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Abstract. We prove that for semi-invertible and Hölder continuous linear cocycles A acting

on an arbitrary Banach space and defined over a base space that satisfies the Anosov closing prop-

erty, all exceptional Lyapunov exponents of A with respect to an ergodic invariant measure for

base dynamics can be approximated with Lyapunov exponents of A with respect to ergodic mea-

sures supported on periodic orbits. Our result is applicable to a wide class of infinite-dimensional

dynamical systems.

1. Introduction

Let M be a compact metric space and f : M → M a homeomorphism such that
(M, f) satisfies the so-called Anosov closing property, which essentially means that
there are many periodic orbits for f in M . Furthermore, let A be a linear cocycle
over (M, f) that takes values in the space of all bounded linear operators acting
on an arbitrary Banach space B. Finally, let µ be any ergodic f -invariant Borel
probability measure on M . The main objective of the present paper is to show that
if A is sufficiently regular (as a map on M) and if it satisfies the so-called quasi-
compactness property with respect to µ, then all exceptional Lyapunov exponents of
A with respect to µ can be approximated by Lyapunov exponents of A with respect
to some ergodic f -invariant Borel measure which is supported on a periodic orbit for
f .

We emphasize that the assumption that A is quasi-compact with respect to µ
is made to ensure that one can apply the most recent versions of the multiplicative
ergodic theorem (MET), which in turn give the set of Lyapunov exponents of A with
respect to µ. Consequently, the problem of approximating Lyapunov exponents of A
with respect to µ becomes well-posed. Starting essentially with the pioneering work
of Ruelle [R82] who considered cocycles of operators on a Hilbert space, many authors
have been interested in the problem of establishing MET for cocycles of operators
acting on Banach spaces. In particular, Mañé [M81] established MET for cocycles
of compact and injective operators on a Banach space. His results were generalized
by Thieullen [Thi87], who was able to replace the assumption that the operators are
compact with a substantially weaker assumption that the cocycle is quasi-compact.
More recently, Froyland, Lloyd and Quas [FLQ10, FLQ13], González-Tokman and
Quas [GTQ14] and Blumenthal [AB16] were able to remove the assumption present
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in both [M81] and [Thi87] (as well as in more recent works such as [LL10]) that the
cocycle consists of injective operators. In addition, they have also been able to relax
certain regularity assumptions for the cocycle. Although the present paper addresses
the problem of the approximation of Lyapunov exponents for quasi-compact cocycles,
we emphasize that our results are new even in a particular case of compact cocycles
which are not invertible.

In his seminal paper [Kal11], Kalinin established (as a tool in proving the main
result of [Kal11], which is the Livšic theorem) the approximation result described
in the first paragraph for cocycles of invertible matrices. This was generalized to
cocycles of not necessarily invertible matrices by the first author [Bac]. Furthermore,
Kalinin and Sadovskaya [KS] (see also [KS2]) established the approximation result
for the largest and smallest Lyapunov exponent of an invertible cocycle acting on an
arbitrary Banach space (see Remark 2.7 for details). In the present paper, we go one
step further by considering not necessarily invertible cocycles and by establishing
the approximation result for all exceptional Lyapunov exponents and not only for
the largest one. The importance of our results steems from the fact that in the
context of infinite-dimensional dynamics, the invertibility assumption for cocycle is
way too restrictive. Indeed, the main motivation for papers [FLQ13, GTQ14] was
to establish the version of MET that would enable us to study cocycles of transfer
operators that are rarely invertible (or even injective). Furthermore, in the recent
paper by Blumenthal and Young [BY17] in which the authors extend many results of
the smooth ergodic theory to the case of maps acting on Banach spaces, the derivative
cocycle is not assumed to be invertible.

The approach and the arguments in the present paper are inspired by those
in [Kal11]. Indeed, when obtaining the approximation property of the largest Lya-
punov exponent we follow closely the approach developed in [Kal11] (which in turn
inspired arguments in [Bac, KS]). However, the nontrivial adaptation of arguments
from [Kal11] occurs when we try to establish the desired approximation property
of other Lyapunov exponents. In the classical finite-dimensional case this is done
(see [Kal11, Bac]) by using the so-called exterior powers of the cocycle. On the other
hand, such a construction doesn’t exist in the infinite-dimensional setting. This
forced us to adjust the method of estimating the largest Lyapunov exponent devised
in [Kal11] to fit the problem of estimating other Lyapunov exponents.

The paper is organized as follows. In Section 2 we introduce terminology, recall
basic notions and important results (such as MET) and state the main result of
our paper. In Section 3, we introduce the concept of Lyapunov norms for operator
cocycles which play an important auxiliary tool in our arguments. In Section 4
we present the proof of our main result. Finally, in Section 5 we discuss various
applications of our work in the context of the infinite-dimensional dynamics.

2. Preliminaries

Let (M, d) be a compact metric space, µ a probability measure defined on the
Borel subsets of M and f : M → M a µ-preserving homeomorphism. Furthermore,
assume also that µ is ergodic.

We say that f satisfies the Anosov closing property if there exist C1, ε0, θ > 0
such that if z ∈ M satisfies d(fn(z), z) < ε0 then there exists a periodic point p ∈ M
such that fn(p) = p and

d(f j(z), f j(p)) ≤ C1e
−θmin{j,n−j}d(fn(z), z),
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for every j = 0, 1, . . . , n. We note that shifts of finite type, basic pieces of Axiom
A diffeomorphisms and more generally, hyperbolic homeomorphisms are particular
examples of maps satisfying the Anosov closing property. We refer to [KH95, Corol-
lary 6.4.17.] for details.

2.1. Semi-invertible operator cocycles. Let (B, ‖ · ‖) be a Banach space and
let B(B,B) denote the space of all bounded linear maps from B to itself. We recall
that B(B,B) is a Banach space with respect to the norm

‖T ‖ = sup{‖ Tv ‖/‖ v ‖; ‖ v ‖ 6= 0}, T ∈ B(B,B).
Although we use the same notation for the norms on B and B(B,B) this will not
cause any confusion. Finally, consider a map A : M → B(B,B).

The semi-invertible operator cocycle (or just cocycle for short) generated by A
over f is defined as the map A : N×M → B(B,B) given by

(1) An(x) := A(n, x) =

{

A(fn−1(x)) . . . A(f(x))A(x) if n > 0,

Id if n = 0

for all x ∈ M . The term ‘semi-invertible’ refers to the fact that the action of the
underlying dynamical system f is assumed to be an invertible transformation while
the action on the fibers given by A may fail to be invertible.

2.2. Multiplicative ergodic theorem. We begin by recalling some termi-
nology. Let BB(0, 1) denote the unit ball in B centered at 0. For an arbitrary
T ∈ B(B,B), let ‖T‖ic be the infimum over all r > 0 with the property that
T (BB(0, 1)) can be covered by finitely many open balls of radius r. It is easy to
show that:

(2) ‖T‖ic ≤ ‖T‖, for every T ∈ B(B,B)
and

(3) ‖T1T2‖ic ≤ ‖T1‖ic · ‖T2‖ic, for every T1, T2 ∈ B(B,B).
Hence, (3) together with the subadditive ergodic theorem implies that there exists
κ(µ) ∈ [−∞,∞) such that

κ(µ) = lim
n→∞

1

n
log‖An(x)‖ic for µ-a.e. x ∈ M .

Observe that if A takes values in a family of compact operators on B, we have that
κ(µ) = −∞. Indeed, in this case one has that ‖An(x)‖ic = 0 for each n which readily
implies that κ(µ) = −∞.

In addition, by using again the subadditive ergodic theorem together with the
subadditivity of the operator norm, we have that there exists λ(µ) ∈ [−∞,∞) such
that

λ(µ) = lim
n→∞

1

n
log‖An(x)‖ for µ-a.e. x ∈ M .

Note that (2) implies that κ(µ) ≤ λ(µ). We say that the cocycle A is quasi-compact

with respect to µ if κ(µ) < λ(µ). The following result from [GTQ14, Lemma C.3]
gives useful sufficient conditions under which the cocycle is quasi-compact.

Proposition 2.1. Take A : M → B(B,B). Let B′ = (B′, |·|) be a Banach space
such that B ⊂ B′ and with the property that the inclusion (B, ‖·‖) →֒ (B′, |·|) is com-
pact. Furthermore, suppose that each A(x) can be extended to a bounded operator
on (B′, |·|) and that there exist Borel-measurable functions α, β, γ : M → (0,∞) such
that:
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(1) for µ-a.e. x ∈ M and every v ∈ B,

(4) ‖A(x)v‖ ≤ α(x)‖v‖+ β(x)|v|;
(2) for µ-a.e. x ∈ M ,

(5) ‖A(x)‖ ≤ γ(x);

(3)

(6)

ˆ

logα dµ < λ(µ) and

ˆ

log γ dµ < ∞.

Then, κ(µ) ≤
´

logα dµ. In particular, A is quasi-compact with respect to µ.

Remark 2.2. In the context of cocycles of transfer operators, i.e. when A(x) is
the transfer operator associated to some map Tx for each x ∈ M , the condition (4) is
called strong Lasota-Yorke inequality while (5) is called weak Lasota–Yorke inequal-
ity. We note that in this setting one has that λ(µ) = 0.

For example, when each Tx is a piecewise expanding map on the unit interval
[0, 1], one can show that under mild assumptions (4), (5) and (6) hold with (B, ‖·‖) =
(BV, ‖·‖BV ) and (B′, |·|) = (L1, ‖·‖L1). Here, BV denotes the space of all functions of
bounded variation on [0, 1] with the corresponding norm ‖·‖BV which is defined to be
the sum of the L1 norm of the function and its total variation. We refer to [DFGTV,
Section 2.3.1] for a detailed discussion.

