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We incorporate ion polarizabilities into the Poisson–Boltzmann equation by modifying the effective
dielectric constant and the Boltzmann distribution of ions. The extent of the polarizability effects is
controlled by two parameters, γ1 and γ2; γ1 determines the polarization effects in a dilute system
and γ2 regulates the dependence of the polarizability effects on the concentration of ions. For a
polarizable ion in an aqueous solution γ1 ≈ 0.01 and the polarizability effects are negligible. The
conditions where γ1 and/or γ2 are large and the polarizability is relevant involve the low dielectric
constant media, high surface charge, and/or large ionic concentrations. © 2011 American Institute of
Physics. [doi:10.1063/1.3598476]

I. INTRODUCTION

At large separations ion interactions are dominated by
the Coulomb forces and ions are efficiently represented as
point charges (assuming the absence of permanent dipoles
and higher order multipoles). The point charge representation
is accurate as long as ions retain large separations. As sepa-
rations decrease, electronic structure of ions and associated
with its quantum effects, contribute additional interactions.
At very small separations, an overlap of two electron clouds
leads to strong repulsion. This can be represented either as
an excluded volume effect or a soft repulsion (like the repul-
sive term 1/r12 in the Lennard-Jones potential; the attractive
term of this potential accounts for dissipation interactions).
Another class of interactions deriving from quantum effects
arises on account of the mobility of an electron cloud of an ion
and is characterized by the frequency dependent polarizabil-
ity, α(ω). On the one hand, dynamic polarizability associated
with high frequencies, determines the dispersion interactions
as a result of high frequency correlated fluctuations of neigh-
boring electron clouds, leading to attraction 1/r6 (Ref. 1) (this
algebraic form reflects the dipole–induced dipole interaction).
On the other hand, low frequency fluctuations of an electro-
static field of thermally excited system induce “slowly” vary-
ing distortions of electron clouds, leading to induced interac-
tions characterized by the static polarizability, α(0). Thus, a
net charge of one ion induces a dipole moment in the neigh-
boring ion, leading to attractive 1/r4 potential. The presence
of the charge–induced dipole attraction is evident in the for-
mation of clusters of the like–charged ions.2 Quantum com-
putations for two isolated ions Na+ and Cl− show that an at-
traction at short separations comes from the charge–induced
dipole interaction, while the dispersion term 1/r6 constitutes
a negligible correction.3

For a neutral air–water interface, static polarizability of
ions plays a crucial role in determining an interface structure

a)Author to whom correspondence should be addressed. Electronic mail:
dfrydel@gmail.com.

and its electrostatic properties.4 It is not polarizability per se
that determines the structure, that is, not its interactions with a
modified image charge alone. Rather it is an outcome of a del-
icate balance of interplays between ion polarizability and size,
with surrounding water molecules, in particular an ability of
an ion to form and cast away a hydration shell. Polarizabil-
ity itself becomes important once a partially unhydrated ion
crosses an interface.5 As a result, soft ions show affinity for
an interface and, in consequence, a neutral interface acquires
charge.

Contributions of static polarizability are also observed
in bulk solutions. Dielectric response of water decreases lin-
early with an electrolyte concentration (at concentrations
<0.2 M), and the dielectric decrement vary with the type
of salt, roughly following the sequence of polarizability (or
size) – the more polarizable (or larger) ions effect greater
decrement.6, 7 This behavior is attributed to the fact that sol-
vent molecules trapped in a hydration sheath of an ion are
less susceptible to an external electrostatic field. In effect, the
number of free solvent molecules susceptible to polarization
is reduced.

Furthermore, polarizability and size are found to regu-
late the adsorption of counterions in the double layer on a
charged surface; large polarizable counterions are more effi-
cient in penetrating the hydration layer adhering to a charged
surface and bind directly with the surface charges.8–10 Once
more, this behavior is mediated by solvent molecules.

