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The behavior of a confined spherical symmetric anomalous fluid under high external pressure was
studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with
two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and
structural anomalous behavior observed for water and other anomalous fluids. Our findings show
that this system has a superdiffusion regime for sufficient high pressure and low temperature. As
well, our results indicate that this superdiffusive regime is strongly related with the fluid structural
properties and the superdiffusion to diffusion transition is a first order phase transition. We show
how the simulation time and statistics are important to obtain the correct dynamical behavior of the
confined fluid. Our results are discussed on the basis of the two length scales. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4897956]

I. INTRODUCTION

The dynamical behavior of fluids at nanoscale has been
attracting attention recently. The reason behind this attention
is that nanoconfined liquids exhibit hydrodynamic, dynamic,
and structural properties different from the mesoscopic con-
fined and bulk systems.1 For instance, the fast flow of the
liquids confined in nano structures cannot be described by
the classical hydrodynamic.2–4 This inconsistency between
the experiments and the classical theories becomes even more
significant in anomalous liquids, such as water,5, 6 where the
enhanced flow is higher than the enhancement observed in
other fluids.2–4 In the particular case of water, this unusual
dynamics might lead to important technological applications
in desalinization.1, 3, 4

Most of the recent experimental and theoretical studies
about confined fluids are related to water. These studies have
shown that the confinement produces additional unusual
properties such as: the presence of a well defined layered
structure,7 crystallization of the contact layers at high
temperatures,8–10 the increase of the diffusion coefficient
with the increase of the confinement,11, 12 and the oscillatory
behavior in the superflow.5, 13, 14

What are the bulk properties in anomalous fluids that un-
der confinement might lead to the appearance of unusual dy-
namics effects? Most liquids contract upon cooling. This is
not the case of the anomalous liquids. For them the specific
volume at ambient pressure starts to increase when cooled
below a certain temperature. In addition, while most liquids
diffuse faster as pressure and density decreases and contract
on cooling, anomalous liquids exhibit a maximum density
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at constant pressure, and the diffusion coefficient increases
under compression.15 The most well know anomalous fluid
is water,16–18 but Te,19 Ga, Bi,20 Si,21, 22 Ge15Te85,23 liquid
metals,24 graphite,25 silica,26–28 silicon,29 BeF2

26 also show
the presence of thermodynamic anomalies.18 In addition to
water,30, 31 silica27–29, 32 and silicon33 exhibit a maximum in
the diffusion coefficient at constant temperature. As well, col-
loidal systems and globular proteins can also exhibit anoma-
lous properties.34

The diffusion coefficient, in bulk, is obtained from the
scaling factor between the mean square displacement and the
exponent of the time, namely, 〈r(0)r(t)〉≈ tα . For the anoma-
lous liquids in the bulk this scale factor follows the Fick diffu-
sion. That means that the mean square displacement is linear
with time, α = 1. As the system becomes confined in addition
to the Fickian dynamics two anomalous no-Fickian behaviors
are observed. The first, the superdiffusive regime, complies
all the α > 1 cases with a fast dynamics. The limit is an ideal
system where the molecules can move with constant veloc-
ity and, therefore, ballistic diffusion, α = 2. The second, the
subdiffusive regime, includes dense systems in which the dy-
namics is slower and the particles move in a chain-like struc-
ture and cannot pass each other forming a single-file diffusion
with α = 0.5. The transition between these regimes was ob-
served in fluids confined inside nanotubes, and depends on
the radius and length of the nanotube as well as on the time
of observation of the movement.11, 35 It is not clear, however,
how the dynamics is related with the structure.

