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The Bell–Lavis model for liquid water is investigated through numerical simulations. The lattice-gas
model on a triangular lattice presents orientational states and is known to present a highly bonded
low density phase and a loosely bonded high density phase. We show that the model liquid-liquid
transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the
cluster variational method. We define an order parameter which allows interpretation of the
transition as an order-disorder transition of the bond network. Our results indicate that the
order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second
order transition is discarded. A detailed investigation of anomalous properties has also been
undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the
mean-field solution. © 2009 American Institute of Physics. �doi:10.1063/1.3253297�

I. INTRODUCTION

Water is probably the most familiar substance in nature,
due to its abundance and relevance for the existence of life. It
exhibits 66 thermodynamic, dynamic, and structural proper-
ties recognized to be anomalous,1 which is unusual when
compared with the behavior of other substances. The most
familiar anomaly is the increase in density with temperature,
at ambient pressure, up to 4 °C. Above this temperature wa-
ter behaves as a normal liquid and density decreases as tem-
perature rises. Experiments for water allow to locate the line
of temperatures of maximum density �TMDs�, below which
the density decreases with decreasing temperature, differ-
ently from the behavior of the majority of fluids, for which
density increases on lowering temperature.2

In order to explain the thermodynamic anomalies, it has
been proposed that these anomalies could be related to a
second critical point at the end of a coexistence line between
two liquid phases, a low density liquid �LDL� and a high
density liquid �HDL�.3 In spite of its experimental inaccessi-
bility, due to its location beyond the line of homogeneous
nucleation, in the supercooled region, the experimental indi-
cation of the presence of polymorphism in the same region
and results from numerical experiments on realistic water
models maintained the idea of a second critical point alive.

Water, however, is not an isolated case. There are also
other examples of tetrahedrally bonded molecular liquids
such as phosphorus4,5 and amorphous silica6 that are other
good candidates for having two liquid phases. Moreover,
other materials such as liquid metals7 and graphite8 also ex-

hibit thermodynamic anomalies. Unfortunately a coherent
and general interpretation of the LDL and HDL phases is still
missing. Despite the lack of consensus concerning the origin
of waterlike anomalies, it is widely believed that they are
related to the directional interactions. The tetrahedral struc-
ture of ice is a consequence of the directional hydrogen
bonding which is responsible for ice being less dense than
the liquid phase. By increasing temperature, heat is used up
to disrupt hydrogen bonds, which allows molecules to get
closer. Thus density increases as temperature rises, up to the
TMD. As temperature rises further, most of the hydrogen
bonds are broken and water behaves as a normal fluid, i.e.,
the density decreases by increasing temperature.

A variety of statistical models have been proposed in
order to reproduce the main features of liquid water, and
specially its anomalies. From a general point of view, statis-
tical models can be classified into isotropic and orientational
models.

Isotropic models have been studied with focus on the
density anomaly and its possible relation to the existence of
two characteristic lengths with a usual attractive interaction
and a soft repulsive interaction. The competition between
these lengths gives rise to anomalies.9–21

As to orientational models, they can be divided into
Potts-like and icelike models. In the first case, particle orien-
tations are represented by site or bond Potts variables and
bonding takes place neighboring arms or particles in a spe-
cific Potts state. The density anomaly is introduced ad hoc by
the addition to the free energy of a volume term proportional
to a Potts order parameter.22–24

Orientational icelike models which emphasize the fixed
orientation of the hydrogen bond have been first introduced
by Lavis and co-workers25–28 a few decades ago. In two di-
mensions the fully bonded hexagonal lattice is naturally of
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low density. In analogous 3d versions29,30 for low tempera-
tures, low density bonded configuration may be achieved by
imposing an energy penalty for dense configurations, either
through lowering the h-bond energy if a neighbor site to a
bond is occupied, either through attributing negative values
to the van der Waals, which becomes “repulsive.” This is the
mechanism for introducing a density anomaly in the models.
Mercedes-Benz models31–33 constitute a continuous version
of the orientational icelike models introduced by Bell et al.25

and may also present a range of anomalies, including density
anomalies. More recently, Henriques and co-workers intro-
duced a lattice model in two34,35 and three dimensions21,36

where water molecules have four bonding and two inert arms
�2d� and four inert arms �3d�. The anomalies appear due to
the presence of two competing interactions: hydrogen bonds
and isotropic repulsive van der Waals forces. In the spirit of
water interactions, the presence of nonbonding neighbors is
punished by an increase in energy. A third type of orienta-
tional model is the Stillinger and Weber one that possesses a
term in the angle dependent Hamiltonian that penalizes con-
figurations which are not tetrahedral.37

