I - ,\.',.\‘ . 29MA! 2004
SABC (0l
A:2000,n.55 -

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE MATEMATICA
DEPARTAMENTO DE ESTATISTICA
CADERNOS DE MATEMATICA E ESTATISTICA
SERIE A: TRABALHO DE PESQUISA

STATISTICS OF VISITS TO ZERO ANGLE CORNERS OF BILLIARDS

ARTUR LOPES
ROBERTO MARKARIAN

SERIE A, NQ 55
PORTO ALEGRE, ABRIL DE 2000 sJ



Statistics of visits to zero angle corners of billiards

A. Lopes
I. Matemdtica - Universidade Federal de Rio Grande do Sul
91500-000 - Porto Alegre, RS, Brasil
E-mail: alopes@mat.ufrgs.br

R. Markarian
Instituto de Matemadtica y Estadistica “Prof. Ing. Rafael Laguardia”
Facultad de Ingenieria, Universidad de la Repiiblica
C.C. 30, Montevideo, Uruguay
E-mail: roma@fing.edu.uy; Fax: (598-2)-711-5446

Abstract

Consider a Sinai billiard table @ (bounded region of the plane, with a finite number of
dispersing boundaries 8Q;) such that two circular pieces of the boundary are tangent at
C'. Consider the dynamical system 7" describing the free motion of a point mass in Q, with
elastic reflections on the boundary (angle of incidence with the normal to the curve equal

to the angle of reflection).
We prove that the sequence of successive entrance times in a certain small neighbourhood
of the corner C converges in law, when suitable normalized, to a Poisson point process.

AMS classification numbers: 58F12, 58F15, 58F11

1 Introduction

1. Consider three arcs of circunferences of radius one (each one with length 7/3) whose centers
are located in the vertices of an equilateral triangle of side 2 (see Figure 1). They determine
a “triangular region” @ -the billiard table- bounded by 9Q, the union of 8Q;, i = 1,2,3,
three pieces of circunferences, that are tangent at the vertices C; of Q. Let be T' the dynamical
system describing the free motion of a point mass in @, with elastic reflections on 8Q (angle of
incidence with the normal to the curve equal to the angle of reflection).

All our results are valid if instead of the “triangular billiard” we take any billiard which
dispersing boundaries (Sinai billiard) contains tangent circles, or tangent curves with the order
of tangency of two circles. In order to simplify the computations and general presentation of
the paper we will work with the “triangular billiard” described at the beginning of this Section.

The fact that in our billiard the curves defining each corner have angle zero in the intersection
will make us face problems that are analogous to the case of indifferent fixed points for expanding
maps (see, for example, [5], [6], [7], [17]). Trajectories that hit on tie boundary very close to
the vertices, have unstable derivatives very close to one. This dynamical system is mixing [14],
but the neutrality of these derivatives has an immediate consequence: one can not extend all
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Figure 1:

the results that are true for uniformly hyperbolic planar Sinai billiards (the curves defining each
corner have non-zero angle in the intersection).

The main purpose of our work is to study the influence of these trajectories on the decay
cf correlation of the dynamical system defined by such billiard. We claim that the decay
of correlation will be of polynomial order (and not exponential as in the case of the Sinaj
billiards which have non zero angles) and this will be shown in a forthcoming paper. There are
numerical evidences supporting our claim [10], [1]. We point out that the exponential decay
of Sinai billiards was finally completely proved by Chernov [4] as a consequence of results by
himself, Bunimovich, Sinai and L.S. Young.

In this paper we prove that the number of iterations a trajectory stays close to the vertices
(where hyperbolicity is not good) and away from them (where hyperbolicity is good), are almost
independent. We study the sequence of entrances into a small neighbourhood Jg of the vertices;
K is the number of iterations the trajectory stays in this neighbourhood. Let be f}(z) the
number of iterations the billiard map needs to send the point z for the first time to J . In fact,
we will prove that there exists a normalizing factor Sy (diverging to infinity with K') such that
the sequence of normalized stopping times f}(,B;{I converges in law to a mean-one exponential
random law on R™ when K — oo.

The main point of our proof is to estimate the measure of the points that remain more than
K times in the bad region R, (see Proposition 1). After that (see Section 5) we follow very
closely the paper by Collet and Galves [6] changing their proof in some places.

We claim that all our results about statistics of visits are true when two dispersing bound-
ary curves 6Q); touch themselves in a zero angle corner. In fact we prove all our theorems
using some estimates that are somewhat worse than the ones we evaluate (for perfect circles) at
the end of Section 3. An important question to be adressed in the future is the exact relation
between the order of tangency and the asymptotic polynomial power of the decay of correlation.
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Figure 2:

2. A plane billiard is the dynamical system describing the free motion of a point mass inside an
open bounded connected region @ of the plane, with elastic reflections at the boundary. The
boundary consists of a finite set of closed C*™-curves 8Q;,k > 2. Let be n(g) the unit normal
to the curve 0@ at the point ¢ pointing out to the interior of the billiard table.

The phese space (see figure 2) of such a dynamical sysiem is

M'={(qg,v); ¢€dQ, [v|=1, <u,n(g)> > 0}

A coordinate system is defined on M’ by the arc length parameter r along 0Q and the angle
¢ between n(g) and v, measured counterclockwise. Clearly |¢| < w/2 and < n(g),v > = cos¢.

