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An extension of the renormalized Jellium model which allows to study colloidal suspensions con-
taining trivalent counterions is proposed. The theory is based on a modified Poisson–Boltzmann
equation which incorporates the effects of counterion correlations near the colloidal surfaces using
a new boundary condition. The renormalized charges, the counterion density profiles, and osmotic
pressures can be easily calculated using the modified renormalized Jellium model. The results are
compared with the ones obtained using the traditional Wigner–Seitz (WS) cell approximation also
with a new boundary condition. We find that while the thermodynamic functions obtained within the
renormalized Jellium model are in a good agreement with their WS counterpart, the effective charges
predicted by the two theories can be significantly different. © 2010 American Institute of Physics.
[doi:10.1063/1.3523349]

I. INTRODUCTION

Strongly acidic or basic groups are often used to stabi-
lize colloidal suspensions against flocculation and precipita-
tion. The resulting electrostatic repulsion prevents the like-
charged particles from coming sufficiently near one another
where a short-range van der Waals attraction can result in an
irreversible association. It is well known that the Poisson–
Boltzmann (PB) theory describes accurately the properties
of such colloidal suspensions containing a symmetric 1:1
electrolyte.1, 2 For these systems the correlations between
small, strongly hydrated ions are weak, making the mean-
field PB equation quasi-exact. This is no longer true when
the counterions are multivalent. In this case, electrostatic cor-
relations between the ions can no longer be neglected and the
mean-field PB equation loses its validity. Although the PB
equation predicts very similar behaviors for suspensions con-
taining either monovalent or multivalent counterions,3 both
experiments and simulations show that this is not correct.
Many interesting phenomena inherent to colloidal suspen-
sions with multivalent counterions, such as colloidal charge
reversal,4–7 like-charged colloidal attraction,8 or the reversal
of the electrophoretic mobility9 cannot be captured by the
simple mean-field approach. The description of these phe-
nomena requires the use of more sophisticated and numeri-
cally more demanding approaches, such as the Monte Carlo
simulations,10 the integral equations,11 or the density func-
tional theories.12

To account for the electrostatic correlations in suspen-
sions containing multivalent counterions, while preserving
the simplicity of the PB theory, dos Santos et al. proposed
a Wigner–Seitz (WS) model with a modified boundary con-
dition at the colloidal surface.13, 14 The model is based on the
Shklovskii’s idea15 that the validity of the mean-field theory
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can be extended if the correlations between the condensed
counterions are properly taken into account. In the context of
the PB equation, this can be done using a modified boundary
condition which must be satisfied by the mean-field poten-
tial at the colloidal surface. Using this new boundary condi-
tion, the PB equation can be solved inside the Wigner–Seitz
cell to yield the ionic density profiles from which the effec-
tive colloidal charge can be calculated using the Alexander
prescription.13, 16

The WS cell model is based on the assumption that the
liquid state structure of a colloidal suspension is not very
different from a crystal one. This allows one to avoid the
complicated many-body problem by considering only the
electrostatic interaction between one colloidal particle and its
counterions and coions. As a further approximation, the ge-
ometry of the WS cell is taken to match the colloidal one
(e.g., spherical). The electroneutrality condition is imposed
by requiring that the electric field vanishes at the cell bound-
ary. Thus, within the cell model there are no direct elec-
trostatic interactions between the different colloidal parti-
cles. Nevertheless, the effective colloidal charge obtained by
matching the linear and nonlinear solutions of the PB equa-
tion at the cell boundary is often used within the Derjaguin–
Landau–Verwey–Overbeek (DLVO) potential17 to account for
particle–particle interaction.

The cell model should be particularly appropriate for sus-
pensions with large volume fractions of colloidal particles,
while its validity for dilute systems is questionable. In this pa-
per we propose a more liquid-state-like point of view, which
is particularly appropriate for suspensions with low volume
fraction of colloidal particles.

