in atomic and molecular physics, most of them related to Bose–Einstein condensates
(BECs).

The phenomenon of Bose–Einstein condensation, while predicted long ago [15], is currently
one of the most active fields in physics, responsible for many of new perspectives on the poten-
tial applications of quantum systems. Since the early experimental realizations of BECs using
ultracold dilute alkali gases [16], intense efforts have been devoted to the study of new prop-
erties of BEC. In recent years the creation of a molecular BEC from an atomic BEC has been
obtained by different techniques [17]. The field was further broadened by the achievement of
quantum degeneracy in ultracold fermionic gases [18]. These achievements could lead to new
scientific investigations that includes coherent atomic lasers, quantum chemistry, the quantum
gas with anisotropic dipolar interactions, quantum information, atomtronics, among many oth-
ers.

In this context, it is natural to expect that exactly solvable models in the BEC scenario may be
of relevance, providing some physical insights [19]. Our main purpose here is to employ the in-
tegrable systems machinery in its full power, i.e., exploring all possible types of representations
of some algebra (we consider, in particular the gl(N) algebra) to enlarge the family of known
exactly solvable models in atomic and molecular physics with the aim that potentially new rel-
evant models emerge. Using this machinery some existing models in the BEC scenario, such
as the two-site Bose–Hubbard model [8] will be restored as well as new ones will be obtained.
A two-coupled BEC model with a field, a two-coupled BEC-model with different types of atoms
and a three-coupled BEC model, among others, will be introduced in this general framework. It
is worth to mention here that the popular “BEC-transistor” in atomtronics uses a BEC in a triple
well [20]. The models are then solved by means of Bethe ansatz methods.

Our paper is organized as follows: in Section 2 we briefly review the general setting of inte-
grable systems and fix notation. In Section 3 we present our general approach and also discuss
the different representations of the gl(N) algebra that will be adopted. Section 4 is devoted to
the discussion of the different physical models we can get using this construction. In Section 5
the Bethe ansatz equations of the models are derived. We extend these results to the case of the
superalgebra gl(M|N) in Section 6 and some applications of this formalism, i.e. models which
also include fermions are presented in Section 7. Section 8 is devoted to some concluding re-
marks.
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2. Generalities

2.1. Monodromy and transfer matrices

We remind here the general setting used in the context of integrable spin chains and more
generally in QISM [21–24]. One starts with a so-called ‘algebraic’ monodromy matrix T (u),
which is an N × N matrix taking values in an algebra A:

T (u) =
N∑

i,j=1

Tij (u)Eij with Tij (u) ∈A; Eij ∈ End
(
C

N
)
,

where Eij are the N × N elementary matrices (with 1 at position (i, j) and 0 elsewhere). In the
main part of the present paper, the algebra A will be the Yangian of gl(N), Y(N), but we will
also study super-Yangians.

The monodromy matrix obeys the so-called FRT relation [25]:

(2.1)R12(u − v)T1(u)T2(v) = T2(v)T1(u)R12(u − v),

where we have used the standard auxiliary space notation, e.g. T1(u) = T (u) ⊗ IN , where IN

is the identity matrix and R12(u) is the R matrix of A. The R-matrix obeys the Yang–Baxer
equation

(2.2)

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2).

It will also be unitary

(2.3)R12(u1 − u2)R21(u2 − u1) = f (u1, u2)I ⊗ I,

where f (u1, u2) is some known function.
It is well known that one can produce monodromy matrix for several sites by applying the

coproduct �T (u) = T (u) ⊗ T (u) ≡ T [1](u)T [2](u) where the superscript labels in which copy
of the algebra T (u) acts. More generally, one can consider

T (u) = T [1](u)T [2](u) · · ·T [L](u)

as a monodromy matrix. This is the base of spin chain models, the copies of the algebra defining
(upon representation) the L quantum spaces (sites) of the chain, see e.g. [26–29] and references
therein. In what follows, we will call T [n](u) the elementary monodromy matrices, the product
of all these elementary matrices providing the ‘real’ monodromy matrix.

Let us stress that to fix a physical model, one has to represent the monodromy matrix, i.e.
assign to each of the T [n](u) a representation of the algebra A: changing the representations will
lead to different physical models.

Once we have a (represented) monodromy matrix T (u), then (2.1) ensures that the transfer
matrix t (u) = trT (u) obeys

(2.4)
[
t (u), t (v)

] = 0.

Expanding t (u) in the variable u leads to commuting integral of motions, one of them being the
chosen Hamiltonian of the system. For instance, in spin chain models, one takes this Hamiltonian
to be H = t (0)−1t ′(0), while e.g. in the Bose–Hubbard model, it is simply t (0). The other quan-
tities constructed from the transfer matrix just produce conserved quantities. If the number of
such (independent) conserved quantities is sufficiently large, the system is said to be integrable.
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2.2. Automorphisms of the monodromy matrices

We present some automorphisms of the relation (2.1) that will be of some use in the physical
models we will study.

The first automorphism is built on the transposition: starting from a monodromy matrix T (u),
it is easy to show that

T (u) → T t (−u) i.e. Tij (u) → Tji(−u),

where the transposition is done in the auxiliary space. The proof relies on the unitary relation
(2.3) of the R-matrix. We will call this automorphism the sign-transposition.

Another automorphism is the conjugation by a constant matrix

T (u) → MT (u)M−1 with M ∈ End
(
C

N
)
,

which is a consequence of the invariance of the R-matrix

M1M2R12(x) = R12(x)M1M2.

We will call this automorphism a conjugation.
A particular case of conjugation is the dilatation automorphism

T (u) → αT (u) with α ∈ C.

2.3. Hermiticity

The elementary monodromy matrices we will consider below are always Hermitian

(2.5)
(
T (u)

)† = T (u) i.e. T
†
ij (u) = Tji(u).

This implies that

(2.6)
(
T (u)

)† = (
T [1](u)T [2](u)

)† = T [2](u)T [1](u)

so that the total monodromy matrix is not Hermitian. However, using cyclicity of the trace, we
get:

(2.7)t†(u) = tr
(
T [2](u)T [1](u)

) = tr
(
T [1](u)T [2](u)

) = t (u).

Thus, the transfer matrix is Hermitian. This property is valid only when L = 2 (and L = 1),
cyclicity being not sufficient to get Hermiticity of the transfer matrix as soon as L � 3. For this
reason, we will focus below on the case L = 2, hence ensuring Hermitian Hamiltonians. We shall
see that even with this restriction, we will get most of the models used in the BEC context, as
well as new ones.

3. Bosonic gl(N) models

We present here the general approach we use, focusing on the case of the Yangian Y(N) =
Y(gl(N)) [30]. Other cases are presented in the sections below. The R-matrix we consider takes
the form [4,31,32]:

(3.1)R12(x) = I ⊗ I − 1

x
P12,
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where

P12 =
N∑

i,j=1

Eij ⊗ Eji

is the permutation operator.

3.1. Conserved quantities

Since L = 2, the monodromy and transfer matrices have an expansion

(3.2)Tkl(u) =
2∑

n=0

unT
(n)
kl with T

(2)
kl = ωkδkl and ωk ∈ C,

(3.3)t (u) = t2u
2 + t1u + t0 with t2 ∈ C.

For BEC models, one generally uses t0 = t (0) as an Hamiltonian, while t1 and t2 correspond to
integrals of motion. It is easy to see that t2 is just a number, but from the explicit form of the
R-matrix, one can get other conserved quantities.

Indeed starting from the relation (2.1) and projecting on the basis elements Eij ⊗ Ekl in the
auxiliary spaces, one gets:

(3.4)
[
Tij (u), Tkl(v)

] = 1

u − v

(
Tkj (u)Til(v) − Tkj (v)Til(u)

)
.

Then, taking i = j , summing on j , and looking at the coefficient of v, one gets

(3.5)
[
t (u), T

(1)
kl

] = (ωk − ωl)
(
T

(0)
kl + uT

(1)
kl

)
.

This proves in particular that the quantities

(3.6)Ik = T
(1)
kk ∀k = 1, . . . ,N,

commute with the transfer matrix and are in involution. Thus, they generate integrals of motions.
Let us remark that, following the value of the ωk parameters, one could get more conserved

quantities (through the T
(1)
kl , k 	= l, generators), but they will not form an Abelian subalgebra:

they will generate a symmetry algebra for the model.

3.2. Spin chain monodromy matrices

The elementary monodromy matrices for the Yangian can be specialized to gl(N) monodromy
matrices using the so-called evaluation map. This amounts to take these elementary monodromy
matrices to be of the form

(3.7)L(u) =
N∑

i,j=1

Lij (u)Eij with Lij (u) = uδij + eij ,

or in matricial form

(3.8)L(u) =

⎛
⎜⎜⎜⎜⎝

u + e11 e12 e13 · · · e1N

e21 u + e22 e23 · · · e2N
...

. . .
. . .

. . .
...

eN−1,1 eN−1,N

⎞
⎟⎟⎟⎟⎠ .
eN1 eN2 · · · eN,N−1 u + eNN



378 A. Foerster, E. Ragoucy / Nuclear Physics B 777 [FS] (2007) 373–403
Here, eij are gl(N) unrepresented generators obeying

(3.9)[eij , ekl] = δjkeil − δilekj .