In this paper we explore the connection between the dy-
namic and structural anomalous behavior in nanoconfined
systems suggesting that the layering structure governs the dy-
namic transition. We propose that for very high pressures the
transition between Fickian to superdiffusive is related with the
structural transition between two to three layers.
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The fluid is modeled using a two length scale potential.
Coarse graining potentials are a suitable tool to investigate
the properties of a general confined anomalous fluids. Re-
cently we have shown that this effective potential is capa-
ble to reproduce the enhancement flow and the high diffusion
coefficient of nanoconfined anomalous fluids.11, 35 For small
pressures the structure is related to thermodynamic phase
transitions in the wall.36, 37 The model used in this work ex-
hibits the thermodynamic, dynamic, and structural anomalous
behavior in bulk38, 39 and in confinement37, 40–44 systems. The
paper is organized as follows: in Sec. II we introduce the
model and describe the methods and simulation details; the
results are given in Sec. III; and in Sec. IV we present our
conclusions.

II. THE MODEL AND THE SIMULATION DETAILS

A. The model

The anomalous fluid was modeled as spherical core-
softened particles with mass m and effective diameter σ . The
interaction is obtained by the potential38
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where rij = |�ri − �rj | is the distance between the two fluid
particles i and j. This equation has two terms: the first one
is the standard 12-6 Lennard-Jones (LJ) potential45 and the
second one is a gaussian centered at r0, with depth u0 and
width c0. Recent studies suggest that simple Gaussian flu-
ids are able to reproduce the thermodynamic anomalies ob-
served in water.46 Using the parameters u0 = 5.0, c = 1.0,
and r0/σ = 0.7 this equation represents a two length scale po-
tential, with one scale at rij ≡ r1 ≈ 1.2σ , where the force has a

local minimum, and the other scale at rij ≡ r2 ≈ 2σ , where the
fraction of imaginary modes has a local minimum.47 The po-
tential is shown in Fig. 1(a). Our core-softened model, intro-
duced to study bulk systems, does not have any directionality
and therefore it is not water. However, despite the mathemat-
ical simplicity, it does exhibit the density, the diffusion, and
the response functions anomalies observed in water,38, 39, 48, 49

as well as confined water properties.36, 37, 40–44

These suggest that some of the anomalous properties that
are attributed to the directionality of water can be found in
spherical symmetry systems.

It was already shown that the confined fluid proper-
ties are strongly affected by the nanopore mobility.36, 37, 50, 51

Since we want to fix the pressure at high values, we ex-
plore behavior of this anomalous fluid confined in a non-rigid
nanopore.36, 37, 50, 51 The nanopore was modeled as two par-
allel flat plates. The simulation box is a parallelepiped with
dimensions Lx × Ly × Lz. The model for the fluid-wall sys-
tem is illustrated in Fig. 1(b). Two walls, A in the top and B
in the bottom, are placed in the limits of the z-direction of the
simulation box. The sizes Lx and Ly are fixed in all simula-
tions, and defined as Lx = Ly = L = 40σ . This value for L
was chosen to ensure that will be enough area in the plates to
all particles used in our simulations be disposed. The values
of Lz depend on the applied pressure pz in the z-direction. The
system was modeled in the NApzT ensemble using the Lup-
kowski and van Smol method of fluctuating confining walls52

to fix pz.
The walls are flat and purely repulsive, and the interaction

between a fluid particle and these walls is represented by the
Weeks-Chandler-Andersen (WCA)53 potential

UWCA(zij ) =
{

ULJ(zij ) − ULJ(zc) , zij ≤ rc ,

0 , zij > rc .
(2)

Here, ULJ is the standard 12-6 LJ potential, included in the
first term of Eq. (1), and rc = 21/6σ is the usual cutoff for
the WCA potential. Also, the term zij measures the distance

FIG. 1. (a) Interaction potential (black solid line) and force (dashed red line) as function of the particles separation. (b) Schematic depiction of the simulation
cell with the fluid and walls. The walls are separated by a distance Lz, have thickness σ and an external pressure pz is applied in the z direction.
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between the wall at j position and the z-coordinate of the fluid
particle i.

B. The simulation details

The physical quantities are computed in the standard LJ
units,45

r∗ ≡ r

σ
, ρ∗ ≡ ρσ 3 , and t∗ ≡ t

( ε

mσ 2

)1/2
, (3)

for distance, density of particles, and time, respectively, and

p∗ ≡ pσ 3

ε
and T ∗ ≡ kBT

ε
(4)

for the pressure and temperature, respectively. Since all phys-
ical quantities are defined in reduced LJ units in this paper,
the * is omitted, in order to simplify the discussion.