In the present work, we investigate the polarizability
contributions to electrostatics of the double layer by modify-
ing the Poisson–Boltzmann (PB) equation, in the spirit of the
models such as the modified PB equation which incorporates
the finite size effects,11 the dipolar PB equation which
incorporates a dipole structure,12–14 or its generalization to
the higher order multipoles.15 In the polarizable PB equation
developed in this work ions are represented as points which
acquire an induced dipole moment when exposed to an exter-
nal field. As each ion type is characterized by two parameters,
charge and polarizability, the model permits to explore some

0021-9606/2011/134(23)/234704/8/$30.00 © 2011 American Institute of Physics134, 234704-1

http://dx.doi.org/10.1063/1.3598476
http://dx.doi.org/10.1063/1.3598476
http://dx.doi.org/10.1063/1.3598476
mailto: dfrydel@gmail.com


234704-2 Derek Frydel J. Chem. Phys. 134, 234704 (2011)

aspects of ion specificity. In the model, a solvent is repre-
sented as a background dielectric constant ε. We find that
polarizability contributions are small for aqueous solutions,
where ε is large and electrostatic interactions are screened
but becomes important for low ε. A condition of low ε is
realized in ionic liquids where a solvent is altogether absent.

II. PRELIMINARY CONSIDERATIONS

We regard a dipole in terms of mechanics, as springs
and charges; it is comprised of two charges, q and −q, at-
tached by a spring but not interacting with each other elec-
trostatically (that is, the electrostatic self–energy of a dipole
is not included). The dipole moment depends on the separa-
tion s between the charges, p = qs. The electrostatic force
qE pulls the two charges apart and the separation s is reg-
ulated by the spring constant k, qE = ks. Relating the sep-
aration to the dipole moment we get p = (q2/k)E, so that
the static polarizability is inversely proportional to the spring
constant α = q2/k.

The interaction potential between two ions with charge
Q1 and Q2, and dipole moment p1 and p2 is

U (r) = Q1 Q2

4πεr
+ Q1(p2 · r) − Q2(p1 · r)

4πεr3

+p1 · p2

4πεr3
− 3

(p1 · r)(p2 · r)

4πεr5
, (1)

where r = r1 − r2, is the vector connecting the two particles,
r = |r1 − r2|, and ε is the dielectric constant of a medium.
The terms are the charge–charge, charge–dipole, and dipole–
dipole interactions. A dipole that is induced (and not perma-
nent) has the same orientation as the field that induces it. For
the case of two isolated ions this implies pi = pi (r/r ). Fur-
thermore, there is elastic energy cost associated with distor-
tion of an electron could, p2

i /2αi . The interaction potential
between two polarizable ions with polarizability α1 and α2, is

U (r) = Q1 Q2

4πεr
− Q1 p2 + Q2 p1

4πεr2
± 2

p1 p2

4πεr3
+ p2

1

2α1
+ p2

2

2α2
.

The dipole–dipole interaction is repulsive for the like–charged
ions and attractive for opposite–charged ions. The charge–
dipole interaction is always attractive. The induced dipole mo-
ments, pi , are obtained by minimizing the potential energy
with respect to pi . We find pi = αi Q j/4πεr2 + O(1/r5),
where i �= j , and the attractive charge–induced dipole inter-
action between two polarizable ions is

Uind = − (Q2
1α2 + Q2

2α1)

2(4πε)2

1

r4
+ O(1/r7).

The induced attraction competes with the Coulomb repul-
sion and for Q1 = Q2 and α1 = α2 the two like–charged ions
start to attract at r0 = (α/πε)1/3. For example, for two iodide
ions in an aqueous solution r0 < 1 Å. Such small separations
are prevented by strongly overlapping electron clouds so this
type of an interaction is irrelevant for aqueous solutions (see
Ref. 16).

The induced interactions arise also between a charged
macromolecule and a polarizable ion. For example, an infi-
nite charged wall produces constant electrostatic field pro-

portional to the surface charge, σc, which attracts or repels
ions, depending on the charge sign, and, if an ion is polariz-
able, it induces a dipole moment. This dipole does not inter-
act with the wall; there is no energy gain or loss as it changes
its position. Its interactions with the wall must be mediated
by other ions in the system. Thus, in the presence of coun-
terions that screen the the surface charge, a single polariz-
able neutral molecule introduced into the system will drift
towards the charged surface where an electrostatic field is
least screened. To refine this thought experiment we take the
screened potential at the charged wall of the Debye–Hückel
theory, ψ = σce−κx/

√
2q2csβε, where κ−1 =

√
ε/2q2csβ is

the screening length, β = kB T , cs is the bulk salt concentra-
tion, and q is the ion charge (assumed to be the same for
counterions and coions), and ε is the dielectric constant of
a medium. The induced dipole moment of the polarizable
molecule in this potential is p = ασce−κx/ε. The resulting in-
teraction potential between an induced dipole and the wall is

βUind = −βασ 2
c

2ε2
e−2κx .

