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Molecular dynamics simulations are used to examine the relationship between water-like anomalies
and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened
pair interactions. The core-softened pair interactions have two length scales, such that the longer
length scale associated with a shallow, attractive well is kept constant while the shorter length scale
associated with the repulsive shoulder is varied from an inflection point to a minimum of progres-
sively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting
potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As
the shoulder well depth increases, the pressure required to form the high density liquid decreases
and the temperature up to which the high-density liquid is stable increases, resulting in the shift of
the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the
entropic effects associated with the changes in the interaction potential, the pair correlation entropy
is computed to show that the excess entropy anomaly diminishes when the shoulder well depth in-
creases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that
decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the pro-
gressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal
mode analysis was used to index the overall curvature distribution of the fluid and the fraction of
imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffu-
sivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in
addition to the presence of two length scales, energetic, and entropic effects associated with local
minima and curvatures of the pair interaction play an important role in determining the presence of
water-like anomalies and the liquid-liquid phase transition. © 2011 American Institute of Physics.
[doi:10.1063/1.3613669]

I. INTRODUCTION

Water is characterized by well-known thermodynamic
and kinetic liquid-state anomalies; for example, the rise in
density on isobaric heating (density anomaly) and the in-
crease in molecular mobility on isothermal compression (dif-
fusivity anomaly).1 Since the anomalies of bulk water are
connected with its behavior as a solvent in chemical and
biological systems, an understanding of the structural ori-
gins of such anomalous behavior has attracted considerable
attention.2, 3 While the anomalies of water were initially pre-
sumed to be uniquely connected to the hydrogen-bonded net-
work of water,4 there is now evidence that a number of liquids
display water-like liquid-state anomalies, such as Te,5 Ga,
Bi,6 S,7, 8 Ge15Te85,9 silica,10–12 silicon,13 and BeF2.10, 11, 14, 15
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The generic relationships between structure, entropy and mo-
bility underlying this diverse set of liquids with water-like
anomalies, can be understood in terms of the behavior of
the excess entropy (Sex), defined as the difference between
the entropy (S) of the liquid and the corresponding ideal
gas at the same density and temperature.11, 16–23 A neces-
sary condition for the fluid to show density, diffusion, and
structural anomalies is the presence of anomalous excess en-
tropy behavior, corresponding to a rise in Sex on isothermal
compression (∂Sex/∂ρ > 0).11, 14, 15, 21–25 The structural basis
for the excess entropy anomaly is the existence of distinct
forms of local order or length scales in the low- and high-
density regimes; competition between the two types of lo-
cal order results in a rise in excess entropy at intermediate
densities.

In addition to the singularity-free scenario for water-like
thermodynamic and kinetic anomalies, it has been conjec-
tured that the anomalies of water are due to the presence
of a second liquid-liquid critical point, corresponding to
the onset of a line of first-order phase transitions between
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high- and low-density phases of water.26 The relationship be-
tween the liquid-liquid critical point and water-like anoma-
lies can be addressed by considering minimal models of
liquids with isotropic, pair-additive interactions that give
rise to water-like anomalies, as well as liquid-liquid criti-
cal points.27–30 Such simple models are able to capture sev-
eral water features, including liquid-liquid phase transition,
thermodynamic, and dynamic anomalies,31–35 yet amenable
analytically.36–39 While two length scales in the pair interac-
tion appears to be a necessary condition for seeing both the
liquid-liquid critical point (LLCP) and water-like anomalies,
it is possible to design isotropic potentials with two length
scales where appropriate variation of parameters can result
in shifting either the LLCP or the water-like anomalies into
the metastable or unstable regime.40 In this paper, we study a
family of liquids with continuous and core-softened pair in-
teractions consisting of a hard core, a short-range shoulder,
and an attractive well at a larger separation.40 Since the po-
tentials share a common functional form consisting of a sum
of one Lennard-Jones and four Gaussian terms, we refer to
them as the family of multi-Gaussian water-like liquids. By
suitably varying the parameters, the outer attractive well can
be left unchanged, while the shoulder can be progressively
altered from being purely repulsive to a deep attractive well.
As the shoulder shifts from being purely repulsive to more
attractive, the anomalous regime in the pressure-temperature
plane shrinks and disappears while the LLCP shifts to higher
temperatures and lower pressures. The connection with atom-
istic models is made by ensuring that the limiting case of the
double minimum potential that has no anomalies corresponds
to an isotropic potential that reproduces the oxygen-oxygen
radial distribution function of ST4 water.41 Using this set of
anomalous fluids, we address a number of questions related
to the features of the pair interaction, in addition to the two
length scales, that control the temperature-pressure regime of
the water-like liquid state anomalies versus the liquid-liquid
critical point. Both the liquid-liquid critical point and the
water-like anomalies require a change in the nature of local or-
der in the liquid with density, and therefore two length scales
in the case of core-softened fluids. The liquid-liquid critical
point, however, depends on the energetic bias towards segre-
gation of the two length scales with decreasing temperature.
In contrast, the water-like liquid state anomalies require an
excess entropy anomaly, involving a continuous transforma-
tion of the liquid from low- to high-density through a range
of quasi-binary states reflecting the competition between two
length scales in the intermediate regime.18 In order to under-
stand the relationship between the interaction potential, the
water-like liquid state anomalies and the liquid-liquid critical
point, it is therefore necessary to consider the temperature-
dependent stabilization of the low- and high-density length
scales as well as the density-dependent changes in the entropy
of the system.