Before stating the version of the multiplicative ergodic theorem established in
[FLQ13], we recall the notion of µ-continuity. Let Z be an arbitrary Banach space.
We say that a map Φ: M → Z is µ-continuous if there exists an increasing sequence
(Kn)n∈N of compact subsets of M satisfying µ(∪nKn) = 1 and such that Φ|Kn

: Kn →
Z is continuous for each n ∈ N.

Theorem 2.3. Assume that the cocycle A : M → B(B,B) is µ-continuous and
quasi-compact with respect to µ. Then, we have the following:

(1) there exists l = l(µ) ∈ [1,∞] and a sequence of numbers (λi(µ))
l
i=1 such that

λ(µ) = λ1(µ) > λ2(µ) > . . . > λi(µ) > . . . > κ(µ).

Furthermore, if l = ∞ we have that limi→∞ λi(µ) = κ(µ);
(2) there exists a Borel subset Rµ ⊂ M such that µ(Rµ) = 1 and for each x ∈ Rµ

and i ∈ N ∩ [1, l], there is a unique and measurable decomposition

(7) B =
i

⊕

j=1

Ej(x)⊕ Vi+1(x),

where Ej(x) are finite-dimensional subspaces of B and A(x)Ej(x) = Ej(f(x)).
Furthermore, Vi+1(x) are closed subspaces of B and A(x)Vi+1(x) ⊂ Vi+1(f(x));

(3) for each x ∈ Rµ and v ∈ Ej(x) \ {0}, we have

lim
n→∞

1

n
log‖An(x)v‖ = λj(µ).

In addition, for every v ∈ Vi+1(x),

lim sup
n→∞

1

n
log‖An(x)v‖ ≤ λi+1(µ).
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The numbers λi(µ) are called exceptional Lyapunov exponents of the cocycle A with
respect to µ and the dimensions di(µ) = dimEi(x) are called multiplicities of λi(µ).
In addition, the decomposition (7) is called the Oseledets splitting. Finally, the
points in Rµ are called µ-regular (or simply regular).

We denote by

γ1(µ) ≥ γ2(µ) ≥ γ3(µ) ≥ . . .

the Lyapunov exponents counted with multiplicities of A with respect to the measure
µ. This means that γi(µ) = λ1(µ) for i = 1, . . . , d1(µ), γi(µ) = λ2(µ) for i =
d1(µ)+1, . . . , d1(µ)+d2(µ) and so on. When there is no risk of ambiguity, we suppress
the index µ from the previous objects. Moreover, when the f -invariant measure µ
is supported on the orbit of some periodic point p we simply write λi(p) and γi(p)
for its Lyapunov exponents and Lyapunov exponents counted with multiplicities,
respectively. Furthermore, given x ∈ M and v ∈ B we denote by

λ(x, v) = lim sup
n→∞

1

n
log ‖An(x)v ‖

the Lyapunov exponent of A at x in the direction v.

Remark 2.4. Since the arguments in our paper will heavily rely on the measur-
ability of the Oseledets splitting (7), we would like to explain what exactly it means
for (7) to be measurable. Let G(B) denote the set of all closed subspaces F of B
that are complemented, i.e. such that there exists a closed subspace F̃ of B with the
property that B = F ⊕ F̃ . We recall that each finite-dimensional subspace F of B
belongs to G(B). It turns out that one can equip G(B) with the structure of a metric
space (see [BY17, Section 2.1.2]) and thus in particular it makes sense to discuss the
measurability of the map that is defined on some measurable space and that takes
values in G(B).

Now we observe that all subspaces of B that appear in (7) belong to G(B). Hence,
we can associate to (7) the following maps

(8) E1 : Rµ → G(B), . . . , Ei : Rµ → G(B) and Vi+1 : Rµ → G(B).
We now say that (7) is measurable if all maps in (8) are measurable. Moreover, those
maps are also µ-continuous as a consequence of a deep result by Fremlin [KP84,
Theorem 4.1] (see also [BY17, Remark 3.5.]).

2.3. Main result. We say that A : M → B(B,B) is an α-Hölder continuous

map if there exists a constant C2 > 0 such that

‖A(x)− A(y) ‖ ≤ C2d(x, y)
α,

for all x, y ∈ M . Clearly, if A : M → B(B,B) is an α-Hölder continuous map, then
A is also µ-continuous and consequently Theorem 2.3 is applicable. We are now in
the position to state the main result of our paper.

Theorem 2.5. Let f : M → M be a homeomorphism satisfying the Anosov
closing property, µ an ergodic f -invariant probability measure and A : M → B(B,B)
an α-Hölder continuous map that is quasi-compact with respect to µ. Then, given
s ∈ N ∩ [1, l(µ)] there exists a sequence of periodic points (pk)k∈N such that

γi(pk)
k→+∞−−−−→ γi(µ) for every i ∈ {1, . . . , d1(µ) + . . .+ ds(µ)},

where di(µ) = dimEi(x).
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Remark 2.6. We stress that without the assumption that the cocycle is quasi-
compact, it is not always possible to get an approximation result in the spirit of
Theorem 2.5 even if the cocycle takes values in the space of bounded and invertible
linear operators on a Banach space. Indeed, Kalinin and Sadovskaya [KS, Proposi-
tion 1.5] presented an example of a locally constant operator cocycle A over a full shift
on two symbols and an ergodic invariant measure µ such that λ1(µ) > supµp

λ1(µp),
where the supremum is taken over all invariant measures µp supported on periodic
orbits. Related examples were also constructed by Hurtado [Hur].

Let us discuss in detail the relationship between Theorem 2.5 and various related
results in the literature.

Remark 2.7. Observe that whenever B is finite-dimensional and the cocycle
is invertible, we have that κ(µ) = −∞ and that the set of exceptional Lyapunov
exponents given by Theorem 2.3 coincides with the set of Lyapunov exponents given
by the classical Oseledets multiplicative ergodic theorem. Therefore, in this setting,
Theorem 2.5 reduces to [Kal11, Theorem 1.4.].

Recently, the first author [Bac] has generalized [Kal11, Theorem 1.4.] to the
case of semi-invertible cocycles of matrices, i.e. B is again assumed to be finite-
dimensional but A(x) doesn’t have to be an invertible matrix. In this setting, the
family of exceptional Lyapunov exponents can differ from the family of Lyapunov
exponents given by the version of the Oseledets multiplicative ergodic theorem es-
tablished in [FLQ10]. More precisely, let Λ1 denote the set of exceptional Lyapunov
exponents in the sense of Theorem 2.3 and let Λ2 denote the set of Lyapunov expo-
nents in the sense of [FLQ10]. Then,

Λ1 =

{

Λ2 if −∞ /∈ Λ2;

Λ2 \ {−∞} if −∞ ∈ Λ2.

Since the main result of [Bac] establishes the desired approximation property of
elements in Λ2 including −∞ (if present), we conclude that Theorem 2.5 provides
only a partial generalization of the main result in [Bac].

In addition, Kalinin and Sadovskaya [KS] established the approximation property
similar to that in Theorem 2.5 for the largest Lyapunov exponent of an arbitrary
invertible Hölder continuous cocycle A : M → B(B,B). More precisely, they proved
that for each ǫ > 0 there exists a periodic point p ∈ M satisfying fk(p) = p and such
that

∣

∣

∣

∣

λ1(µ)−
1

k
log‖Ak(q)‖

∣

∣

∣

∣

< ǫ.

However, the above result is weaker than the approximation property for λ1(µ) =
γ1(µ) established in Theorem 2.5 (see the discussion in [KS] after Remark 1.5.).
Moreover, our Theorem 2.5 deals with all exceptional Lyapunov exponents (and
not only with the largest one) of a semi-invertible quasi-compact cocycle acting on a
Banach space and thus represents a natural extension of the results from [Kal11, Bac]
described above.

Finally, in their recent paper [KS2], Kalinin and Sadovskaya established results
similar to those in [Kal11] and [KS] for cocycles over non-uniformly hyperbolic dy-
namical systems. Although these systems will in general fail to satisfy the Anosov
closing property, they will exhibit a similar type of behaviour (provided by the so-
called Katok’s closing lemma). It turns out that this weaker form of closing property
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is still sufficient to adapt the arguments from [Kal11, KS] and obtain the desired
approximation property of Lyapunov exponents in this setting.

2.4. Examples. We now discuss some concrete examples of non-compact cocy-
cles that satisfy all of our assumptions.

Example 2.8. Assume that T1, . . . , Tk : [0, 1] → [0, 1] are piecewise expanding
maps such that

δi := ess inf
x∈[0,1]

|T ′i (x)| > 2 for i ∈ {1, . . . , k}.

Let us denote by Li the transfer operator associated to Ti. We note that Li acts on
the BV space. Furthemore, let M = {1, . . . , k}Z with the standard topology and
consider a two-sided shift f : M → M . Note that (M, f) satisfies Anosov closing
property. Furthermore, we define a cocycle A on M of operators acting on BV by

A(x) = Lx0 for x = (xn)n∈Z ∈ M .

It is straightforward to verify that A is Hölder continuous. On the other hand, one
can also show (see [DFGTV, Section 2.3.1]) that (4) holds with a constant α ∈ (0, 1)
and that in fact A is quasi-compact with respect to any f -invariant ergodic Borel
probability measure.

The following example is somewhat of different nature.

Example 2.9. In their recent remarkable paper [BY17], Blumenthal and Young
extend various results from smooth ergodic theory to the case of maps acting on
Banach spaces. More precisely, let B be an arbitrary Banach space and consider
a C2 Frechet differentiable map f : B → B with the property that there exists an
compact, f -invariant set A ⊂ B. In addition, the results in [BY17] assume the
existence of an ergodic, f -invariant measure µ such that supp µ = A.