It is easy to show that L(u) obey the relation (2.1) with the R-matrix (3.1). Hermiticity of L(u)

is ensured by e
†
ij = eji . Moreover, one can use the Yangian shift automorphism u → u + w to

get extra free parameters. Thus,

T (u) = L[1](u + w1)L
[2](u + w2)

leads to Hermitian integrable models with transfer matrix

(3.10)t (u) =
N∑

j=1

(
u + w1 + e

[1]
jj

) ⊗ (
u + w2 + e

[2]
jj

) +
N∑

j 	=k

e
[1]
jk ⊗ e

[2]
kj .

In the context of spin chain models, the parameters wj are called inhomogeneity parameters.
As already stated, it is the choice of a gl(N) representation for each of the sites that will de-

termine the physical model one wishes to work on. When the representations are highest weight
finite dimensional ones, it leads to spin chains models. They have been extensively studied and
we just repeat here well-known facts to illustrate the techniques we shall use with different rep-
resentations.

For instance, one can take the fundamental representation of gl(N)

π(eij ) = Eij , i, j = 1, . . . ,N,

for both elementary monodromy matrices, leading to a (well-known and somehow trivial) two-
site spin chain. Specifying furthermore to the case of gl(2), one recovers the Pauli matrices

π(e12) = σ+; π(e21) = σ−; π(e11 − e22) = σz; π(e11 + e22) = I2

leading to a Hamiltonian

H = t (0) = σ+ ⊗ σ− + σ− ⊗ σ+ + 1

2
σz ⊗ σz + 1

2
.

Of course, one could choose another representation, for instance, for gl(2), take the spin 1 repre-
sentation

π(e12) =
(0 1 0

0 0 1
0 0 0

)
= S+; π(e21) =

(0 0 0
1 0 0
0 1 0

)
= S−;

(3.11)Sz =
(1 0 0

0 0 0
0 0 −1

)
;

(3.12)π(e11) =
(1 0 0

0 1
2 0

0 0 0

)
= 1

2
(Sz + I3); π(e22) =

(0 0 0
0 1

2 0
0 0 1

)
= 1

2
(I3 − Sz)

leading to the Hamiltonian

H = t (0) = S+ ⊗ S− + S− ⊗ S+ + 1

2
Sz ⊗ Sz + 1

2
.

Note that in both cases, the parameters wn do not play any role because the spin chain is too
simple. For the same reason, the above Hamiltonians coincide with t (0)−1t ′(0).
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3.3. Oscillator monodromy matrices

The above framework can be generalized to other (infinite dimensional) representations of
gl(N).

3.3.1. Bosonic and fermionic representations of gl(N)

We start with N couples of creation/annihilation operators (ai, a
†
i ), with commutation rela-

tions

(3.13)
[
ai, a

†
j

] = μiδij ;
[
a

†
i , a

†
j

] = [ai, aj ] = 0.

From these relations, it is straightforward to check that L(u) defined by

(3.14)L(u) =
N∑

i,j=1

Lij (u)Eij with Lij (u) = μiuδij + qi

qj

a
†
i aj ,

obey the relations

(3.15)
[
Lij (u),Lkl(v)

] = 1

u − v

(
Lkj (u)Lil(v) −Lkj (v)Lil(u)

)
.

It is equivalent to

(3.16)R12(u − v)L1(u)L2(v) = L2(v)L1(u)R12(u − v) with R12(x) = I ⊗ I − 1

x
P12,

so that

T (u) = L[1](u + w1)L[2](u + w2)

provides an integrable model.
In fact, this calculation is valid for an arbitrary number of sites,1 and it just corresponds to a

choice of (infinite dimensional) gl(N) representation

π(eij ) = a
†
i aj , i, j = 1, . . . ,N,

for the elementary monodromy matrices (3.7). The highest weight is the Fock space vacuum |0〉,
but the representation is reducible and is an infinite sum of finite dimensional representations
with fixed ‘particle number’ N = ∑

i a
†
i ai . We will call the corresponding monodromy matrix

an ‘homogeneous oscillator monodromy matrix’.
Focusing on Hermitian elementary matrices, one is led to

μj ∈ R and |qi |2 = |qj |2 ∀i, j.

The last equation imposes

qj = q0e
iθj with q0, θj ∈ R.

The parameter q0 is irrelevant for L(u), and since

aj → eiθj aj and a
†
j → e−iθj a

†
j

1 Of course, we will potentially lose Hermiticity of the transfer matrix when L � 3.
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is an invariance of the algebra, one can restrict to the case

(3.17)Lij (u) = μiuδij + a
†
i aj with μj ∈ R,

or in matricial form

(3.18)

L(u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ1u + n1 a
†
1a2 a

†
1a3 · · · a

†
1aN

a
†
2a1 μ2u + n2 a

†
2a3 · · · a

†
2aN

...
. . .

. . .
. . .

...

a
†
N−1a1 a

†
N−1aN

a
†
Na1 a

†
Na2 · · · a

†
NaN−1 μNu + nN

⎞
⎟⎟⎟⎟⎟⎟⎠

with ni = a
†
i ai .

In general, one takes the values μj = 1 to get canonical commutation relations. Then, L(u) has
a leading term (in u) which is just the identity matrix, in accordance with the definition of the
Yangian matrix L(u).

Let us remark that there exists also a fermionic gl(N) representation where now aj and a
†
j are

fermionic operators:

(3.19)Lf
ij (u) = μiuδij + a

†
i aj with μj ∈ R.

In that case, the representation is finite dimensional, since the oscillators now obey the supple-
mentary relations (aj )

2 = 0 = (a
†
j )

2. This possibility will be used to produce some fermionic
models.

3.3.2. Inhomogeneous oscillator monodromy matrices
The above calculation is valid whatever the values of the numbers μi are. In particular, one

can take the value μj = 0, for some j ∈ J ⊂ [1,N ]: the corresponding L(u) matrix will still
obey (2.1) with the R-matrix (3.1). This particular value μj = 0 allows a (scalar) representation

aj = αj ∈ C and a
†
j = α∗

j , j ∈ J , of the oscillator algebra. For obvious reason, we will call these
operators ‘constant oscillators’, and ‘inhomogeneous oscillator monodromy matrix’ the corre-
sponding elementary monodromy matrix. To distinguish it from the homogeneous one, when
needed, we will denote it as Λ(u) instead of L(u).

Hence, Λ(u) is an N × N matrix built on p = N − |J | couples (aj , a
†
j ), p being independent

from N (provided it is smaller than N ). Then, T (u) will lead to a transfer matrix based p1 + p2
oscillators, where pn is the number of oscillators in T [n](u) ≡ Λ[n](u), n = 1,2.

Let us remark that since we have taken the limit μj → 0 for j ∈ J , the elementary monodromy
matrices do not start with IN , but rather with a non-invertible diagonal matrix. In that sense, we
are not in the Yangian context anymore. However, since the relation (2.1) is still obeyed with the
R-matrix (3.1), this does not affect the relation (2.4), so we are still in the framework of Hermitian
integrable models. The underlying algebraic structure, which is very close to the Yangian, was
studied in [33] and is called ‘truncated Yangians’. Keeping in mind this restriction, we will lose
keep writing that we are in the Yangian context.

Note also that the limit μj → 0 (and aj , a
†
j constant) can be taken at the very end of the

calculations. Hence, we can consider a general L(u) matrix, keeping in mind that, to get a Λ(u)

elementary monodromy matrix, and depending on the model one wishes to study, some of the aj ,

a
†
j operators will be in fact complex numbers αj , α∗

j , and the corresponding μj = 0. For other
oscillators, one chooses in general μ = ±1.
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Finally, let us remark that for the fermionic gl(N) representation, since now the aj and a
†
j

operators obey the supplementary relations (aj )
2 = 0 = (a

†
j )

2, it is not possible to take them
as non-vanishing constants. Taking all the constants to be zero leads to trivial models, hence,
fermions are excluded from Λ(u) when dealing with Y(N). Fortunately, we will see below that
one can recover them when studying models based on super-Yangians (see Section 6).

3.3.3. Automorphisms of oscillator algebra
An automorphism will be used to produce new terms in the Hamiltonians. It exists only for

the bosonic algebra, and consists in a shift by a constant:

(3.20)
(
a, a†,μ

) → (
a + α,a† + α∗,μ

)
, α ∈ C for bosons.

We will call this automorphism a shift of the oscillator algebra. It can be used to produce bound-
ary terms in the different models.