In order to understand how the change in interaction po-
tential within the multi-Gaussian water models affects the
thermodynamic and kinetic water-like anomalies, it is neces-
sary to map out the excess entropy anomaly for the different
model fluids. We use the pair correlation entropy as a sim-
ple structural estimator of the excess entropy, defining it for a

one-component fluid of structureless particles as

S2

NkB

= −2πρ

∫ ∞

0
{g(r) ln g(r) − [g(r) − 1]}r2dr, (1)

where g(r) is the radial distribution function. It is typically
the dominant contribution to the excess entropy of a fluid
expressed as a multi-particle correlation expansion of the
form

Sex = S − Sid = S2 + S3 + . . . , (2)

where Sn is the entropy contribution due to n-particle spatial
correlations.42–46 The excess entropy and mobility anomalies
are linked by excess entropy scaling relations of the form

X∗ = A exp(α(Sex/NkB)) , (3)

where X∗ are dimensionless transport properties with either
macroscopic (Rosenfeld) or microscopic (Dzugutov) reduc-
tion parameters and the scaling parameters, α and A, depend
on the functional form of the underlying interactions.47–50

In the case of simple liquids, the excess entropy scaling pa-
rameters can be approximately set as A ≈ 0.6 and α ≈ 0.8.
In addition, for such fluids, the pair correlation entropy per
particle, s2, typically represents 85% − 90% of the total ex-
cess entropy.51 Mittal et al. investigated the approximation
Sex ≈ S2 as well as the relation between the excess entropy
and the diffusion coefficient for the specific case of core-
softened fluids.20, 22 They have shown that S2 captures the
most important and qualitative behaviors of Sex with a rea-
sonable quantitative accuracy.

As an additional means to relate the interaction poten-
tial to the liquid-state properties, we characterize the potential
energy surface (PES) of the multi-Gaussian family of water-
like liquids using instantaneous normal mode analysis. In the
instantaneous normal mode (INM) approach, the key quan-
tity is the ensemble-averaged curvature distribution of the
PES sampled by the system. For a system of N particles,
the mass-weighted Hessian associated with each instanta-
neous configuration is diagonalized to yield 3N normal mode
eigenvalues and eigenvectors and the ensemble-average of
this distribution is referred to as the INM spectrum. The INM
spectrum of a liquid will have a substantial fraction of unsta-
ble modes with negative eigenvalues that simulations suggest
is strongly correlated with the diffusivity.52–57 Random energy
models of liquids also suggest that for supercooled liquids
there will be a connection between the fraction of imaginary
modes, the diffusivity, and the configurational entropy.58, 59

Our previous work on INM analysis of a core-softened water-
like fluid demonstrated that the instantaneous normal mode
spectra carry significant information on the dynamical conse-
quences of the interplay between length scales characteristic
of anomalous fluids.19 We have therefore performed an INM
analysis of the multi-Gaussian water-like fluids to understand
the relationship between the interaction potential, anomalies
and the liquid-liquid critical point.

The paper is organized as follows. The computational de-
tails of the simulations and the equation of state data for the
multi-Gaussian family of water models are summarized in
Sec. II. Section III contains the results and the conclusions
in Sec. IV.



044517-3 Core-softened fluids, water-like anomalies J. Chem. Phys. 135, 044517 (2011)

1.2 1.8 2.4 3.0

r
*

0

4

8

U
*

A case
B case
C case
D case

FIG. 1. Interaction potential obtained by changing parameters h1 in Eq. (4).
The potential and the distances are in dimensionless units U∗ = U/γ and
r∗ = r/r0.

II. THE MODEL

A. The potential

The multi-Gaussian family of water-like fluids is defined
by pair-additive, continuous, and core-softened interactions
with the functional form

U (r) = ε

[(σ

r

)a

−
(σ

r

)b
]

+
4∑

j=1

hj exp

[
−

(
r − cj

wj

)2
]

.

(4)

The first term is a Lennard-Jones potential-like and the
second one is composed of four Gaussians, each of width wj

centered at cj . The potential and the distances are given in di-
mensionless units, U ∗ = U/γ and r∗ = r/r0, where γ is the
energy scale and r0 is the length scale chosen so the closest
approach between particles is about r∗ = 1, i.e., so that the
second length scale associated with the repulsive shoulder re-
mains the same. Here we use ε/γ = 0.02 and σ/r0 = 1.47.
Modifying h1 in the Eq. (4) allows us to change the depth of
the hard-core well, as illustrated in Fig. 1 while keeping the
shape and location of the attractive well constant. We report
here results for four different values for h1 and they are ex-
pressed as a multiple of a reference value h

ref
1 as shown in the

Table I. For all the four cases the values of a, b, {cj , wj } with
j = 1, . . . , 4, and href . Table II gives the parameter values
in Å and kcal/mol consistent with reproducing the oxygen-
oxygen radial distribution of ST4 water using case D.41

TABLE I. Parameters h1 for potentials A, B, C, and D.

Potential Value of h1

A 0.25 h
ref
1

B 0.50 h
ref
1

C 0.75 h
ref
1

D 1.00 h
ref
1

TABLE II. Parameters for potentials A, B, C, and D in units of Å and of
kcal/mol.