If the polarizable test particle in addition carries a charge – so
that it represents a polarizable counterion – the total interac-
tion with the wall is

βUtot = −
√√√√(

βσ 2
c

2ε

)
e−2κx

cs
−

(
βσ 2

c

2ε

)
αe−2κx

ε
. (2)

The induced interaction is controlled by the dimensionless pa-
rameter βασ 2

c /2ε2. Furthermore, since the induced interac-
tion has to be considered in relation to the competing charge
interaction, polarizability effects are stronger when the di-
mensionless parameter 2εcs/βσ 2

c is large. This essentially
points to the strongly correlated limit. Interesting to note is
that the screening length of the induced interactions is twice
as short as that for the charge interactions.

Finally, we note that when all counterions are polariz-
able, one has to consider that the induced by the charged
surface dipoles will interact with each other, leading to the
charge–dipole and dipole–dipole interactions (see Eq. (1)). It
is not immediately clear how these interactions would effect
the structure of the double layer.

III. POLARIZABLE POISSON–BOLTZMANN (PPB)
EQUATION

The total charge density of ions with both a net charge
and a dipole moment is

ρ̂c(r) =
K∑

j=1

N j∑
i=1

[(
q j − p( j)

i · ∇
)

δ
(
r − R( j)

i

)]
,

and the dipole density reads

P̂(r) =
K∑

j=1

N j∑
i=1

p( j)
i δ

(
r − R( j)

i

)
.

Ions are represented as points but their electronic structure
is enriched via addition of a dipole moment, p( j)

i . There are
K ionic species where each species has N j ions with charge
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q j . The total charge density can be differentiated into the free
charge density due to net charges

ρ̂0(r) =
K∑

j=1

N j∑
i=1

q jδ
(
r − R( j)

i

)
,

and the bound charge density due to dipoles

ρ̂b(r) = −∇ ·
[

K∑
j=1

N j∑
i=1

p( j)
i δ

(
r − R( j)

i

)]
.

The distribution of charges gives rise to an electrostatic
potential, ψ , according to the Poisson equation

ε∇2ψ = −ρ0 + ∇ · P, (3)

where ρ0 = 〈ρ̂0〉 and P = 〈P̂〉 are the ensemble averaged
quantities.

In the mean–field treatment, each ion is exposed to a
mean “external” potential due to all ions in the system. If
w j (r) is the mean potential that an ion of a species j , at lo-
cation r feels on account of all charges in the system, then
the resulting Boltzmann distribution is n j = c j e−βw j (r) (in the
course of the developing of the model the constant c j will turn
out to be the bulk concentration of the ionic species j). The
mean potential acting on a polarizable ion of a species j at
location r is

w j (r) = q jψ(r) − p j · E(r) + |p j |2
2α j

.

The term |p j |2/2α j is the elastic energy cost of distort-
ing an electron cloud. An induced dipole is always aligned
with a field and its magnitude is determined by the bal-
ance between the electrostatic and elastic force (the condition
∂w j/∂p j = 0). This results in a position dependent dipole
moment p j (r) = α j E(r). The resulting mean potential and the
number density is

w j = q jψ − α j |E|2
2

,

n j = c j e
−β(q j ψ−α j |E|2/2), (4)

respectively. Substituting the polarization and the free charge
density,

P(r) =
(

K∑
j=1

α j c j e
−β(q j ψ−α j |E|2/2)

)
E,

ρ0(r) =
∑

j

q j c j e
−β(q j ψ−α j |E|2/2),

into the Poisson equation (Eq. (3)), gives the polarizable
Poisson–Boltzmann equation,

∇ ·
[(

ε +
K∑

j=1

α j c j e
−β(q j ψ−α j |E|2/2)

)
∇ψ

]

= −
K∑

j=1

q j c j e
−β(q j ψ−α j |E|2/2), (5)

where we represent the contributions of polarizability as an
effective dielectric constant,

εeff = ε +
K∑

j=1

α j c j e
−β(q j ψ−α j |E|2/2). (6)

The boundary conditions at the charged surface are(
ε +

K∑
j=1

α j c j e
−β(q j ψ−α j |E|2/2)

)
∇ψ = −σc,

where σc is the surface charge.