Although all models mentioned above are able to repro-
duce waterlike anomalies, the understanding of the role
played by directionality is still missing. While in water and
other tetrahedral liquids directionality seems to play a rel-
evant role, it is not required to reproduce the thermodynamic
and dynamic anomalies displayed in the case of isotropic
potentials. It was also shown that the for the presence of the
anomalies it is not relevant the distinction between the ac-
ceptor and donor arm in the hydrogen bond.38

Which would be the contribution of the directionality in
these models? In order to answer this question in this paper
we explore thoroughly the properties of the Bell–Lavis
model.25 The model is the only 2d icelike orientational
model known to us which does not require an energy penalty
in order to present a density anomaly. It is a triangular lattice
gas model in which water molecules are represented by three
symmetric bonding arms and interact through van der Waals
and hydrogen bonds.

The phase diagram of this model has been previously
explored by means of mean-field approximations,25,26 real
space renormalization group analysis,27,28 and, more recently,
through the cluster variation method39 and from Bethe cal-
culations for the Husimi cactus.40 Some Monte Carlo simu-
lations have also been presented by Patrykiejew et al.41 Be-
sides the gas-liquid transition, an open bonded network is
exhibited by the model, at lower pressures and temperatures
�the LDL or open phase�, which gives way to a dense poorly
bonded network �the HDL or full phase�. Consensus is lack-
ing on the order of the liquid-liquid transition. The mean-
field studies predict a weak first-order transition, whereas the
renormalization group and the Monte Carlo simulations sug-
gest a critical transition. The latter also argues for a second
order transition of the Ehrenfest type. As to thermodynamic
anomalies, these have not been investigated through simula-
tions, whereas in Bethe calculations40 a density anomaly was
sought for only in the symmetric HDL phase and found in a
metastable region of the phase diagram.

We also undertake a thorough investigation of the model

thermodynamics in order to ascertain the order of the transi-
tion, its universality class, and the definition of an order pa-
rameter. In addition we check for the presence of a stable
density anomalous region of the phase diagram.

This paper is organized as follows. In Sec. II the model
is described and the ground state analysis is presented. In
Sec. III the simulation results for the model thermodynamics
are presented and in Sec. IV final comments close the paper.

II. THE BELL–LAVIS MODEL AND GROUND STATE
ANALYSIS

The Bell–Lavis model is a two dimensional triangular
lattice gas. Particles are represented by occupational vari-
ables �i, with �i=0,1 for empty or occupied sites, respec-
tively. Each water particle has two orientational states, as can
be seen in Figs. 1�a� and 1�b�. Orientation may be described
in terms of bonding and nonbonding “arms.” The latter are
represented through variables �i

ij for the arm of particle i
which points to particle j. An arm may be nonbonding if
�i=0, or bonding, for �i=1 �see Figs. 1�a� and 1�b��. Two
next neighbor molecules are considered to interact via van
der Waals forces and hydrogen bonds. The model may be
described by the following effective Hamiltonian in the
grand-canonical ensemble:

H = − �
�i,j�

�i� j��hb�i
ij� j

ij + �vdw� − ��
i

�i, �1�

where �hb is the energy associated with the formation of a
hydrogen bond, in case two bonding arms point to each other
�see Fig. 1�b��, �vdw is the van der Waals interaction energy
�vdW� and � represents the chemical potential. The hydro-
gen bond interaction tends to make the particle density �
smaller, in order to make hydrogen bond density larger. This
can be seen by inspection of hydrogen bonding on the lattice:
the system is fully hydrogen bonded if the particle arms are
oriented such as to form a honey-comb-like structure �see
Fig. 2�a��. In this case, particle density is �=2 /3 and the
number of hydrogen bonds per particle is �hb=3 /2. On the
other hand, the van der Waals interaction and the chemical
potential field tend to fill up the lattice. However, if the lat-
tice is fully occupied, �=1, the number of hydrogen bonds
per particle is reduced to �hb=1 �see Fig. 2�b��. This compe-
tition between the van der Waals and the hydrogen-bond in-
teractions yields the possibility of the appearance of two

(a) (b)

FIG. 1. Bell–Lavis water model interactions. �a� Two orientations of the
water particles: pair interaction energy is −�vdw. �b� Water molecules form a
hydrogen bond: pair interaction energy is −��vdw+�hb�.
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dense phases, with densities �=2 /3 and �=1, respectively, at
low temperatures.