Parameter Value Parameter Value

a 9.056 w1 0.253
b 4.044 w2 1.767
ε 0.006 w3 2.363
σ 4.218 w4 0.614

c1 2.849 h
ref
1 −1.137

c2 1.514 h2 3.626
c3 4.569 h3 −0.451
c4 5.518 h4 0.230

B. The simulation details

The properties of the system were obtained by NVT
molecular dynamics using Nose-Hoover heat-bath with cou-
pling parameter Q = 2. The system is characterized by 500
particles in a cubic box with periodic boundary conditions,
interacting with the intermolecular potential described above.
All physical quantities are expressed in reduced units and de-
fined as

t∗ = t(m/γ )1/2

r0

T ∗ = kBT

γ

p∗ = pr0

γ

ρ∗ = ρr3
0

D∗ = Dm

γ r2
0

. (5)

Standard periodic boundary conditions together with
predictor-corrector algorithm were used to integrate the equa-
tions of motion with a time step 	t∗ = 0.002 and potential cut
off radius r∗

c = 3.5. The initial configuration is set on solid
or liquid state and, in both cases, the equilibrium state was
reached after t∗eq = 1000 (what is in fact 500 000 steps since
	t∗ = 0.002) . From this time on the physical quantities were
stored in intervals of 	t∗R = 1 during t∗R = 1000. The sys-
tem is uncorrelated after t∗d = 10, as judged from the velocity
auto-correlation function. 50 decorrelated samples were used
to get the average of the physical quantities.

At each state point, 100 configurations were sampled and
used to construct the instantaneous normal mode spectra and
associated quantities. We repeated the calculation for some
state points using 500 configurations and found no significant
difference.

C. Instantaneous normal modes analysis

The potential energy of configuration r near r0 can be
written as a Taylor expansion of the form

U (r) = U (r0) − F • z + 1

2
rT • H • z, (6)
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where zi = √
mi(ri − r0) are the mass-scaled position coordi-

nates of a particle i. The first and second derivatives of U (r)
with respect to the vector z are the force and the Hessian ma-
trix, denoted by F and H, respectively. The eigenvalues of
the Hessian H are ({ω2

i }, i = 1, 3N ) representing the squares
of normal mode frequencies, and W(r) are the corresponding
eigenvectors. In a stable solid, r0 can be conveniently taken
as the global minimum of the potential energy surface U (R),
which implies that F = 0 and H has only positive eigenval-
ues corresponding to oscillatory modes. The INM approach
for liquids interprets r as the configuration at time t relative
to the configuration r0 at time t0. Since typical configura-
tions, r0 are extremely unlikely to be local minima, therefore
F �= 0 and H will have negative eigenvalues. The negative
eigenvalue modes are those which sample negative curva-
ture regions of the PES, including barrier crossing modes.
The ensemble-averaged INM spectrum, 〈f (ω)〉, is defined as

f (ω) =
〈

1

3N

3N∑
i=1

δ(ω − ωi)

〉
. (7)

Quantities that are convenient for characterizing the instanta-
neous normal mode spectrum are: (i) the fraction of imaginary
frequencies (Fi), defined as

Fi =
∫

im

f (ω)dω, (8)

and the Einstein frequency (ωE), given by

ω2
E =

∫
ω2f (ω)dω = 〈T rH〉

m(3N − 3)
, (9)

where the integral is performed over the entire range of fre-
quencies, real as well as imaginary.

III. RESULTS

A. Phase diagram

Figure 2 illustrates the pressure-temperature phase dia-
gram for the four cases of the potential.40 Because of the
presence of the attractive interaction, all four cases have a
liquid-gas transition with an associated critical point that is
not shown here. In addition, all the four model liquids studied
here have a liquid-liquid critical point. Cases A, B, and C have
water-like density and diffusional anomalies. The solid bold
lines represent the locus of temperatures of maximum den-
sity (TMD) for different isobars. State points enclosed by the
TMD locus represent the regime of density anomaly within
which (∂ρ/∂T )P > 0. The maximum temperature along the
TMD locus, denoted by T max

T MD , is the threshold temperature
for onset of the density anomaly. The dotted-dashed lines are
the temperatures of maximum and minimum diffusivity along
different isotherms.40

This overall change in the nature of the liquid-state phase
diagram for the four multi-Gaussian liquids is summarized in
Figure 3. Clearly, as the second length scale shifts from an
inflection point on the repulsive shoulder to a well with pro-
gressively increasing depth and curvature, the region of liq-
uid state anomalies shrinks and disappears. The figure illus-
trates how the pressure and temperature associated the liquid-
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FIG. 2. Pressure-temperature phase diagram for cases A, B, C, and D. The
thin solid lines are the isochores 0.30 < ρ∗ < 0.65. The liquid-liquid critical
point is the dot, the locus of temperatures of maximum density is the solid
thick line and the locus of diffusion extrema is the dot-dashed line.

gas and liquid-liquid critical points vary with the potentials
A, B, C, and D. The same graph also shows that as the shoul-
der becomes deeper, the maximum temperature of the TMD
locus, which marks the onset temperature for thermodynam-
ically anomalous behavior, approaches the liquid-liquid criti-
cal point.

Since the thermodynamic and mobility anomalies of wa-
ter are correlated, we first focus on understanding the thermo-
dynamic condition for the presence of density anomaly. This
may be stated as

∂S

∂ρ
= − V 2α

NKT

> 0, (10)

where α is the thermal expansion coefficient and KT is the
isothermal compressibility. For the system to have a large
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FIG. 3. Pressure versus temperature locations of liquid-liquid and liquid-gas
critical points (squares), and the maximum temperature of the TMD locus
(circles), for potentials A − D.
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FIG. 4. Pair entropy versus density for the cases A, B, C, and D for various temperatures.

anomalous region, the ratio α/KT should be therefore large
and negative. Near the critical point, the compressibility, KT ,
and thermal expansion coefficient, αT , diverge, however the
compressibility diverges with a large exponent making the ra-
tio zero. In this case, the condition given by Eq. (10) cannot
be fulfilled. This suggests that near the liquid-liquid critical
point the system prefers to undergo a phase separation into
high- and low-density liquids rather than show a smooth en-
tropy anomaly.

