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We study, using Monte Carlo simulations, the interaction between infinite heterogeneously charged
surfaces inside an electrolyte solution. The surfaces are overall neutral with quenched charged
domains. An average over the quenched disorder is performed to obtain the net force. We find
that the interaction between the surfaces is repulsive at short distances and is attractive for larger
separations. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921410]

I. INTRODUCTION

In physical chemistry and biophysics, one often finds
situations in which electrolyte solution is confined between
charged surfaces. The surfaces can belong to macromolecules,
colloidal particles, electrodes, or membranes. Presence of elec-
trolyte between surfaces can strongly modify the interaction
between them.1,2

Over seventy years ago, Derjaguin, Landau, Verwey, and
Overbeek (DLVO) presented a theory which accounts for the
interaction between weakly charged homogeneous surfaces.3,4

The net interaction between two surfaces was attributed to the
electrostatic double layer forces and the van der Waals force.
The van der Waals force dominates when the separation be-
tween the surfaces is small, while the electrostatic repulsion is
dominant on larger length scales. The theory works reasonably
well for weakly charged homogeneous surfaces5 and has been
widely used to study colloidal stability. It fails, however, to
account for the correlation induced attraction between like-
charged objects inside an electrolyte solution containing multi-
valent counterions6–15 or for ionic specificity.16–20

It is also well known that two surfaces with annealed posi-
tive and negatively charged domains feel attraction.21–25 In this
case, positive domains on one surface become correlated with
the negatively charged domains on another surface, resulting in
an attractive interaction.26,27 Jho et al.28 carried out numerical
simulations for flat surfaces with movable charged domains.
Long-range attractive force was observed and the mechanism
behind the attraction was found to be the positional correlation
between oppositely charged domains.

Recently, Silbert et al.29 conducted an interesting exper-
iment to explore the interaction between heterogeneously
charged surfaces. Remarkably, they observed an attraction
which extended up to 500 Å. At first, the attraction was attrib-
uted to the correlation between the oppositely charged domains
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c)Electronic mail: diehl@ufpel.edu.br
d)Electronic mail: levin@if.ufrgs.br

on the two surfaces. However, when a rapid shear motion was
introduced between the surfaces to frustrate the correlations,
the attraction persisted. Since the charged domains under the
shear motion could not become correlated, the distribution of
surface charge was effectively quenched. It became clear that
the correlations were not the mechanism responsible for the
attraction in the experiments of Silbert et al. The question then
became: what was? Silbert et al. attributed the attraction to
the unequal nature of the repulsive and attractive interactions
between like-charged and oppositely charged domains. This,
however, appeared to contradict the conclusion that quenched
charge disorder should not lead to attraction between hetero-
geneously charged surfaces.30–32 To justify their conclusion,
Silbert et al. presented a simple argument based on the Poisson-
Boltzmann (PB) equation. They suggested that the interaction
between two neutral surfaces with a quenched charge disorder
arises from an asymmetry in the interaction between like and
oppositely charged domains inside an electrolyte solution. For
like-charged domains, the counterions are required to stay
between the surfaces to preserve the local charge neutrality,
while for the oppositely charged domains this is not necessary.
The entropic contribution to the overall force is, therefore,
asymmetric in the two cases. Silbert et al. then suggested that
the force between the two heterogeneously charged random
surfaces can be estimated as an arithmetic average of the
force between two like-charged and two oppositely charged
homogeneous surfaces.

In the present work, we will use Monte Carlo simula-
tions to show that the conclusions of Silbert et al. are qual-
itatively correct. The long-range attraction between hetero-
geneous surfaces with a quenched disorder arises due to the
asymmetric interaction between oppositely and like-charged
domains. On the other hand, we will demonstrate that a simple
arithmetic average of the force between like-charged and oppo-
sitely charged homogeneous surfaces is not sufficient to quan-
titatively account for the range and strength of the attraction
between heterogeneous surfaces with a quenched charge dis-
order, and a more sophisticated calculation must be performed.
The paper is organized as follows. In Sec. II, we explain the
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model and the simulation details. In Sec. III, we summarize
our results. In Sec. IV we conclude our work.