Under the additional assumption that (A, f |A) satisfies Anosov closing property,
the results of the present paper can be used to study the derivative cocycle associated
to f which is given by A(x) = Df(x).

3. Lyapunov norm

In order to estimate the growth of the cocycle A along an orbit we introduce
the notion of Lyapunov norm for quasi-compact operator cocycles and describe some
of its properties. This is based on a similar notion introduced in [Bac] in the finite
dimensional setting which in turn was based on a similar notion for invertible cocycles

that goes back to the work of Pesin (see for instance [BP07]).

3.1. Lyapunov norm. Let us use the same notation as in the statement of
Theorem 2.3. Given x ∈ Rµ, s ∈ N∩ [1, l(µ)], i ∈ {1, . . . , s} and n ∈ N, we consider
the map

An(f−n(x))|Ei(f−n(x)) : Ei(f
−n(x)) → Ei(x)

which is invertible and let us denote its inverse by (An(f−n(x)))
−1
i . Now, for every

n ∈ Z we can define the linear map An
i (x) : Ei(x) → Ei(f

n(x)) by

An
i (x)u =

{

An(x)|Ei(x)u if n ≥ 0,

(A−n(fn(x)))
−1
i u if n < 0.

It is easy to verify (see [Bac, p. 4]) that

(9) Am+n
i (x) = An

i (f
m(x))Am

i (x), for every m,n ∈ Z.
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We are now ready to define the Lyapunov norm of level s associated to the operator
cocycle A at a regular point x ∈ Rµ: we may write each u ∈ B uniquely as

u = u1 + . . .+ us + us+1,

where ui ∈ Ei(x) for i ∈ {1, . . . , s} and us+1 ∈ Vs+1(x). Thus, given δ > 0 we define
its δ-Lyapunov norm of level s by

‖ u ‖x,δ =
s+1
∑

i=1

‖ui ‖x,δ,i,

where

(10) ‖ ui ‖x,δ,i =
∑

n∈Z

‖An
i (x)ui ‖e−λin−δ|n|, i ∈ {1, . . . , s}

and

(11) ‖ us+1 ‖x,δ,s+1 =
+∞
∑

n=0

‖An(x)ũ ‖e−λ̃n.

Here λ̃ is any fixed number smaller than λs(µ) with the property that [λ̃, λs(µ)) ∩
Λ(µ) = ∅, where Λ(µ) denotes the set of all exceptional Lyapunov exponents of A

with respect to µ. Observe that such number λ̃ does exist since by Theorem 2.3
elements of Λ(µ) can only accumulate at κ(µ). Moreover, both series (10) and (11)
converge. Indeed, this follows readily from the following lemma.

Lemma 3.1. For every u ∈ Ei(x) \ {0},

lim
n→±∞

1

n
log ‖An

i (x)u ‖ = λi.

Moreover, there exists ǫ > 0 such that for every ũ ∈ Vs+1(x),

lim sup
n→+∞

1

n
log ‖An(x)ũ ‖ < λ̃− ǫ.

Proof. The first assertion is a consequence of [FLQ13, Lemma 20], while the

second claim follows easily from the choice of λ̃ and the properties of the Oseledets
splitting given by Theorem 2.3. �

One can easily verify that ‖ · ‖x,δ is indeed a norm on B. When there is no risk of

ambiguity, we will write ‖ · ‖x and ‖ · ‖x,i instead of ‖ · ‖x,δ and ‖ · ‖x,δ,i respectively,
and call it simply Lyapunov norm.

Given a bounded linear operator T ∈ B(B,B), its Lyapunov norm with respect
to x, y ∈ Rµ is defined by

‖T ‖y←x = sup{‖Tu ‖y/‖ u ‖x; u ∈ B \ {0}}.

3.2. Auxiliary result. In the next section we are going to describe some
properties of the Lyapunov norm. In order to do so, we need the following auxiliary
result which is a version of Theorem 2 from [DrF] for cocycles acting on Banach
spaces.

Proposition 3.2. Given x ∈ Rµ, let us consider the splitting

B = E1(x)⊕ . . .⊕ Es(x)⊕ Vs+1(x).

There exists a full µ-measure set Ω ⊂ Rµ so that for each ε > 0 small enough there
are function C,K : M → (0,+∞) satisfying for every x ∈ Ω, the following properties:
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i) for each 1 ≤ i ≤ s, u ∈ Ei(x) and n ∈ Z,

1

C(x)
eλin−ε|n|‖u ‖ ≤ ‖An

i (x)u ‖ ≤ C(x)eλin+ε|n|‖u ‖;

ii) for each ũ ∈ Vs+1(x) and n ∈ N,

‖An(x)u ‖ ≤ C(x)e(λ̃−ε)n‖u ‖;
iii) C(fn(x)) ≤ C(x)eε|n| for every n ∈ Z.
iv) K(fn(x)) ≤ K(x)eε|n| for every n ∈ Z and

‖u‖ ≤ K(x)‖u+ v‖ and ‖v‖ ≤ K(x)‖u+ v‖,
for u ∈ E1(x)⊕ . . .⊕Es(x) and v ∈ Vs+1(x).

We will use the following well-known result (see [BY17]).

Theorem 3.3. (John’s Theorem) Let E ⊂ B be a subspace of dimension k ∈ N.
Then, there exists a scalar product 〈·, ·〉E on E that induces norm ‖·‖E such that

(12) ‖v‖E ≤ ‖v‖ ≤
√
k‖v‖E, for each v ∈ E.

Proof of Proposition 3.2. We follow closely the arguments in [BY17, DrF]. Take
any i ∈ {1, . . . , s}.

Lemma 3.4. We have

(13) lim sup
n→∞

1

n
log‖An

i (x)‖ ≤ λi for µ-a.e. x ∈ X.

Proof of the lemma. Let 〈·, ·〉Ei(x) be a scalar product on Ei(x) given by Theo-
rem 3.3 and let ‖·‖Ei(x) denote the associated norm. Let {e1, . . . , et} be an orthonor-
mal basis for Ei(x), t = dimEi(x). For each n ∈ N, choose vn ∈ Ei(x) such that
‖vn‖ = 1 and ‖An

i (x)‖ = ‖An(x)vn‖. Furthermore, for n ∈ N, write vn in the form

vn =

t
∑

j=1

aj,nej , for some aj,n ∈ R.

We note that it follows from (12) that

|aj,n| = |〈vn, ej〉Ei(x)| ≤ ‖vn‖Ei(x) · ‖ej‖Ei(x) ≤ 1

and thus

(14) ‖An
i (x)‖ ≤

t
∑

j=1

|aj,n| · ‖An(x)ej‖ ≤
t

∑

j=1

‖An(x)ej‖.

Since ej ∈ Ei(x),

(15) lim
n→∞

1

n
log‖An(x)ej‖ = λi, for j ∈ {1, . . . , t}.

It remains to observe that (14) and (15) readily imply (13). �

It follows from (13) that for ǫ > 0,

(16) D(x) := sup
n≥0

{‖An
i (x)‖ · e−(λi+ǫ)n} < ∞,

for µ a.e. x ∈ X.
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Lemma 3.5. We have

(17) lim
n→±∞

1

n
logD(fn(x)) = 0 for µ-a.e. x ∈ X.

Proof of the lemma. For n ≥ 1, we have

‖An
i (x)‖ ≤ ‖An−1

i (f(x))‖ · ‖Ai(x)‖ ≤ ‖An−1
i (f(x))‖ · ‖A(x)‖.

By multiplying the above inequality by e−(λi+ǫ)n, we obtain

e−(λi+ǫ)n‖An
i (x)‖ ≤ e−(λi+ǫ)(n−1)‖An−1

i (f(x))‖ · e−(λi+ǫ)‖A(x)‖.
Hence,

D(x) ≤ D(f(x)) ·max{e−(λi+ǫ)‖A(x)‖, 1}.
It follows from the continuity of A and compactness of M that there exists T > 0
such that

(18) logD(x)− logD(f(x)) ≤ T.

Set
D̃(x) = logD(x)− logD(f(x)).

We note that

(19)
1

n
logD(fn(x)) =

1

n
logD(x)− 1

n

n−1
∑

j=0

D̃(f j(x)),

for each x ∈ X and n ∈ N. Hence, we can apply the Birkhoff ergodic theorem and
conclude that there exists a ∈ [−∞,∞) such that

(20) lim
n→∞

1

n

n−1
∑

j=0

D̃(f j(x)) = a,

for µ-a.e. x ∈ X. It follows from (19) and (20) that

lim
n→∞

1

n
logD(fn(x)) = −a.

On the other hand, since µ is f -invariant, for any c > 0 we have that

lim
n→∞

µ({x ∈ X : logD(fn(x))/n ≥ c}) = lim
n→∞

µ({x ∈ X : logD(x) ≥ nc}) = 0,

which immediately implies that a ≥ 0. Thus,

lim
n→∞

1

n
logD(fn(x)) ≤ 0.

It follows from (16) that D(x) ≥ 1 for µ a.e. x ∈ X and therefore we can conclude
that (17) holds when n → ∞. One can similarly establish (17) for the case n →
−∞. �

It follows from (17) and [Arn98, Proposition 4.3.3(ii)] that there exists a nonneg-
ative and measurable function C defined on a set of full-measure satisfying inequality
in part iii) in the statement of the Lemma and such that D(x) ≤ C(x), which to-
gether with (16) implies that the second inequality in the part i) of the Lemma holds.
The proof of ii) is analogous.