3.4. gl(N) transfer matrices

We have seen that we have essentially two types of elementary matrices at our disposal, the
matrices L(u) and L(u), so that one gets three types of transfer matrix:

t (u) = tr
(
L[1](u + w1)L

[2](u + w2)
)

(3.21)∼ u

N∑
i=1

(
E

[1]
ii + E

[2]
ii

) +
N∑

i,j=1

E
[1]
ij E

[2]
ji +

N∑
i=1

(
w2E

[1]
ii + w1E

[2]
ii

)
,

t (u) = tr
(
L[1](u + w1)L[2](u + w2)

)
(3.22)∼ u

N∑
i=1

(
μiE

[1]
ii + ni

) +
N∑

i,j=1

E
[1]
ij a

†
j ai +

N∑
i=1

(
w2E

[1]
ii + w1ni

)
,

t (u) = tr
(
L[1](u + w1

)
L[2](u + w2)

)
(3.23)∼ u

N∑
i=1

(μinbi + νinai) +
N∑

i,j=1

b
†
i a

†
j aibj +

N∑
i=1

(w1nbi + w2nai),

where the ∼ sign means equality modulo polynomials in u with constant coefficients. As a nota-
tion, we have introduced E

[n]
ij = πn(eij ), n = 1,2, the representation of the gl(N) generators in

L[n](u) and called aj , a
†
j ,μj (respectively bj , b

†
j , νj ) the oscillator algebras in L[1](u) (respec-

tively in L[2](u)); naj (respectively nbj ) are the corresponding number operators.
The first transfer matrix is just a two-site spin chain, where the first site carries the ‘spin’ π1

of gl(N), and the second site the ‘spin’ π2. These models (and their generalization to an arbitrary
number of sites) have been studied for a long time, and we will not consider them here. The two
other transfer matrices lead to several physical models, depending on the choices of:

• The gl(N) algebra one considers (i.e. the choice of N ).
• The gl(N) representation in the L(u) part.
• The characteristic (bosonic or fermionic) of the oscillators in the L(u) part.
• The number of ‘constant oscillators’ in the Λ(u) part(s).
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• The values (specially zero or not) of the parameters corresponding to these ‘constant oscil-
lators’.

• The use or not of the different automorphisms.

The next section is devoted to the presentation of the different physical models one can get from
these choices.

4. Examples of gl(N) BEC models

For simplicity, we now focus on the case where the parameters involved in the elementary ma-
trices are real, and normalize the commutator of the oscillators to 1. More general Hamiltonians
(still Hermitian) can be obtained keeping complex parameters, as detailed above.

4.1. Models based on two by two matrices

The possible elementary monodromy matrices take the form

(4.1)L(u) =
(

u + 1
2Sz S+

S− u − 1
2Sz

)
, L(u) =

(
u + n1 a

†
1a2

a
†
2a1 u + n2

)
,

(4.2)Λ(u) =
(

u + n βa†

βa β2

)
, Λ̂(u) =

(−β2 βa†

βa u − n

)

plus possibly the use of shift automorphisms. We have used the sign-transposition and dilation
automorphisms

Λ̂(u) → −Λ̂t (−u)

plus a redefinition of the β parameter to make Λ̂(u) similar to Λ(u).
Apart from the spin chain model presented in Section 3.2, one gets 5 different models. The

conserved quantities Ij have the general form:

(4.3)I1 = μb1na1 + μa1nb1 and I2 = μb2na2 + μa2nb2,

where (a1, a2) refer to the first elementary monodromy matrix, and (b1, b2) to the second one.

4.1.1. A spin-boson model
We consider t (u) = trL(u + w1)Λ(u + w2). Up to irrelevant constant terms, it takes the form

t (u) ≡ u

(
1

2
Sz + n

)
+ w1

(
1

2
Sz + n

)
+ (

αS+a + αS−a†) + 1

2
Szn

leading to Hamiltonian H = t (0) with conserved quantity

(4.4)I = n + 1

2
Sz.

Above a† (a) denotes the single-mode field creation (annihilation) operator, Sz, S± the atomic
inversion, rising and lowering operators and w1 is the transition frequency. This model describes
the interaction of a two-level atom with a single-mode radiation field. It was derived in [34,35]
using different methods and it reduces to the Jaynes–Cummings Hamiltonian on resonance and in
the rotating-wave approximation in the absence of the last term [36]. Despite of its simplicity, this
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model has been a source of insight into a better comprehension of the nuances of the interaction
between light and matter. It is important to remark that a Jaynes–Cummings model interaction
can be experimentally realized in cavity-QED setups and also, as an effective interaction in laser
cooled trapped ions [37].

Again, the shift automorphism produces boundary term

(4.5)Hbound = β

(
1

2
Sz

(
a† + a

) + α(S+ + S−) + w1
(
a† + a

))

to the transfer matrix. The conserved quantity is modified to

(4.6)I ′ = n + 1

2
Sz + β

(
a† + a

)
.

4.1.2. Generalized spin-boson model
We consider t (u) = trL(u + w1)L(u + w2). Up to irrelevant constant terms, it takes the form

t (u) ≡ u(n1 + n2) + 1

2
Sz(n1 − n2) + S+a

†
1a2 + S−a

†
2a1 + w1(n1 + n2)

leading to Hamiltonian

(4.7)H = t (0) = 1

2
Sz(n1 − n2) + S+a

†
1a2 + S−a

†
2a1 + w1(n1 + n2)

with conserved quantities

(4.8)I1 = n1 + 1

2
Sz; I2 = n2 − 1

2
Sz.

Above the oscillators aj , j = 1,2, denote two radiation fields (two photons, for example) inter-
acting with a two-level atom. The atom-field interacting term could be interpreted as a scattering
of two fields with a two-level atom. Here we mention that if linearly polarized light is used, it is
possible to have the same transition frequency w1 (see, for example [38]).

When the oscillators are bosonic, one can use the shift automorphism to add a boundary term:

Hbound = α1

(
1

2
Sz

(
a

†
1 + a1 + α1

) + S+a2 + S−a
†
2 + w1

(
a

†
1 + a1

))

(4.9)

+ α2

(
1

2
Sz

(
a

†
2 + a2 + α2

) + S+a1 + S−a
†
1 + w1

(
a

†
2 + a2

)) + α1α2(S+ + S−)

to the transfer matrix. The conserved quantities then become

(4.10)I ′
1 = n1 + 1

2
Sz + α1

(
a

†
1 + a1

)
,

(4.11)I ′
2 = n2 − 1

2
Sz + α2

(
a

†
2 + a2

)
.
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4.1.3. Simple heteroatomic-molecular BEC model
We consider t (u) = trL[1](u + w1)L[2](u + w2), with aj , a

†
j , j = 1,2, for L[1] and bj , b

†
j ,

j = 1,2, for L[2].
Up to irrelevant constant terms, the transfer matrix takes the form

t (u) ∼ u(n1 + n2) + na1nb1 + na2nb2 + a
†
1b

†
2b1a2 + a

†
2b

†
1b2a1 + w1nb + w2na,

where we have introduced the notation

(4.12)na1 = a
†
1a1; nb1 = b

†
1b1; na2 = a

†
2a2; nb2 = b

†
2b2;

(4.13)n1 = na1 + nb1; n2 = na2 + nb2;
(4.14)na = na1 + na2; nb = nb1 + nb2.

It leads to Hamiltonian H = t (0) with conserved quantities

(4.15)I1 = n1; I2 = n2.

This Hamiltonian is a particular case of the one presented in Section 4.1.4, and we postpone the
physical discussion to this section.

Finally, using the quantum determinant (see Appendix A), one can also show from c2 given
in appendix that nanb is also conserved, so that one finally gets as conserved quantities

n1 = na1 + nb1; n2 = na2 + nb2; na = na1 + na2; nb = nb1 + nb2

three of them being independent.

4.1.4. Heteroatomic-molecular BEC model
We consider t (u) = trL(u+w1)Λ(u+w2), with a, a† and b, b† for L(u) and c, c† for Λ(u).
Up to irrelevant constant terms, it takes the form

t (u) ≡ u(na + nc) + nanc + β2nb + β
(
b†c†a + a†bc

) + w1nc + w2na.

It leads to Hamiltonian t (0) with conserved quantities

(4.16)I1 = na + nb; I2 = na + nc.

It is trivial to check that this Hamiltonian (adding terms I 2
1 and I 2

2 ) corresponds to the
heteroatomic-molecular Bose–Einstein condensate model [39,40]

H = Uaan
2
a + Ubbn

2
b + Uccn

2
c + Uabnanb + Uacnanc + Ubcnbnc

(4.17)+ μana + μbnb + μcnc + Ω
(
a†bc + c†b†a

)
,

for the particular choice of the couplings 1
2Uaa = Ubb = Ucc = U0 + U1, Uab = 4U0, Ubc = 0,

Uac = 4U1 + 1, μa = w2, μb = β2,μc = w1, Ω = β .
In this context, the parameters Uij describe S-wave scattering, μi are external potentials and

Ω is the amplitude for interconversion of atoms and molecules. One gets a three-mode Hamil-
tonian describing a Bose–Einstein condensate with two distinct species of atoms, denoted b

and c, which can combine to produce a molecule a [39]. The total atom number (I1 + I2) and the
imbalance between the atomic modes (I1 − I2) are conserved quantities. A detailed classical and
quantum analysis of this model reveals unexpected scenarios, such as the emergence of quantum
phases when the imbalance is zero [41].
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4.1.5. The two-site Bose–Hubbard model
We consider t (u) = trΛ[1](u + w1)Λ

[2](u + w2), with a, a† for Λ[1] and b, b† for Λ[2].
Up to irrelevant constant terms, it takes the form

t (u) ≡ u(na + nb) + nanb + ω
(
b†a + a†b

) + w1nb + w2na

with w = αβ . It leads to Hamiltonian t (0) with conserved quantity

(4.18)I = na + nb.