A. Ions with permanent dipole moments

Although the present work focuses on polarizable ions, it
is instructive to consider ions with permanent dipoles, where
p j represents the magnitude of a permanent dipole moment
of a species j . Although a permanent dipole has a fixed mag-
nitude, it retains an orientational degree of freedom,

w j (r, θ ) = q jψ(r) − p j |E(r)| cos θ,

where θ is the angle between a field and a dipole. This
leads to the orientation dependent Boltzmann distribution,
∝ e−β(q j ψ−p j |E| cos θ). To obtain a distribution which depends
on a position only, one needs to integrate the Boltzmann dis-
tribution over θ ,

n j = c j e
−βq j ψ

(∫ π

0 dθ sin θ eβ|E|p j cos θ∫ π

0 dθ sin θ

)

= c j e
−βq j ψ

(
sinh β|E|p j

β|E|p j

)
. (7)

On average, the permanent dipole prefers orientation
along an electrostatic field, therefore, through the dependence
on the local field, an average dipole is a function of a position,
p j (r) = p j 〈cos θ〉θE/|E|, where

〈cos θ〉θ =
∫ π

0 dθ sin θ cos θ eβ|E|p j cos θ∫ π

0 dθ sin θ eβ|E|p j cos θ

= coth(β|E|p j ) − 1

β|E|p j
= L(β|E|p j ),

and L(β|E|p j ) is the Langevin function. The position depen-
dent dipole is

p j (r) = p jL(β|E|p j )E
|E| . (8)

In the limit of small β|E|p j , p j (r) = βp2
j

3 E,so it is linear in
the local field, as for the case of polarized ions. In the limit
of large β|E|p j , p j (r) = p j E

|E| , and it saturates at its maximum
possible magnitude p j .

The resulting Poisson–Boltzmann type of an equation for
ions with permanent dipoles is

∇ · [
εeff∇ψ

] = −
K∑

j=1

q j c j e
−βq j ψ

(
sin β|E|p j

β|E|p j

)
, (9)
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where

εeff = ε +
K∑

j=1

p j c j e
−βq j ψ

(
sinh β|E|p j

β|E|p j

)
L(β|E|p j )

|E| .

B. Stress tensor

The mean force acting on an ion of a species j in the po-
sition r is F j (r) = −∇w j (r). Given the distribution of ions
n j , the force density is f j (r) = −n j∇w j (r). Combining con-
tributions of all ionic species, for polarizable ions we have

f =
K∑

j=1

(
q j n j E + α j

2
n j∇E2

)
.

In equilibrium, the electrostatic force is counterbalanced by
the osmotic force and the total force density is17

ftot =
K∑

j=1

(
q j n j E + α j

2
n j∇E2 − kB T ∇n j

)
= 0.

Using the PPB equation together with the identity E(∇ · E)
= ∇ · (E ⊗ E) − 1

2∇E2 we rewrite the force density in the
form ftot = ∇ · T. The resulting stress tensor is

T = (ε +
∑

j

α j n j )E ⊗ E −
(ε

2
E2 + �

)
I. (10)

The osmotic pressure is � = kB T
∑

j (n j − c j ) and n j is
given in Eq. (4).

IV. RESULTS

In the following, we study a symmetric 1 : 1 electrolyte
for a charged wall at x = 0 with an electrolyte confined to
the half–space x ≥ 0. Solvent is represented as a background
dielectric constant ε and the polarizability of all ions is set to
α. The PPB equation for a described system reads

d

dx

[(
ε + 2αcs cosh(eβψ)eβαψ ′2/2

)
ψ ′

]
= 2ecs sinh(eβψ)eβαψ ′2/2, (11)

where e is the elementary charge, cs is the bulk density of
ions, ε is the medium dielectric constant, and ψ ′ = dψ

dx . The
boundary conditions at the charged wall are[

ε + 2αcs cosh(eβψ)eβαψ ′2/2
]
ψ ′ = −σc, (12)

where σc > 0 and an effective dielectric constant is

εeff = ε + 2αcs cosh(eβψ)eβαψ ′2/2. (13)