Consider the probability du = ccos ¢ drdg, where ¢ = (2|0Q|)~" is just a normalizing
factor and |0Q)| stands for the total length of Q. If m is the Lebesgue Measure on M’ , then
du = c cos ¢ dm.

Now we define the map 7 in the following way:

T (z0) = T(go,v0) = {g1,v1)

with g; the point of 8Q where the oriented line through (gg, vo) first hits 0Q and v; the velocity
vector of the trajectory after reflection on ¢; € 8Q. Formally, v; = vg — 2 < n(g1),vo > n(q1)-

We will denote by z; = (g;,v:) € M', i € N the successive hits with the boundary 8Q of a
trajectory beginning at zg = (qo, vo); that is, T(g;, v;) = (gir1, Vig1)-

The angle between n(g;) and v; will be denoted by ¢; and finally, #; denotes the Euclidean
distance between the bounces ¢; and ¢;11,7 € IN (see fig 1). As the velocity is one, ¢; is also the
time between succesive bounces ¢;, ¢;+1. The backward orbit z; = (g;,v;), for negative 1 € ZZ,
is analogously defined. The main relations are T(z;) = z;.1,i € ZZ, QGi+1 = q; + t;v;.

This map 7' is not well defined if q; € Q; N 0Q; and is not continuous in a neighbourhood
of (go, o) if the oriented line through (gg, vg) is tangent to some 0Qk, (¢1 = £ /2). In this case
T'is defined in a half open neighbourhood. In the sequel, when we speak about neighbourhoods
we will be considering any one of the possible cases described above.



The map T is called the billiard map. It preserves the measure p and is of class C*. The
sets of points 19 = (go,vo) € M’ whose forward or backward trajectory is tangent to 8Q for
some z;,1 € ZZ, or is in 8Q; N 8Q; have p-measure zero. T satisfies the following involutive
property. For z = (r,¢) € M let be —z = (r,—¢); then T s = —T'(—xz).

If # = (§1,71) = T(%o) is defined for Ty = (g, Vo), then for all o = (go,ve) in a sinall
neighbourhood of Z, the derivative matrix is given by (see, for example, [9]):

to Ko+4cos do tQ¢
DT(zo) = | . %ltcoss Kty , (1)
o= c(:)s:h = iy T Ccosgr 1

where K; = K(z;), 1 € IN, the curvature of 9Q at g;. As we consider here the model where all
Qi, 1 =1,2,3, are circunferences, then the K are all constants equal to one. Note that when
the image of (go,vo) by T is tangent to Q (that is, ¢; = 7 /2), then the entries of the above
matrix become infinite.

2 Analytical expressions

In this section we will collect several analitical and geometrical results about the billiard with
three tangent circles of same radio, specially for trajectories close to the corners 0Q; N 0Q;.

Let be C; € 8Q,1 = 1,2,3, located in the intersections of the circunferences. To simplify
notations, consider Co = 8Q3N3Q;. If ps is the midle point of 0Q2 (opposite side to the corner
Cs), then T'(p3,0) is not defined, but by continuity we can consider it equal to (Cy,£7/2), £
depending in which 8Q; we consider Cy —if Cy € 8Q it is (Co, —7/2). Also by continuity, we
can define T(Cy, —7/2) = (p2,0), and therefore, each (p;,0),7 = 1,2,3, (and also (Cj, —7/2))
should be seen as a period two point for 7. Note that the initial condition (p;,0) is the only
one that can reach the corner point C;.

The phase space is given by three rectangles M], M; and Mj. each one is a copy of a
rectangle with base 0 < r < n/3 and height —7/2 < ¢ < 7/2. (see Figure 2); M/ corresponds
to the arc 8Q;. Then |0Q| = =.

Let #; be the r-coordinate of the vertex C;. If Cy corresponds to the origin of the arc length
in the boundary (72 = 0) we will use the following notation (see [10]): o; = a(z;) will be the
parameter denoting the successive positions in 9@ of a trajectory z; = Tzq entering the corner
Cy @ «; will denote the angle with the horizontal line perpendicular to the common tangent
to both smooth components of 0Q at Cs. «; will be always positive; #; will be the velocity
parameter defined by 8; = —|¢;| where ¢;,7 € IN denotes, as usually, the corresponding angle
with the normal. 8; will be always negative.

We remark that for z € M3, y € M{, we have

ofz) =7 —-r(z), O(z)=4¢(z) aly)=r), 6y =-9F).
The billiard map is explicitelly defined by

Omt1 + 0 = Oy — O, (2)

Sin Q41 + tan(ay, + Om) €os ami1 = sin oy, + (2 — cos apy,) tan{am + 6,,), 3)



-2 < 0 < —0 — Qg1

We now make the following almost trivial but important observation: if
P = SiD a4+ (2 — €OS Oy ) tan(am + Om), Mm = tan(om + Im), (4)

we have that (3) means that the line ysinw + z cosw = py, at distance |py,| from the origin and
whose normal through the origin forms angle w = a4 with the z-axis is satisfied by

(P1ny 1) if pm >0, or by (—nm,—1)if prm <O0.

In our case p, < 0, and we can obtain am,+1 immediately calculating the equation of the
tangent line [7},] to the circle of center (0,0) and radius ||, through (—7m, —1), with smaller
negative slope (see Figure 3).