B. Excess entropy and pair correlations

As discussed in Sec. III A, the density anomaly corre-
sponds to a set of state points for which (∂S/∂ρ)T > 0. The
total entropy is a sum of the ideal (Sid) and excess (Sex) con-
tributions. Since Sid decreases monotonically with increasing
density, therefore, a density anomaly must imply the pres-
ence of an excess entropy anomaly, (∂Sex/∂ρ)T > 0. Erring-
ton et al. have further shown that the strength of the excess
entropy anomaly required to give rise to density anomaly
is given by the condition �ex = [∂(Sex/NkB)/∂ ln ρ]T > 1.22

By approximating the excess entropy with the two-body cor-
relation contribution of s2 (see Eq. (1)), we relate the struc-
tural information in the radial distribution function of the fluid
to the thermodynamic behavior.

Figure 4 illustrates the s∗
2 (ρ) = S2/NkB versus ρ∗ for

various temperatures and for the potentials A, B, C, and D.
For cases A, B, and C, at low temperatures, there is a rise
in excess entropy on isothermal compression characteristic of
water-like liquids11, 19, 20 that contrasts with the behavior of

simple liquids where free volume arguments are sufficient to
justify a monotonic decrease in entropy on isothermal com-
pression. For the case D, no anomaly is observed in the pair
entropy even at low temperatures. The progressive attenuation
of the anomalies on going from case A to case D, is illustrated
in Figure 5 which compares the behavior of the pair entropy
versus density for all studied potentials at a given temperature,
T ∗ = 0.9. This graph together with Figure 3 indicates that as
the maximum temperature at the TMD line approaches the
liquid-liquid critical temperature, the pair entropy curve be-
comes more flat and the anomalous behavior disappears.

The origin of the pair entropy anomaly in fluids with
two length scales can be explained in terms of a competition
between two length scales at intermediate densities. Only a

0.32 0.40 0.48 0.56
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s
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FIG. 5. Pair entropy versus density for the cases A, B, C, and D at T ∗ = 0.9.
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single length scale dominates in the low- and high-density
limits while at intermediate densities, where both length
scales are present, can be regarded as quasi-binary sys-
tems with a mixing entropy. The radial distribution functions
shown in our previous study clearly demonstrate the presence
of two length scales. They also show that with the increasing
temperature, the shorter length scale peak of g(r) becomes
more prominent in cases A, B, and C. In contrast, in the case
D, both length scales associated with the first and second peak
of the g(r) broaden with increasing temperature as a conse-
quence of which there is no emergence of an anomaly with
decreasing temperature.

The crucial question to ask in the multi-Gaussian family
of water models is why, despite the presence of two length
scales at intermediate densities, the pair entropy anomaly is
progressively lost as the shoulder goes from being an inflex-
ion point to a minimum with about twice the depth as the
outer, attractive well. Clearly the rise in entropy with isother-
mal compression due to the mixing of two length scales is
counteracted by additional effects. To understand this we note
that the entropy of an one-dimensional harmonic oscillator of
frequency ω is given by

sω

NkB

= 1 − ln(β¯ω) . (11)

The increasing curvature of the short-range minimum,
relative to the attractive minimum, implies that a pair-
separated trapped in the shoulder minimum will have lower
vibrational entropy than one trapped in the broad shallow at-
tractive minimum. As a consequence, at intermediate densi-
ties, while the presence of two length scales will increase
entropy, the loss of entropy when the pairs are located in
the short-range minimum will tend to decrease entropy. As
the shoulder minimum becomes deeper, the second effect be-
comes more important and the excess entropy anomaly dis-
appears. In systems such as the two-scale linear ramp, such
curvature-dependent effects will be absent.

It is also interesting to consider the shifting of the
liquid-liquid critical point to lower pressures and higher tem-
peratures. For a temperature-driven phase separation into
low-density liquid (LDL) and high-density liquid (HDL),
increasing energetic stabilization of one length scale relative
to the other is required. In case A, this is clearly due to the
outer attractive well with a depth of about 	U ∗ ≈ 0.3 and
T ∗

c ≈ 0.3. In case D, this is due to the shorter length scale with
a well depth of about 	∗ = 1.00 and T ∗

c ≈ 0.8. For a shal-
low shoulder, the high density liquid is stabilized under high
pressure. Within the HDL phase, particles are occupying the
shoulder scale. The density anomalous region, characterized
by having particles in the two scales occurs at the pressure
range of the low density liquid phase. As the shoulder scale
becomes deeper, less pressure is needed to form the high den-
sity liquid. The LDL phase occupies a smaller pressure range
and, therefore, the density anomalous region shrinks. For a
very deep shoulder well as in case D, the HDL requires no
pressure to be formed, the LDL is at negative pressures and
the anomalous density regime disappears.