The quantum chemical calculations give the following
polarizabilities of halides in the gas phase: ᾱ(F−)= 2.47 Å3,
ᾱ(Cl−)= 5.48 Å3, ᾱ(Br−)= 7.27 Å3, ᾱ(I−)= 10.27 Å3.18

Polarizabilities are reduced in an aqueous solution:
ᾱ(F−)= 1.3 Å3, ᾱ(Cl−)= 3.5 Å3, ᾱ(Br−)= 4.6 Å3, and
ᾱ(I−)= 7.5 Å3.19 ᾱ = α/4πε0 where ε0 is the dielectric
constant of a vacuum. If we consider the dimensionless

0 0.1 0.2
x[nm]

1

1.2

1.4

1.6

1.8

ε e
ff
 / 

ε

σc=2C/m2

σc=1C/m2

σc=0.4C/m2

FIG. 1. Effective dielectric constant, Eq. (13), for different σc . The system
parameters are cs = 10−5M (corresponding to the screening length 100 nm),
ᾱ = α/4πε0 = 10 Å3, and ε/ε0 = 80, where ε0 is the dielectric constant in a
vacuum.

polarizability parameter, βασ 2
c /2ε2, obtained for the Debye-

Hückel potential (Eq. (2)), the polarizability effects in
electrolyte can be expected to be small. This parameter
for an iodine ion near a charged colloidal surface gives
≈0.03. By reducing the dielectric constant from its value
inside water (ε = 80ε0) to the value in vacuum (ε = ε0), this
parameter increases to ≈250. This suggests an important role
of polarizability in ionic liquids where no solvent is present.

We consider electrolyte solutions first. Figure 1 shows
profiles of an effective dielectric constant, Eq. (13), resulting
from accumulation of soft counterions, with ᾱ = 10 Å3,
against a charged wall. ε is set to the value of water
ε/ε0 = 80. εeff follows the distribution of counterions,
εeff ≈ ε + αn−. A typical colloidal surface charge spans
the range σc ∈ [0.1, 0.4]{C/m2}, depending on size and
material. For electrolytes, thus, polarizability is relevant for
superficially large surface charges. Still, it is worthwhile to
discuss the observed trends. Examining the PPB equation it is
not immediately clear how polarizability should redistribute
the counterion cloud; on the one hand, the term −αψ ′2/2
in the Boltzmann distribution suggests enhancement of a
density; on the other hand, the increase of εeff implies weaker
electrostatic effects. The results in Fig. 2 show that the

0 0.05 0.1
x[nm]

0

500

n-

α
_

=0
α
_

=10A
o3

α
_

=20A
o3

0 0.1 0.2

x[nm]

14

16

18

eβ
ψ

FIG. 2. The number density of counterions, n− = cseβ(eψ+αψ ′2/2), in units
nm−3. The system parameters are cs = 10−5 M, σc = 2 C/m2, and ε/ε0
= 80.
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counterion cloud becomes more diffuse. A similar “spreading
out” effect is seen in the electrostatic potential and field.

A different way to analyze the effects of polarizabil-
ity is according to the equation ε∇2ψ = −ρ0 + ∇ · P, where
the polarizability contributions are described in terms of the
bound density ρb = −∇ · P, instead of εeff. Accordingly we
rewrite the PPB equation for the present wall model,

εψ ′′ = 2ecs sinh(eβψ)eβαψ ′2/2

−2csα
d

dx

[
ψ ′ cosh(eβψ)eβαψ ′2/2

]
. (14)

The boundary conditions in this interpretation read

εψ ′ = −(σc + σp), (15)

where σp = n̂ · P is the surface polarization density and n̂ is a
normal to the surface pointing away from an electrolyte. For
the present model

σp = 2csαψ ′
c cosh(eβψc)eβαψ ′2

c /2,

where the subscript c indicates the contact value (value at the
charged surface),

ρ0 = −2ecs sinh(eβψ)eβαψ ′2/2, (16)

ρb = 2csα
d

dx

[
ψ ′ cosh(eβψ)eβαψ ′2/2

]
. (17)

The two conditions of electroneutrality are∫
dr ρ0(r) = −σc

ε
,

for the bare surface charge and∫
dr ρb(r) = −σp

ε
,

for the polarization surface charge. Figure 3 shows the free
and bound charge densities for two different values of α.
Both charge densities diffuse with increasing α, and, while
the number of free charges is constant, the number of bound
charges increases with increasing α.