It is easy to verify that by combining the conserved quantity I with the Hamiltonian t (0) and
choosing properly the coupling constants, we arrive at2

(4.19)H = K

8
(na − nb)

2 − �μ

2
(na − nb) − EJ

2

(
a†b + b†a

)
.

This is the two-site Bose–Hubbard model, also known as the canonical Josephson Hamil-
tonian [8]. It describes the tunneling between two single particle states or modes (a and b),
which can be separated spatially (two wells) or internally (two different internal quantum num-
bers). The parameter K corresponds to the atom–atom interaction, �μ is the external potential
and EJ is the coupling for the tunneling. Its exact solution in some asymptotic limits was pre-
sented in [42]. Despite of its apparent simplicity, this model predicts the existence of a threshold
coupling between a delocalized and self-trapped phase [43,44], in qualitative agreement with
experiments [45].

4.2. Models based on three by three matrices

The number of possibilities increases very fast, we present here only some cases that we
found physically relevant. The interested reader can easily compute the other models using the
techniques we have described.

4.2.1. Two-coupled BEC model with a single-mode field
We consider the elementary monodromy matrices

Λ[1](u) =
(

u + na a†b α3a
†

b†a u + nb α3b
†

α3a α3b α2
3

)
and Λ[2](u) =

⎛
⎝u + nc β1c

† β2c
†

β1c β2
1 β1β2

β2c β1β2 β2
2

⎞
⎠ ,

(4.20)T (u) = Λ[1](u + w1)Λ
[2](u + w2).

Then, the transfer matrix reads

t (u) ∼ (nc + na)u + β2
1nb + nanc + w1nc + w2na + α3β2

(
a†c + c†a

)
(4.21)+ β1

(
a†bc + b†c†a

) + α3β1β2
(
b† + b

)
with conserved quantity

I = na + nc.

2 More specifically, we have H = c(I2 −4t (0)), where the following identification has been done: K/8 = c; (�μ)/2 =
4cw2 = −4cw1; EJ /2 = 4cw.



386 A. Foerster, E. Ragoucy / Nuclear Physics B 777 [FS] (2007) 373–403
This leads to the Hamiltonian3

(4.22)H = μana + μcnc + w2nb + Ω
(
a†c + c†a

) + w
(
a†bc + c†b†a

) + Ωw
(
b† + b

)
which describes two wells (A and C) with atoms interacting with a single-mode field. Above
b† and b denote the single field creation and annihilation operators, respectively and a† and a

(c† and c) the creation and annihilation operators for a particle in the well A (C). The total
number of particles n = na + nc, where na = a†a and nc = c†c is conserved. The parameter Ω

is the coupling for the tunneling between the two wells, w is the radiation field frequency and
μa,μc are the external potentials. Here there are basically two mechanisms that allow the atoms
to trap between the wells: (i) the tunneling effect, which is related with the depth of the wells;
(ii) a tunneling which occurs mediated by a single-mode field b.

When w = 0, one has a supplementary relation[
t (u), nb

] = 0,

and this Hamiltonian reduces to the two-site Bose–Hubbard (Section 4.1.5). When Ω = 0 we get[
t (u), nb − nc

] = 0

and this Hamiltonian reduces to that of or that discussed in Section 4.1.4.

4.2.2. Three coupled BEC model
We consider the elementary monodromy matrices

Λ[1](u) =
⎛
⎜⎝

u + n1 a
†
1a2 β3a

†
1

a
†
2a1 u + n2 β3a

†
2

β3a1 β3a2 β2
3

⎞
⎟⎠ and Λ[2](u) =

⎛
⎝ −β2

1 β1β2 β1a
†
3

β1β2 −β2
2 β2a

†
3

β1a3 β2a3 u − n3

⎞
⎠ ,

(4.23)T (u) = Λ[1](u + w1)Λ
[2](u + w2),

where in Λ[2](u) we have used the sign-transposition and dilatation automorphisms, and a rede-
finition of the parameters β1 and β2. Then, the transfer matrix reads

t (u) ∼ β1β2
(
a

†
1a2 + a

†
2a1

) + β3β1
(
a

†
1a3 + a

†
3a1

) + β3β2
(
a

†
2a3 + a

†
3a2

)
− β2

1n1 − β2
2n2 − β2

3n3.

It leads to the Hamiltonian t (0) with conserved quantity I = n1 + n2 + n3. This corresponds
to a special three coupled BEC model with asymmetric tunneling and external potentials. To
our knowledge, this is the first integrable quantum model describing a three-well system.4 We
remark here that there has been recently an increasing interest in the study of three-well systems
(trimers) for a variety of reasons, such as

(i) its possible application in the construction of a BEC-transistor [20];
(ii) it is the simplest model which provides a bridge between the double-well and the multi-well

systems [46,47];
(iii) recent achievements in the experimental field, in particular the control promised by micro-

traps [48] suggest the realization of the trimer to be at hand [49].

3 The following identification has been done: β1 = w; μa = w2; μc = w1; Ω = α3β2.
4 Notice, however, that it corresponds to a simplified three-well model, with no atom–atom interaction terms.
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It is easy to check that by combining the conserved quantity I with the Hamiltonian t (0) and
choosing properly the coupling constants, we arrive at the following Hamiltonian5

(4.24)H = Ω2
(
a

†
2a1 + a

†
1a2 + a

†
2a3 + a

†
3a2

) + Ω
(
a

†
1a3 + a

†
3a1

) + μn1 + μn3 + μ2n2,

which describes an array of three coupled wells, which will be referred to as the left (1), mid-
dle (2) and right (3) wells, respectively. Above, Ω (respectively Ω2) denote the tunneling of
atoms between the left and the right wells (respectively the left-middle tunnelling and the middle-
right tunneling), while μ2 and μ are the external potentials. Obviously, adapting the choice of
parameters, one can also treat the case where the left-middle and middle-right tunnellings are
different.

For the particular case where Ω approaches to zero this model reduces to the asymmetric open
trimer model in the absence of the interatomic scattering and a large external potential μ2 [49].
We observe here that if we consider this model in its full generality [49], with Ω2 and μ2 as
adjustable parameters, a BEC-transistor [20] can be derived.

In the symmetric limit Ω = Ω2, μ = μ2 in (4.24) we recover the model of the three coupled
BEC based on the SU(3) symmetry, proposed by Milburn et al. [46] also in the absence of the
interatomic scattering.

4.2.3. Two-coupled BEC model with different types of atoms
We consider the elementary monodromy matrices

Λ[1](u) =
⎛
⎜⎝

u + na1 a
†
1a2 αa

†
1

a
†
2a1 u + na2 αa

†
2

αa1 αa2 α2

⎞
⎟⎠ and Λ[2](u) =

⎛
⎜⎝

u + nb1 b
†
1b2 βb

†
1

b
†
2b1 u + nb2 βb

†
2

βb1 βb2 β2

⎞
⎟⎠ ,

(4.25)T (u) = Λ[1](u + w1)Λ
[2](u + w2).

Then, the transfer matrix reads

t (u) ∼ u(na + nb) + na1nb1 + na2nb2 + w1nb + w2na + a
†
1b

†
2a2b1 + a

†
2b

†
1a1b2

(4.26)+ Ω
(
a

†
1b1 + a

†
2b2 + b

†
1a1 + b

†
2a2

)
,

where Ω = αβ . It leads to the Hamiltonian t (0) with conserved quantities nj = naj + nbj , j =
1,2. This corresponds to a model of two wells (A and B) with nj atoms of type j , j = 1,2.
Here naj (nbj ) denotes the number of atoms of type j , j = 1,2 in the well A (B). Basically,
this Hamiltonian describes the tunneling of atoms of different types (1 and 2) in the two wells
(A and B).

Notice that this Hamiltonian could also be interpreted as describing two wells (A and B) with
two levels (1 and 2) in each well. Particles can tunnel between the wells and levels. The tunneling
term Ω allow particles to tunnel between wells just in the same level. Similar models (four-
mode Hamiltonians with tilted potentials) have been proposed recently in [50]. In this context
we mention that multi-mode models are receiving more attention, specially in connection to the
creation of a quantum computer from neutral atoms [50].

5 More specifically, H = t (0) + αn and we have done the change of variables β1 → β ; β3 → β ; β2 → γ /β , together

with the following identification Ω2 = γ ; Ω = β2; μ = (α − β2); μ2 = (α − γ 2/β2).
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4.2.4. Creation/dissociation of a molecule with two conformations
We consider the elementary monodromy matrices

Λ[1](u) =
⎛
⎝u + nA1 A

†
1a1 αA

†
1

a
†
1A1 u + na1 αa

†
1

αA1 αa1 α2

⎞
⎠ and

Λ[2](u) =
⎛
⎜⎝

−β2 βa
†
2 βA

†
2

βa2 u − na2 A
†
2a2

βA2 a
†
2A2 u − nA2

⎞
⎟⎠ ,

(4.27)T (u) = Λ[1](u + w1)Λ
[2](u + w2),

where we have used the sign-transposition and dilatation automorphisms on Λ[2](u). Then, the
transfer matrix reads

t (u) ∼ u(na1 − na2) − na1na2 − w1na2 + w2na1 − α2nA2 − β2nA1

(4.28)+ αβ
(
A

†
1A2 + A

†
2A1

) + α
(
a

†
1a

†
2A2 + A

†
2a1a2

) + β
(
a

†
1a

†
2A1 + A

†
1a2a1

)
with conserved quantities δn = na2 − na1 and ntot = 2(nA1 + nA2) + na1 + na2.