The existence of two dense phases depends on the rela-
tive intensity of the two interactions, ���vdw /�hb. At zero
temperature, in addition to the gas phase, with �=0, two
dense phases have been proposed for the model system, if
�=�vdw /�hb�1 /3: a HDL phase, HDL, with �=1 and a LDL
phase, LDL, with �=2 /3.40,41 The two phases are illustrated
in Figs. 2�a� and 2�b�.

Stability of the three phases can be investigated from
analysis of the grand potential. At T=0, the reduced grand
potential free energy density, ��	 /V�hb, is obtained from
	= �H�. From inspection of the number of nearest neighbors
and of hydrogen bonds for each phase �see Fig. 2�, one may
write down the reduced grand potential for the three possible
phases as

�gas = 0, �2�

�LDL = − 1 − � − 2
3 �̄ , �3�

�HDL = − 1 − 3� − �̄ , �4�

where �̄=� /�hb.
As expected, at very low and negative chemical poten-

tials the gas phase dominates. As the chemical potential is

increased, the LDL phase becomes stable, whereas at still
larger chemical potentials the HDL corresponds to the stable
phase.

The first phase transition, between the gas and the LDL,
takes place at chemical potential given by

�̄gas-LDL = − 3
2 �1 + �� , �5�

which is obtained through equating the grand potentials, or
pressures, of the two phases, �gas=�LDL. The second phase
transition, between LDL and HDL, occurs at �LDL=�HDL,
which makes the chemical potential at the transition

�̄LDL-HDL = − 6� . �6�

In the next section we present our simulation studies of the
model system properties for finite temperatures. Our interest
lies in model parameters which may yield a density anomaly,
and we thus look for systems with two dense phases, which
implies taking the interaction strength of the hydrogen bond
dominating over that of the van der Waals parameter, i.e.,
��1 /3. We thus focused on two cases, �=1 /4 and �=1 /10,
which describe, respectively, weaker and stronger hydrogen
bonding with respect to van der Waals, respectively, and
which we discuss below.

III. THERMODYNAMICS: MONTE CARLO
SIMULATIONS

Model thermodynamic properties were obtained through
careful Monte Carlo simulations. The microscopic configu-
rations were generated through randomly selected exclusion,
insertion, or rotation of particles in a grand-canonical en-
semble, i.e., for fixed values of temperature and chemical
potential. Acceptance rates are those of the usual Metropolis
algorithm in the grand-canonical ensemble: transitions be-
tween two microstates are accepted according to
min	1,exp�−
�H�
, where �H is the effective energy dif-

(a) (b)

FIG. 2. Liquid phases at zero temperature for the BL model. Note that the
LDL phase is ordered and presents, in contrast with the HDL phase, only
one configuration.
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FIG. 3. Pressure vs chemical potential for T̄=0.35. Comparison between the
pressure obtained from the numerical integration and from the partition
function for �=0.1.
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FIG. 4. Phase diagram for the Bell–Lavis model in the space of reduced

chemical potential �̄ vs reduced temperature T̄ for �=1 /10. Stars, circles,
and triangles denote the phase transition between gas-LDL, LDL-HDL
phases, and TMD line, respectively.
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ference between the two states. Periodic boundary conditions
were adopted. Our simulations were carried out for lattice
sizes ranging from L=30 to L=90.