The simulations were performed at constant number of
particles, constant A = Lx × Ly, constant perpendicular pres-
sure and constant temperature (NApzT ensemble). The per-
pendicular pressure was fixed using the Lupkowski and van
Smol method.52 In this technique, the nanopore walls had
translational freedom in the z-direction, acting like a piston
in the fluid, and a constant force controls the pressure ap-
plied in the confined direction. This translational freedom in-
duces vibrational effects in the nanopore. However, the wall
moves as one particle of area L2 in the xy plane and thick-
ness σw in the z direction. Then this vibrational effects are
distinct from the case of atomistic detailed walls, where all
particles vibrate. This scenario is similar to some recent ex-
periments on water confined inside nanopores at externally
applied high pressures54, 55 and includes the nanopore flexibil-
ity. It has been shown that the anomalous fluid behavior inside
rigid nanopores is different from flexible nanopores,36, 37 and
in this paper we address the second case.

Considering the nanopore flexible walls, the resulting
force in a fluid particle is then

�FR = −�∇U + �FiwA(�riA) + �FiwB(�riB) , (5)

where �FiwA(B) indicates the interaction between the particle
i and the wall A(B). Since the walls are non-rigid and time-
dependent, we have to solve the equations of motion for A
and B,

mw�aA(B) = pzSw �nA(B) −
N∑

i=1

�FiwA(B)(�riA(B)), (6)

where mw is the piston mass, pz is the applied pressure in
the system, Sw is the wall area, and �nA is an unitary vector
in positive z-direction, while �nB is a negative unitary vector.
Both pistons (A and B) have mass mw = m, width σ , and area
equal to Sw = L2.

The system temperature was fixed using the Nose-
Hoover heat-bath with a coupling parameter Q = 2 and was
varied from small temperatures, T = 0.01 to higher temper-
atures T = 0.4. Standard periodic boundary conditions were
applied in the x and y directions. The equations of motion for
the fluid particles and the walls were integrated using the ve-
locity Verlet algorithm, with a time step δt = 0.001.

Five independent runs were performed to evaluate the
properties of the confined fluid. The initial system was gener-
ated placing the fluid particles randomly in the space between
the walls. The initial displacement for the simulations was Lz0
= 15. We performed 5 × 105 steps to equilibrate the system.
This equilibration time was taken in order to ensure that the
walls reached the equilibrium position for the fixed values of
pz. These steps are then followed by 1 × 108 steps for the
results production stage. The large production time is neces-
sary to observe the correct dynamical behavior of the confined
fluid.

The fluid-fluid interaction, Eq. (1), has a cutoff radius
rcut/σ = 3.5. The number of particles was fixed in N = 1000,
and four values of pressure were simulated: pz = 7.0, 8.0,
9.0, and 10.0. Due to the excluded volume originated by the
nanopore-fluid interaction, the distance Lz between the walls
needs to be corrected to an effective distance,56, 57 Lze, that
can be approached by Lze ≈ Lz − 1. The effective distance,
due the nanopore flexibility, will oscillate around an average
value 〈Lze〉 and the average density will be ρ = N/(〈Lze〉L2).
Also, it is important to reinforce that, since N is fixed for all
simulations, the distinct values for density are obtained by the
variation in pressure and temperature, and consequently vari-
ation in plates separation, Lz.