The Hamiltonian describes a molecule A, which exists in two conformations (two different
stereochemical forms) A1 and A2, and is constituted with two atoms (or submolecules) a1 and a2.
There are transitions between the two conformations of the molecule, and there is recombina-
tion/dissociation between the atoms and the two aspects of the molecule A. In this context, α

and β are related to the probabilities to obtain A1 or A2 starting from the atoms (or submole-
cules) a1 and a2. The relative proportion of atoms δn and the total number of atoms in the system
ntot are conserved.

4.2.5. A generalized heteroatomic-molecular BEC model
We consider the elementary monodromy matrices

Λ[1](u) =
⎛
⎝u + na1 A†a2 αA†

a
†
2A u + na2 αa

†
2

αA αa2 α2

⎞
⎠ and Λ[2](u) =

⎛
⎝u + na1 βa

†
1 a

†
1b2

βa1 β2 βb2
b

†
2a1 βb

†
2 u + nb2

⎞
⎠ ,

(4.29)T (u) = Λ[1](u + w1)Λ
[2](u + w2).

Then, the transfer matrix reads

t (u) ∼ u(nA + na1) + nAna1 + w1na1 + w2nA + α2nb2 + β2na2

(4.30)+ β
(
A†a1a2 + a

†
2a

†
1A

) + αβ
(
a

†
2b2 + b

†
2a2

)
.

It leads to the Hamiltonian t (0) with conserved quantity n1 = nA + na1. This model describes a
molecule A which can be dissociated into two different atoms a1 and a2. One of these atoms, a2,
can evolve to a different state b2, which forbids the recombination to A. For instance, A, a1 and
a2 can be trapped in one well, the transitions between a2 and b2 corresponding to a ‘leak’ of the
a2 atom toward a second well.

In the limit β → 0 one recovers the model of Section 4.1.4.
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4.2.6. Coupling of two oscillators with gl(3)

For completeness we give here an example of coupling gl(3) with oscillators. We take the
case of two oscillators, but one can also couple a single oscillator, or three of them.

(4.31)

Λ(u) =
⎛
⎝u + n1 a

†
1a2 αa

†
1

a
†
2a1 u + n2 αa

†
2

αa1 αa2 α2

⎞
⎠ ; L(u) =

(
u + e11 e12 e13

e21 u + e22 e23
e31 e32 u + e33

)
,

(4.32)T (u) = Λ(u)L(u).

The transfer matrix reads

t (u) ∼ u(n1 + n2 + e11 + e22) + n1e11 + n2e22 + a
†
1a2e21 + a

†
2a1e12 + α2e33

(4.33)+ α
(
a

†
1e31 + a

†
2e32

) + α(a1e13 + a2e23) + w1(e11 + e22) + w2(n1 + n2).

The conserved quantities are

Ij = ejj + nj , j = 1,2.

4.3. Coupling of one oscillator with gl(N)

We take

(4.34)

Λ(u) =

⎛
⎜⎜⎝

μu + n1 α2a
† . . . αNa†

α2a
... M

αNa

⎞
⎟⎟⎠ ; L(u) =

⎛
⎜⎜⎝

u + e11 e12 . . . e1N

e21
... uI + E

eN1

⎞
⎟⎟⎠

with Mij = αiαj and Eij = eij ,

(4.35)T (u) = Λ(u)L(u).

Then, for μ = 1 and α’s real, one gets

t (u) ∼ u(e11 + n1) + n1e11 +
N∑

j=2

{
αj

(
a†ej1 + e1,j a

) + α2
j ejj

}

(4.36)+
∑

2�j<k�N

αjαk(ejk + ekj ).

We have not used the parameters wj , but from the form of Λ(u) and L(u), it is easy to see that
one recovers them through the shifts n1 → n1 + w1 and ejj → ejj + w2, j = 1,2, . . . ,N .

4.4. Two-coupled BEC model with (N − 1) levels

We consider T (u) = Λ[1](u + w1)Λ
[2](u + w2) with

(4.37)Λ
[1]
jk (u) = δjku + a

†
j ak, j, k < N,

(4.38)Λ
[1]
jN (u) = αNaj , Λ

[2]
Nj (u) = αNa

†
j , j < N and Λ

[1]
NN(u) = α2

N,

(4.39)Λ
[2]

(u) = δjku + b
†
bk, j, k < N,
jk j
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(4.40)Λ
[2]
jN (u) = βNbj , Λ

[2]
Nj (u) = βNb

†
j , j < N and Λ

[2]
NN(u) = β2

N,

where bj , b
†
j is another set of oscillators. The transfer matrix t (u) = trT (u) now reads

t (u) ∼
N−1∑
j=1

{
u
(
n

[2]
j + n

[1]
j

) + n
[2]
j n

[1]
j + αNβN

(
a

†
j bj + b

†
j aj

)}

(4.41)+
∑

1�j 	=k�N−1

a
†
j akb

†
kbj ,

where n
[1]
j = a

†
j aj and n

[2]
j = b

†
j bj . It leads to the ‘fundamental’ Hamiltonians

(4.42)t (0) ∼
N−1∑
j=1

(
n

[2]
j + n

[1]
j

)
,

(4.43)t ′(0) ∼
N−1∑
j=1

{
n

[2]
j n

[1]
j + αNβN

(
a

†
j bj + b

†
j aj

)} +
∑

1�j 	=k�N−1

a
†
j akb

†
kbj .

Again, the shifts n
[p]
j → n

[p]
j + wp , j = 1,2, . . . ,N − 1, p = 1,2 give back the w dependence.

It corresponds to a generalization of the previous Hamiltonian (4.26), which could be in-
terpreted, for example, as describing two wells with N − 1 levels in each well. The quantities
Ij = n

[1]
j + n

[2]
j , j = 1,2, . . . ,N − 1, are conserved.

4.5. N -coupled BEC model

We consider the elementary monodromy matrices

(4.44)Λ
[1]
jk (u) = δjku + aja

†
k , j, k = 1,2,

(4.45)Λ
[1]
jk (u) = αkaj , Λ

[1]
kj (u) = αka

†
j , j = 1,2, k = 3, . . . ,N,

(4.46)Λ
[1]
jk (u) = αkαj , j, k = 3, . . . ,N,

(4.47)Λ
[2]
jk (u) = αkαj , j, k = 1,2,

(4.48)Λ
[2]
jk (u) = δjku + a

†
j ak, j, k = 3, . . . ,N,

(4.49)Λ
[2]
jk (u) = αjak, Λ

[2]
kj (u) = αja

†
k , j = 1,2, k = 3, . . . ,N.

The transfer matrix takes the form

(4.50)t (u) ∼ 1

2

2∑
i=1

N∑
j=1
j 	=i

αiαj

(
a

†
i aj + a

†
j ai

) +
N∑

i=1

α2
i ni .

It corresponds to a multi-well system, which generalizes the previous Hamiltonian (4.23). The
total number operator

∑N
i=1 ni is conserved.
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5. Bethe ansatz equations

We use the results of [51], applied to the special representations we are studying. This can
be done when the representations are lowest weight. However, when the representations are re-
ducible, the Bethe ansatz will give the eigenvalues only on the irreducible parts. It has to be
applied for each lowest weights.

For the spin chain part, associated to the elementary monodromy matrix L(u), one has always
a unique lowest weight v defining the representation (the spin) one is working with. When dealing
with oscillators, the Fock vacuum |0〉 is a natural lowest weight, but different cases can appear,
as we shall see.

5.1. N = 2 case

For N = 2, the elementary monodromy matrices (4.1) and (4.2) become all triangular when
applied to the Fock vacuum |0〉 and/or to the lowest weight vector vs :

(5.1)L(u)vs =
(

u + s S+
0 u − s

)
vs, s ∈ 1

2
Z+, L(u)|0〉 =

(
u 0
0 u

)
|0〉,

(5.2)Λ(u)|0〉 =
(

u βa†

0 β2

)
|0〉, Λ̂(u)|0〉 =

(
β2 βa†

0 u

)
|0〉.

Note that L(u) is proportional to the identity matrix, because the representation is reducible.
Indeed all the vectors |p〉 = (a

†
2)p|0〉, p ∈ Z+, are lowest weight vectors for L(u):

(5.3)L(u)|p〉 =
(

u + p a
†
1a2

0 u

)
|p〉.