From (2) we can obtain for zo; € M; (remember that the angles ¢; are alternatively negative
and positive, and that go is on the left side in Figure 1):

Qoky3 — 01 = @1+ 2(P2 + @3 + ... + dokt2) + P2ky3, 9(Tort1) € Q1
and
—0p +b0mr1 =9 + 2(&1 +ay+ ...+ Orm) + Gt (5)

Let Sy = 8Q x {¢ = £7/2} be the natural houndary of M".

We consider now the equation of the image T(Sp) C M} where Sy = {(q,¢), ¢ € 0Q1, ¢ =
/2 = —6} is one of the six parts of the set of tangencies Sp. Denote by (7(r), $(r)) the
parametric equation of T(8y). Tt is easy to obtain the equations

7 = 7+ r — arccos[2 cos(r) — 1], ¢ = arccos[2 cos(r) — 1] — @ /2.

From this expressions one can obtain the slope of the tangent to this curve in the image of the
corner point C3 (corresponding in our parametrization to r = 7 /3, ¢ = 7/2), by

3, _ i
—FTIW/g BEEYk
and in Co, by
1' _ _\/‘2‘
7T 12
Then, the curve T'Sy C M. 4 close tor = w(a=0),¢ = —7/2 6 is well approximated by the line
¢+ /2 = —/2(r — 7)/{1 ++/2). This means that for a given small ay,

—71’/2<90§

a1 — /2. (6)

ag — /2 implies T (g, ) € My, and 6; > 1

V3 ¥
1+4/2 ++2

The “last” trajectory that is entering in the corner, from the position « is obtained when
the irajectory is perpendicular to the other arc of circumference. The equation of the curve C
of these last entering trajectories is determined by

o1+ o= —0, sina; — sina = (2 — cos a1 — cos ¢) tan ¢.
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Its equation in the M} component of the phase space is

& ¢ sinr
=r —arctan — — 7
2+cost
whose tangent at (7,0) is ¢ = 2(r — 7).
It will also be useful to know how is the image of the line r = ¢, entering in the corner.
T(r = €) is a continuous line that joins the curve 'Sy (r ~ (v/2 — 1)) and C (r ~ ¢)

Consider a trajectory (o, ¢:)i = 0,1,2,..n that is going down to the corner (that is,

o > aip1,t=0,1,2,.,n—-1, —7/2 <6y, < —am— ans1.) and (o, ¢,) is the beginning of
getting out, that is, an < apyg.

In the Appendix we prove the fundamental estimates that relate the minimum a-coordinate
of the trajectory zg,z1,-.. ,Z, entering in a corner, with the initial position ag, and the initial

velocity parameter €g; namely, there exists a positive € such that the ani, of an entering
trajectory beginning in 0 < og < € satisfies

a1 2 Omin 2> @11/ cos ;. (7)

From this estimate and (5), for m = n — 1, we obtain

2nay > —61 > 2nai\/cosb.

So, the number n of bounces of an entering trajectory with initial position (g, 6p), 0 < o <
g, —w/2< 6y <0, satisfy

L
2014/ cos 01

v

—6,
> —.
i 201 (8)
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Consider now the open set R, 2 bounded by r =7 —¢, 7 =€ and the four parts of =g,
that are close to 7o = 0 (see Figure 4). Let be R, ;, open sets defined in a similar way around
the linesr =7, 1=1,2,3.

Trajectories that are entering and leaving the corner are essentially symmetric. This is a
consequence of the following fact: the trajectory begins to leave the corner in between two
extreme cases —“last segment of entering trajectory” is perpendicular to one of the circunfer-
ences (¢ = 0) or horizontal (¢ = «)— that are almost the same one when the trajectory is very
close to the vertex: both arcs of circunference are almost “parallel”. The previous remark and
the involutive property of the billiard map allows to deduce, from (8), that the total number
of iterations in the rectangle R, 5 of a trajectory whose first point is (o, ) is approximately
N = N(ay, 61) ~ 2n, satisfying

-6 —61
a+/cos 61 =Nz o1 (9)

We are particularly interested in the calculation of the number of iterations that a trajectory
stays in the neighbourhood Rq, 2 of 7o = 0(op < €) after its first iteration with angle 8y. The
curves N = constant in the phase space that have IV + 1 iterations in Rg, 2 are of the form

C
N+/cosO

and are bounded by T'S; (C bounded away from zero and oo).

a1 = (10)



3 The induced first return map F

Let be R, = UR, ;. The boundaries of R, are six vertical lines (the union of them will be called
Ve), six “small” parts of 771(S;) and six “small” parts of T(Sp). The choice of ¢ will be done
later.

To sum up the analysis in the previous Section, if (ayg, ) is the first point of a trajectory
in R, then it will leave this rectangle in M iterations, and will ”penetrate” the corner until
Omin; these values satisfy inequations (7) and (9).

Now we partition M’ into two sets R, and M, = M'\R.. M, is a region with uniform
expansion on unstable manifolds, where the technics in [4] and [16] work well. R, is a set
where thc expansion is close to one. All the results valid for uniformly hyperbolic maps with
singularities studiec in Section 3 of [4] are valid for our induced first return map F : M, — M..

We will distinguish the iterations of each z € M by T into two classes: roughly speaking,
they will be “bad” if Tz € R, and “fine”, otherwise. For each z € M’ let be

bo(z) = inf{i > 1: T'z € M,}.

In fact, if z € M, then by(z) is one plus the number of iterations that T%z is not in M, before
retruning to it; if z € R, it is exactly the number of bad iterations before leaving R, for the
first time.

