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Reply to “Comment on ‘Vortex distribution in a confining potential’ ”
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We argue that contrary to recent suggestions, nonextensive statistical mechanics has no relevance for
inhomogeneous systems of particles interacting by short-range potentials. We show that these systems are
perfectly well described by the usual Boltzmann-Gibbs statistical mechanics.
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In a recent Physical Review Letters [1], Andrade et al.
studied a system of particles (vortices) interacting by the
potential

V (r) = q2K0

( |x1 − x2|
λ

)
, (1)

where K0 is a modified Bessel function, r = |x1 − x2| is the
distance between particle 1 and particle 2, q is the potential
strength, and λ is the screening length. The particles were
confined to a potential well

W (x) = α
x2

2
. (2)

The principal conclusion of the paper by Andrade et al. was
that a system of such particles, in contact with a reservoir
at T = 0, “obeys Tsallis statistics”. The authors argued that
at finite temperatures, the system will maximize a mixture
of Tsallis and Boltzmann entropy. In our Comment [2] on
Andrade et al.’s paper, we pointed out that at T = 0, statistics
is irrelevant and a system in contact with a reservoir at T = 0
will lose all of its free energy and will collapse into the ground
state. We then explicitly calculated the particle distribution in
the ground state in the limit N → ∞, q → 0, and Nq2 = 1,
and showed that it is different from the one predicted by Tsallis
entropy.

In the follow-up paper [3], we have extended our theory
to finite temperatures and shown how the system of Andrade
et al. can be studied using a mean-field theory. The Comment
of Ribeiro et al. [4] criticizes our paper and insists that the
equilibrium state of the system, described by Eqs. (1) and (2),
should be described by the nonextensive statistical mechanics.

Below we address the issues raised by Ribeiro et al.:
(i) The asymptotic form of the interaction potential in

Eq. (1) is V (r) ≈ q2
√

π
2r

e−r/λ. This potential is short ranged
and has a form very similar to Yukawa potential. It is well
known that a system of Yukawa particles confined by hard
walls or periodic boundary conditions crystallizes [5–10]. The
process is perfectly well described by the standard Boltzmann-
Gibbs (BG) statistical mechanics. Ribeiro et al. do not provide
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any argument why the equilibrium state of the Yukawa-like
system confined by a parabolic potential should be described
by a nonextensive entropy. The only arguments are based on
fitting the particle distributions calculated using overdamped
molecular dynamics (MD) simulations to q Gaussians. Such
curve fitting, however, must be taken with caution. For
example, recently it has been argued that sufficiently strongly
correlated random variables also obey nonextensive central
limit theorem in which the usual Gaussian distribution for
uncorrelated random variables is replaced by a q Gaussian.
Again the only basis for this belief was curve fitting. However,
in an important paper, Hilhorst and Schehr [11] calculated
exactly the probability distributions for strongly correlated
random variables and showed that these are analytically
different from the q Gaussians. Curve fitting is a shaky ground
on which to build a new theory, in particular one that attempts
to replace the BG statistical mechanics.

(ii) In their Comment on our work the authors state that
“besides the long-range forces, other attributes, like strong
correlations” make systems fall out of the “scope of BG
statistical mechanics”. Indeed some years ago, it was hoped
that the nonextensive statistics could be helpful to study
systems with long-range interactions, such as magnetically
confined plasmas or gravitational clusters. However, recent
work [12,13] has shown that long-range interacting systems
relax to quasistationary states, which have nothing to do with
Tsallis entropy.
It is also incorrect to say that BG statistics fails for strongly
correlated systems. If this would be true, the theory could not
be used to study either liquids or solids, which are very strongly
correlated. Yet, BG statistical mechanics is able to account
perfectly for the structural and thermodynamic properties of
liquid and solid phases, as well as for the phase transitions
between the different phases.

(iii) In their Comment on our paper, Ribeiro et al. claim
that we did not “realize how poor mean-field approximation”
was in the strong coupling regime. The discrepancy between
the mean-field and MD simulations at low temperatures was
clearly pointed out by us. Furthermore, it is very well know
that the mean-field theory fails when the correlations between
the particles become strong; see, for example, discussion in
Ref. [14]. The failure of the mean-field theory, however,
is in no way indicative of the failure of the BG statistical
mechanics. Indeed, it is possible to solve exactly for the
particle distribution predicted by the BG statistical mechanics
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using Monte Carlo (MC). This is precisely what we have done
in our paper [3] [Fig. 5(a) from our paper]. We compared
the results of overdamped dynamics simulations of Andrade
et al. with the predictions of BG statistical mechanics for
the same number of particles, the same parameters, and the
same temperatures as in their paper. As expected the results of
Andrade et al. are in perfect agreement with the predictions of
BG statistical mechanics. Ribeiro et al., say that the reason for
this good agreement is that the temperatures that we looked
at were “too high”. They argue that at lower temperatures,
more relevant for superconductors, BG statistics will fail and
the density distribution will correspond to the maximum of
Tsallis entropy. To answer this criticism, in this Reply we
calculated a coarse-grained density distribution at the lowest
temperature, T = 0. Within usual thermodynamics and BG
statistical mechanics a system at T = 0 will be in the ground
state, which can be calculated by minimizing the potential
energy of the system. The coarse-grained density distribution
is then constructed by binning the particles along the x axis.
In Fig. 1 we show that this density distribution is in excellent
agreement with the overdamped dynamics data of Andrade
et al. Once again we conclude that there is absolutely no reason
to introduce a nonextensive entropy for the system of particles
interacting by a short-range potential.