Densities are calculated as averages, as usual. Obtaining
fields is a more delicate task in simulations. Pressure was
evaluated in two independent ways. In the first case, the pres-
sure was computed via numerical integration of the Gibbs–
Duhem equation, SdT−Vdp+Nd�=0, at fixed temperatures,
namely, dp=�d�. Integration was carried out from a suffi-
ciently low density value, at which pressure is zero. In the
second procedure, the grand potential free energy � is ob-
tained from the largest eigenvalue of the transfer matrix us-
ing the Hamiltonian Eq. �1�. Since the pressure and the grand
potential free energy are related through p=−	 /V, this is an
alternative which allows calculating the pressure directly
from the simulations and avoids performing an integration.
The method is shown in detail in Appendix A. Both proce-
dures give the same result, as illustrated in Fig. 3.

A. Phase diagrams: Two liquids and order-disorder
transition

Phase diagrams in the chemical potential versus tem-
perature plane are displayed in Figs. 4 and 5 for �=1 /10 and
�=1 /4, respectively. The pressure versus temperature phase
diagram for �=1 /10 and �=1 /4 is shown in Figs. 6 and 7,

respectively. Reduced model parameters are used: T̄=T /�hb,
P̄= P /�hb, and �̄=� /�hb. Unless otherwise stated, results pre-
sented here are for lattice size L=42.

For both interaction parameters analyzed, at low chemi-
cal potential and temperature, the system is constrained to
the gas phase. By increasing chemical potential for a fixed
low temperature, a first order phase transition between the
gas and the LDL phase occurs. By increasing further the
chemical potential at fixed low temperature a second order
phase transition from the LDL to the HDL phase takes place.
At T̄=0, the gas-LDL phase transitions take place at
�̄gas-LDL=−1.65 and �1.875 for �=1 /10 and 1/4, respec-
tively �see Eq. �5��. As to the LDL-HDL phase transition, the
corresponding points are �̄LDL-HDL=−0.60 and �1.5, respec-
tively �see Eq. �6��.

The first-order line between the gas and the LDL phases
was investigated by means of histograms of density, as
shown in Figs. 8 and 9, for smaller and larger vdW strength
interactions, respectively. At phase coexistence, one has a
bimodal distribution for the density �: the two peaks corre-
spond to the gas and to the liquid densities. Figures 8 and 9
present the density distributions near the end of the coexist-
ence lines, and most probable densities are away from
ground state densities �gas=0 and �LDL=2 /3 and �gas=0 and
�HDL�0.80, respectively. The end of first order line is char-
acterized by a single peak in the density histogram, thus
suggesting criticality. For �=1 /10, the gas-LDL coexistence
line ends at T̄t=0.435�1� and �̄t=−1.6375�1�. For �=1 /4, the
stronger van der Waals interaction extends the gas-liquid co-
existence line to higher temperatures, and the single peaked
histogram is attained at temperature T̄c=0.47 and chemical
potential �̄c=−2.0095�5�.

0 0.1 0.2 0.3 0.4 0.5 0.6
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FIG. 5. Phase diagram for the Bell–Lavis model in the space of reduced
chemical potential �̄ vs reduced temperature T̄ for �=1 /4. Stars, circles, and
triangles denote the phase transition between gas-LDL, LDL-HDL phases,
and TMD line, respectively.
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FIG. 6. Phase diagram for the Bell–Lavis model in the space of reduced
pressure P̄ vs reduced temperature T̄ for �=1 /10. Stars denote the first-order
phase transition between the gas-LDL, circles the continuous second-order
phase transition between the LDL–HDL phases and triangles denotes the
TMD. The first-order phase transition between gas-LDL meets the continu-
ous transition at the TCP t.
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FIG. 7. Phase diagram for the Bell–Lavis model in the space of reduced
pressure P̄ vs reduced temperature T̄ for �=1 /4. Stars denote the first-order
phase transition between gas-LDL, circles the continuous second-order
phase transition between the LDL-HDL phases and triangles denote the
TMD. The continuous phase transition between LDL-HDL phases ends at
the first-order phase boundary between the gas-LDL at a critical end point e.
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The phase transition between the LDL and HDL phases
presents no density discontinuity. It may be identified from
susceptibilities, as shown in Fig. 13 and corresponds to a
second order transition. The terminus of the coexistence line
is therefore very different in the two cases: in the strong
bond case, �=1 /10, the critical LDL-HDL line meets the
gas-LDL coexistence line at a tricritical point �TCP�,
whereas for the weak bond case, �=1 /4, the critical HDL-
LDL line meets the coexistence line at a critical end point. In
the latter case, the gas-liquid coexistence line ends at a criti-
cal point.