We define the induced first return transformation F : M, — M, by F(z) = T%{®)_ Let be
Jo = {T€Rc:bo(z) =k, T's€ M)} C Hy = {zeM :by(z)=k, Tz € M.}, Hy =
UkzNI}k and Jy = UkzNjk (see Figure 5) All these sets are in between the lines T'Sy and 725,
very close to the phase space points (#;, £7/2).

The “K-fine” iteration period is defined, for z € M., by

fik(z) =inf{n > 0:T"z € Jk}.

This is the number of steps the trajectory starting from z € M, takes to enter for the first time
in a region sufficently close to one corner (after entering it will take more than K iterations to
return to Mc). The sequence of succesive entrance times in Jx is defined by

f2(z) = inf{n > fi(z) + bo(Tfk(I)m) : Tz € Jy},

ff((z) = inf{nf;(_l(m) + bo(Tf;f—l(z)m) e edeh

We remark that T7%(®)~1z is the last iteration in M,. These (fine) blocks alternate with
blocks of (bad) iterations in Jg whose lengths are bg (Tlf x (I)x) = bg(E)-

As a consequence of (10), there exists a positive integer Ky such that for K > K, Jx = Hx.
This means, in particular, that these sets Jx are not bounded by the vertical lines r = 7; £ ¢
and that the function by(z) is constant on the points of T"'Hg for K > Kj. So the induced
map F for has no singularities of the type 77 (r = #; £ £) on these sets because they enter and
go out as a block from R..

Moreover, if T9z € R, for 1 < j < by(z) and z,T%® € M, then T9x has “no problems”
in R.: it will be entering and leaving the corner, but no singularity line wil stop it. So, if



Figure 5:

W C T 'Hg, K > Ny is a smooth non-decreasing curve containing z, and TW C R,, we con-
clude that le o@)-1 R, has no new cutting points. In particular, if W is a smooth component
of a LUM, it has spent a lot of time in R., but has not broken, and T%@)~1WW will be a bit
larger than W, because DT restricted to unstable manifolds in R, is (non-uniformly) grater
than one. Then we can suppose that W has not entered in R, and we must only study which
is the smoothness, size, etc. of FW = 7% W . From the same picture, it follows that if W is
a non-decreasing curve in T 'Hg, K < Ny then FW may only have a finite number of cuts
by these singularity lines.

This induced first return map preserves the measure tinm.- Let us call y, the normalized
measure. It is essential in this paper to have an estimate of the measure of J;. We point out
that the two measures y. and y are of the same order on M,.

One can decompose the fine set M, in maximal regions where the induced tranformation ¥
is continuous. We will called I, with the indices k¥ € IN, k > O the set of points of z € M, such
that F(z) € M, will take exactly k times to leave for the first time the set R,. In other words

T(1;) = Ji.
If z, F(z) € M, then we put z € I. In all the cases z € Iy implies bg(2) = k + 1.
As a consequence of the involutive property defined in the Introductgion, 2, F(I;) = —I

and, as our billiard table is symmetric, I is symmetric with respect to the points (pi,0), see
Section 2.

Proposition 1. For the billiard with three perfect circles there ezists a positive constant Cy

such that for K > K,
Cy

1
cx? < w(Ursk i) = u(Jk) < ek

Proof. We will do all the calculations on the boundary 8Qs, for entering trajectories. We
cousider the points that are entering in Jx for the first time. More precesily we will consider



the points whose second iteration is in R.. These points are in between the curves 7'Sy and7'2.5,
which equations are well approximated, for r close to 7 (remember that @ = w —r), by the lines
¢=—-7/2+ki(r —7), 0 < k; < kg < 00, respectively (in fact k1 = v/2/(1 ++/2)). From (10)
we deduce that o o

K~ ~ ¢ ~
avcos¢  ay/cos(ka —m/2) a¥/?’
~2/3 i

[CK da/ 24k CO(kg _ k%) .

and

ccos ¢do =~

w(Jk) ~
( T[2+k1c KZ

Jo

To suppert our estimations we tested numerically and obtained the following results !

1. Entering and leaving trajectories are symmetric when g is small enough.

2. In (10), C = 1.2.

3. For each o < 0.01 the maximal number of iterations of entering trajectories which first
iterations hits on the boundary on a point with coordinate « is

2.45
Nmax,a & 14993

We will show in section 5 the statistics of visits for a more general class of billiards because
we will assume, instead of the estimations in Proposition 1, that there exist positive constants
C1 and § such that

C
< 1e(Jx) < 2rpy- (11)

1
ClKl'L‘s

We claim that the case 0 < ¢ < 1 (respectively 1 < &) corresponds to billiards where the sides
are dispersing and the order of tangency in the zero angle is bigger (respectively smaller) than
the case for three perfect circles (a litle bit distorted version of figure 1).

4 Exponential decay of F

In this Section, we will follow as much as we can the notation of [4]. We will show that
the technics introduced by N. Chernov and Lai-San Young to prove the exponential decay
of correlation of Sinai billiards with non zero angle can be applied to ous first return map
F: M, — M,.