(iv) Ribeiro et al. claim that their W-Lambert solution
describes perfectly the MD data of Andrade et al. However,
they fail to point out that the good agreement shown in the
Fig. 1 of their Comment is obtained with the help of a fitting
parameter a. Clearly if one has to decide between two very
distinct theories that account equally well for the data, but one
of which has a fitting parameter and the other one does not,
there is no question which theory is preferable.

We showed that all of the overdamped dynamics data
of Andrade et al., including T = 0, is perfectly well
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FIG. 1. (Color online) Comparison between the overdamped dy-
namics data of Andrade et al. [1] (circles) with the predictions of
BG statistics (squares) for T = 0. The perfect agreement between the
two clearly shows that the equilibrium state of the system of Andrade
et al. is described by the standard BG statistical mechanics down to
T = 0.

described by the BG statistical mechanics. At high temper-
atures, the particle distribution can be accurately calculated
using the mean-field theory. At intermediate temperatures
the correlations can be included using a density functional
theory in conjunction with the hypernetted chain (HNC)
equation [15]. Therefore, there is absolutely no reason to
introduce a nonextensive entropy for this problem.
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[10] J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136,

024507 (2012).
[11] H. J. Hilhorst and G. Schehr, J. Stat. Mech.-Theory E. (2007)

P06003.
[12] A. Campa, T. Dauxois, and S. Ruffo, Phys. Rep. 480, 57 (2009).
[13] Y. Levin, R. Pakter, F. B. Rizzato, T. N. Telles, and F. P. C.

Benetti, Phys. Rep. 535, 1 (2014).
[14] Y. Levin, Rep. Prog. Phys. 65, 1577 (2002).
[15] M. Girotto, A. P. dos Santos, T. Colla, and Y. Levin, J. Chem.

Phys. 141, 014106 (2014).

026102-2

http://dx.doi.org/10.1103/PhysRevLett.105.260601
http://dx.doi.org/10.1103/PhysRevLett.105.260601
http://dx.doi.org/10.1103/PhysRevLett.105.260601
http://dx.doi.org/10.1103/PhysRevLett.105.260601
http://dx.doi.org/10.1103/PhysRevLett.107.088901
http://dx.doi.org/10.1103/PhysRevLett.107.088901
http://dx.doi.org/10.1103/PhysRevLett.107.088901
http://dx.doi.org/10.1103/PhysRevLett.107.088901
http://dx.doi.org/10.1103/PhysRevE.88.032118
http://dx.doi.org/10.1103/PhysRevE.88.032118
http://dx.doi.org/10.1103/PhysRevE.88.032118
http://dx.doi.org/10.1103/PhysRevE.88.032118
http://dx.doi.org/10.1103/PhysRevE.90.026101
http://dx.doi.org/10.1103/PhysRevE.90.026101
http://dx.doi.org/10.1103/PhysRevE.90.026101
http://dx.doi.org/10.1103/PhysRevE.90.026101
http://dx.doi.org/10.1063/1.453924
http://dx.doi.org/10.1063/1.453924
http://dx.doi.org/10.1063/1.453924
http://dx.doi.org/10.1063/1.453924
http://dx.doi.org/10.1063/1.459898
http://dx.doi.org/10.1063/1.459898
http://dx.doi.org/10.1063/1.459898
http://dx.doi.org/10.1063/1.459898
http://dx.doi.org/10.1103/PhysRevLett.70.1557
http://dx.doi.org/10.1103/PhysRevLett.70.1557
http://dx.doi.org/10.1103/PhysRevLett.70.1557
http://dx.doi.org/10.1103/PhysRevLett.70.1557
http://dx.doi.org/10.1063/1.464213
http://dx.doi.org/10.1063/1.464213
http://dx.doi.org/10.1063/1.464213
http://dx.doi.org/10.1063/1.464213
http://dx.doi.org/10.1103/PhysRevE.69.056103
http://dx.doi.org/10.1103/PhysRevE.69.056103
http://dx.doi.org/10.1103/PhysRevE.69.056103
http://dx.doi.org/10.1103/PhysRevE.69.056103
http://dx.doi.org/10.1063/1.3675607
http://dx.doi.org/10.1063/1.3675607
http://dx.doi.org/10.1063/1.3675607
http://dx.doi.org/10.1063/1.3675607
http://dx.doi.org/10.1088/1742-5468/2007/06/P06003
http://dx.doi.org/10.1088/1742-5468/2007/06/P06003
http://dx.doi.org/10.1088/1742-5468/2007/06/P06003
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://dx.doi.org/10.1088/0034-4885/65/11/201
http://dx.doi.org/10.1088/0034-4885/65/11/201
http://dx.doi.org/10.1088/0034-4885/65/11/201
http://dx.doi.org/10.1088/0034-4885/65/11/201
http://dx.doi.org/10.1063/1.4885723
http://dx.doi.org/10.1063/1.4885723
http://dx.doi.org/10.1063/1.4885723
http://dx.doi.org/10.1063/1.4885723