0 0.05 0.1
x[nm]

-100

-50

0

50

ρ 
/ e

α
_

=1A
o3

α
_

=10A
o3

ρb

ρ0

FIG. 3. The free and bound charge density distributions, ρ0e−1 and ρbe−1,
respectively (see Eqs. (16) and (17)) in units nm−3 (e is the elemen-
tary charge). The system parameters are cs = 0.1 M, σc = 0.1 C/m2, and ε

/ε0 = 1.

A. The contact value theorem

The properties at the contact with the wall can be quan-
tified using the contact value theorem, which can be derived
from the stress tensor T in Eq. (10). We recall that the force
acting on a body enclosed by a surface ∂� is

f =
∮

∂�

d S n̂ · T.

For a single wall, the force exerted on the wall (at x = 0) van-
ishes,

fx (0) =
∫

d A Txx (0) = 0,

where

Txx (0) = ε

2
ψ ′2

c + Pcψ
′
c − kB T (n+

c + n−
c − 2cs),

is the xx tensor component calculated at the wall and the sub-
script c denotes the contact value of a function. Using the
boundary conditions in Eq. (15) and the equality σp = −Pc

we arrive at the contact value theorem,

β

2ε
(σ 2

c − σ 2
p) = n−

c + n+
c − 2cs . (18)

We can eliminate the dependence on density by using the re-
lation σp = α(n−

c + n+
c )ψ ′

c together with the boundary con-
ditions. The result is the cubic equation for the ratio σp/σc,

(σp

σc

)3
+

(σp

σc

)2
−

(σp

σc

)(
1 + γ2 + 1

γ1

)
−

(
1 + γ2

)
= 0,

(19)
where the two dimensionless parameters control-
ling the behavior of σp/σc are γ1 = βασ 2

c /2ε2 and
γ2 = 4csε/βσ 2

c . (The same parameters emerge in the
simple Debye–Hückel model of Eq. (2).) For γ1, γ2 > 0,
only one real root exists. In the limit of small γ1, σp/σc

≈ −(γ1(1 + γ2))/(1 + γ1(1 + γ2)). In the limit γ1 → ∞,
σp approaches −σc from above such as σp/σc ≈ −1
+ (1/(1 + γ1γ2)) — thus in highly concentrated solutions
(such as ionic liquids) the polarizability is more relevant
(see Fig. 4). In the limit α → 0, Eq. (19) reduces to the

0 5 10 15 20
γ
1

-1

-0.5

0

σ
p 

/ σ
c

FIG. 4. The ratio σp/σc as a function of γ1. The solid, dashed, and dotted
line is for γ2 = 0, γ2 = 0.1, and γ2 = 1, respectively. For aqueous solution
with σc = 0.1 C/m2 and cs = 0.1 M, γ2 ≈ 0.1.
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FIG. 5. The counterion density at the contact with the wall, n−
c = cs

eβ(eψc+αψ ′2
c /2) (in units nm−3), as a function of α. The system parameters

are cs = 0.1M, σc = 0.1 C/m2, and ε/ε0 = 1.

standard contact value theorem of the PB equation,

βσ 2
c

2ε
= −

(σp

σc

) ε

α
− 2cs = n−

c + n+
c − 2cs .

It is possible to express the contact density in terms of the
ratio σp/σc,

(n−
c + n+

c ) = − ε

α

( σp/σc

1 − σp/σc

)
,

and the similar expression can be obtained for the contact
potential ψc. In Figs. 5 and 6, we plot the counterion density
and potential at the wall contact as a function of α. As α

→ ∞, electrostatic potential and field tend to zero and
αψ ′ → σc

2cs
.