Then, depending on the model we are studying, we will get as pseudo-vacuum for the mon-
odromy matrix, either the total Fock vacuum |0,0〉 = |0〉 ⊗ |0〉, or different combinations of the
type |p,q〉 = |p〉 ⊗ |q〉, |vs,p〉 = vs ⊗ |p〉, etc. When several pseudo-vacua are at our disposal,
we will have to repeat the Bethe ansatz method (described below) for each of the pseudo-vacuum
in order to get a complete set of eigenvalues for the transfer matrix.

In all cases, the total monodromy matrix is triangular, and the pseudo-vacuum obeys:

T LL
jj (u)|vs, vr〉 = λj (u)|vs, vr〉, j = 1,2 with

{
λ1(u) = (u + w1 + s)(u + w2 + r),

λ2(u) = (u + w1 − s)(u + w2 − r),

T LL
jj (u)|vs,p〉 = λj (u)|vs,p〉,

{
j = 1,2,

p ∈ Z+

with

{
λ1(u) = (u + w1 + s)(u + w2 + p),

λ2(u) = (u + w1 − s)(u + w2),

T LL
jj (u)|p,q〉 = λj (u)|p,q〉,

{
j = 1,2,

p, q ∈ Z+

with

{
λ1(u) = (u + w1 + p)(u + w2 + q),

λ2(u) = (u + w1)(u + w2),

T LΛ
jj (u)|vs,0〉 = λj (u)|vs,0〉, j = 1,2 with

{
λ1(u) = (u + w1 + s)(u + w2),

λ (u) = α2(u + w − s),
2 1
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T LΛ
jj (u)|p,0〉 = λj (u)|p,0〉,

{
j = 1,2,

p ∈ Z+
with

{
λ1(u) = (u + w1 + p)(u + w2),

λ2(u) = α2(u + w1)

T ΛΛ
jj (u)|0,0〉 = λj (u)|0,0〉, j = 1,2 with

{
λ1(u) = (u + w1)(u + w2),

λ2(u) = α2β2.

It implies that the pseudo-vacuum is an eigenvector of the transfer matrix. We will summarize
these different cases in the notation

(5.4)t (u)|Ω〉 = (
λ1(u) + λ2(u)

)|Ω〉,
where |Ω〉 is one of the pseudo-vacuum(s).

The other eigenvalues of the transfer matrix then read

λ(u) = A0(u)λ1(u) + A1(u)λ2(u),

where the dressing functions Aj(u) are given by:

(5.5)A0(u) =
M∏

n=1

u − un + 1
2

u − un − 1
2

and A1(u) =
M∏

n=1

u − un − 3
2

u − un − 1
2

.

The parameters un, 1 � n � M , are the Bethe roots, their number M being also a free parameter.
All these parameters are determined by the Bethe equations

(5.6)
M∏

m=1
m 	=n

un − um − 1

un − um + 1
= λ1(un + 1

2 )

λ2(un + 1
2 )

, 1 � n � M.

5.2. N = 3 case

The existence of a pseudo-vacuum is not ensured anymore. For instance in the example treated
in Section 4.2.2, one easily computes the action of t (u) on the Fock vacuum:

t (u)|0,0〉 = (
u2 + β2

1u + β2
1α2

3

)|0,0〉 + β∗
1 β∗

2 α3b
†|0,0〉

so that the vacuum is an eigenvector of the transfer matrix only if the condition β1β2α3 = 0 is
satisfied. Note that this condition is weaker than demanding |0,0〉 to be a lowest weight vector
for the monodromy matrix, which would lead to α3 = 0.

5.2.1. Pseudo-vacua
We give the eigenvalues λj (u) of the pseudo-vacuum (when it exists) under the generators

Tjj (u), j = 1,2,3. We order them according to the section where they are presented. The pseudo-
vacua are built on the Fock vacuum |0〉 ≡ |0〉 ⊗ · · · ⊗ |0〉 of the models.

Model 5.2.1. One must impose the condition β1β2 = 0. In that case, there are several pseudo-
vacua |p〉 = (b†)p|0,0,0〉, p ∈ Z+,

(5.7)T11(u)|p〉 = u2|p〉; T22(u)|p〉 = β2
1 (u + p)|p〉; T33(u)|p〉 = α2

3β2
2 |p〉.

Model 5.2.2. One must impose the condition β1β2 = 0. In that case, the Fock vacuum has eigen-
values

(5.8)T11(u)|0〉 = β2
1u2|0〉; T22(u)|0〉 = β2

2u2|0〉; T33(u)|0〉 = β2
3u2|0〉.
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Model 5.2.3. The Fock vacuum has eigenvalues

(5.9)T11(u)|0〉 = u2|0〉; T22(u)|0〉 = u2|0〉; T33(u)|0〉 = α2β2|0〉.
Model 5.2.4. There are two types of pseudo-vacua

|p〉 = (
a

†
2

)p|0,0,0,0〉 and |−p〉 = (
b

†
1

)p|0,0,0,0〉, p ∈ Z+.

Gathering them in the notation |p〉, p ∈ Z, their eigenvalues read

T11(u)|p〉 = β2u|p〉; T22(u)|p〉 = u(u + p)|p〉;
(5.10)T33(u)|p〉 = α2u|p〉, p ∈ Z.

Model 5.2.5. One must impose the condition αβ = 0. In that case, the Fock vacuum has eigen-
values

(5.11)T11(u)|0〉 = u2|0〉; T22(u)|0〉 = β2u|0〉; T33(u)|0〉 = α2u|0〉.
Model 5.2.6. We denote by v the gl(3) lowest weight vector, with eigenvalues (λ1, λ2, λ3) under
the gl(3) Cartan generators. The pseudo-vacuum is |v〉 = |0〉 ⊗ v, with eigenvalues

(5.12)T11(u)|v〉 = u(u + λ1)|v〉; T22(u)|v〉 = u(u + λ2)|v〉;
(5.13)T33(u)|v〉 = α2(u + λ3)|v〉.

5.2.2. Bethe equations
Now that we have determined the conditions for the existence of a pseudo-vacuum, one can

write

(5.14)t (u)|Ω〉 = (
λ1(u) + λ2(u) + λ3(u)

)|Ω〉,
where the eigenvalues λj (u) can be read in Section 5.2.1. Then, the other transfer matrix eigen-
values read

λ(u) = A0(u)λ1(u) + A1(u)λ2(u) + A2(u)λ3(u)

with the dressing functions

(5.15)A0(u) =
M(1)∏
n=1

u − u
(1)
n + 1

2

u − u
(1)
n − 1

2

,

(5.16)A1(u) =
M(1)∏
n=1

u − u
(1)
n − 3

2

u − u
(1)
n − 1

2

M(2)∏
n=1

u − u
(2)
n

u − u
(2)
n − 1

,

(5.17)A2(u) =
M(2)∏
n=1

u − u
(2)
n − 2

u − u
(2)
n − 1

.

We have here two sets of Bethe roots, u
(1)
n , 1 � n � M(1), and u

(2)
n , 1 � n � M(2), constrained

by the Bethe equations

(5.18)
M(1)∏
m=1

u
(1)
n − u

(1)
m − 1

u
(1)
n − u

(1)
m + 1

M(2)∏
m=1

u
(1)
n − u

(2)
m + 1

2

u
(1)
n − u

(2)
m − 1

2

= λ1(u
(1)
n + 1

2 )

λ2(u
(1)
n + 1

2 )
, 1 � n � M(1),
m 	=n
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(5.19)
M(1)∏
m=1

u
(2)
n − u

(1)
m + 1

2

u
(2)
n − u

(1)
m − 1

2

M(2)∏
m=1
m 	=n

u
(2)
n − u

(2)
m − 1

u
(2)
n − u

(2)
m + 1

= λ2(u
(2)
n + 1)

λ3(u
(2)
n + 1)

, 1 � n � M(2).

5.3. General case

For the general case of N × N matrices, and supposing the existence of pseudo-vacua |Ω〉
(possibly with conditions on the parameters of the models, as above), we will get for the eigen-
values of the transfer matrix

λ(u) =
N∑

k=1

Ak−1(u)λk(u)

with pseudo-vacuum eigenvalues

Tkk(u)|Ω〉 = λk(u)|Ω〉, k = 1, . . . ,N so that t (u)|Ω〉 =
(

N∑
k=1

λk(u)

)
|Ω〉

and dressing functions

(5.20)Ak(u) =
M(k)∏
n=1

u − u
(k)
n − k+2

2

u − u
(k)
n − k

2

M(k+1)∏
n=1

u − u
(k+1)
n − k−1

2

u − u
(k+1)
n − k+1

2

, 0 � k � N − 1,

with M(0) = M(N) = 0.
The N − 1 types of Bethe roots u

(k)
n , 1 � n � M(k), 1 � k � N − 1, will be determined by the

Bethe equations:

M(k−1)∏
m=1

u
(k)
n − u

(k−1)
m + 1

2

u
(k)
n − u

(k−1)
m − 1

2

M(k)∏
m=1
m 	=n

u
(k)
n − u

(k)
m − 1

u
(k)
n − u

(k)
m + 1

M(k+1)∏
m=1

u
(k)
n − u

(k+1)
m + 1

2

u
(k)
n − u

(k+1)
m − 1

2

(5.21)= λk(u
(k)
n + k

2 )

λk+1(u
(k)
n + k

2 )
, 1 � n � M(k) and 1 � k � N − 1.