II. THE MODEL AND SIMULATION DETAILS

In the experiments of Silbert et al., the charged domains
were produced by the adsorption of cationic micelles to an
anionic substrate. To simplify the calculations, we will neglect
the spatial extent of micelles and project all the charge onto a
flat surface, see Fig. 1. As an additional simplification, we will
divide our surfaces into positive and negative domains of the
same surface area.

Our system then consists of two flat surfaces of dimen-
sions Lx and Ly, enclosing an electrolyte solution. For simpli-
city, we set Lx = Ly = 400 Å. The plates are separated by a
distance L. The solvent is assumed to be a uniform dielectric
of permittivity ϵw. The Bjerrum length, defined as λB = q2/
kBTϵw—where q, kB, and T are the proton charge, the Boltz-
mann constant, and the temperature, respectively—is 7.2 Å for
water at room temperature. The ions are modeled as hard
spheres of radius 2 Å. To perform simulations we use a grand
canonical Monte Carlo (GCMC) algorithm,33–35 see Appen-
dix A for details. The system is in contact with a salt reser-
voir at concentration ρs. As an input, the GCMC requires the
chemical potential of the ions of reservoir. For 1:1 electro-
lyte this can be calculated from ρs using the mean spherical
approximation (MSA),36–39 which is very accurate for weakly
interacting ions. Similarly, MSA also provides us with the
osmotic pressure of the bulk electrolyte. The force per unit area
between the two surfaces is then the pressure between the two
plates, minus the pressure of the bulk (reservoir) electrolyte.
The pressure on each plate is calculated by taking into account
the electrostatic interactions and the entropic force arising from
the momentum transfer during the collisions of the ions with
the surfaces. The entropic contribution is calculated using the

FIG. 1. Representation of the domains. Negative sites with absorbed surfac-
tants can be considered as positive sites. In (a), a side view and in (b), a top
view of the wall.

method of Wu et al.40,41 The details of the calculation are
presented in Appendix B.

To obtain the chemical potential and the osmotic pressure
of a reservoir containing 2:1 electrolyte, we first perform a bulk
GCMC simulation. In this simulation, the chemical potential
of electrolyte is fixed and the average concentration of ions
inside the reservoir is calculated. We then perform an isobaric-
isothermal ensemble (NPT) simulation to calculate the osmotic
pressure of the electrolyte35 at this concentration. The NPT MC
simulation method is described in Appendix C. To calculate
the electrostatic energy, a 3D Ewald summation method with
a correction for the slab geometry of Yeh and Berkowitz42 is
used.

Before considering the interaction between hetero-
geneously charged surfaces, we investigate two simpler cases:
equally charged and oppositely charged homogeneous sur-
faces, both in contact with a monovalent salt reservoir. In
this case, each plate is formed by N2

s point charge pseudo-
particles, uniformly distributed, with separation Lx/Ns along
the surface. The charge of the pseudo-particles is adjusted
to obtain the desired surface charge density. The system has
periodic boundary condition in x and y directions. We set Ns

= 40. To test the simulations, we compare our results with the
solution of the PB equation. For weakly charged homogeneous
surfaces inside a dilute 1:1 electrolyte, PB equation is expected
to be very accurate.5 The algorithm to solve the PB is the
same as in Ref. 43 adapted to the slab geometry. In Fig. 2, we
compare the density profiles obtained using the simulations
to the solution of PB equation. As expected, a very good
agreement between simulations and theory is obtained. For
homogeneously charged plates, the force between the surfaces
can be easily calculated using the contact theorem.44–46 The
net force per unit area is the difference between internal and
external pressures. As mentioned above, the osmotic pressure
of the reservoir can be obtained using MSA, which agrees
perfectly with the NPT simulations. On the other hand, within
the PB approximation the electrostatic correlations between
the ions are completely ignored, and the bulk pressure of 1:1

FIG. 2. Ionic density profiles between two equally charged plates, with
charge density −0.016 02 C/m2. Symbols represent simulations data while
lines represent PB curves. The concentration of the monovalent salt in reser-
voir is 20 mM. The solid line and circles represent positive ions while the
dashed line and squares, negative ones. z is the position between two surfaces.
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FIG. 3. Osmotic pressure for two equally charged plates. The parameters are
the same as Fig. 2.