The differences between the phase diagrams can be ra-
tionalized as follows: stronger bonds relative to van der
Waals interactions, �=1 /10, lead to a larger LDL phase,
whereas stronger van der Waals interactions with respect to
bond interactions, �=1 /4, stabilize gas-liquid coexistence at
higher temperatures. Extension of the liquid-gas coexistence
line, together with contraction of the LDL phase, transforms
the TCP into a critical end point. This reentrance, however, is
not present in the temperature versus density plane as illus-
trated in Fig. 10.

Our phase diagrams must be compared to some results
present in the literature. The exact solution on a Husimi
cactus40 for the same model parameters, �=1 /10 and
�=1 /4, yielded weak first-order LDL-HDL transitions. A
previous study by Bruscolini et al.39 with the cluster

variational method of the �=1 /4 case led to the same con-
clusion. On the other hand, Patrykiejew et al.41 obtain
through Monte Carlo simulations a continuous liquid-liquid
transition line for the �=1 /4 case, in accordance with our
results. Thus the first-order liquid-liquid transition seems to
be an artifact of the Bethe-like solutions.

However, on a global look, the Husimi cactus solution40

produces phase diagrams qualitatively similar to our own:
for the stronger bond �=1 /10 case, the critical point, present
for the weaker bond case, �=1 /4, disappears, and the gas-
liquid line joins smoothly the liquid-liquid line.

B. Two liquids and order-disorder transition

Now a question may be posed: the absence of a density
gap indicates that the model does not display liquid-liquid
coexistence, so what distinguishes the two phases? A previ-
ous study on the mapping of the BL model on an anisotropic
spin-one antiferromagnetic model40 suggested sublattice or-
dering, corresponding to nonfrustrated antiferromagnetic or-
dering on the triangular lattice. We thus examined the model
sublattice properties. In order to proceed, we divided the tri-
angular lattice into three sublattices named A, B, and C, as
illustrated in Fig. 11. We measured sublattice average density
and molecular orientational state.

In Fig. 12�a�, we plot the density per site �i on each
sublattice, for low strength van der Waals, �=1 /10. It can be
seen that as temperature is lowered two sublattices �A and B�
are filled with particles while the third sublattice �C� be-
comes empty. This occurs rather abruptly in the same range

of temperatures of the specific heat peak �T̄�0.5�. This sug-
gests using an order parameter 
 given by

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ρ

0

0.001

0.002

P

FIG. 8. Histogram of the density of molecules � for the first order line
between the gas and LDL phases for �=1 /10, �̄=−1.6472�3�, and T̄=0.42.
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FIG. 9. Histogram of the density of molecules � for the coexistence
phase between the gas and HDL phases for �=1 /4, �̄=−1.998 50�3�, and

T̄=0.45.
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FIG. 10. Phase diagram T̄ vs � for �=1 /10.
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FIG. 11. Three sublattices on the triangular lattice, named A, B, and C.
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 = �i − � j , �7�

with i , j=A, B, or C. At T̄=0, �
�=1 or 0, depending on the
pair of sublattices chosen, whereas at high temperatures,

=0, for any two pair of sublattices.

We also compared molecular orientation on sublattices.
We call the two orientational states presented in Fig. 1�a� as
m=−1 and m=+1 states, respectively. Figure 12�b� presents
the average value of the variable m as a function of tempera-
ture for each sublattice. At low temperatures, the high-
density sublattice A presents molecules in one of the orien-
tational states, m�+1, whereas the second high-density
sublattice, B, presents particles mostly in the opposite orien-
tational state, with m�−1. In the low density sublattice, C,
molecules present no preferential orientation, and we have

m�0. As the specific heat peak position �T̄�0.5� is ap-
proached, molecule average orientation becomes random.
Therefore, the LDL-HDL transition may then be character-
ized as an order-disorder transition. Positional as well as ori-
entational order disappear at the transition.