Lemma 3.6. We have
ˆ

X

log+‖Ai(x)
−1‖ dµ(x) < ∞.
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Proof of the lemma. One can repeat arguments from [DrF, Lemma 4] using
‖·‖Ei(x) from Lemma 3.4 instead of the original norm to establish that

ˆ

X

log+‖Ai(x)
−1‖′ dµ(x) < ∞,

where
‖Ai(x)

−1‖′ = sup
‖v‖Ei(x)

≤1

‖Ai(x)
−1v‖Ei(x).

In view of (12), the conclusion of the lemma follows. �

We now prove that the first inequality in i) holds. Let us consider the cocycle
x 7→ B(x) := Ai(f

−1(x))−1 over f−1 that acts on a subbundle Ei(x). Then, −λi is
the only Lyapunov exponent of B. Because of Lemma 3.6, we can apply the first
part of the proof to B to conclude that that there exists a function C : M → (0,∞)
such that

(21) ‖Bn(x)v‖ ≤ C(x)e(−λi+
ǫ
2
)n, for µ-a.e. x ∈ M , n ≥ 0 and v ∈ Ei(x)

and

(22) C(fm(x)) ≤ C(x)e
ǫ
2
|m|, for µ-a.e. x ∈ M and m ∈ Z,

which readily implies first estimate in i). Finally, the existence of a function K that
satisfies assertion iv) follows from [DrF, Lemma 1.]. The proof of Proposition 3.2 is
completed. �

3.3. Properties of the Lyapunov norm. Some useful properties of the
Lyapunov norm are given in the next proposition.

Proposition 3.7. Let x ∈ Rµ.

i) For every 1 ≤ i ≤ s, u ∈ Ei(x) and n ∈ N, we have that

(23) e(λi−δ)n‖ u ‖x,i ≤ ‖An(x)u ‖fn(x),i ≤ e(λi+δ)n‖u ‖x,i;
ii) For every u ∈ Vs+1(x) and n ∈ N, we have that

‖An(x)u ‖fn(x),s+1 ≤ eλ̃n‖u ‖x,s+1;

iii) For every δ > 0 and n ∈ N, we have that

(24) ‖An(x) ‖fn(x)←x ≤ e(λ1+δ)n;

iv) For every δ > 0 sufficiently small, there exists a measurable function Kδ :
Rµ → (0,+∞) such that

(25) ‖u ‖ ≤ ‖ u ‖x ≤ Kδ(x)‖ u ‖ for x ∈ Rµ and u ∈ B.

Furthermore,

(26) Kδ(x)e
−δn ≤ Kδ(f

n(x)) ≤ Kδ(x)e
δn for x ∈ Rµ and n ∈ N.

Consequently, for any B ∈ B(B,B) and any two regular points x and y, we have that

(27) Kδ(x)
−1‖B ‖ ≤ ‖B ‖y←x ≤ Kδ(y)‖B ‖.

Proof. In order to prove i) we observe that for any u ∈ Ei(x),

‖A(x)u ‖f(x),i =
∑

n∈Z

‖An
i (f(x))A(x)u ‖e−λin−δ|n| =

∑

n∈Z

∥

∥An+1
i (x)u

∥

∥e−λin−δ|n|

=
∑

n∈Z

∥

∥An+1
i (x)u

∥

∥e−λi(n+1)−δ|n+1|eλi+δ(|n+1|−|n|).
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Consequently,

e(λi−δ)‖u ‖x,i ≤ ‖A(x)u ‖f(x),i ≤ e(λi+δ)‖ u ‖x,i,
which readily implies i). The proof of item ii) is analogous. Indeed, we have that

‖An(x)u ‖fn(x),s+1 =

+∞
∑

k=0

∥

∥Ak(fn(x))An(x)u
∥

∥e−λ̃k

=
+∞
∑

k=0

∥

∥Ak+n(x)u
∥

∥e−λ̃(k+n)eλ̃n ≤ eλ̃n‖u ‖x,s+1,

for each u ∈ Vs+1(x).
In order to obtain iii), take an arbitrary u ∈ B and write it in the form

(28) u = u1 + . . .+ us + us+1,

where ui ∈ Ei(x) for i ∈ {1, . . . , s} and us+1 ∈ Vs+1(x). Then, it follows from i) and
ii) that

‖An(x)u ‖fn(x) =
s+1
∑

i=1

‖An(x)ui ‖fn(x),i ≤
s

∑

i=1

e(λi+δ)n‖ui ‖x,i + eλ̃n‖us+1 ‖x,s+1

≤ e(λ1+δ)n
s+1
∑

i=1

‖ ui ‖x,i = e(λ1+δ)n‖u ‖x,

which implies the desired conclusion.
The first inequality of iv) is trivial. In order to prove the second one, take

ε ∈ (0, δ
2
) small enough and let C : Rµ → (0,∞) be the map given by Proposition 3.2

(diminishing Rµ, if necessary, we may assume Ω = Rµ). Thus, for every 1 ≤ i ≤ s,
u ∈ Ei(x) and n ∈ Z, we have

1

C(x)
eλin−ε|n|‖u ‖ ≤ ‖An

i (x)u ‖ ≤ C(x)eλin+ε|n|‖u ‖.

Therefore,

‖u ‖x,i =
∑

n∈Z

‖An
i (x)u ‖e−λin−δ|n| ≤

∑

n∈Z

(

C(x)eλin+ε|n|‖u ‖
)

e−λin−δ|n|

= C(x)
∑

n∈Z

e(ε−δ)|n|‖ u ‖.
(29)

On the other hand, for u ∈ Vs+1(x), Proposition 3.2 implies that

‖An(x)u ‖ ≤ C(x)e(λ̃−ε)n‖u ‖,
for each n ∈ N. Thus,

(30) ‖ u ‖x,s+1 =
∑

n≥0

‖An(x)u ‖e−λ̃n ≤ C(x)
∑

n≥0

e−εn‖u ‖.

Set

K = max

{

∑

n∈Z

e(ε−δ)|n|,
∑

n≥0

e−εn

}

.
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Take now an arbitrary u ∈ B and write it in the form (28), where ui ∈ Ei(x) for
i ∈ {1, . . . , s} and us+1 ∈ Vs+1(x). Then, it follows from (29) and (30) that

‖ u ‖x =

s+1
∑

i=1

‖ ui ‖x,i ≤ KC(x)

s+1
∑

i=1

‖ui ‖.

It remains to obtain an upper bound for ‖ui‖ in terms of ‖u‖. This can be achieved
by using the map K given by Proposition 3.2. More precisely, let K1 be the map
given by Proposition 3.2 applied for s = 1 and sufficiently small ǫ > 0. We then have
that

(31) ‖u1‖ ≤ K1(x)‖u‖ and ‖u2 + . . .+ us+1‖ ≤ K1(x)‖u‖

The first inequality in (31) gives a desired bound for ‖u1‖. In order to obtain the
bound for ‖u2‖, we can apply again Proposition 3.2 but now for s = 2 (and again for
ǫ > 0 sufficiently small) to conclude that there exists K2 such that

(32) ‖u2‖ ≤ K2(x)‖u2+. . .+us+1‖ and ‖u3+. . .+us+1‖ ≤ K2(x)‖u2+. . .+us+1‖.

By combining the second inequality in (31) with the first inequality in (32), we
conclude that ‖u2‖ ≤ K1(x)K2(x)‖u‖. By proceeding, one can establish desired
bounds for all ‖uj‖, j = 1, . . . , s+ 1 and construct function Kδ. �

For any N > 0, let Rµ
δ,N be the set of regular points x ∈ Rµ for which Kδ(x) ≤

N . Observe that µ(Rµ
δ,N) → 1 as N → +∞. Moreover, invoking Lusin’s theorem

together with the µ-continuity of decomposition (7) for i = s (see Remark 2.4), we
may assume without loss of generality that this set is compact and that the Lyapunov
norm and the Oseledets splitting are continuous when restricted to it.

4. Proof of Theorem 2.5

Let f : M → M , A : M → B(B,B), µ and s ∈ N ∩ [1, l(µ)] be given as in
the statement of Theorem 2.5. We may assume without loss of generality that µ is
not supported on a periodic orbit since otherwise there is nothing to prove. Recall
that di(µ) = dim(Ei(x)) and consider d = 10

∏s
i=1(di(µ) + 4). Take δ0 > 0 so that

δ0 <
1
d
mini=1,...,s{θα, (λi−λi+1)} if l(µ) ≥ 2 and δ0 <

1
4
θα otherwise. Fix N > 0 and

δ ∈ (0, δ0).
Let

B(µ) =

{

x ∈ M ;
1

n

n−1
∑

i=0

δf i(x)
n→∞−−−→ µ in the weak∗ topology

}

be the basin of µ. Since µ is ergodic, B(µ) has full measure. Choose x ∈ B(µ)∩Rµ
δ,N

such that µ(B(x, 1
k
) ∩ Rµ

δ,N ) > 0 for every k ∈ N, where B(x, 1
k
) denotes the open

ball of radius 1
k

centered at x. By Poincaré’s Recurrence Theorem, there exists a

sequence (nk)k∈N of positive integers so that nk → +∞ and fnk(x) ∈ B(x, 1
k
)∩Rµ

δ,N

for each k ∈ N. By the Anosov closing property it follows that, for each k sufficiently
large, there exists a periodic point pk of period nk such that

(33) d(f j(x), f j(pk)) ≤ C1e
−θmin{j,nk−j}d(fnk(x), x) ≤ C1

k
e−θmin{j,nk−j},
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for every j ∈ {0, 1, . . . , nk}. For each k ∈ N, let us consider the ergodic periodic

measure given by

µpk =
1

nk

nk−1
∑

j=0

δfj(pk).