They depend on the model and pseudo-vacuum through the eigenvalues λk(u), k = 1, . . . ,N .

6. Superalgebras and fermions

We have seen that the Yangian is not sufficient to build BEC models based on fermions. For
such a purpose, one needs to consider another algebraic structure, the super-Yangian Y(M|N)

based on the superalgebra gl(M|N).
The models look very similar to the ones presented in Section 4, with the notable difference

that the choices for the fermionic oscillators is not the same, allowing more flexibility in the
construction.

6.1. The superalgebra gl(M|N)

To define a superalgebra, one needs to introduce a grading [·] that will distinguish the fermi-
onic generators from the bosonic ones. For gl(M|N), denoting eij , i, j = 1, . . . ,M + N , these
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generators, the grading is defined as6

(6.1)[eij ] = [i] + [j ] with [k] =
{

0 if 1 � k � M,

1 if M + 1 � k � M + N.

The generators with grading 0 are bosonic ones; they form a gl(M) ⊕ gl(N) subalgebra of
gl(M|N), generated by eij , with i, j � M and i, j > M . The remaining generators are of fermi-
onic type, and form a representation (N, M̄)⊕ (N̄,M) of this subalgebra. The supercommutator
reads

[eij , ekl} = −(−1)([i]+[j ])([k]+[l])[ekl, eij } = δjkeil − (−1)([i]+[j ])([k]+[l])δilekj

which amounts to consider commutators when eij and/or ekl are/is bosonic (i.e. of grade 0), and
anti-commutators when both are fermionic.

The fundamental representation is of dimension M + N :

π(eij ) = Eij ,

where now Eij are graded elementary matrices of size M + N .

6.2. The super-Yangian Y(M|N)

One defines the super-Yangian through a graded R-matrix, obeying a graded version of YBE.
By graded version of YBE, we mean that one has to use a graded tensor product on the auxiliary
spaces:

(6.2)(Eij ⊗ Ekl) · (Epq ⊗ Ers) = (−1)([k]+[l])([p]+[q])(EijEpq) ⊗ (EklErs),

where the grading is the same as the one of gl(M|N).
In fact, everything looks formally the same as for the Yangian, with the restriction that one

has to take care of the grading (6.1). For instance, the R-matrix reads:

(6.3)R12(x) = I ⊗ I − 1

x
P12,

with now the super-permutation operator

P12 =
M+N∑
i,j=1

(−1)[j ]Eij ⊗ Eji =
M+N∑
i=1

(
M∑

j=1

Eij ⊗ Eji −
M+N∑

j=M+1

Eij ⊗ Eji

)
.

Plugging this R-matrix in the relation (2.1), and taking care of the graded tensor product leads to

(6.4)
[
Lij (u),Lkl(v)

} = (−1)[i]([k]+[l])+[k][l]

u − v

(
Lkj (u)Lil(v) − Lkj (v)Lil(u)

)
.

We will use elementary monodromy matrices built on gl(M|N):

(6.5)Lij (u) = uδij + eij , eij ∈ gl(M|N).

6 Other choices of grading could be used, but we will stick to this one throughout the paper.
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6.3. Transfer matrix and symmetries

The monodromy matrix �(L)T (u) = T [1](u) · · ·T [L](u) gives a transfer matrix of the form

(6.6)st(u) = str
(
T [1](u) · · ·T [L](u)

)
,

where the super-trace of a matrix is defined by

(6.7)str(A) =
M+N∑
i=1

(−1)[i]Aii =
M∑
i=1

Aii −
M+N∑

i=M+1

Aii for A =
M+N∑
i,j=1

AijEij .

As for the bosonic case, one can show that

(6.8)
[
st(u), st(v)

] = 0.

Again, to get Hermitian Hamiltonian, we will focus on the case L = 2, so that the monodromy
and transfer matrices we will be concerned of, have the form

(6.9)Tkl(v) =
2∑

n=0

vnT
(n)
kl with T

(2)
kl = ωkδkl and ωk ∈ C,

(6.10)st(u) = t2u
2 + t1u + t0 with t2 ∈ C.

Specializing to gl(M|N) representations will give different models. These models will have also
a symmetry, as one can see from the relation

(6.11)
[
st(u), T

(1)
kl

] = (ωk − ωl)
(
T

(0)
kl + uT

(1)
kl

)
proving again that the quantities

(6.12)Ik = T
(1)
kk ∀k = 1, . . . ,N,

commute with the transfer matrix.
We will be essentially interested in the oscillator representation

(6.13)π(eij ) = a
†
i aj with

[
ai, a

†
j

} = μiδij ,

where (ai, a
†
i ) for 1 � i � M (respectively M + 1 � i � M +N ) are bosons (respectively fermi-

ons), i.e. [ai] = [a†
i ] = [i].

This choice of grading implies that [eij ] = [a†
i ] + [aj ] = [i] + [j ], in accordance with the

gradation of gl(M|N). It corresponds to a bosonic (respectively fermionic) oscillator repre-
sentation for the gl(M) (respectively gl(N)) subalgebra. Remark that the opposite choice (i.e.
[ai] = [a†

i ] = [i] + 1) is also possible.
The inhomogeneous oscillator monodromy matrices will then be obtained by taking constant

bosonic oscillators. In that process, the choice of the grading for the oscillators will be essential,
since it will determine which of the oscillators can be possibly set to constant.

Despite of the grading, the elementary matrices are still Hermitian. Hence, the models will be
Hermitian.
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7. Fermionic BEC models

7.1. Two by two (graded) matrices

We are dealing with the gl(1|1) case, and we focus on the elementary monodromy matrices
of the form

(7.1)L(u) =
(

u + n1 a
†
1a2

a
†
2a1 u − n2

)
,

(7.2)Λ(u) =
(

u + n βc†

βc β2

)
, Λ̂(u) =

( −β2 βc

βc† u − n

)
,

where in L(u) one of the couple (aj , a
†
j ), j = 1,2, is bosonic and the other one fermionic, while

in Λ(u) and Λ̂(u), (c, c†) is fermionic.

7.1.1. Fermionic heteroatomic BEC model
We consider strL[1](u + w1)L[2](u + w2), with oscillators (a1, c1) for L[1](u) and (c2, a2)

for L[2](u). One can consider either (a1, a2) to be bosonic and (c1, c2) fermionic, or (a1, a2)

fermionic and (c1, c2) bosonic.
The transfer matrix reads:

st(u) ∼ u(na1 + na2 + nc1 + nc2) + na1nc1 − na2nc2 + w1(nc1 + nc2)

(7.3)+ w2(na1 + na2) + a
†
1c

†
2c1a2 + a

†
2c

†
1c2a1.

We get a fermionic version of the model described in Section 4.1.3. It can be interpreted as
modelizing a coupled pair of one boson and one fermion which can tunnel together from one
well to another.

7.1.2. Heteroatomic-molecular BEC model with fermions
We consider strL(u + w1)Λ(u + w2), with oscillators (a1 ≡ b, a2 ≡ a) for L(u) and c for

Λ(u). In L(u), we take b bosonic. Then, a is fermionic, as well as is c in Λ(u). We get

(7.4)st(u) ∼ u(nb + nc) + nbnc + w1nc + w2nb + β2na + β
(
a†c†b − b†ac

)
.

We find a new version of the heteroatomic-molecular BEC model of Section 4.1.4, with now
a bosonic molecule b constituted of two fermionic atoms a and c.

The shift automorphism applied on b produces additional terms in the transfer matrix

(7.5)Hbound ∼ (
β
(
b + b†) + β2)nc + w2β

(
b + b†) + αβ

(
a†c† − ac

)
.

7.1.3. Fermionic two-wells
We start with Λ[1](u + w1) and Λ[2](u + w2), set all the bosons to constant, keeping the

fermions c1 and c2.

strΛ[1](u + w1)Λ
[2](u + w2) = (u + w1 + nc1)(u + w2 + nc2)

(7.6)− β1β2c
†
1c2 + β1β2c1c

†
2,

(7.7)st(u) ∼ u(nc1 + nc2) + nc1nc2 + w1nc2 + w2nc1 − β1β2
(
c

†
1c2 + c

†
2c1

)
.
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One recognizes a two-wells models, but now with atoms of fermionic nature.
We mention here that there has been recently a great interest in Bose–Einstein condensates

with fermions since the achievement of quantum degeneracy in ultracold Fermi gases (see, for
example [18] and references therein).

7.2. Three by three (graded) matrices

We are now dealing with the gl(2|1) case, corresponding to 3 × 3 matrices. Again the number
of possible models becomes numerous, so that we present the generic case and treat only two
examples, physically relevant.

7.2.1. Generic case
We present here a general formulation for the transfer matrix, which encompasses all the

possible models, by setting some of the (bosonic) oscillators to constant.
The two generic elementary monodromy matrices have the form

L[1](u) =

⎛
⎜⎜⎝

u1 + n1 a
†
1a2 a

†
1a3

a
†
2a1 u2 + n2 a

†
2a3

a
†
3a1 a

†
3a2 u3 + n3

⎞
⎟⎟⎠ and

L[2](u) =

⎛
⎜⎜⎝

v1 + m1 c
†
1c2 c

†
1c3

c
†
2c1 v2 + m2 c

†
2c3

c
†
3c1 c

†
3c2 v3 + m3

⎞
⎟⎟⎠

with the notations

(7.8)nj = a
†
j aj and mj = c

†
j cj , j = 1,2,3.