F is uniformly hyperbolic: there exist two families of cones C¥, C$ in the tangent space Ty M
such that DF(C*) C C¢,, DF(C;) D C§, whenever DF exists, and there exists A = A(e) > 1
such that

|IDF(v)| > Alv| Yo e C¥ |DF7Y(u)| > Alu| Vue CE.

| - | is the euclidean metric on T'M. See Section 7 of [4] for an interesting discussion about the
use of this metric. '

Let be Sppn = U?:mFng; Vi = U?:mFiI/; If K,, is the maximal number of smooth
curves of S_;;, 0 U V_r, 0 that intersect or terminate at any point of M., we assume (as Chernov

!The simulations were done at CVSSP, University of Surrey, England, while A. Pardo was there thanks to an
Alfa-Cometas plan, supported by the EU and Universidad de la Republica, Uruguay.
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does in Section 9 of (4]) that K, does not grow too fast: there is a large enough m such that
Ay = A™™ > K., + 1 for some fixed ms. :

In fact, all the proofs in [4] are done with F™ and A; isntead of F and A, respectively. But
it is known that if 7™ has exponential decay of correlations, then so does T: we will maintain
F and A to avoid some technical difficulties.

We call the D F-image of {r¢ > 0} the unstable cone C*. Similarly DTF~! maps {r¢ < 0}
stricly into itself, and C* is defined accordingly. The tangent vectors to the curves in 7™
belong in ustable cones for m > 1 and in stable cones for m < —1. This property is usually
refered to as alignement.

One has to partiticn the neighbourhood of Sy in M, into countably many narrow strips
parallel to Sy in each of which the control of distortions of the derivatives on LUM is possible.
For some fixed large ko > 1, (Section 7 of [4]), and for each k > ko define the “homogeinity
strips” (introduced in [2])

Ly={(r,¢) e M : /2 — k> < p<7/2— (k+1)7%}

and
Lip={(rn¢) e M:—/2+(k+1)?<¢<—7/2—- K2},

We put
Lo={(r,¢) € M, : —7/2+kj? < ¢ < w/2 — k3 2}.

Phase space. In order to apply the results by Chernov we define an open set M C M,,
on which F' will satisfy all the required assumptions. We put M = Ugsy,Lx U Ly. The map F
restrictred on M has the singularity set I' = S_; UT~}(Uy0L) UT™1V;. Since the bound-
aries of Ly, are parallel to Sp, and V; is the union of vertical lines, their preimages under 7" have
tangent vectors in stable cones. Then the alignement holds lato sensu for the curves in I'. It
also holds, in the same sense for all the curves in I'™ =T U F-IT'U... U FHT > 1. We
will denote also by F' the restriction of the induced first return map map F on M.

We fix € < /10 and ko in such a way that V. N 8Ly = 0.
Define

MYt={zeM:F'z¢T,n>0}, M =(]|F\T™), M'=M+nM".
n>0

The sets M+ and M~ consist, respectively, of points whose future and past iterations by F are
defined, and MY is the set of points where all the iterations by F are defined.

Let be p the riemannian metric on M and pw the metric induced by p on any submanifold
W C M. For any I, h > 0 let

M5 ={z € M*: p(F*"z, T UOM) > le™™ vn >0},
fe o -
ME=ME,  MP=M;oM;
>0

The following result is a standard consequence of the theory of maps with nonzero Lyapunov
exponents. See, for example [13]. Sinai billiards have a total measure set of points with nonzero

11



Lyapunov exponents; see for example [11]. There exist h,d; = ¢ such that for every =z € M. A
there exists a local unstable manifold (LUM) W*(z) such that p(z,” 8W¥*(z)) > e. Similarly,
the local stable manifold (LSM) W*(z) is defined for every z € M, ,': ;- For the fixed h we will

only consider I’s such that ,u(M}?’l) > 0.

Now we define rectangles as in [4]. A subset R C M? is called a rectangle of there exists
7 > 0 such that for any z,y € R there is a LSM W*(z) and a LUM W*(y) both of diameter
< 7, that meet in exactly one point, which also belongs in B. We assume that &y, §; are small
enough, so that As = {z € M : the unstable disks W, 5. (z) exists} # 0. The unstable disk
of radius ¢, through =z, W¥(z), is the LUM which is a e-ball centered at z in the Pw(z) metric
(length along the LUM). W is & 6-LUM if it is a LUM and its length is < 6. If W, W' are two
60—LUM’s, we say that W’ overshadows W if roughly speaking, the stable cone constructed
in any point of W has & common point with W’. In this case we can define

p* (W, W') = sup p(z, W')
zeW
the s-distance from W to W’. p*(z, W) is the supremum of the riemannian distances between
x and the points of W, measured along s-disks (disks whose tangent vectors in each point is
contained in the stable cone in this point).

0-Filtration. Let dp,d > 0, and W be a dp-LUM. Two sequences of opens subsets W =
W¢ > Wi > Wi... and W2 ¢ Wi\ W2l ,n > 0 are said to make a §-filtration of W,
denoted by {W;2, W2},if ¥n > 0, T™ is defined on W}t and W2, each copnnected component of
T"W} has length < 6p,7 = 0,1 and they are constructed inductively in such that a way that the
segments W) are taken out from W} if its n-iterate comes too close (6A™" ciose) to singularity
lines at time n, nct earlier. So, points in W whose images come too close to the singularity
lines will be set apart and no longer iterated under T. This will create countably many gaps in
W in which stable manifolds fail to be long enough. Let be WL = Na>oWiE.