C. Diffusion and Rosenfeld reduction parameter

Previously we have shown that the diffusion coefficient
in the cases A, B, and C decreases with the decrease of the
density for a certain range of densities.40 The region in the
pressure temperature phase diagram limited by the maxima
and minima of the diffusion coefficient is illustrated as dot-
dashed lines in Fig. 2. In the case D, the diffusion coefficient
increases with the decrease of the density as in normal liq-
uids. It is interesting to notice that the same behavior is also
observed in the pair entropy suggesting that the anomalies
present in these two quantities might be related. In order to
check this hypothesis we now consider the scaling relation-
ship between the diffusivity and the pair entropy. Using the
Rosenfeld macroscopic reduction parameters for the length
as ρ−1/3 and the thermal velocity as (kBT /m)1/2, the dimen-
sionless diffusivity is defined as

DR ≡ D
ρ1/3

(kBT /m)1/2
. (12)

The scaling of the reduced diffusivity, DR with pair entropy,
s∗

2 is illustrated in Fig. 6. Previous results for core-softened
fluids suggest that 	S = Sex − S2 tends to be density depen-
dent in anomalous fluids,16 resulting in a stronger isochores
dependence when ln(DR) is plotted against S2, rather than
against Sex. In the present study, we have computed only S2

and, therefore, Fig. 6 shows scaling with respect to S2. For
case A, the collapse of data from all the state points on a sin-
gle line is quite good. This case model very closely mimic
those of the Gaussian-core fluid,60 a system which also ex-
hibits good scaling of Rosenfeld parameterized self diffusivity
with two-body excess entropy. This makes logical sense since
the case A and the Gaussian-core systems are qualitatively
similar for low to intermediate temperatures. As we progress
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FIG. 6. Diffusion in Rosenfeld units as a function of −s∗
2 for the cases

A, B, C, and D.
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FIG. 7. Normal models versus frequency for the four studies cases. The den-
sity is fixed, ρ∗ = 0.50 in all the cases and the temperature is varied.

from case A to case D, the isochores dependence of the scal-
ing parameters becomes more pronounced suggesting that the
density dependence of 	S increases on going from case A to
case D.

This is consistent with other anomalous systems that
were studied recently. For liquid water, the DR vs. s2 scal-
ing holds reasonably well for lower temperature state points
(where anomalies are present), but it develops clear iso-
chore dependence at high temperature (where anomalies
disappear).16, 61 For core-softened liquids with short-range at-
tractions the DR vs. s2 relationship holds well for the anoma-
lous state points and breaks down for conditions when the
anomalies disappear.62–65

D. The instantaneous normal mode spectrum

The variation in anomalous behavior in the multi-
Gaussian family of water-like liquids studied here suggests
that in addition to length scales, we need to look at other fea-
tures of the pair potential, e.g., its first and second derivatives.
Instantaneous normal mode analysis provides a way to sum-
marize information on the curvature distribution of the poten-
tial energy landscape. In Figure 7, we show the INM spectra
of liquids bound by the four potentials (A, B, C, and D) at a
common state point of ρ∗ = 0.50 and temperature T ∗ = 0.8.
The crucial features are as follows:
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FIG. 8. Fraction of imaginary modes versus density for fixed temperatures, T ∗ = 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 1.10 from bottom to top for
cases A, B, and C. For case D temperature starts at T ∗ = 0.50.
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• A low-frequency split peak in the real branch centered
at about ω = 10, that does not vary significantly be-
tween the four cases and must reflect modes associated
with the outer attractive well;

• A high-frequency peak in the real branch, centered at
approximately 30, 35, 40, and 50 for cases A, B, C,
and D, respectively, which must correspond to motion
in neighborhood of the shoulder length scale. As the
curvature of the short-range minimum increases, this
features shifts to higher frequencies and becomes more
prominent; and

• The imaginary branch reflects regions of negative cur-
vature in the neighborhood of barriers and inflection
points. Case A, where there is no barrier in the pair in-
teraction but only an inflection point has a single peak
such as a simple liquid. However, this peak is broad be-
cause of the core-softened repulsive wall and the frac-
tion of imaginary modes is large. As the barrier be-
tween the short and long length scales becomes more
pronounced in the pair interaction, the second peak in
the imaginary branch becomes more prominent.

Thus, the real branch is dominated by vibrational modes
associated with motion in the attractive and shoulder length
scales while the imaginary modes branch is dominated by
negative curvature modes associated with transitions between
the shoulder and attractive wells. For the case A, the real
branch has three peaks related to the three basins: the shoulder
scale, the attractive scale, and a second attractive scale located
at further distance in Fig. 1. It has just one imaginary peak
that indicating that transitions between the two length scales
do not require local barrier crossing. For the cases B and C,
the imaginary branch has two peaks suggestive of modes con-
necting between the shoulder scale, attractive scale, and sec-
ond attractive scales. The peak with largest frequency in the
real branch has larger frequency in the case C than in the case
A and is related to the shoulder scale. For the case D, the
shoulder is deep and so the frequency related to the shoul-
der scale has a very high frequency. The imaginary branch
has two distinct oscillation modes that exclude transitions be-
tween the shoulder scale and the other scales and, therefore,
no anomalies are expected.

The above discussion suggests that INM spectra carry
fairly detailed information on the dynamics of transitions be-
tween the two length scales. The two features which are a
compact signature of INM spectra are the Einstein frequency
and the fraction of imaginary modes. Isotherms of the Ein-
stein frequency as a function of density for all the four cases
show a monotonic increase with density and do not show any
significant signatures of the water-like anomalies. The frac-
tion of imaginary modes, in contrast, correlates strongly with
the anomalous behavior of the pair entropy and the diffusiv-
ity. Figure 8 shows the Fi curves versus density for various
isotherms of all the four multi-Gaussian model fluids stud-
ied here. The parallel behavior of the s2(ρ) and Fi(ρ) curves
at corresponding isotherms is immediately obvious, though
the Fi(ρ) have a stronger non-monotonic behavior than s2(ρ)
curves. This can be seen most clearly for a high-temperature
isotherm.