B. The far field behavior

We have considered the influence of polarizability in the
region near and at the charged wall. Another limit of interest
is the far field domain. In this limit the electrostatic potential
is weak, so that the background dielectric constant approaches
the bulk value,

εbulk = ε + 2csα,

FIG. 6. The contact potential as a function of α. The system parameters are
cs = 0.1 M, σc = 0.1 C/m2, and ε/ε0 = 1.
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FIG. 7. The renormalized charge σeff (obtained by fitting the potential far
away from the wall to the form in Eq. (20)) as a function of α. The parameters
are cs = 0.1 M, σc = 0.1 C/m2, and ε/ε0 = 1.

while the potential itself decays according to the Debye–
Hückel functional form,

ψ = σeff√
2βe2csεbulk

e−xκ , (20)

where κ−1 =
√

εbulk/2e2csβ is the screening length and σeff

is the renormalized surface charge determined by fitting the
far field potential to the form in Eq. (20). The charge renor-
malization is attributed to the “condensation” of counterions
at a charged surface when the attraction between the sur-
face charges and counterions becomes larger than the com-
peting thermal energy. The condensed counterions together
with the bare surface charges constitute an effective sur-
face charge. Figure 7 shows that polarizability increases the
value of σeff. This can be traced to the reduced “condensa-
tion” of counterions with increased polarization as seen in
Fig. 5.

C. Other applications of the PPB equation

To show off some of the applications of the PPB model,
we investigate some aspects of ion specificity. We consider
the case where half of the counterions is polarizable and the
other half nonpolarizable: n− = 1

2 cseβeψ (1 + eβαψ ′2/2). (All
coions are nonpolarizable.) As shown in Fig. 8 the polariz-
able counterions show affinity for the charged surface. The
other case we consider is when all ions are nonpolarizable,
but a third species of neutral but polarizable particles is in-
troduced, n_ = cseβαψ ′2/2. The total system is electroneutral
where the surface charge is neutralized by counterions. These
neutral particles are attracted to the charged surface as seen in
Fig. 9.

D. The nonlinear solvent effects

As indicated by the dimensionless polarizability param-
eter γ1, the polarizability effects are relevant for low dielec-
tric constants. For electrolytes where ε/ε0 = 80 polarizabil-
ity acquires relevance for superficially large surface charges
(see Fig. 2). At large surface charges, however, one has to
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FIG. 8. The density profiles for polarizable, 1
2 cseβ(eψ+αψ ′2/2), and nonpolar-

izable, 1
2 cseβeψ , counterions (in units nm−3). The polarizability constant is

ᾱ = 10 Å3. All coions are nonpolarizable. Other parameters are cs = 0.1 M,
σc = 0.1 C/m2, and ε/ε0 = 1.

take into account the nonlinear effects of solvent polarization
which lead to polarization saturation and associated with it di-
electric decrement. Saturation of polarization is characteristic
of molecules with permanent dipoles, such as water solvent.
The permanent dipoles in the external field behave accord-
ing to Eq. (8): if electrostatic energy of a dipole in an external
field dominates thermal energy, no more alignment of a dipole
with a field is possible and the dipole moment saturates. The
saturation of a water dipole should already be effective for
σc ≈ 0.1 C/m2.

To account for the saturation of a solvent polarization we
resort to the dipolar Poisson–Boltzmann equation.12 In this
model the solvent molecules are represented as point dipoles.
The resulting field dependent dielectric constant is

ε(|E|) = p0nd (βp0|E|)L(βp0|E|),
where p0 is the permanent dipole moment, nd is the sol-
vent field dependent density, and L(x) = coth x − 1/x is the
Langevin function. For large surface charges, the dominant
nonlinear effects should come from orientation saturation.
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FIG. 9. The density profile of neutral polarizable particles, n_ = cseβαψ ′2/2

(in units nm−3) with ᾱ = 10 Å3. In addition, the system contains counterions
and coions. The bulk density of each species is cs = 0.1 M. The remaining
parameters are σc = 0.1 C/m2 and ε/ε0 = 1.
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FIG. 10. Effective dielectric constant for a nonlinear solvent for different
values of α. The system parameters are σc = 0.4 C/m2 and cs = 10−5 M.
The inset shows εeff for different polarizabilities in relation to εsol = εeff(α =
0).

Neglecting compressibility effects,14 the total effective dielec-
tric constant, which includes polarizability effects, is

εeff = ε0 + p0cdL(βp0|E|)
|E| + α(n− + n+),

and the Poisson–Boltzmann type of an equation for a charged
wall is

d

dx

[(
ε0 + p0cdL(βp0ψ

′)
ψ ′ + 2αcs cosh(eβψ)eβαψ ′2/2

)
ψ ′

]

= 2ecs sinh(eβψ)eβαψ ′2/2.