Inside a suspension each colloidal particle feels the field
produced by other particles and their condensed counteri-
ons. If we neglect the correlations between the colloidal
particles they, together with their condensed counterions,
can be thought to provide a uniform background in which
free microions move. The effective colloidal charge and the
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background charge must be determined self-consistently, re-
sulting in a Renormalized Jellium Model (RJM).18 This the-
ory is particularly appropriate for calculating the effective
colloidal charges because within the RJM, unlike in the cell
model, the interaction potential between the colloidal parti-
cles has precisely the DLVO form.18 The RJM has been suc-
cessfully used to calculate the effective charges and the struc-
tural and thermodynamic properties of colloidal suspensions
containing 1:1 electrolyte.17, 19–21 In this paper the RJM will
be extended to account for the electrostatic correlations in sus-
pensions with trivalent counterions.

The paper is organized as follows. In Sec. II the gen-
eral aspects of the model will be outlined. In Sec. III we
will describe the RJM with a modified boundary condition.
In Sec. IV the results of the theory will be presented. Finally,
the conclusions and discussion will be given in Sec. V.

II. THE MODEL

We consider a system of colloidal particles of radius a
and (negative) charge – Zbareq (uniformly distributed on the
surfaces), and counterions of radius rc and charge αq (q is the
charge of proton), inside an aqueous solution of volume V .
We adopt a primitive model (PM) description in which the sol-
vent is treated as a uniform continuum of dielectric constant
ε. The overall charge neutrality requires Ncα − N Zbare = 0,
where Nc and N are the particle numbers of counterions and
colloids, respectively. The typical length scale that character-
izes the system is the Bjerrum length, defined as λb ≡ βq2/ε,
which is 7.2 Å, in water at room temperature. In order to
maintain the simplicity of the model, image charge effects
which can become nontrivial for multivalent counterions22

are neglected within the primitive model approach adopted
here—colloidal particle has the same dielectric constant as the
solvent.

Because of strong electrostatic interaction between the
counterions and the colloidal particles, many of the counte-
rions become condensed onto colloidal surface.1, 2 A “com-
plex” composed of one colloidal particle with a layer of its
condensed counterions can then be regarded as a single en-
tity carrying an effective charge Zeff � Zbare.1, 2 The charge
neutrality condition then becomes ρ f α − Zeffρ = 0, where
ρ = N/V , and ρ f is the number density of free unassociated
counterions.

Traditionally colloidal suspensions have been modeled
using a crystal-like approximation of a single macroion with
its counterions inside a Wigner–Seitz cell, the radius of which
is determined by the volume fraction of colloidal particles.
Although this picture is appropriate at large concentrations—
when strong correlations between the charged particles lead
to a crystal-like ordering—it might not be appropriate for di-
lute suspension. To avoid the WS cell approximation we will
instead use a liquid-state RJM.

Suppose we fix one colloidal particle at the origin. Far
from this particle the counterion density profile will have
a Boltzmann-like form, ρ f (r ) = ρ f e−βqαφ(r ), where φ(r ) is
the mean electrostatic potential. Note that ρ f refers only to
free, uncondensed, counterions. The density of other colloidal
particles and of their condensed counterions provides a uni-

form neutralizing background ρback = ρZback. The mean elec-
trostatic potential satisfies the Jellium–Poisson–Boltzmann
(JPB) equation:

∇2�(r ) = κ2

α
(1 − e−αψ(r )) + Zbareλb

a2
δ(r − a), (1)

where ψ(r ) ≡ βqφ(r ) is the reduced potential, and κ2

= 4πλbρ f α
2 = 4πλbρZbackα defines the inverse effective

Debye screening length. The self-consistency condition re-
quires that the effective charge, calculated from the far field
solution of this equation, and the background charge must
have the same value, Zback = Zeff. We should note that the
screening of the electrostatic potential in the far field is pro-
duced only by the free (uncondensed) ions. A similar behav-
ior is implicit within in the cell model if one tries to define
the effective colloidal charge, as is done within the Alexander
prescription.16 However, this renormalization is less transpar-
ent within the cell model than within the Jellium formalism.

Although the above mean-field equation works very well
for monovalent ions α = 1, it becomes a rather poor approx-
imation when suspension contains multivalent counterions
(α > 1). In such cases, the strong electrostatic correlations
between the condensed counterions lead to significant devia-
tions from the PB theory. The deviations can be so strong that
they qualitative modify the behavior of suspensions contain-
ing multivalent counterions. In such suspensions, one finds
that the counterion condensation can become so strong as to
reverse the sign of the effective colloidal charge. Furthermore,
addition of a multivalent electrolyte can result in attraction be-
tween like-charged colloidal particles, thus destabilizing sus-
pension against flocculation.