FIG. 4. Ionic density profiles between two oppositely charged plates, with
charge density ±0.016 02 C/m2. Symbols represent simulations data while
lines represent PB curves. The concentration of the monovalent salt in reser-
voir is 20 mM. The solid line and circles represent positive ions while the
dashed line and squares, negative ones. z is the position between two surfaces.

FIG. 5. Osmotic pressure for two oppositely charged plates. The parameters
are the same as Fig. 4.

electrolyte is simply that of an ideal gas. Inspite of this very
crude approximation, for the parameters considered we see an
excellent agreement between the simulations and theory, see
Fig. 3. In Figs. 4 and 5, we show the ionic distribution and the
force per unit area for two oppositely charged homogeneous
surfaces. Again the agreement between GCMC simulations
and PB equation is very good.

To calculate the force between two randomly charged
heterogeneous surfaces, we divided each plate into equi-sized
domains, half of which are positively charged while the other
half are negatively charged. For each charge distribution, we
calculate the force between the two surfaces. The net force
is then calculated as an arithmetic average over the quenched
disorder. Because the number of configurations grows expo-
nentially fast with the number of charged domains, in this paper
we will consider surfaces with only two and four regions.

We start by considering two overall neutral plates with two
charged domains each: one positive and one negative, as illus-
trated in Fig. 6. There are two possible configurations, A1-A1
and A1-A2. The net force is the average over these two config-
urations. We next consider the interaction between two plates
containing 4 charged regions, two positive and two negative.
This is illustrated in Fig. 7. There are 6 possibilities for each
plate. As a result, for two interacting plates, there are 36 distinct
configurations. However, various of these configurations are
degenerate and are connected by symmetry. We calculated the
energy for each configuration and obtained the degeneracy
factors which are presented in Table I. All parameters for
this model are the same as in the previous case. By dividing
the plate into four areas, the positive and negative domains

FIG. 6. Representation of surfaces when they are divided into two charged
domains. The surfaces are overall neutral.

FIG. 7. Representation of surfaces when they are divided into four charged
domains. The surfaces are overall neutral.

TABLE I. Number of different configurations for the four-region model.

Configurations B1-B1 B1-B2 B1-B3 B1-B5 B1-B4 B3-B3

Degeneracies 2 2 16 8 4 4
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become smaller, in comparison with the two-region model.
This way we are able to explore the effect of domain size on
the overall interaction between the surfaces. Furthermore, note
that because of the periodic boundary conditions imposed by
the Ewald summation, the plates are actually infinite, with a
charge distribution corresponding to stripes or a checkerboard
pattern.

III. DISCUSSION

A. Monovalent salt ions

In the two-region model, the plates are divided into two
domains, one positive and one negative, as shown in Fig. 6. The
surface charge densities of both domains are the same. In Fig. 8,
we plot the average (over disorder) force per unit area between
the two plates. For configuration A1-A1, at all distances repul-
sion is observed. In configuration A1-A2, the two plates feel
attraction. In this case the number of ions between the plates
is smaller, and the entropic force is reduced. Calculating the
average over the two charge distributions, we see that the net
force is repulsive at short distances, but becomes attractive at
larger separations, see in Fig. 8. It should be mentioned that in
all cases the electrostatic contribution to the force is attractive,
as is expected for a charge neutral system. The net repulsion at
short distances is observed because of a strong entropic force
produced by the confined counterions.

In Fig. 9, we plot the net force between two randomly
charged surfaces for various surface charge densities of the two
domains. As can be seen, by reducing the charge density, the
attraction between the plates decreases. This is not surprising
since the attraction is caused by the electrostatic interaction.