From the choice of x ∈ B(µ) and (33) it follows that the sequence {µpk}k∈N converges
to µ in the weak∗-topology.

In order to simplify the proof, we will split it into several lemmas.

Lemma 4.1. The map

µ → γ1(µ) + γ2(µ) + . . .+ γi(µ)

is upper-semicontinuous for every i ∈ {1, . . . , s}.
Proof. Let us fix i ∈ {1, . . . , s}. It follows from [DFGTV, Lemma A.3] that there

exists a subadditive sequence (Fn)n≥1 of functions Fn : M → R such that

γ1(µ) + γ2(µ) + . . .+ γi(µ) = inf
n∈N

1

n

ˆ

M

Fn(q) dµ(q).

The desired conclusion can now be obtained by using standard arguments as in [Via14,
Lemma 9.1]. �

The following is a simple consequence of Lemma 4.1.

Corollary 4.2. We have that

lim sup
k→+∞

(γ1(pk) + γ2(pk) + . . .+ γi(pk)) ≤ γ1(µ) + γ2(µ) + . . .+ γi(µ),

for every i ∈ {1, . . . , d1(µ) + . . .+ ds(µ)}.
4.1. Approximation of the largest Lyapunov exponent. For each 1 ≤ j ≤

nk, let us consider the splitting

B = E1(f
j(x))⊕ V2(f

j(x))

and write u ∈ B as u = uj
E + uj

V , where uj
E ∈ E1(f

j(x)) and uj
V ∈ V2(f

j(x)). Then
the cone of radius 1− γ > 0 around E1(f

j(x)) is defined as

Cj,1
γ =

{

uj
E + uj

V ∈ E1(f
j(x))⊕ V2(f

j(x));
∥

∥ uj
V

∥

∥

fj(x)
≤ (1− γ)

∥

∥ uj
E

∥

∥

fj(x)

}

.

To simplify notation we write ‖ · ‖j for the Lyapunov norm at the point f j(x).

Lemma 4.3. For every 1 ≤ j ≤ nk and u ∈ Cj,1
0 ,

(34)
∥

∥ (A(f j(pk))u)
j+1
E

∥

∥

j+1
≥ eλ1−2δ

∥

∥ uj
E

∥

∥

j
.

Moreover, for k sufficiently large there exists γ ∈ (0, 1) such that

(35) A(f j(pk))(C
j,1
0 ) ⊂ Cj+1,1

γ .

Proof. Given u ∈ Cj,1
0 let us consider v = A(f j(x))u. Then, it follows from (23)

that ‖ v ‖j+1 ≤ eλ1+δ‖u ‖j and moreover that
∥

∥ vj+1
E

∥

∥

j+1
=

∥

∥A(f j(x))uj
E

∥

∥

j+1
≥ eλ1−δ

∥

∥ uj
E

∥

∥

j

and

(36)
∥

∥ vj+1
V

∥

∥

j+1
=

∥

∥A(f j(x))uj
V

∥

∥

j+1
≤ eλ2+δ

∥

∥uj
V

∥

∥

j
.
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Let w = A(f j(pk))u. We now wish to compare the Lyapunov norms of w and its
projection onto E1(f

j+1(x)) and V2(f
j+1(x)) with the respective norms of v. Set

Bj = A(f j(pk))− A(f j(x)). Consequently, w = v +Bju and thus

wj+1
E = vj+1

E + (Bju)
j+1
E and wj+1

V = vj+1
V + (Bju)

j+1
V .

Moreover, we have

‖Bj ‖ =
∥

∥A(f j(pk))−A(f j(x))
∥

∥ ≤ C2d(f
j(pk), f

j(x))α ≤ Cα
1C2

1

kα
e−θαmin{j,nk−j},

for every 0 ≤ j ≤ nk. Therefore, invoking (25) and (27) it follows that

‖Bju ‖j+1 ≤ ‖Bj ‖fj+1(x)←fj+1(x)‖ u ‖j+1 ≤ Kδ(f
j+1(x))2‖Bj ‖‖ u ‖.

Since x and fnk(x) belong to Rµ
δ,N , it follows from (26) that

Kδ(f
j+1(x)) ≤ Neδmin{j+1,nk−j−1}.

The above inequality together with ‖u ‖j ≤ 2
∥

∥uj
E

∥

∥

j
(recall that u ∈ Cj,1

0 ) implies

that

‖Bju ‖j+1 ≤ N2e2δmin{j+1,nk−j−1}Cα
1C2

1

kα
e−θαmin{j,nk−j}‖u ‖j

≤ Cα
1 C2N

2 1

kα
e2δmin{j+1,nk−j−1}e−θαmin{j,nk−j}2

∥

∥uj
E

∥

∥

j

≤ C
1

kα
e(2δ−θα) min{j,nk−j}

∥

∥ uj
E

∥

∥

j
,

where C := 2Cα
1C2N

2 > 0. Thus, since 2δ − θα < 0, we obtain that

‖Bju ‖j+1 ≤ C̃
1

kα

∥

∥ uj
E

∥

∥

j
,

for some C̃ > 0 independent of nk and j. Consequently,
∥

∥wj+1
E

∥

∥

j+1
≥

∥

∥ vj+1
E

∥

∥

j+1
−

∥

∥ (Bju)
j+1
E

∥

∥

j+1

≥ eλ1−δ
∥

∥ uj
E

∥

∥

j
− C̃

1

kα

∥

∥ uj
E

∥

∥

j
≥ eλ1−2δ

∥

∥ uj
E

∥

∥

j
,

whenever k is sufficiently large which is precisely the inequality (34).
In order to obtain (35), we observe initially that

(37)
∥

∥wj+1
E

∥

∥

j+1
≤ eλ1+δ

∥

∥ uj
E

∥

∥

j
+ C̃

1

kα

∥

∥uj
E

∥

∥

j
≤ Ĉ

∥

∥ uj
E

∥

∥

j
.

On the other hand,
∥

∥wj+1
E

∥

∥

j+1
≥

∥

∥ vj+1
E

∥

∥

j+1
− ‖Bju ‖j+1

and
∥

∥wj+1
V

∥

∥

j+1
≤

∥

∥ vj+1
V

∥

∥

j+1
+ ‖Bju ‖j+1.

Therefore, combining these inequalities and using again that u ∈ Cj,1
0 , we have that

∥

∥wj+1
E

∥

∥

j+1
−

∥

∥wj+1
V

∥

∥

j+1
≥

∥

∥ vj+1
E

∥

∥

j+1
−

∥

∥ vj+1
V

∥

∥

j+1
− 2‖Bju ‖j+1

≥ eλ1−δ
∥

∥ uj
E

∥

∥

j
− eλ2+δ

∥

∥ uj
V

∥

∥

j
− 2C̃

1

kα

∥

∥ uj
E

∥

∥

j

≥
(

eλ1−δ − eλ2+δ − 2C̃
1

kα

)

∥

∥ uj
E

∥

∥

j
.
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Taking k large enough so that

eλ1−δ − eλ2+δ − 2C̃
1

kα
> 0

and applying (37) to the previous inequality, we conclude that there exists γ > 0
such that

∥

∥wj+1
E

∥

∥

j+1
−
∥

∥wj+1
V

∥

∥

j+1
≥ γ

∥

∥wj+1
E

∥

∥

j+1
.

Hence, w = A(f j(p))u ∈ Cj+1
γ which yields (35). The proof of the lemma is com-

pleted. �

As a simple consequence of Lemma 4.3, we obtain the following result.

Corollary 4.4. For every k ∈ N large enough,

λ(pk, u) ≥ λ1 − 3δ

for every u ∈ C0,1
0 \ {0}.

Proof. Recall we are assuming that the Oseledets splitting and the Lyapunov
norm are continuous on Rµ

δ,N . In particular, if k is sufficiently large (and consequently

x and fnk(x) are close) we have that Cnk,1
γ ⊂ C0,1

0 and thus by (35),

Ank(pk)(C
0,1
0 ) ⊂ C0,1

0 .

Consequently, for any u ∈ C0,1
0 and m ∈ N we have Ankm(pk)u ∈ C0,1

0 . Therefore,
given u ∈ C0,1

0 and invoking (34) and (35) (together with the fact that the Lyapunov
norms at x and fnk(x) are close whenever k ≫ 0), we obtain that

‖Ank(pk)u ‖nk
≥ ‖ (Ank(pk)u)

nk

E ‖nk
≥ enk(λ1−2δ)

∥

∥ u0
E

∥

∥

0

≥ 1

2
enk(λ1−2δ)‖u ‖0 ≥

1

4
enk(λ1−2δ)‖u ‖nk

.

By iterating, we have that

‖Ankm(p)u ‖nk
≥ 1

4m
enkm(λ1−2δ)‖u ‖nk

for m ∈ N.

Consequently,

λ(pk, u) ≥ lim
m→∞

1

nkm
log

(

‖Ankm(p)u ‖nk

)

≥ lim
m→∞

1

nkm
log

(

1

4m
enkm(λ1−2δ)‖u ‖nk

)

= λ1 − 2δ − log 4

nk
+

1

nk
lim

m→∞

1

m
log

(

‖ u ‖nk

)

≥ λ1 − 3δ,

for k sufficiently large which proves our claim. �

Let ik1 = max{i; Vi(pk)∩C0,1
0 6= {0}}. Since Vi+1(pk) ⊂ Vi(pk) for each i ∈ N, we

note that Vi(pk) ∩ C0,1
0 6= {0} for every i ∈ {1, . . . , ik1}.

Corollary 4.5. We have that

λik1
(pk) ≥ λ1 − 3δ.