IV. CONCLUSIONS

This paper examines the relationship between water-like
anomalies and the liquid-liquid critical point in a family of
model fluids with multi-Gaussian and core-softened pair in-
teractions. The pair interaction in this family of liquids is
composed of a sum of Lennard-Jones and Gaussian terms,
in such a manner that the longer length scale associated with
a shallow, attractive well is kept constant while the shorter
length scale associated with the repulsive shoulder changes
from an inflection point to a minimum of progressively in-
creasing depth. The maximum depth of the shoulder length
scale is chosen so that the resulting potential reproduces the
oxygen-oxygen radial distribution function of the ST4 model
of water. As the energetic stabilization of the shoulder length
scale increases, the liquid-liquid critical point shifts to higher
temperatures and lower pressures. Simultaneously, the tem-
perature for onset of the density anomaly decreases and the
region of liquid state anomalies in the pressure-temperature
plane diminishes. The condition for the presence of anoma-
lies is inconsistent with divergences near a critical point, so
that in the limiting case of maximum shoulder well depth, the
anomalies disappear.

To understand our results for the phase diagram and
liquid-state anomalies of the multi-Gaussian family of water-
like fluids, it is important to note that, in addition to the
presence of two length scales, it is necessary to consider the
energetic and entropic effects as determined by local min-
ima and curvatures of the pair interaction. As the shoulder
depth increases, the pressure required to form the high density
liquid decreases and the temperature up to which the high-
density liquid is stable increases. This explains the shift of
the liquid-liquid critical point to much lower pressures and
higher temperatures. To understand the entropic effects asso-
ciated with the changes in the interaction potential, we com-
puted the pair correlation entropy and demonstrated the atten-
uation of the excess entropy anomaly as the shoulder length
scale changed from an inflection point to a deep minimum.
In conjunction with Rosenfeld-scaling of transport proper-
ties, this is consistent with the progressive loss of water-like
thermodynamic, structural, and transport anomalies. The ex-
cess entropy anomaly in two-scale, isotropic fluids is due to a
rise in entropy as a result of competition between two length
scales at intermediate densities. In the case of continuous po-
tentials, the vibrational entropy associated with the two length
scales becomes important. To index the overall curvature dis-
tribution in the liquid, we have used instantaneous normal
mode analysis and shown the fraction of imaginary frequency
modes correlates well with the anomalous behavior of the dif-
fusivity and the pair correlation entropy. A detailed analysis
of the INM spectrum shows that as the shoulder well increases
in depth, there is a simultaneous rise in the positive curvature
associated with the shoulder minimum as well as the nega-
tive curvature of the barrier separating the shoulder minimum
from the attractive minimum. Consequently, the vibrational
entropy associated with pairs of particles separated by the
shoulder distance decreases, relative to that of pairs trapped
in the outer attractive well. Therefore, the mixing entropy due
to the presence of two length scales is counteracted by the
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changes in vibrational entropy associated by the two length
scales.

A general conclusion that emerges from this study is that
even though the ratio between the two length scales is im-
portant for locating the temperature range of the anomalies,66

additional energetic and entropic effects associated with lo-
cal minima and curvatures of the pair interaction can play
an important role. The liquid-liquid phase separation depends
on the relative energies associated with the two length scales
whereas the water-like anomalies depend upon a continuous
rise in entropy as a function of isothermal compression. A
number of recent studies of core-softened fluids illustrate this
conclusion. For example, energetic and entropic effects play
a very different role in the discrete and discontinuous ver-
sions of the shouldered well potential.18 In the discrete case,
the enthalpic implications do not change significantly and the
liquid-liquid critical point is not significantly different in the
two systems. In contrast, the continuous potential allows for a
smooth transformation through a range of quasi-binary states
from low- to high-density and shows water-like anomalies. A
more recent study of core-softened fluids shows that increas-
ing the depth of the attractive well,67 while leaving the shoul-
der feature constant, results in disappearance of the anomalies
while shifting the liquid-liquid critical point to lower pres-
sures and higher temperatures.

ACKNOWLEDGMENTS

This work is supported by the Indo-Brazil Cooperation
Program in Science and Technology of the CNPq (Brazil)
and DST (India). This work is also partially supported by the
CNPq through the INCT-FCx.

1O. Mishima and H. E. Stanley, Nature (London) 396, 329 (1998).
2K. A. Dill, T. M. Truskett, V. Vlachy, and B. Hribar-Lee, Annu. Rev. Bio-
phys. Biomol. Struct. 34, 173 (2005).

3P. Kumar, G. Franzese, and H. Eugene Stanley, J. Phys. Condens Matter
20, 244114 (2008).

4J. D. Bernal and B. H. Fowler, J. Chem. Phys. 1, 515 (1933).
5H. Thurn and J. Ruska, J. Non-Cryst. Solids 22, 331 (1976).
6See http://periodic.lanl.gov/default.htm, 2007 for periodic table of the
elements.