The definition of the order 
 parameter allows interpre-
tation of the reentrant behavior of the HDL-LDL transition in
the pressure-temperature phase diagram �Figs. 6 and 7�. At
high temperatures, in the HDL phase, the system is of lower
density and is disordered both on sublattices and on the glo-

bal lattice. As the temperature lowers, at the transition to the
LDL phase, two of the sublattices fill up, while the third one
becomes empty, and bonding increases. Inside the LDL
phase the density is lower than in the HDL phase, but sub-
lattice ordering implies lower entropy. As the temperature is
decreased further, the system returns to the HDL phase, but
then the lattice fills up completely, and global entropy de-
creases in spite of higher bond entropy.

C. Critical line

In order to give a more precise definition of the continu-
ous order-disorder transition line, the second moment of the
order parameter 
 has been investigated. We computed the
isothermal susceptibility given by

�T =
V

T
��
2� − �
�2� . �8�

This susceptibility is shown in Fig. 13 as a function of tem-
perature, for �=1 /10, at �̄=−1.40. The peak in the suscep-
tibility grows with L, suggesting that the system undergoes a

phase transition at �̄=−1.40 and T̄�0.48. Scaling analysis
indicates the exponent � /��1.50.

Analogous measurements for different chemical poten-
tials were undertaken in order to build the LDL-HDL transi-
tion line in the phase diagram of Figs. 4 and 5. The corre-
sponding line is a line of susceptibility maxima.

In order to check the location of the critical line, we
evaluate, for different system sizes, the fourth-order cumu-
lant U4 given by

U4 = 1 −
�
4�

3�
2�2 . �9�

The results are shown in Fig. 14 for �=1 /10, �̄=−1.40, and
lattice sizes L=30,42,60,90. The crossing of the lines rep-
resenting different lattice sizes at a single point confirms the
presence of criticality. Computed cumulants for other values
of the chemical potential display analogous behavior, lending
confidence to the interpretation of criticality.
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But to what universality class does the critical order-
disorder line belong? In order to answer this question we
analyzed the value of the cumulant at the crossing point as
well as the order parameter scaling with size.

The cumulant U4 displays different regimes at low and
high temperatures: for low temperatures, it approaches the
value 2/3, while for high temperatures it approaches 0. At the
phase transition temperature, T̄c=0.4760�2�, it displays a
nontrivial value 0.610�5� for all lattice sizes. The nontrivial
value of the cumulant U4�0.610 at the criticality is charac-
teristic of systems belonging to the Ising universality class.

Next we examine the scaling of the order parameter.
According to the finite size scaling theory,42 at the critical
point the order parameter decreases algebraically with the
system size through the relation 

L−
/�, where 
 /� is the
associated critical exponent. The critical exponent � de-
scribes the spatial length correlation � which diverges at the
critical point according to the law �
 t̄−�, where t̄= T̄− T̄c.

For finite systems, it leads to the expression T̄L− T̄c�
L−1/�,42

where T̄L is the pseudocritical temperature, obtained by a
maximum in “some susceptibility.” Therefore, log-log plots

of 
 and T̄L− T̄� versus L yield the exponents 
 /� and �,
respectively. Figures 15�a� and 15�b� illustrate such plots
for �=1 /10 and �̄=−1.40. From the plots we obtain

 /�=0.124�3� and �=1.03�2�. These values are in excellent
agreement with exact values for the Ising model 
=1 /8 and
�=1, thus classifying the order-disorder transition of the BL
model in the Ising universality class.

This conclusion is in contrast with the suggestion of Pa-
trykiejew et al.41 for the continuous liquid-liquid line. They
propose that it would be an example of a second-order phase
transition in the Ehrenfest classification, as demonstrated by
discontinuity of the specific heat at constant volume CV at
the transition. In Fig. 16 we show the dependence of

CV and Cp versus the reduced chemical potential �̄ for T̄
=0.35. The constant volume and constant pressure specific
heats were calculated from simulation data at constant
chemical potential through expressions43

CV =
1

kBT2���H2��VT −
��H�N��VT

2

��N2��VT
� , �10�

and

CP = CV + TV�P
2 /kT, �11�

where kT=KT /V, KT= �V /N2kBT���N2��VT, and

�P =
PKT

T
−

��H�N��VT

NkBT2 +
�H��VT��N2��VT

N2kBT2 , �12�

where N=�i=1
V �i and �X=X− �X� with X=H and N. Our re-

sults show that the constant volume specific heat CV displays
a discontinuity at �̄=−1.98, close to the gas-liquid transition
line �see Fig. 5�, and a small peak close to �̄=−1.74, which
increases by increasing L, which is in consistency with the
transition point in the corresponding phase diagram, Fig. 5,
obtained by means of the isothermal susceptibility analysis
�Fig. 13�. In Ref. 41 the authors might have been misled by
the absence of a phase diagram in the chemical potential
versus temperature plane. The specific heat presented in Ref.