We can vary together all the small parameters &;,7 > 1 that appear in the sequel preserving
the specified relations between them. For any z € As, we define a canonical rectangle R(z)
as follows: y € R(z) if y = Wy, (z) N W for some z € WL (2) and for some LUM W that
overshadows W(z) = W /3(33), and such that p*(W{z),W) < 6. In Section 4 of [4] it was
observed that if 63/d2 < ¢/, where ¢’ > 0 is determined by the minimum angle between the
stable and unstable cone families, the every W that overshadows W (z) and is 63-close to it in
the above sense will meet all stable disks W3 (z), Wi, (z). In that case R(z) will be a rectangle
indeed.

For any connected subdemain V' C W(z) the set Ry (z) = {y € R(z) : We(y) NV # 0}
is an s-subrectangle in R(z) “based on V7. For n > 1, the partition of W!(z) into connected
components {V}, induces a partition of R(z) into s-subrectangles {Ry (z)} that are based on
those components. If Ry (z) is one of those s-subrectangles, then F"Ry(2) is a rectangle.

If éo is small enough, then there exists z; € Ay, such that v(R(z1)) > 0. We fix such a &
and one such z;. We then denote, for brevity, R = R(z;), W = W(z1), WL = W2 (21), etc. Let
Z = {21,292, ,2p} be a finite §4-dense subset of Aj;, containing the above point z;. We call
R = U;R(z;) the rectangular estructure. It is a finite union of rectangles that are likely to
overlap and are away from Sj. This means, in particular, that on its points the density cos ¢ is
bounded away from zero.

12



We will partition the set Wole into a countable collection of subsets Wolo,k, k > 0. For every
k > 1 there is ary, such that for the s-subrectangle Ry = {z € R = R(z1) : W*(z)NWg, C W ,}
based on W, oloyk, the set F™*(Ry) will be a u-subrectangle of some K(z;). This factor is consid-
ered a proper return and the return time function r(z) is defined on W2 by r(z) = r4, for
T€WL,, k>1landr(z) = ifz € W1, (leftover set).

We say that (F,v) has exponential decay of correlations for Hélder continuous
functions if ¥y > 0, there exists y(n) € (0,1) such that for every n-Holder functions f,g there
exists C{(f,g) > 0 such that

iI/M(foF")gdz/-/M jdu/Mgdv

The value of Ci(f,g) will play a subtle role in the proofs of the Propositions and Lemmas of
next section. So we remark that in our systems there exists a fixed positive constant C' such
that

< iy vn e z.

Ci(f,9) < C sup f(z) sup g(z)
z€R TzER

where the supremum are taken on the rectangular structure R (see, [16], Section 4).

We say that (F,v) satisfies central limit therem for Hélder continuous functions if
Vn > 0, and for every n-Holder function f, there exists o = o 5 > 0 such that for every interval
ACR

1 n—1 ) ) i 2
P Yz)) — dve A 207
V({azeﬂl \/H;'f(F()) /f € })—)\/%U/Ae dt as — oo

(Convergence in distribution to A'(0,0?)). Furthermore, o; = 0 iff f = go F — g for some
g € L(v).

The proofs in [4] can be followed step by step in order to study the measure my {r(z) >
n} (where mwy is the conditional measure on W induced by the Lebesgue measure m). Its
exponential decay is enough to deduce the exponential decay of correlations and the central
limit theorem, using [16].

Theorem 2. (F,u.) has ezponential decay of correlations and satisfies the central limit theorem
for Holder continuous functions on M,

5 Statistics of visits to the corner

In this section we wiil present the proofs of our main theorems. We will follow closely the proofs
of [6] adapting their results to our context. Their proof applies with small modifications to the
present situation. We will point out to the reader in each step of our proof whenever there is
an essential difference.

First, we would like to point out that we will consider the two-dimensional bijective dynam-
ical system defined by the billiard on phase-space and not the one-dimensional system defined
by the dynamics on unstable leaves. Second, we mention that the measure on M in [6] is o-finite
and here is a probability; the “mixing rate” in our case 1s much more better.
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Denote by A the collection of the sets I; defined in Section 3. One can suppose the I are
closed sets whose interiors are disjoint.

Denote also by A = Vf:o F~'A and by F the o-algebra generated by Ag, k € IN.

The main properties we will use are the hyperbolic character of the induced map F —and
consequently the exponential rate of mixing of such system (see Section 4)—, and the estimation
-of the measure of the sets I (Proposition 1).

More precisely we will use the following property whose proof follows the ideas in Proposition
2.2 in [6] :

Proposition 3. - Let F be the induced map on M,, and p its invariant measure, then there are
e constant C1 and a positive number 6 < 1 such that for any positivc integers k and n, for any
Holder continuous function f an any function g constant on atoms of Ay =3 cila,;; Ak €
Ag, Ak,i N Ak’j =0 if4 # j)

l / fo F™tFtloq, — / Fape / 9due

Proof. Let be du. = hdm where h(z) = ccos¢(z) is the density of . with respect to the
Lebesgue measure m. Then [ f o FMt*+1lghdm = | + L5+ (gh)f o F™ hdm, where L is the
transfer operator for hyperbolic systems (see, for example, Section 4.1 in [15]). Let be g1 =
1 £%+1(gh). Then

’ / foF™Htlgqy, — / fdpe / g1dpe

< C16" sup f(z) sup g(z)
TER zeR

< C8" sup f(x) sup ¢1(z).

zeR TER
Let be t); the inverse image of the diffeomorphism F**! on Ay ;. As det F(z) = cos ¢(z)/ cos ¢(F(z))
(see formula (1) and definition R in section -Filtration above), cos ¢(z) is bounded away from
zero, we have

C; ho ’(ﬁi(l‘) =
= < .
9 = ) TGt DFe o e < O 539)

TER

Since [ gidue = [ gdue, the proof is finished.