To investigate the effect of domain size on the interaction
between the surfaces, we divided the area of each plate into four
regions. By doing this, each charged domain becomes smaller.
There are a total of 36 different configurations, many of which,
however, are related by symmetry. We find that there are only
6 distinct arrangements, each with its own degeneracy factor

FIG. 8. Net force per unit area between two neutral surfaces with absolute
site charge density equal to 0.056 C/m2, in contact with a salt reservoir at
concentration 0.01 M. The circles and squares represent two and four-region
models, respectively. The lines are guides to the eye.

FIG. 9. Net force per unit area between surfaces with two charged regions.
The reservoir 1:1 salt concentration is 0.01 M. The circles and squares
represent the charge densities 0.04 C/m2 and 0.072 C/m2, respectively. The
lines are guides to the eye.

listed in Table I. The net force can now be easily calculated
as a weighed average over the configurations listed in Table I.
Similar to the two-region model, a net attraction is observed,
see Fig. 8. We see, however, that the attraction is somewhat
weaker than for the two-region model.

B. Divalent salt ions

We next explore the effect of the charge asymmetry of
electrolyte on the interaction between two heterogeneously
charged surfaces. We consider a reservoir of 2:1 electrolyte at
concentration 10 mM. The surface patterns and surface charge
densities are the same as for the monovalent salt. Fig. 10
shows that a charge asymmetric electrolyte leads to a stronger
attraction between two heterogeneous random surfaces than
a 1:1 electrolyte. Furthermore, in the case of 2:1 salt, the
difference between the force for two and four-region models is

FIG. 10. A net force per unit area between two neutral surfaces with absolute
site charge density equal to 0.056 C/m2, for 2:1 salt reservoir at concentration
10 mM. The circles and squares represent two and four sites model, respec-
tively. The lines are guides to the eye.
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FIG. 11. Net force for various surface charge densities of the domains. The
two-region model is used. The reservoir 2:1 salt concentration is 0.01 M. The
circles and squares represent the charge densities 0.04 C/m2 and 0.072 C/m2,
respectively. The lines are guides to the eye.

larger, see Fig. 10, showing that the size of the charged domains
is more important for the interaction between the surfaces in
asymmetric electrolyte solutions. In Fig. 11, we plot the net
force for various surface charge densities. Similar to what was
observed for 1:1 electrolyte, decreasing the surface charge
density of the domains diminishes the attraction between the
plates.

IV. CONCLUSION

We have presented a simple model of interaction between
randomly charged heterogeneous surfaces inside an electrolyte
solution. Two and four-region models were explored. Unfor-
tunately due to the exponential growth of configurations, a
study of surfaces with smaller charge domains is not viable.
For example, a surface with 16 domains would lead to a total
of 165 636 900 different configurations, a brute force study of
which is clearly impossible. Nevertheless, exploration of two
and 4 region models has already provided a number of valuable
insights. Indeed, as was argued by Silbert et al., interaction
between two overall neutral surfaces with randomly charged
domains is attractive at large distances. We find that the attrac-
tion decreases with the size of domains and increases with
the charge asymmetry of the electrolyte solution. Silbert et al.
attributed the attraction between neutral randomly charged
surfaces to the asymmetry of the interaction between like and
oppositely charged domains. While the interaction between
like-charged domains has a strong entropic component, the
entropy is less important for oppositely charged domains, since
the counterions are not required to stay between the oppositely
charged regions to neutralize their charge. Based on this obser-
vation, Silbert et al. concluded that the interaction between two
heterogeneous random surfaces can be estimated as an arith-
metic average of the force between two infinitely large like-
charged surfaces and the force between two oppositely charged
surfaces. As we saw in Sec. II, the interaction between like-
charged and oppositely charged surfaces can be very accurately
calculated using the PB theory. We can, therefore, easily check

FIG. 12. Comparison of the calculation of Silbert et al.29 with the results of
the GCMC simulation for the two-region model for various charge densities
of the domains, from top to bottom 0.04, 0.056, and 0.072 C/m2. The
calculation of Silbert et al. significantly overestimates the attraction. The
deviations grow with the increasing surface charge density of the patches.
Solid lines are the results of GCMC while the dashed lines are the results of
the model of Silbert et al.