To study the fluid dynamical properties we analyse the
relation between the mean square displacement with time, as
follows:

〈[�r||(t) − �r||(t0)]2〉 = 〈��r||(t)
2〉 = 4Dtα , (7)

where �r||(t0) = (x(t0)2 + y(t0)2)1/2 and �r||(t) = (x(t)2

+ y(t)2)1/2 denote the parallel coordinate of the confined
anomalous fluid particle at a time t0 and at a later time
t, respectively. We should address that the mean square
displacement was calculated considering all the particles in
the system. Nanoconfined fluids assume a layered structure.
Despite this, the evaluation of 〈[�r||(t) − �r||(t0)]2〉 for each
layer can lead to a spurious statistics for the result, since the
number of particles in each layer is small and the particles
can move from one layer to another, leading to a poor time
average in Eq. (7). Depending on the scaling law between
��r||(t)

2 and t in the limit t → ∞, different diffusion mech-
anisms can be identified: α < 1.0 refers to a subdiffusive
regime, with α = 0.5 identifying a single file regime.11

α = 1.0 stands for a Fickian diffusion whereas α > 1.0
defines the superdiffusive regime, and α = 2.0 refers to a
ballistic diffusion.12, 35

In order to define the fluid characteristics at different dis-
tances from the nanopore walls, the structure of the fluid lay-
ers was analyzed using the radial distribution function g(r||),
defined as56, 57

g(r||)≡
1

ρ2V

∑
i �=j

δ(r − rij )[θ (|zi − zj |)−θ (|zi − zj | − δz)],

(8)
where the Heaviside function θ (x) restricts the sum of parti-
cle pair in a slab of thickness δz = 1.0 close to the wall or
δz = 1.0 away from the walls.

In all simulations the mean variation in the system size
induced by the wall fluctuations is smaller than 2%. Data
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FIG. 2. ρ × T phase diagram for the confined anomalous fluid for different
isobaric curves: pz = 7.0, 8.0, 9.0, and 10.0. Error bars are smaller than the
data point.

errors are smaller than the data points and are not shown. The
data obtained in the equilibration period were not considered
for the quantities evaluation.

III. RESULTS AND DISCUSSION

The thermodynamical behavior of the confined anoma-
lous fluid is shown in Fig. 2. The isobaric curves at lateral
pressure pz = 7.0, 8.0, 9.0, and 10.0 show distinct behavior.
For the smaller pressure, pz = 7.0, the density as function of
the system temperature does not vary significatively with the
temperature. This result agrees with our previous findings36

that indicate that for flexible walls and pressures pz < 6.0 the
density varies smoothly with the temperature. However, for
higher values of pz transition from low density to high den-
sity is observed as the temperature is varied. For the pressure
values pz = 8.0 and 9.0 the fluid density exhibits a jump from
the dimensionless density ρ ≈ 0.45 to the density ρ ≈ 0.60 at
T = 0.045. For pz = 10.0 the change in the density occurs at
the temperature T = 0.050.

This transition is related to a change in the system’s con-
formation. Nanoconfined fluids assume a layered structure,7

as was recently observed in experiments for water inside silica
nanopores.54, 55 The number of layers depends on the different

nanopores geometry and size.36, 37, 42–44 Since the number of
particles in our system is fixed, the density change observed
in Figure 2 implies change in the distance between the two
plates and consequently in the number of layers.

Fig. 3(a) illustrates the density distribution versus the dis-
tance between the plates for pz = 10.0 at different temper-
atures. For low temperatures, the system forms three layers:
two contact layers and a central layer. For higher temperatures
the central layer melts and the fluid is structured in two con-
tact layers. The behavior for pz = 8.0 and 9.0 is similar to the
case pz = 10.0 and, for simplicity, these results are not shown.

For pz = 7.0, the fluid has three layers for all the temper-
atures studied as shown in Fig. 3(b).

The transition from low to high density as the temper-
ature is increased at constant pressure is quite counterintu-
itive. Usually the increase of density is associated with de-
crease of entropy. Here, however, it is the contrary. This
anomalous behavior follows from the same mechanism of
the increase of density at constant pressure, the bulk density
anomaly.

At low temperatures, particles in the same layer minimize
the energy, Eq. (1), by being at a distance r2 ≈ 1.2, the first
length in the potential, as shown in Fig. 4. When the pressure
is high and the temperature is sufficient high, the central layer
melts and the distance between the planes is smaller than any
of the two length scales.