41 corresponds to our temperature T̄=0.175. At this tempera-
ture, the gas-liquid transition is near �̄=−7.4, in their
units,whereas the liquid-liquid transition is near �̄=−5.7, in
the same units. The discontinuity presented in the paper is
near �̄=−7.3, and thus must correspond to the gas-liquid
transition. Ranges below �̄=−6 are absent from their figure,
so the liquid-liquid transition peak is not shown.

D. Anomalous properties

In this section we present data for the model particle and
H-bond densities, and for model entropy. The presence of a
LDL suggests that a line of maxima of densities exists. Such
maxima were looked for both at constant chemical potential
and constant pressure and displayed in the model phase dia-
grams as TMD lines �see Figs. 4 and 5�. Note that the TMD
crosses the LDL-HDL critical line in the case of strong
bonds ��=1 /10�: the anomaly is inside the LDL phase at low
pressures and migrates to the HDL phase at higher pressures.
In the case of weaker bonds ��=1 /4�, the anomaly is present
only in the HDL phase.

However, as discussed in the previous subsection, corre-
lations between system density and hydrogen-bond density
per particle seem to be of some importance. We therefore
compare the behavior of the two densities with temperature,
for both strong and weak bonds. Figures 17�a� and 17�b�
show data for the density � versus T̄, for different fixed pres-
sures P. For low pressures, the density presents a maximum.
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FIG. 15. In the graphs �a� and �b� we have a log-log plot of the
T̄�� T̄L− T̄� and 
 vs L for �=1 /10 and �̄=−1.40. The continuous lines
have slope 1.03�2� and 0.124�3�, respectively.
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In contrast, for higher pressures P, the density is a decreasing
function of temperature. Particle density behavior is closely
accompanied by hydrogen-bond density behavior �Figs.
17�c� and 17�d��. For the lower pressures, for which densities
present a maximum, hydrogen bond densities decrease with
temperature. For the lowest pressure, at which a density
maximum is clearly seen, an inflection point of the H-bond
density occurs is present at the same temperature. On the
other hand, for the higher pressures, for which density is a
decreasing function of temperature, hydrogen bond densities
increase mildly at low temperatures. The low pressure be-
havior coincides with the qualitative picture which has been
ascribed to water for a long time: density increases while
the hydrogen-bond network distorts, implying a decreas-
ing H-bond density. On the other hand, the increasing
H-bond density at higher pressures, low temperatures, sug-
gests that the appearance of empty sites allows for more
bonding.

Finally, entropy per site is shown in Figs. 17�e� and
17�f�. For the strong bond case, �=1 /10, the degeneracy of
the HDL ground state is clearly seen �for p̄=0.8 and p̄=1.2�.
Moreover, the thermodynamic identity �S /�P=−�V /�T al-
lows interpretation of entropy behavior as complementary to
density behavior �Figs. 17�a� and 17�b��. Note the inversion
of the relative position of entropies at different pressures, at
fixed temperature, before and after the curves cross: at low
temperatures, the low pressure curves, which present increas-
ing density as a function of temperature, display lower en-
tropy than the higher pressure entropies, associated with
monotonic decreasing density, as function of temperature. At
higher temperatures, the situation is opposite: the lower
pressure entropies are higher than the higher pressure
entropies. Thus the anomalous density behavior is accompa-
nied by an “anomalous” entropy behavior, in which entropy
increases with pressure. Differently from normal liquids,
this can be rationalized in terms of disordering of

bonds: entropy increases because bond disordering domi-
nates over positional ordering, as density is increased with
pressure.