7G. E. Sauer and L. B. Borst, Science 158, 1567 (1967).
8S. J. Kennedy and J. C. Wheeler, J. Chem. Phys. 78, 1523 (1983).
9T. Tsuchiya, J. Phys. Soc. Jpn. 60, 227 (1991).

10C. A. Angell, R. D. Bressel, M. Hemmatti, E. J. Sare, and J. C. Tucker,
Phys. Chem. Chem. Phys. 2, 1559 (2000).

11R. Sharma, S. N. Chakraborty, and C. Chakravarty, J. Chem. Phys. 125,
204501 (2006).

12P. H. Poole, M. Hemmati, and C. A. Angell, Phys. Rev. Lett. 79, 2281
(1997).

13H. Tanaka, Phys. Rev. B 66, 064202 (2002).
14M. Agarwal, R. Sharma, and C. Chakravarty, J. Chem. Phys. 127, 164502

(2007).
15M. Agarwal and C. Chakravarty, J. Phys. Chem. B 111, 13294

(2007).
16M. Agarwal, M. Singh, R. Sharma, M. P. Alam, and C. Chakravarty,

J. Phys. Chem. B 114, 6995 (2010).
17M. Agarwal, M. P. Alam, and C. Chakravarty, J. Phys. Chem. B 115, 6935

(2011).
18A. B. de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, J. Chem. Phys.

124, 084505 (2006).
19A. B. de Oliveira, E. Salcedo, C. Chakravarty, and M. C. Barbosa, J. Chem.

Phys. 132, 234509 (2010).

20J. Mittal, J. R. Errington, and T. M. Truskett, J. Chem. Phys. 125, 076102
(2006).

21J. Mittal, J. R. Errington, and T. M. Truskett, J. Phys. Chem. B 110, 18147
(2006).

22J. R. Errington, T. M. Truskett, and J. Mittal, J. Chem. Phys. 125, 244502
(2006).

23Z. Yan, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 78, 051201 (2008).
24R. Sharma, M. Agarwal, and C. Chakravarty, Mol. Phys. 106, 1925 (2008).
25A. B. de Oliveira, G. Franzese, P. A. Netz, and M. C. Barbosa, J. Chem.

Phys. 128, 064901 (2008).
26P. H. Poole, F. Sciortino, U. Essman, and H. E. Stanley, Nature (London)

360, 324 (1992).
27P. C. Hemmer and G. Stell, Phys. Rev. Lett. 24, 1284 (1970).
28E. A. Jagla, Phys. Rev. E 58, 1478 (1998).
29G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley,

Nature (London) 409, 692 (2001).
30M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E. Stanley, Phys.

Rev. Lett. 81, 4895 (1998).
31A. B. de Oliveira, M. C. Barbosa, and P. A. Netz, Physica A 386, 744

(2007).
32A. B. de Oliveira, P. A. Netz, and M. C. Barbosa, Euro. Phys. J. B 64, 481

(2008).
33A. B. de Oliveira, P. A. Netz, and M. C. Barbosa, Europhys. Lett. 85, 36001

(2009).
34A. B. de Oliveira, E. B. Neves, C. Gavazzoni, J. Z. Paukowski, P. A. Netz,

and M. C. Barbosa, J. Chem. Phys. 132, 164505 (2010).
35S. Prestipino, F. Saija, and G. Malescio, J. Chem. Phys. 133, 144504

(2010).
36S. Zhou, Phys. Rev. E 77, 041110 (2008).
37S. Zhou, J. Chem. Phys. 132, 194112 (2010).
38S. A. Egorov, J. Chem. Phys. 128, 174503 (2008).
39O. Pizio, Z. Sokolowska, and S. Sokolowski, Condens. Matter Phys. 14,

174504 (2011).
40N. M. Barraz, E. Salcedo, and M. C. Barbosa, J. Chem. Phys 131, 094504

(2009).
41T. Head-Gordon and F. H. Stillinger, J. Chem. Phys. 98, 3313 (1993).
42H. S. Green, The Molecular Theory of Fluids (North-Holland, Amsterdam,

1952).
43R. E. Nettleton and H. S. Green, J. Chem. Phys. 29, 1365 (1958).
44H. J. Ravache, J. Chem. Phys. 55, 2242 (1971).
45D. C. Wallace, J. Chem. Phys. 87, 2282 (1987).
46A. Baranyai and D. J. Evans, Phys. Rev. A 40, 3817 (1989).
47Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977).
48Y. Rosenfeld, Chem. Phys. Lett. 48, 467 (1977).
49Y. Rosenfeld, J. Phys. Condens. Matter 11, 5415 (1999).
50M. Dzugutov, Nature (London) 381, 137 (1996).
51A. Baranyai and D. J. Evans, Phys. Rev. A 42, 849 (1990).
52P. Shah and C. Chakravarty, J. Chem. Phys. 115, 8784 (2001).
53P. Shah and C. Chakravarty, J. Chem. Phys. 116, 10825 (2002).
54P. Shah and C. Chakravarty, Phys. Rev. Lett. 88, 255501 (2002).
55M. Cho, G. R. Fleming, S. Saito, I. Ohmine, and R. M. Stratt, J. Chem.

Phys. 100, 6672 (1994).
56E. L. Nave, A. Scala, F. W. Starr, H. E. Stanley, and F. Sciortino, Phys. Rev.