We will need a stronger version of the above result. Remember that a, positive integer-valued
function 7 : M. =+ R is called a stopping time with respect to the sequence of sigma-algebras
Fk, k € N, if for each fixed 7, the set {7 = ;j} belongs to F; We denote also by F, the o-algebra
of all measurable sets B such that BN {r = j} belongs to F; for any nonnegative integer 7.

Following the proof of Corollary 3 in [6] one can easily obtain a similar result:

Corollary 1. Let F be the induce map and T a stopping time with respect to the sequence of
o-algebras Fi. Then for any measurable set B and positive integer n

sup |pe(ANF""Y(B) — pe(A)u:(B)| < C16™.
A€ Ay

Now we state the main theorems. Remember that we consider here a general class of billiards
that satisfy (11). The case § = 1 corresponds to the three perfect circles case shown in figure 1.
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Theorem 4. The value
Bx =min{n € IN: u{fk >n} < e}

is finite for each K. We have
Pk

lim — = oo.
K—o00

For any positive real number t the following limit holds
li K fk>th=¢t
Am pe{By fx >t =e

Moreover Bg satisfies
lim 8 k ldu =1
K—)l [oe] K /fK g

The value B is a kind of scale-normalizer to get an exponential process with distribuition
e, The Theorem says that the time needed to perform the first visit to the interval [K,co)
is much longer than the typical mixing time, which is the time needed to loose memory from
the initial condition in M. Therefore, for large values of K , every unsuccessful trial to overrun
level K after the process starts is approximately like a new run from the origin.

Theorem 5. For any positive integer n and any sequence of positive real numbers s1,s9,--+ , 5,
the following holds

o o y
Jim pe{fic > Brsy, Tk — fic > Bresa, - [k — F7 > Prsn) = e~ Dimi s,

This last theorem allows, for a generic z € M,, to consider each renormalized period the
orbit stays in Jg U M, - before the next return to Jx - as a Poisson process.
Using Corollary 1 the proofs of both Theorems are the same as presented in [6] , Theorems

5 and 10.
Nevertheless, in order to prove the theorems some a priori lower bounds for f }< are needed.

The proofs of this bounds are a little bit different than in [6].
Definition. For z € M, we will define by 7&(z) the time of the h-th visit to the interval
by ' ([K, 00) of the orbit by z under the induced map F:
Tk () = inf{j > 0: bo(Fiz) > K3},
T%(z) = inf{j > 75N (z) : bo(Fiz) > K}.
It results that up to the h-visit the “fine” iteration period have a total lenght

T}}—l
fr= D woFi+1, fhk=1k+1
7=0

Definition. We also define the integer valued random variable N; (z) for z € M, which counts
the number of returns (iterations by F) of the path starting at z to the set M, until time ¢:

2
Ni(z) =sup{j > 0: ) by o Fi(z) < t}.
1=0
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Lemma 6. There ezists an increasing integer valued function | : R* — IN such that for any

I>y>0
. Ur)
rli)nc;lo rl=2v

= 0o, Jim pe{Noyry 27 -1} =0
Proof. Note that
{NQ[(.,.) >r—1} = {bo+bgo F+ ...+ byo Fr1 < 2l(r)}

In the same way as in Proposition 6 in [6] we begin defining the Laplace transform of the

variable 1
W, => byoF"

=0

For a fixed value of ¢ € [0, 1] to be chosen later, we obtain from Markov inequality

pe(W- <) <t / ¥ dii.

Let m and s to be chosen later such that ms < r. Let be W, = Z;l;l by o F7™_ It satisfies

m—1 .
Wr> > W,oF7, /tW’d,us < /th’duE.
=0

The second relation is a consequence of Holder’s inequality applied recursively.

New we apply Proposition 3 above with f = g = t™, k = jm. We also observe that
sup f(z) = ¢!3fm5(2) (syp. inf taken on R). But this value inf by(z) can be assumed to be taked

on a set of positive pe-measure (bo assumes only integer values); then sup,cx f(z) < Cy [ fdpe.

After a short calculation we get

s—1
/tW,d#E < (6’29’” +/tmbodue) < o= Dl-gltm)+0om=1]

where g(t) =1 — [tbody,.
A standard computation shows that

/tbedue =14+(1- t_l)[i pe{bo > n}t").

=1

and this suggest to consider v = (1 — ¢}, u > 0 and o(u) = g(1 — u)/u.
From (11) there exist the finite limit

Jm g®)/(t-1) €R and o(u)= ;#e{bo >n}(l—w)"!

is a decreasing function of u.
In the same way as in [6] we have

pe(Wr < 1) <t / " dpe <
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exp{u [l + lu — o(mu — m*u®)m (s — 1) (1 — mu)] + Cy(s — 1187, (12)

Now we set
a) u(r) =771 (goes to 0 with r — co),
b) ¢t = (1 — u) (goes to 1 with r),
c) s = [m] (goes to oo like r1T),
d) m = [(log)?] (goes to oo like 707),
e) I(r) = [rl“'Y{a(ﬂ—ogrrLz)}l/z] (goes to oo like r'=7 because (0} is finite),
where [ -] denotes the integer part.
From the definitions above we derive that expression (12) gees to zero because
1) Cy(s — 1)8™ goes to zero,
2) the positive part of the exponent in (12) lu + [u? is finite,
3) and the negative part of the exponent in (12) ~ufo(mu — m?u?) m (s — 1) (1 — mu)] goes to
—oo like —r7 because ¢(0) is finite and mu — m2u? goes to zero.