Proof. Take 0 6= u ∈ Vik1
(pk) ∩C0,1

0 . It follows from Corollary 4.4 that λ(pk, u) ≥
λ1 − 3δ. In particular, λik1

(pk) ≥ λ1 − 3δ as claimed. �
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Corollary 4.6. We have that

dim(E1(pk)⊕ . . .⊕Eik1
(pk)) = dim(E1(x)),

for every k ≫ 0.

Proof. Let d̂ik1 = dim(E1(pk) ⊕ . . . ⊕ Eik1
(pk)). By Corollary 4.5, we have that

γi(pk) ≥ γi(µ)− 3δ for every i ∈ {1, . . . , d̂ik1}. Therefore, it follows from Lemma 4.1

and the choice of δ that d̂ik1 ≤ d1(µ). Indeed, suppose d̂ik1 > d1(µ). In particular,

γd1(µ)+1(pk) ≥ λ1 − 3δ. Thus, on the one hand we have that

d1(µ)+1
∑

i=1

γi(pk) ≥ (d1(µ) + 1)(λ1 − 3δ).

On the other hand, by Lemma 4.1 we have that

d1(µ)+1
∑

i=1

γi(pk) ≤
d1(µ)+1
∑

i=1

γi(µ) + δ = d1(µ)λ1 + λ2 + δ,

for every k ≫ 0. Combining these two inequalities we obtain that

(3d1(µ) + 4)δ > λ1 − λ2,

which yields a contradiction with our choice of δ. Hence, we conclude that d̂ik1 ≤
d1(µ).

In order to obtain the reverse inequality, let us suppose that d̂ik1 < d1(µ). Let

{u1, . . . ud1(µ)} be a linearly independent subset of E1(x) and write ui in the form

ui = ui
pk

+ vipk where ui
pk

∈ E1(pk)⊕ . . .⊕Eik1
(pk) and vipk ∈ Vik1+1(pk),

for i = {1, . . . , d1(µ)}. Since d̂ik1 < d1(µ), it follows that {ui
pk
}d1(µ)i=1 is a linearly

dependent subset of E1(pk) ⊕ . . . ⊕ Eik1
(pk). Thus, we may assume without loss of

generality that
u1
pk

= a2u
2
pk
+ . . .+ ad1(µ)u

d1(µ)
pk

,

for some ai ∈ R, i ∈ {2, . . . d1(µ)}. Consequently, on the one hand we have that

0 6= u1 − a2u2 − . . .− ad1(µ)ud1(µ) ∈ E1(x) ⊂ C0,1
0 .

On the other hand,

0 6= u1 − a2u2 − . . .− ad1(µ)ud1(µ) = v1pk − a2v
2
pk

− . . .− ad1(µ)v
d1(µ)
pk

∈ Vik1+1(pk),

contradicting the choice of ik1. Thus, d̂ik1 = d1(µ) as claimed. �

Now, as a simple consequence of the previous two corollaries we obtain the fol-
lowing result.

Corollary 4.7.

γi(pk) ≥ γi(µ)− 3δ

for every i = 1, . . . , d1(µ) and k ≫ 0.

4.2. Approximation of the second largest Lyapunov exponent. We
proceed in a similar manner to that in Subsection 4.1. For each 1 ≤ j ≤ nk, let us
consider the splitting B = E1(f

j(x)) ⊕ E2(f
j(x)) ⊕ V3(f

j(x)). We can write each
u ∈ B as

(38) u = uj
E1

+ uj
E2

+ uj
V , where uj

Ei
∈ Ei(f

j(x)) for i = 1, 2 and uj
V ∈ V3(f

j(x)).
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For γ ∈ (0, 1), let us consider the cone Cj,2
γ defined (in terms of the decomposition

in (38)) by

Cj,2
γ =

{

u ∈ B :
∥

∥ uj
V

∥

∥

fj(x)
≤ (1− γ)

∥

∥ uj
E2

∥

∥

fj(x)

}

.

As before, in order to simplify the notation, we will write ‖ · ‖j for the Lyapunov

norm at the point f j(x).

Lemma 4.8. Let u ∈ Cj,2
0 \ {0} for some j ∈ {0, . . . , nk − 1}. Then, either

u ∈ Cj,1
0 or

(39)
∥

∥ (A(f j(pk))u)
j+1
E2

∥

∥

j+1
≥ eλ2−2δ

∥

∥ uj
E2

∥

∥

j

and

(40) A(f j(pk))u ∈ Cj+1,2
γ ,

for some γ ∈ (0, 1) and every k sufficiently large. Moreover, k and γ do not depend
on u or j.

Proof. The proof is similar to the proof of Lemma 4.3. Suppose that u ∈ Cj,2
0 \Cj,1

0

since otherwise there is nothing to prove. In particular, 4
∥

∥ uj
E2

∥

∥

j
≥ ‖u ‖j. Indeed,

since u /∈ Cj,1
0 ,
∥

∥ uj
E1

∥

∥

j
<

∥

∥ uj
E2

+ uj
V

∥

∥

j
≤

∥

∥ uj
E2

∥

∥

j
+
∥

∥ uj
V

∥

∥

j
≤ 2

∥

∥ uj
E2

∥

∥

j
.

Thus,

(41) ‖u ‖j ≤
∥

∥ uj
E1

∥

∥

j
+
∥

∥ uj
E2

∥

∥

j
+
∥

∥ uj
V

∥

∥

j
≤ 4

∥

∥ uj
E2

∥

∥

j
.

Let v = A(f j(x))u and consider w = A(f j(pk))u. By (23), we have that
∥

∥ vj+1
E2

∥

∥

j+1
=

∥

∥A(f j(x))uj
E2

∥

∥

j+1
≥ eλ2−δ

∥

∥ uj
E2

∥

∥

j

and

(42)
∥

∥ vj+1
V

∥

∥

j+1
=

∥

∥A(f j(x))uj
V

∥

∥

j+1
≤ eλ3+δ

∥

∥uj
V

∥

∥

j
.

Moreover, by considering Bj = A(f j(pk)) − A(f j(x)) we have (as in the proof of
Lemma 4.3) that w = v +Bju and thus

wj+1
E1

= vj+1
E1

+ (Bju)
j+1
E1

, wj+1
E2

= vj+1
E2

+ (Bju)
j+1
E2

and wj+1
V = vj+1

V + (Bju)
j+1
V .

Therefore, using (41) and proceeding as in Lemma 4.3 we obtain that

‖Bju ‖j+1 ≤ C̃
1

kα

∥

∥ uj
E2

∥

∥

j
,

for some C̃ > 0 which is independent of nk and j. Consequently,
∥

∥wj+1
E2

∥

∥

j+1
≥

∥

∥ vj+1
E2

∥

∥

j+1
−
∥

∥ (Bju)
j+1
E2

∥

∥

j+1

≥ eλ2−δ
∥

∥ uj
E2

∥

∥

j
− C̃

1

kα

∥

∥ uj
E2

∥

∥

j
≥ eλ2−2δ

∥

∥ uj
E2

∥

∥

j
,

whenever k is sufficiently large which is precisely inequality (39). In order to ob-
tain (40), we observe initially that

(43)
∥

∥wj+1
E2

∥

∥

j+1
≤ eλ2+δ

∥

∥ uj
E2

∥

∥

j
+ C̃

1

kα

∥

∥ uj
E2

∥

∥

j
≤ Ĉ

∥

∥ uj
E2

∥

∥

j
.

On the other hand,
∥

∥wj+1
E2

∥

∥

j+1
≥

∥

∥ vj+1
E2

∥

∥

j+1
− ‖Bju ‖j+1
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and
∥

∥wj+1
V

∥

∥

j+1
≤

∥

∥ vj+1
V

∥

∥

j+1
+ ‖Bju ‖j+1.

By combining the last two inequalities and using that u ∈ Cj,2
0 , we have that

∥

∥wj+1
E2

∥

∥

j+1
−

∥

∥wj+1
V

∥

∥

j+1
≥

∥

∥ vj+1
E2

∥

∥

j+1
−
∥

∥ vj+1
V

∥

∥

j+1
− 2‖Bju ‖j+1

≥ eλ2−δ
∥

∥ uj
E2

∥

∥

j
− eλ3+δ

∥

∥ uj
V

∥

∥

j
− 2C̃

1

kα

∥

∥ uj
E2

∥

∥

j

≥
(

eλ2−δ − eλ3+δ − 2C̃
1

kα

)

∥

∥ uj
E2

∥

∥

j
.

Taking k large enough so that

eλ2−δ − eλ3+δ − 2C̃
1

kα
> 0

and applying (43) to the previous inequality, we conclude that there exists γ > 0
such that

∥

∥wj+1
E2

∥

∥

j+1
−
∥

∥wj+1
V

∥

∥

j+1
≥ γ

∥

∥wj+1
E2

∥

∥

j+1
,

which implies that w = A(f j(p))u ∈ Cj+1,2
γ . Hence, we conclude that (40) holds and

the proof of the lemma is completed. �

Corollary 4.9. For every k ∈ N large enough,

λ(pk, u) ≥ λ2 − 3δ

for every u ∈ C0,2
0 \ {0}.