The boundary conditions at the wall are

[
ε0 + p0cdL(βp0ψ

′)
ψ ′ + αcseβ(eψ+αψ ′2/2)

]
ψ ′ = −σc.

We set cd to the value of water, cd = 55 M and set p0 = 4.8 D
so that εeff(E → 0)/ε0 ≈ 80. (For liquid water p0 ≈ 3 D).

In Fig. 10 we show εeff for different values of ion polariz-
abilities. First, we bring attention to the case α = 0, where the
nonlinear solvent effects lead to a dielectric decrement near a
charged wall. The dielectric decrement is countered by the di-
electric increment caused by polarizable ions (clearly seen in
the inset of Fig. 10). Comparison with the results of Fig. 1
shows that the nonlinear solvent effects enhance the polariz-
ability contributions. Yet despite the enhanced effect of polar-
izability on εeff, the density and potential profiles (not shown)
remain almost unaffected. Based on the present model, we
conclude that polarizability is unimportant for aqueous solu-
tions — even with the dielectric decrement taken into account.

In Fig. 11 we plot the polarization surface charge density
due to separate contributions,

σ sol
p = p0cdL(βp0ψ

′
c), (21)

σ ion
p = 2αcsψ

′
c cosh(eβψc)eβαψ ′2

c /2, (22)

of the solvent and polarizable ions, respectively. For the lin-
ear solvent, represented as a constant background dielectric
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FIG. 11. σp as a function of σc . The white and black symbols represent σ sol
p

and σ ion
p , respectively (Eqs. (21) and (22)). The dotted lines are for the case

when both the nonlinear solvent and ion polarizability effects are included
in the model. The solid lines are for the model with a single contribution.
The dashed line is the result for the linear solvent (Eq. (23)). The system
parameters are cs = 10−5 M and ᾱ = 10 Å3.

constant,

σ sol
p =

(
ε − ε0

ε

)
σc. (23)

We consider σ sol
p at α = 0 first and compare the linear and

nonlinear results. As seen in Fig. 11, the nonlinear con-
tributions are rather weak and become noticeable for σc

> 0.4 C/m2. If we allow ions to be polarizable (the dotted
line with white symbols), the nonlinear effects become more
pronounced. The plots for σ ion

p show enhanced effect of po-
larizability with inclusion of the dielectric decrement effect
(solid versus dotted lines with black symbols).

In the present model, we consider the dielectric decre-
ment caused by a field of a highly charged surface. Another
source of dielectric decrement results from the interactions
between ions and solvent molecules: dipole moments of sol-
vent molecules forming a hydration shell around an ion satu-
rate in a strong field of an ion.7 Our model does not treat this
effect. It is not clear how the two effects would compete and
what an overall polarization would be. However, it is doubtful
that this additional effect would be sufficiently strong to alter
the conclusions of the present model.

V. CONCLUSION

In this work, we incorporate ion polarizabilities into the
Poisson–Boltzmann equation by modifying the effective di-
electric constant and the Boltzmann distribution of polariz-
able ions. From the contact value theorem we obtain the ratio
σp/σc as a function of two dimensionless parameters, γ1 and
γ2. Increase of either of the parameters increases the polariz-
ability effects. Based on this result we are able to determine
the conditions where polarizability is relevant. For example,
for an iodide ion in an aqueous solution, γ1 ≈ 0.01, and the
polarizability contributions are negligible. γ1 becomes large
for the low dielectric constant media and/or very high sur-
faces charges. The parameter γ2, on the other hand, increases

proportionally with the ion concentration. The low dielectric
constant and high concentration conditions point to ionic liq-
uids as a system where polarizability should not be neglected.
The absence of a solvent in these systems, on the one hand,
drastically increases the background dielectric constant, on
the other hand, decreases inter–ionic separations. One must,
however, be wary of the mean–field predictions at high den-
sities where Coulomb correlations and finite size effects20 are
extremely important.

The key conclusion of this work is primarily negative:
polarizability has little relevance for typical aqueous solu-
tions. By quantifying our results we are able to point to the
conditions where such effects can play a relevant role. These
conditions, however, are in the domain where the mean–field
theory starts to break down. To properly investigate the po-
larizability contributions under such conditions, one needs to
resort to more trustworthy theoretical descriptions. Despite its
shortcomings, the present work constitutes a good and sys-
tematic starting point for studying systems with polarizable
ions.
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