It is easy to see that ;iﬁ_% gees to oo. This is the end of the proof of Lemma 6.

Lemma 7. Let C be the constant in (11) then:
i) C71 < pe{bo > K} f mhdpe < C,
i) Moreover, for any positive integer k,

/Js{'rll{ < ”‘7} < k/l'a{bo > K}
"The proof of this lemma is equal to Proposition 4 in [6].

Lemma 8. There exists a decreasing positive valued function L defined in a neighbourhood of
0 € R such that
limal(a) =00, and limsup p.{s < fy <s+ L(1/K)} =0.
a—0 k—00,5>0
Proof. We have to set L(a) = I(r(a)) where | was defined in Lemma 6 and r(a) will be defined
later. First we define the non-decreasing function
l
o ) 50

w(z) = ;gﬁ Y127

which diverges when z goes to oo according to Lemma 4.
As the non-decreasing fention sw(r)1/2 goes to oo, one can define 7(a) by the equation

Note that r(a) goes to 0o and ar(a) — 0 when a — 0+.
Following the same argument as in the proof of Proposition 6 in [6] all we have to prove is
that

pef{s < flk < s +Ur(1/K))} < pe{bo > K}r(1/K) '*‘#E{sz(r(l/K)) > r(1/K)} (13)

goes to zero when K goes to co.
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When K — oo the second term of the right-hand-side of (13) goes to zero by Lemma 4
and the first term of the right-hand-side goes to zero because ar(a) — 0 and p.{by > K} <
CK =049 by (11).

Therefore, taking L(a) = I(r(a)) the Lemma is proved.

Appendix

In this Appendix it is proved that the fundamental estimates that relate the minimum -
coordinate oy of the trajectory zg,z,... , 7, entering in a corner, with the initial position ayq,
and the initial velocity parameter 6, are:

Q1 > Qmin > a4/ cos 6,

for (aq,6;) determined below.

1. First of all we consider equations (2), (3), with a small modification: instead of
tan(am + 6r,) in (3), we will take only tan(6,,). Then we will have the following equations

dm—H + C’im = ém+1 - érrw (14)

Sin Gy 1 + tan by, cos @m1 = Siném + (2 — cos &y, ) tan by, (15)

_71'/2 <O < =Gy — Am+1, Vo =0y, &= .

We compare the values of the minimum of an “entering” trajectory for both pairs of equa-
tions (2}, (3) and (14), (15). We will prove that

Qmin > Gmin-

In fact, if a4y > Gy and Oy, > Oy, then the same relations (strict inequalities) are valid in the
next step m + 1. @miq can be obtained calculating the tangent line [T},] to the circle of center
(0,0) and radius P, through (—fim, —1). Here p,, = sin G, + (2—c0s 4y) tan by, A = tan b,,.

A short computation gives |fim — %im| < |#m — P, and from the comparison of the relative
positions of the lines [Ty,] and [T;,], it results that cp.; > &m+1- From (2), (14) and the last
inequality, it results 6,41 > é’m+1.

2. Let be & = &; = a;. Now we will reduce equations (14), (15) to differential equations
by making the substitutions (see [10])

t=mh,  yt)= =L, 6(0) =y

We obtain
O(t+ h) — 6(¢)

h
sin(hy(t + h)) — sin(hy(t)) = [2 — cos(hy(t + k) — cos(hy(t)] tan 6(z).

y(@) +ylt+h) =

18



Then we substitute the trigonometric terms in the second equation by its second order Taylor’s

polynomials: )
y(t+h) —y(t) _ y*(t+h) + ()

te s
b 5 an 6(t)
Finally, if & goes to zero we obtain the following system of differential equations
t t
U o, 2 = pguane, v -1, 60) =0

which yields to the solution

1/2
y(t) = [ el } ; and Ymin > V/cosb.

cos 0(t) |

3. As a consequence of convergence results of Euler’s method of numerical analysis, we can
deduce that the value y(mh) of

the exact solution of the differential equation and the value @, /h differ at most in MA,
where M is a constant depending on the maximum of the second derivative of the exact solution
in ¢ € [0,1]. For example, in [8] 8.5, it is proved the following result: consider the differential
equation y' = f(¢,y),4(0) = yo,t € [0,7], with ||f(¢,y) — f(¢,2)|| < L||ly — 2|| (Lipschitz); it has
a unique solution F(#) that satisfies maxy,z||¥"(¢)|| < M2 < co. Let be

vn(0) = vo, ynlt+h)=yu(t) +Af(t, yn(t)) + F, ||F|| < MA2.

Then, if t, = nh, and t € [t,,tr41] C [0,7], we have
. h eltnt1 _ 1 p
I - we(ell < a0 { =2 2.

4. Then &min > a1v/cosb + Mc?, if 1/cos G > . As it was remarked in (6)
6, > 1;/\5/50:1 — /2. So, cos; > %al .and Vcos b1 > ci/ag > aj. F'u.lally, fron% Fhe results
in 1, 2, 3 and some numerical computations, we conclude that there exists a positive & such
that an entering trajectory satisfying 0 < a; < @ has its amip > a;+/cos 6; and v/cos 0; > c14/a1

with ¢; =~ 0.5858.
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