IV. CONCLUSIONS

We investigated the Bell–Lavis model for liquid water
through numerical simulations in order to shade some light
in the role played by the orientational degrees of freedom of
this model in the liquid-liquid transition. Our study allowed
the clarification of the nature of the liquid-liquid transition.
Previous careful mean-field studies, such as calculations on
the Bethe lattice40 or through the cluster variation method39

yielded liquid-liquid coexistence with a small density gap.
The Monte Carlo simulations demonstrate that the transition
is continuous. Moreover, our finite scaling analysis indicates
that the transition is in the Ising universality class.

In the absence of a density gap, characterization of the
transition requires establishing an order parameter. Inspired
on the mapping on the antiferromagnetic spin model, we
propose an order parameter based on the difference in sub-
lattice densities, associated with the highly bonded configu-
rations. This order parameter presents a divergent suscepti-
bility at the critical temperature. On the other hand, we have
also shown that positional order on sublattices is accompa-
nied by orientational order. Thus the ordered LDL phase pre-
sents both positional and orientational order which disappear
in the HDL phase.

In the analysis of the thermodynamic variables we were
able to accompany number and H-bond densities as well as
entropy per particle. The latter is calculated directly from
simulations through a transfer matrix representation of the
model Hamiltonian. Comparison of the behavior of the three
densities with temperature shows that the density anomaly is
accompanied by inflection points both in hydrogen bond
density as well as in entropy per particle. Such behavior was
suggested in the mean-field approach,40 but is made much
more clear in the simulation data. In relation to the density
anomaly, it must be pointed out that the line of density
maxima �TMD�, which was located in the metastable HDL
phase for the Bethe lattice, is turned stable through fluctua-
tions present in the Monte Carlo procedure.

As a final remark, we should say that a real liquid-liquid
transition would not be continuous transition, since liquid
polymorphism is understood do imply discontinuity in den-
sity across the transition. Could the transition become first-
order in three dimensions? This is a point to be cleared.
However, the Bell–Lavis model has no trivial extension to
three dimensions. Nonetheless, the feature that makes it an
interesting model is the fact that it is an orientational model
with attractive van der Waals interactions. This is not the
case for every other orientational model in the literature that
we know of. Thus it remains to be cleared whether orienta-
tional models with attractive isotropic interactions are able to
yield liquid-liquid coexistence.
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APPENDIX A: PRESSURE CALCULATION

In this appendix the pressure is obtained from the grand
potential free energy.44 In order to describe the method
briefly, let us consider a triangular lattice with V sites divided
in N successive layers Si���1,i ,�2,i , . . . ,�N,i� with L sites,
V=L�N. The Hamiltonian may be decomposed in the fol-
lowing way:

H = �
k=1

N

H�Sk,Sk+1� , �A1�

where due to the periodic boundary conditions SN+1=S1.
The probability P�S1 ,S2 , . . . ,SN� of a given configura-

tion of the system is given by

P�S1,S2, . . . ,SN� =
1

�
T�S1,S2�T�S2,S3� ¯ T�SN,S1� ,

�A2�

where T�Sk ,Sk+1��exp�−
H�Sk ,Sk+1�� is an element of the
transfer matrix T and

� = Tr�TN� , �A3�

where � is the Grand-Canonical partition function. By using
the spectral expansion of the matrix T it is possible to show44

that

�0 =
�T�S1,S1��

��S1,S2
�

, �A4�

where �0 denotes the largest eigenvalue, which is evaluated
from averages �T�S1 ,S1�� and ��S1,S2

�. The quantity T�S1 ,S1�
is obtained from T�Sk ,Sk+1� by taking Sk=Sk+1, where

T�Sk,Sk+1� = exp��
i=1

L

��i,k��i,k+1 + �i+1,k + �i+1,k+1���vdw

+ �hb�i,k��i,k+1 + �i+1,k + �i+1,k+1� + ��i,k��� ,

�A5�

and �S1,S2
=1 when layers S1 and S2 are equal and zero oth-

erwise. Finally, the free energy is evaluated from the largest
eigenvalue through the relation

	

V
= −

1


V
ln �0 = − P , �A6�

where V is the volume �number of sites in the lattice� and 	
is the grand potential free energy. The entropy per site is
evaluated from the grand potential through the formula

s =
u − �

T
, �A7�

where u=U /V and �=	 /V.
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