Proof. Let k ∈ N be large enough so that Cnk,2
γ ⊂ C0,2

0 (recall we are assuming
the Oseledets splitting and the Lyapunov norm are continuous on Rµ

δ,N and that

limk→+∞ d(x, fnk(x)) = 0). Thus, it follows from Lemma 4.8 that given u ∈ C0,2
0 \{0},

either there exist m ∈ N and j ∈ {0, 1, . . . , nk − 1} so that

Ankm+j(pk)u ∈ Cj,1
0

or

Ankm+j(pk)u ∈ Cj,2
0 \ Cj,1

0 ,

for every m ∈ N and every j ∈ {0, 1, . . . , nk − 1}. In the first case, it follows from
Lemma 4.3 and Corollary 4.4 that

λ(pk, u) ≥ λ1 − 3δ ≥ λ2 − 3δ,

which gives the desired conclusion.
Suppose now that we are in the second case. By recalling (39), (40) and (41)

together with the fact that the Lyapunov norms at x and fnk(x) are close whenever
k ≫ 0, we obtain that

‖Ank(pk)u ‖nk
≥

∥

∥ (Ank(pk)u)
nk

E2

∥

∥

nk
≥ enk(λ2−2δ)

∥

∥ u0
E2

∥

∥

0

≥ 1

4
enk(λ2−2δ)‖u ‖0 ≥

1

8
enk(λ2−2δ)‖ u ‖nk

.

By iterating, we conclude that

‖Ankm(p)u ‖nk
≥ 1

8m
enkm(λ2−2δ)‖ u ‖nk

.
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Consequently,

λ(pk, u) ≥ lim
m→∞

1

nkm
log

(

‖Ankm(p)u ‖nk

)

≥ lim
m→∞

1

nkm
log

(

1

8m
enkm(λ2−2δ)‖u ‖nk

)

= λ2 − 2δ − log 8

nk

+
1

nk

lim
m→∞

1

m
log

(

‖ u ‖nk

)

≥ λ2 − 3δ,

for any k sufficiently large which proves our claim. �

Let ik2 = max{i; Vi(pk) ∩ C0,2
0 6= {0}}.

Corollary 4.10. We have that

dim(E1(pk)⊕ . . .⊕Eik2
(pk)) ≥ dim(E1(x)⊕E2(x)),

for every k ≫ 0.

Proof. The proof is analogous to the second part of the proof of Corollary 4.6. �

Corollary 4.11. We have that

(44) γi(pk) ≥ γi(µ)− 3δ,

for every i ∈ {1, . . . , d1(µ) + d2(µ)} and k ≫ 0.

Proof. We first note that it follows from Corollary 4.7 that (44) holds for every
i ∈ {1, . . . , d1(µ)} and k ≫ 0. Now, on the one hand we have that

γi(µ) = λ2, for every i ∈ {d1(µ) + 1, . . . , d1(µ) + d2(µ)}.
On the other hand, Corollary 4.9 implies that

λ(pk, u) ≥ λ2 − 3δ for every u ∈ Vik2
∩ C0,2

0 \ {0} and k ≫ 0,

which implies that λik2
(pk) ≥ λ2 − 3δ. By Corollary 4.10, we have that

γi(pk) ≥ λik2
(pk) for every i ∈ {d1(µ) + 1, . . . , d1(µ) + d2(µ)},

which yields the desired conclusion. �

Corollary 4.12. We have that

dim(E1(pk)⊕ . . .⊕ Eik2
(pk)) = dim(E1(x)⊕E2(x)),

for every k ≫ 0.

Proof. In a view of Corollary 4.10, it is sufficient to prove that

(45) dim(E1(pk)⊕ . . .⊕Eik2
(pk)) ≤ dim(E1(x)⊕ E2(x)), for k ≫ 0.

In order to establish (45), we adapt the arguments from the proof of Corollary 4.6.
Suppose that (45) doesn’t hold, i.e. that dim(E1(pk)⊕ . . .⊕Eik2

(pk)) > d1(µ)+d2(µ).
In particular,

γd1(µ)+d2(µ)+1(pk) ≥ λ2 − 3δ.

Thus, on the one hand we have that

d1(µ)+d2(µ)+1
∑

i=1

γi(pk) ≥ d1(µ)(λ1 − 3δ) + (d2(µ) + 1)(λ2 − 3δ).
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On the other hand, Lemma 4.1 implies that

d1(µ)+d2(µ)+1
∑

i=1

γi(pk) ≤
d1(µ)+d2(µ)+1

∑

i=1

γi(µ) + δ = d1(µ)λ1 + d2(µ)λ2 + λ3 + δ,

for every k ≫ 0. By combining the last two inequalities, we obtain that

(3d1(µ) + 3d2(µ) + 4)δ > λ2 − λ3,

which yields a contradiction with our choice of δ. We conclude that (45) holds and
the proof is completed. �

4.3. Conclusion of the proof of Theorem 2.5. More generally, for each
1 ≤ j ≤ nk and h ∈ {1, . . . , s}, let us consider the splitting

B = E1(f
j(x))⊕ . . .⊕ Eh(f

j(x))⊕ Vh+1(f
j(x)).

We can write each u ∈ B in the form

u = uj
E1

+ . . .+ uj
Eh

+ uj
V ,

where uj
Ei

∈ Ei(f
j(x)) for i ∈ {1, . . . , h} and uj

V ∈ Vh+1(f
j(x)). In addition, we can

consider cones

Cj,h
γ =

{

u ∈ B :
∥

∥ uj
V

∥

∥

fj(x)
≤ (1− γ)

∥

∥ uj
Eh

∥

∥

fj(x)

}

,

where γ ∈ (0, 1) and the corresponding numbers ikh = max{i; Vi(pk)∩C0,h
0 6= {0}}. By

repeating the previous arguments (with straightforward adjustments), we conclude
that

γi(pk) ≥ γi(µ)− 3δ,

for every i ∈ {1, . . . , d1(µ)+ . . .+ds(µ)} and k ≫ 0. This together with Corollary 4.2
implies the conclusion of Theorem 2.5.

5. Applications

In this section we discuss some applications of the main result of our paper. We
shall mostly restrict our attention to the case of compact cocycles in order to avoid
dealing with technicalities.

5.1. Uniform hyperbolicity via nonvanishing of Lyapunov exponents.

We begin by recalling that the cocycle A is said to be uniformly hyperbolic if there
exist a family of projections P (x), x ∈ M on B and constants D, λ > 0 such that:

(1) for each x ∈ M , we have

(46) A(x)P (x) = P (f(x))A(x)

and that the map

(47) A(x) | KerP (x) : KerP (x) → Ker(P (x)) is invertible;

(2) for each x ∈ M and n ≥ 0,

(48) ‖An(x)P (x)‖ ≤ De−λn

and

(49) ‖A−n(x)(Id−P (x))‖ ≤ De−λn,

where

A−n(x) = (An(f−n(x)) | KerP (f−n(x)))−1 : KerP (x) → KerP (f−n(x)).
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We note that the condition (49) can be replaced by the requirement that

‖An(x)v‖ ≥ 1

D
eλn‖v‖ for n ≥ 0 and v ∈ KerP (x) \ {0}.

Let E(f) denote the set of all f -invariant Borel probability measures on M which are
ergodic. Furthermore, let Eper(f) denote those measures in E(f) whose support is an
f -periodic orbit.

Theorem 5.1. Assume that A : M → B(B,B) is an α-Hölder continuous cocycle
that takes values in a family of compact operators on B. Furthermore, suppose that
there exist a family of projections P (x), x ∈ M and δ > 0 such that:

(1) x 7→ P (x) is a continuous map from M to B(B,B);
(2) (46) and (47) hold for each x ∈ M ;
(3) for any µ ∈ Eper(f), we have that

(50) lim
n→∞

1

n
log‖An(x)v‖ ≤ −δ and lim

n→∞

1

n
log‖An(x)w‖ ≥ δ,

for µ-a.e. x ∈ M and every v ∈ ImP (x), w ∈ KerP (x).

Then, the cocycle A is uniformly hyperbolic.

Proof. We define a sequence of maps Fn : M → R ∪ {−∞}, n ≥ 0 by

Fn(x) = log‖An(x)P (x)‖, x ∈ M.

Lemma 5.2. The sequence (Fn)n≥0 is subadditive, i.e.

Fn+m(x) ≤ Fn(f
m(x)) + Fm(x) for every n,m ≥ 0 and x ∈ M .

Proof of the lemma. By (46), we have that

‖An+m(x)P (x)‖ = ‖An(fm(x))Am(x)P (x)2‖
= ‖An(fm(x))P (fm(x))Am(x)P (x)‖
≤ ‖An(fm(x))P (fm(x)‖ · ‖Am(x)P (x)‖,

for each x ∈ M and n,m ≥ 0. This readily implies the desired conclusion. �

Since both x 7→ A(x) and x 7→ P (x) are continuous, we have that Fn is a
continuous map for each n ≥ 0. In particular, F1 is integrable with respect to any
µ ∈ E(f). Hence, it follows from Lemma 5.2 and Kingman’s subadditive ergodic
theorem that for each µ ∈ E(f), there exists Λ(µ) ∈ [−∞,∞) such that

Λ(µ) = lim
n→∞

Fn(x)

n
for µ-a.e. x ∈ M .

Lemma 5.3. We have that Λ(µ) is either −∞ or a Lyapunov exponent of the
cocycle A with respect to µ.

Proof of the lemma. Assume that Λ(µ) 6= −∞ since otherwise there is nothing
to prove. Let λ1 > λ2 > . . . denote (distinct) Lyapunov exponents of A with respect
to µ. Assuming that Λ(µ) is not a Lyapunov exponent of A with respect to µ, we
can find i such that Λ(µ) ∈ (λi+1, λi). In particular,

lim
n→∞

1

n
log‖An(x)v‖ = lim

n→∞

1

n
log‖An(x)P (x)v‖

≤ lim
n→∞

1

n
log‖An(x)P (x)‖ = Λ(µ) < λi,

(51)
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for µ-a.e. x ∈ M and v ∈ ImP (x) \ {0}. On the other hand, it follows from The-
orem 2.3 that for µ-a.e. x ∈ M and every v ∈ ImP (x), there exists j ∈ N such
that

lim
n→∞

1

n
log‖An(x)v‖ = λj ,

which together with (51) implies that

(52) lim
n→∞

1

n
log‖An(x)v‖ ≤ λi+1.