At these low temperatures both the contact planes are
quite structured, as shown in Fig. 4(a) for the temperatures
T = 0.01, 0.04, 0.075, and 0.2, where the fluid is structured
in 3 or 2 layers. The central plane is solid-like, as illustrated
in Fig. 4(b) for T = 0.045, where we compare the central
and contact layer structure. These structures, similarly to the
low temperature liquid water, have low density but high or-
der and, consequently, low entropy. As the temperature is in-
creased, the central layer melts. The two contact layers ap-
proach, being at the first length scale, with a distance r1 ≈ 1.2
from each other, as shown in Fig. 3(a). Inside each, the layer
particles are at r2 ≈ 2 distant from each other. As the tem-
perature is increased, the order inside each layer decreases,
as shown in Fig. 4(a), and the entropy increases. There-
fore, the denser system is more entropic, similarly to what
happens with anomalous fluids at the region of the density
anomaly.
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FIG. 3. Confined fluid density profile ρ(z) for pz = 10.0 and T = 0.01, 0.04, 0.075, and 0.2 (a) and pz = 7.0 and T = 0.01 and 0.4 (b).
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FIG. 4. (a) Radial distribution function g(r||) for the contact layer for the confined fluid at pz = 10.0 and T = 0.01, 0.04, 0.075, and 0.2. (b) g(r||) for the contact
and central layer at pz = 10.0 and T = 0.045.

What is the relation between this layer transition and the
mobility of the nanoconfined particles? The layers structure
can provide both a restriction or an enhancement of the mo-
bility of the particles.37, 42, 44 In order to illustrate this point we
study the parallel mean square displacement (MSD) as a func-
tion of time for different temperatures and pressures. Fig. 5(a)
shows the MSD versus time for pz = 10.0 and T = 0.01, 0.045,
0.05, 0.2. In order to understand the behavior of the mobility
in the framework of Eq. (7), the exponent α is computed in
all the studied cases. A Fickian diffusion was observed for
pz = 8.0, 9.0, and 10.0 for temperatures above the three-to-
two layers transition. This behavior was obtained after long
time simulation. For shorter simulation times the system ex-
hibits an apparent subdiffusive regime, where α < 1.0. This
behavior was also obtained for water confined in nanotubes.35

For our model, as t → ∞ (see Fig. 5(a)) the Fickian diffu-
sion is recovered. As example, we show in the purple curve of
Fig. 5(a) the behavior for T = 0.05 and pz = 10.0.

For lower temperatures, below the three-to-two layer
transition, however, the systems for pz = 8.0, 9.0 and 10.0
exhibit a superdiffusive behavior with α > 1.

Fig. 5(b) shows the behavior of α versus temperature, il-
lustrating that the transition temperature from non-Fickian to

Fickian regime coincides with the transition from three-to-
two layers and with the increase of density shown on Fig. 2.

The transition between layers followed by change in
the exponent α was also observed in atomistic models for
water.11, 35 In these cases, it is not clear if the anomalous dif-
fusion is in equilibrium or if it is an artifact of the short simu-
lation times. In our case, the coarse grained potential provides
us with an easy way to perform long simulations and we can
ensure that the system is equilibrated.

IV. CONCLUSION

We have studied the behavior of a anomalous fluid con-
fined inside a flexible nanopore at high external pressure. Our
results show a structural phase transition in the ρ × T phase
diagram for isobaric curves with pz ≥ 8.0. This phase transi-
tion corresponds to a three-to-two layers transition, and it is
associated to a transition between a superdiffusive regime and
a Fickian diffusion. These results indicate that anomalous flu-
ids can exhibit a superdiffusion regime at small temperature
and high pressures associated with the same mechanism that
at the bulk generate the density anomaly.
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FIG. 5. (a) Lateral mean square displacement 〈�r2
||(t)〉 as function of simulation time for external pressure pz = 10.0 and T = 0.01, 0.045, 0.05, and 0.2.

Reference curves slopes are also shown. (b) Temperature dependence of α for pz = 8.0, 9.0, and 10.0.
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