Lett. 84, 4605 (2000).
57M. C. C. Ribeiro and P. A. Madden, J. Chem. Phys. 106, 8616 (1997).
58T. Keyes, Phys. Rev. E 62, 7905 (2000).
59T. K. Keyes, J. Chowdhary, and J. Kim, Phys. Rev. E 66, 051110 (2002).
60W. P. Krekelberg, T. Kumar, J. Mittal, J. R. Errington, and T. M. Truskett,

Phys. Rev. E 79, 031203 (2009).
61R. Chopra, T. M. Truskett, and J. R. Errington, J. Phys. Chem. B 114, 10558

(2010).
62W. P. Krekelberg, J. Mittal, V. Ganesan, and T. M. Truskett, J. Chem. Phys.

127, 044502 (2007).
63W. P. Krekelberg, J. Mittal, V. Ganesan, and T. M. Truskett, Phys. Rev. E

77, 041201 (2008).
64Y. D. Fomin, V. N. Ryzhov, and N. V. Gribova, Phys. Rev. E 81, 061201

(2010).
65Y. D. Fomin and V. N. Ryzhov, Phys. Lett. A 375, 2181 (2011).
66Z. Yan, S. V. Buldyrev, P. Kumar, N. Giovambattista, P. G. Debenedetti,

and H. E. Stanley, Phys. Rev. E 76, 051201 (2007).
67J. da Silva, E. Salcedo, A. B. de Oliveira, and M. C. Barbosa, J. Chem.

Phys. 133, 244506 (2010).

http://dx.doi.org/10.1038/24540
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144517
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144517
http://dx.doi.org/10.1088/0953-8984/20/24/244114
http://dx.doi.org/10.1063/1.1749327
http://dx.doi.org/10.1016/0022-3093(76)90063-6
http://periodic.lanl.gov/default.htm
http://dx.doi.org/10.1126/science.158.3808.1567
http://dx.doi.org/10.1063/1.444842
http://dx.doi.org/10.1143/JPSJ.60.227
http://dx.doi.org/10.1039/b000206m
http://dx.doi.org/10.1063/1.2390710
http://dx.doi.org/10.1103/PhysRevLett.79.2281
http://dx.doi.org/10.1103/PhysRevB.66.064202
http://dx.doi.org/10.1063/1.2794766
http://dx.doi.org/10.1021/jp0753272
http://dx.doi.org/10.1021/jp101956u
http://dx.doi.org/10.1021/jp110695
http://dx.doi.org/10.1063/1.2168458
http://dx.doi.org/10.1063/1.3429254
http://dx.doi.org/10.1063/1.3429254
http://dx.doi.org/10.1063/1.2336197
http://dx.doi.org/10.1021/jp064816j
http://dx.doi.org/10.1063/1.2409932
http://dx.doi.org/10.1103/PhysRevE.78.051201
http://dx.doi.org/10.1080/00268970802378662
http://dx.doi.org/10.1063/1.2830706
http://dx.doi.org/10.1063/1.2830706
http://dx.doi.org/10.1038/360324a0
http://dx.doi.org/10.1103/PhysRevLett.24.1284
http://dx.doi.org/10.1103/PhysRevE.58.1478
http://dx.doi.org/10.1038/35055514
http://dx.doi.org/10.1103/PhysRevLett.81.4895
http://dx.doi.org/10.1103/PhysRevLett.81.4895
http://dx.doi.org/10.1016/j.physa.2007.07.015
http://dx.doi.org/10.1140/epjb/e2008-00101-6
http://dx.doi.org/10.1209/0295-5075/85/36001
http://dx.doi.org/10.1063/1.3386384
http://dx.doi.org/10.1063/1.3499830
http://dx.doi.org/10.1103/PhysRevE.77.041110
http://dx.doi.org/10.1063/1.3435206
http://dx.doi.org/10.1063/1.2917359
http://dx.doi.org/10.5488/CMP.14.13601
http://dx.doi.org/10.1063/1.3213615
http://dx.doi.org/10.1063/1.464103
http://dx.doi.org/10.1063/1.1744724
http://dx.doi.org/10.1063/1.1676399
http://dx.doi.org/10.1063/1.453158
http://dx.doi.org/10.1103/PhysRevA.40.3817
http://dx.doi.org/10.1103/PhysRevA.15.2545
http://dx.doi.org/10.1016/0009-2614(77)85071-9
http://dx.doi.org/10.1088/0953-8984/11/28/303
http://dx.doi.org/10.1038/381137a0
http://dx.doi.org/10.1103/PhysRevA.42.849
http://dx.doi.org/10.1063/1.1413739
http://dx.doi.org/10.1063/1.1479714
http://dx.doi.org/10.1103/PhysRevLett.88.255501
http://dx.doi.org/10.1063/1.467027
http://dx.doi.org/10.1063/1.467027
http://dx.doi.org/10.1103/PhysRevLett.84.4605
http://dx.doi.org/10.1103/PhysRevLett.84.4605
http://dx.doi.org/10.1063/1.473917
http://dx.doi.org/10.1103/PhysRevE.62.7905
http://dx.doi.org/10.1103/PhysRevE.66.051110
http://dx.doi.org/10.1103/PhysRevE.79.031203
http://dx.doi.org/10.1021/jp1049155
http://dx.doi.org/10.1063/1.2753154
http://dx.doi.org/10.1103/PhysRevE.77.041201
http://dx.doi.org/10.1103/PhysRevE.81.061201
http://dx.doi.org/10.1016/j.physleta.2011.04.024
http://dx.doi.org/10.1103/PhysRevE.76.051201
http://dx.doi.org/10.1063/1.3511704
http://dx.doi.org/10.1063/1.3511704