the model of Silbert et al. by comparing it with our simulations.
In Fig. 12 we contrast the model of Silbert et al. with the results
of our GCMC simulations for the two-region model. Although
qualitatively correct, the calculation of Silbert et al. signifi-
cantly overestimates the attraction between the two surfaces.
The error increases with the increasing surface charge density
of the charged domains. Finally, we expect that in the limit
that the area of domains becomes small, the approach of Naji
and Podgornik for randomly charged surfaces should become
accurate.30 Unfortunately, we are not able to check this limit
in our model, since, as mentioned previously, reduction of the
domain size leads to an exponential growth of configurations.

Up to now, we have only considered overall neutral sur-
faces. In the future, it will be interesting to explore the effect
of breaking the charge neutrality on the attraction between
heterogeneous randomly charged objects.
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APPENDIX A: GRAND CANONICAL MONTE CARLO
SIMULATION FOR α:1 SALT

Here, we briefly review the GCMC method for α:1 salt.
In each step, we have three possibilities, simple movement of
ions and the addition or removal of ions. In order to keep the
charge neutrality, if one randomly adds or removes a cation
with valency α, α anions must also be added or removed. The
probability of a particular state i is proportional to35

ρi =
V (N++N−)e−βEi+βN+µ++βN−µ−

N+!N−!Λ
3N+
+ Λ

3N−
−

, (A1)
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where V is the volume accessible to particles, N± are the
number of cations and anions, Ei is the electrostatic energy of
the state, µ± are the chemical potentials, andΛ± are the thermal
de Broglie wavelengths.

The transition probability for addition is

ρ j

ρi
=

Vα+1e−βE j+βEi+βµ++αβµ−

(N+ + 1)(N− + α)(N− + α − 1) · · · (N− + 1)Λ3
+Λ

3α
−
,

(A2)

where j is the state after addition. We define the parameter z
= eβµ++αβµ−/Λ3

+Λ
3α
− . This parameter is the input of simula-

tions. The transition probability for addition can be rewritten as

ρ j

ρi
=

z Vα+1e−βE j+βEi

(N+ + 1)(N− + α)(N− + α − 1) · · · (N− + 1) . (A3)

The transition probability for the removal is

ρ j

ρi
=

e−βE j+βEiN+N−(N− − 1) · · · (N− − α + 1)
z Vα+1 , (A4)

where j is the state after removal. After the transition proba-
bilities have been calculated, they are compared with a random
number, uniformly distributed between 0 and 1. If this random
number is lower than the transition probability, the movement
is accepted. Otherwise, it is rejected.

APPENDIX B: ENTROPIC FORCE

The algorithm of Wu et al.,40 constructed to calculate the
entropic force between two colloidal particles, can be easily
adapted to the planar geometry. The entropic force is given by
the expression

βF =
⟨N1⟩
∆z

, (B1)

where N1 is the number of overlaps of one of the walls with the
free ions (which are held fixed) after a displacement ∆z. The
force is obtained in the limit ∆z → 0. The entropic pressure is

βP =
⟨N1⟩
∆zLxLy

. (B2)

APPENDIX C: NPT MONTE CARLO SIMULATIONS

In this appendix, the NPT MC simulation is rapidly re-
viewed. Besides the particle movement, the volume of the
simulation box is varied. This kind of movement is randomly
chosen with a small probability, normally, 1/N , where N is
the number of particles in the box. After the increment or
decrement of the volume of the box, the particle positions
are rescaled. The transition probability of acceptance of the
changes in volume is

ρ j

ρi
=

(
Vj

Vi

)N
e−βE j+βEi−P(Vj−Vi), (C1)

where j is the new state, Vi and Vj are the volume accessible
to the N particles in the old and new states, respectively. The
pressure P is the input of the simulation. Again, if a random

number uniformly distributed between 0 and 1 is lower than the
transition probability, the movement is accepted. Otherwise, it
is rejected.
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