For L[1](u) to be of gl(2|1) type, one can choose either a1 and a2 bosonic and a3 fermionic, or a1
and a2 fermionic and a3 bosonic. Obviously, the same criteria apply for L[2](u), cj , j = 1,2,3.

When the oscillators are bosonic, one can choose to set them to constant: in that case the
corresponding spectral parameter (uj or vj ) has to be set to zero. In all other cases, it is set
to u. For instance, if a1, bosonic, is the only one set to a constant α1, then one has u1 = 0 and
u2 = u3 = v1 = v2 = v3 = u. We will also have in this case a

†
1 = α∗

1 and n1 = |α1|2.
Keeping these rules in mind, one can compute a generic transfer matrix. It takes the form (up

to irrelevant constant terms)

st(u) =
3∑

j=1

(ujmj + vjnj ) + H,

H = a
†
1a2c

†
2c1 + c

†
1c2a

†
2a1 + a

†
1a3c

†
3c1 + c

†
1c3a

†
3a1 + a

†
2a3c

†
3c2 + c

†
2c3a

†
3a2 +

3∑
j=1

mjnj .

The ‘true’ Hamiltonian st(0) = H of a given model is then obtained through the above rules,
after choosing which of the oscillators are bosonic or fermionic, and, among the bosonic ones,
which of them are set to constant.
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The conserved quantities of the model take the form

uIj = ujmj + vjnj , j = 1,2,3.

Of course, depending of the choices, some of these quantities can be zero after use of the rules.
Let us also remark that if one takes all the oscillators to be bosonic or fermionic (a situation

forbidden in the case of gl(2|1)), one gets a generic transfer matrix for the usual three by three
matrices, as treated in Section 4.2.

7.2.2. A fermionic two-coupled BEC
To exemplify the above techniques, we construct a fermionic version of the model given in

Section 4.2.3.
We take a3 and c3 to be bosonic, and set both of them to constant, α and γ (both real) re-

spectively. Then, one gets four couples of oscillators, all of them being fermionic. The rules lead
to

(7.9)u1 = u2 = v1 = v2 = u and u3 = v3 = 0,

(7.10)a3 = a
†
3 = α ∈ R and n3 = α2,

(7.11)c3 = c
†
3 = γ ∈ R and m3 = γ 2.

Thus, we get an Hamiltonian

H = a
†
1a2c

†
2c1 + c

†
1c2a

†
2a1 + αγ

(
a

†
1c1 + c

†
1a1 + a

†
2c2 + c

†
2a2

) + m1n1 + m2n2

with conserved quantities

I1 = n1 + m1 and I2 = n2 + m2.

We recover the Hamiltonian of Section 4.2.3, with the notable difference that the atoms have a
fermionic nature.

7.2.3. Fermionic three coupled BEC model
If now one takes a3 bosonic and constant (α ∈ R), and c1 and c2 bosonic and constant

(γj ∈ R), one gets:

(7.12)u1 = u2 = v3 = u and u3 = v1 = v2 = 0,

(7.13)a3 = a
†
3 = α ∈ R and n3 = α2,

(7.14)cj = c
†
j = γj ∈ R and mj = γ 2

j , j = 1,2,

leading to (using the sign-transposition and dilatation automorphisms on L[2](u))

H = γ1γ2
(
a

†
1a2 + a

†
2a1

) + αγ1
(
a

†
1c3 + c

†
3a1

) + αγ2
(
a

†
2c3 + c

†
3a2

)
(7.15)+ γ 2

1 n1 + γ 2
2 n2 − αm3.

We get the fermionic version of the Hamiltonian described in Section 4.2.2.
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8. Conclusion

In the BEC context, we have constructed integrable generalized models in a systematic way
exploring different representations of the gl(N) algebra and the gl(M|N) superalgebra. Some
existing models, such as the two-site Bose–Hubbard model, have been recovered and new ones
have been predicted. Interestingly, a two-coupled BEC model with a field, a three-coupled BEC
model and a two-coupled BEC-model with different types of atoms, among others, have been
introduced. The use of the gl(M|N) superalgebra allows the introduction of fermions, leading
to systems mixing bosons and fermions, as they are presently studied in condensed matter BEC
experiments. In this context, the ‘integrable approach’ can be viewed as a technique to construct
in a very general way Hamiltonians relevant for these studies.

The energy spectrum of these models has been derived, through the Bethe ansatz equations,
by the use of analytical Bethe ansatz. The next step in the study of these systems in this general
framework, is the determination of the (Bethe) eigenstates and eigenfunctions, which would
allow to investigate the classical and quantum dynamics of such systems.

Finally, we remark that more general integrable models can be obtained using the method pre-
sented in the present work. They are constructed using products of more elementary monodromy
matrices, with the restriction that the Hermiticity of their Hamiltonian is not guaranteed anymore.
Apart from the trial and error method that one can use on a case-by-case basis, a general analysis
determining the conditions under which Hamiltonians are Hermitian would certainly improve
the landscape of integrable BEC models.
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Appendix A. Quantum determinant and conserved quantities

We have seen that the expansion of the monodromy matrix provides some conserved quantities
of the integrable models. However, other conserved quantities can be obtained when considering
the center of the algebra. For the Yangian, it is known that its center is generated by the quantum
determinant [52]:

(A.1)q det(u) =
∑

σ∈SN

sgn(σ )T1,σ (1)(u)T2,σ (2)(u − 1) · · ·TN,σ(N)(u − N + 1),

where SN is the group of permutations. It is clear that the conserved quantities obtained in this
way are quite complicated, but they may be of some help for the study of the different models.
To illustrate this, we give the form of the quantum determinant when N = 2 and 3

(A.2)q det(u) = T11(u)T22(u − 1) − T12(u)T21(u − 1) for N = 2,

q det(u) = T11(u)T22(u − 1)T33(u − 2) + T12(u)T23(u − 1)T31(u − 2)

+ T13(u)T21(u − 1)T32(u − 2) − T12(u)T21(u − 1)T33(u − 2)
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(A.3)

− T13(u)T22(u − 1)T32(u − 2) − T11(u)T23(u − 1)T32(u − 2) for N = 3,

q det(u) is a polynomial in u, of degree 2N since T (u) is of degree two. Hence, one gets a priori
2N conserved quantities. They are not all independent, but they can provide new conserved
quantities, not contained in the transfer matrix, nor given by (3.6). Remark that these quantities
are a priori not Hermitian, but, since they are central in the whole Yangian, so are their adjoint.
Hence, one can build Hermitian (and anti-Hermitian) conserved quantities from q det(u).

Indeed, for N = 2, expanding q det(u) from the expansion (3.2), one gets (up to constant
terms)

(A.4)q det(u) =
3∑

n=0

dnu
n,

(A.5)d3 = ω1T
(1)

22 + ω2T
(1)
11 ,

(A.6)d2 = ω1T
(1)

22 − 2ω2T
(1)
11 + ω1T

(0)
22 + ω2T

(0)
11 − T

(1)
12 T

(1)
21 ,

(A.7)d1 = ω2T
(1)

11 − 2ω2T
(0)
11 + T

(1)
11 T

(0)
22 + T

(0)
11 T

(1)
22 − T

(1)
12 T

(0)
21 − T

(0)
12 T

(1)
21 ,

(A.8)d0 = ω2T
(1)

11 − T
(0)
11 T

(1)
22 + T

(0)
12 T

(1)
21

with ωk = μakμbk , k = 1,2, when dealing with oscillator representations, or ωk = 1 for gl(N)

representations.
After some algebras, and using the conserved quantities (3.6), one obtains the following in-

variants

(A.9)c0 = T
(0)
12 T

(1)
21 + T

(0)
11

(
ω2 − T

(1)
22

)
,

(A.10)c1 = T
(1)
12 T

(0)
21 + T

(0)
22

(
ω1 − T

(1)
11

)
,

(A.11)c2 = T
(1)
12 T

(1)
21 − ω1T

(0)
22 − ω2T

(0)
11 .

Of course, the explicit form of these invariant will depend on the representations we will use, i.e.
on the physical model we are studying.

In the case N = 3, the same kind of calculation leads to more complicated expressions. The
simplest ones read:

c4 = ω3T
(1)

12 T
(1)

21 + ω2T
(1)
13 T

(1)
31 + ω1T

(1)
23 T

(1)
32 − ω2ω3T

(0)
11

− ω1ω3T
(0)
22 − ω1ω2T

(0)
33 ,

c0 = T
(0)
11 T

(0)
22 T

(0)
33 − T

(0)
11 T

(0)
23 T

(0)
32 − T

(0)
12 T

(0)
21 T

(0)
33 + T

(0)
12 T

(0)
23 T

(0)
31

(A.12)+ T
(0)

13 T
(0)
21 T

(0)
32 − T

(0)
13 T

(0)
22 T

(0)
31 .
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