By (52) and [FLQ13, Proposition 14.], we have that Λ(µ) ≤ λi+1 which yields a
contradiction. �

It follows from (50) that all Lyapunov exponents of A with respect to µ ∈ Eper(f)
belong to R \ (−δ, δ). This together with Theorem 2.5 and Lemma 5.3 implies that
Λ(µ) ≤ −δ for µ ∈ E(f). Using [S98, Theorem 1], we obtain that

lim
n→∞

maxx∈M Fn(x)

n
≤ −δ,

which readily implies (48). One can similarly establish (49). Hence, A is uniformly
hyperbolic. �

One can also establish the version of Theorem 5.1 for quasi-compact cocycles
although under additional assumption that κ(µ) < Λ(µ) for each µ ∈ E(f).

Remark 5.4. We emphasize that the first results in the spirit of Theorem 5.1
are due to Cao [C03]. More precisely, in the particular case of the derivative cocycle
A(x) = Df(x) associated to some smooth diffeomorphism f on a compact Riemma-
nian manifold M , Cao proved that the existence of a continuous and Df -invariant
splitting

TxM = Es
x ⊕Eu

x for x ∈ M ,

together with an assumption that for each µ ∈ E(f) we have

(53) lim
n→∞

1

n
log‖An(x)v‖ < 0 and lim

n→∞

1

n
log‖An(x)w‖ < 0,

for µ-a.e. x ∈ M and every v ∈ Es
x, w ∈ Eu

x , implies that the cocycle A is uniformly
hyperbolic. Hence, in the statement of Theorem 5.1 we have required that (50) holds
for µ ∈ Eper(f), while Cao requires that (53) holds for any µ ∈ E(f), although without
any type of uniform estimates for Lyapunov exponents as we have in (50).

The importance of this type of results steems from the fact that nonvanishing
of Lyapunov exponents corresponds (in general) to a weaker concept of nonuniform

hyperbolicity (see [BP07] for detailed discussion). Therefore, it is interesting to see
under which additional assumptions, nonvanishing of Lyapunov exponents implies
the existence of uniform hyperbolic behaviour. For some more recent results in this
direction and further references, we refer to [HPS14].

5.2. Sacker–Sell spectrum. Let us assume that M is compact and connected
metric space and that f : M → M is a continuous map. Furthermore, let A be a
continuous cocycle over (M, f) of compact and injective (although not necessarily
invertible) operators on B. For each λ ∈ R, we can define a new cocycle Aλ by

Aλ(x) = e−λA(x), x ∈ M.

Finally, set

Σ = {λ ∈ R : Aλ is not uniformly hyperbolic}.
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The set Σ is called the Sacker–Sell spectrum of A. It was proved by Magalhães [LM87]
(building on the original work of Sacker and Sell [SS78] for cocycles acting on a finite-
dimensional space) that if f has a periodic orbit, we have that:

(1) Σ ⊂ R is closed;

(2) Σ = ∅ or Σ(Λ) =
⋃k

i=1[ai, bi] for some

b1 ≥ a1 > b2 ≥ a2 > . . . > bk ≥ ak,

or Σ(Λ) =
⋃∞

i=1[ai, bi] for some

b1 ≥ a1 > b2 ≥ a2 > . . . > bi ≥ ai > . . . such that lim
i→∞

ai = lim
i→∞

bi = −∞.

The following result is due to Schreiber [S98].

Theorem 5.5. For each i, there exist µ1, µ2 ∈ E(f) such that a1 is the Lyapunov
exponent of A with respect µ1 and b1 is the Lyapunov exponent of A with respect
µ2.

We note that for finite-dimensional and invertible cocycles, Theorem 5.5 was first
established by Johnson, Palmer and Sell [JPS87]. Let L(µ) denote the set of all finite
Lyapunov exponents of A with respect to µ.

Corollary 5.6. Assume further that A is an α-Hölder cocycle such that Σ 6= ∅
and that f satisfies Anosov closing property. Then,

∂Σ ⊂
⋃

µ∈Eper(f)

L(µ) and
⋃

µ∈E(f)

L(µ) ⊂ Σ.

Proof. The first inclusion is a direct consequence of Theorems 2.5 and 5.5. The
second inclusion is proved in [LM87]. �

We are hopeful that Corollary 5.6 could be useful in numerical estimations of
Σ since it recognizes boundary points of Σ as accumulation points of Lyapunov
exponents along periodic orbits (which are easy to estimate).

5.3. Spectral radius and growth of the cocycle. In this subsection, ρ(C)
will denote the spectral radius of an operator C ∈ B(B,B). Furthermore, let us
again consider compact, injective and continuous cocycle A. The following result is
a particular case of [IM12, Theorem 1.4.].

Theorem 5.7. For any µ ∈ E(f), we have that

lim sup
n→∞

1

n
log ρ(An(x)) = lim

n→∞

1

n
log‖An(x)‖ = λ1(µ) for µ-a.e. x ∈ M .

We now prove the following result.

Theorem 5.8. Assume that A is an α-Hölder cocycle and that f satisfies Anosov
closing property. Then,

lim
n→∞

max
x∈M

‖An(x)‖1/n = sup
(x,p)∈M×N : fp(x)=x

ρ(Ap(x))1/p.

Proof. It follows from [S98, Theorem 1.] and Theorem 2.5 that

(54) lim
n→∞

1

n
max
x∈M

log‖An(x)‖ = sup
µ∈E(f)

λ1(µ) = sup
µ∈Eper(f)

λ1(µ).
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Assume that µ ∈ Eper(f) is supported on an periodic orbit of a point x ∈ M with
period p. Then, it follows from Theorem 5.7 that

λ1(µ) = lim
n→∞

1

np
log‖Anp(x)‖ = lim sup

n→∞

1

np
log ρ(Anp(x))

= lim sup
n→∞

1

np
log ρ((Ap(x))n) = lim sup

n→∞

1

np
log(ρ(Ap(x)))n =

1

p
log ρ(Ap(x)).

Hence, (54) implies that

lim
n→∞

1

n
max
x∈M

log‖An(x)‖ = sup
(x,p)∈M×N:fp(x)=x

log ρ(Ap(x))1/p.

Therefore,

lim
n→∞

max
x∈M

log‖An(x)‖1/n = sup
(x,p)∈M×N:fp(x)=x

log ρ(Ap(x))1/p,

which readily yields the desired result. �

The above result is interesting since it connects two quantities that exhibit dif-
ferent behaviour under the action of the cocycle: operator norm which is subadditive
and spectral radius which behaves quite badly with respect to composition of oper-
ators.

5.4. Conjugacy between cocycles and Lyapunov exponents. Assume now
that for i = 1, 2 we are given a cocycle Ai of operators acting on Bi and over a base
space (Mi, fi). We say that A1 and A2 are conjugated if there exists an invertible map
h : M1 → M2 and a family of invertible bounded linear operators L(x) : B1 → B2,
x ∈ M1 such that:

(1)

(55) h ◦ f1 = f2 ◦ h;
(2) we have

(56) A1(x) = L(f1(x))
−1A2(h(x))L(x), for each x ∈ M1.

Remark 5.9. In the context of smooth dynamics, this notion corresponds to
the classical notion of conjugacy. Indeed, if M1,M2 are smooth compact Riemma-
nian manifolds and f1, f2 are smooth diffeomorphisms, then if a differentiable map h
satisfies (55), one can easily conclude that (56) holds with

A(x) = Df1(x), B(x) = Df2(x) and L(x) = Dh(x).

Observe that it follows easily from (56) that

(57) An
1 (x) = L(fn

1 (x))
−1An

2 (h(x))L(x), for x ∈ M1 and n ∈ N.

Theorem 5.10. Suppose that:

(1) A1 : M1 → B(B1,B1) and A2 : M2 → B(B2,B2) are cocycles such that A1(x)
is a compact operator for each x ∈ M1;

(2) (M1, f1) satisfies the Anosov closing property;
(3) A1 is an α-Hölder cocycle;
(4) A2 is uniformly hyperbolic;
(5) A1 and A2 are conjugated.

Then, all Lyapunov exponents of A1 are uniformly bounded away from zero.
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Proof. Observe that it follows from (56) that A2(x) is a compact operator for
each x ∈ M2. In addition, observe that x is a periodic point with period p for f1 if
and only if h(x) is a periodic point with period p for f2. Furthermore, in this case it
follows from (57) that

(58) Anp
1 (x) = L(x)−1Anp

2 (h(x))L(x), for n ∈ N.

By (58), Lyapunov exponents of A1 with respect to a measure which is supported on
the orbit of x are the same as Lyapunov exponents of A2 with respect to a measure
which is supported on the orbit of h(x). Hence, since A2 is uniformly hyperbolic, we
have that all Lyapunov exponents of A1 with respect to invariant measures supported
on periodic orbits are uniformly bounded away from zero. Then, Theorem 2.5 implies
that the same holds for all Lyapunov exponents. �

Remark 5.11. We emphasize that we haven’t assumed any type of information
regarding the asymptotic behaviour of maps x 7→ ‖L(x)‖ and x 7→ ‖L(x)−1‖. If we
were to assume that those maps are tempered with respect to any invariant measure
for f1, we could conclude (see [BP07]) that Lyapunov exponents of cocycles A1 and
A2 are the same and therefore the conclusion of Theorem 5.10 would hold trivially.
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