To include the effects of the counterion correlations one
can proceed in a number of different ways. One approach is to
use a weighted-density functional theory23 to account for the
corrections to the mean-field electrostatic potential. Another
approach is to use the integral equations theory.24 All of these
methods, however, have their own drawbacks and are signifi-
cantly more computationally demanding than the simple WS
cell PB theory or the RJM.

We note that the counterion correlations are the strongest
among the condensed counterions, since these ions are in
the closest proximity of each other. Following Shklovskii
we will, therefore, attempt to include the counterion corre-
lations within the RJM using a modified boundary condition
at the colloidal surface. The condensed counterions will be
treated as a strongly correlated fluid—a concentrated quasi-
two-dimensional plasma. On the other hand, in the bulk the
concentration of counterions is quite small, so that the corre-
lations can be neglected and the mean-field approach is still
sufficient. By matching the two regimes, the JPB equation is
recovered, but with a new boundary condition at the colloidal
surface. From now on, we will restrict our attention to triva-
lent counterions, α = 3.

III. THE THEORY

Strong electrostatic interactions between the colloidal
particles and their counterions lead to counterion condensa-
tion. The condensed ions are in thermodynamic equilibrium
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with the free ions of suspension. Close to the colloidal sur-
face the counterion chemical potential is

βμsc = ln(
3ρsc) + βμc + βqαφ(a + rc), (2)

where 
 is the de Broglie thermal wavelength and ρsc is the
course-grained density of condensed counterions. The cor-
relational chemical potential μc is given by that of a two-
dimensional one-component plasma:13, 25

βμc = −1.65� + 2.61�1/4 − 0.26 log(�) − 1.95, (3)

were � ≡ α3/2λb
√

Zbare/2(a + rc) is the plasma parameter.
Far away, in the bulk solution, the chemical potential is well
approximated using the mean-field electrostatic potential,

βμb(r ) = ln[
3ρ f (r )] + βqαφ(r ). (4)

The thermodynamic equilibrium between the condensed
counterions and the free ions requires equality of Eqs. (2) and
(4), from which follows

ρ f (r ) = ρsceβμc e−βqα(φ(r )−φ(a+rc)). (5)

This equation correctly describes the density profile after a
short distance δ from the colloidal surface. This cut-off dis-
tance delimits the region where the microion correlations are
important and the mean-field approximation breaks down.
However, since the range of counterion correlations is quite
small and the PB density profile varies smoothly, Eq. (5) can
be extrapolated all the way to the colloidal surface. This sim-
plification then results in a new boundary condition for the
JPB equation at the colloidal surface,

ρ f (a + rc) = ρsceβμc . (6)

The value of ρsc can be obtained using the strong coupling
theory26 and coarse graining procedure.13 We find

ρsc = Z2
bareλb

8π (3.701)(a + rc)4
. (7)

The strong dependence of the coarse grained density on the
colloidal radius is a direct consequence of the contact theo-
rem which states that the difference between the contact and
the bulk density of counterions is proportional to the square of
the electric field.27 Since the bulk counterion density is much
lower than the counterion concentration at the colloidal sur-
face, the theorem requires that the density near the colloidal
surface scales as 1/(a + rc)4.13 Together, Eqs. (3), (6) and (7)
provide a new relation between the density profile at the col-
loidal surface and the bare colloidal charge Zbare. This should
be contrasted with the usual boundary condition for the PB
equation, dφ(r )/dr |r=a = Zbareλb/a2 which, however, does
not capture the strong counterion condensation resulting from
electrostatic correlations at short distance from the colloidal
surface.

The calculation of the electrostatic potential from Eq. (1)
is now quite straightforward. Far from the colloidal particle
the electrostatic potential has exactly the DLVO form,

ψ(r ) = Zeffλbeκa

(1 + κa)

e−κr

r
. (8)

Now suppose that we know Zeff = Zback, rc, a, and the vol-
ume fraction η = 4πa3ρ/3. Equation (8) then provides the

electrostatic potential and the electric field far from the col-
loidal surface. Using these as the initial conditions, we can
numerically integrate the JPB equation (1) to obtain the den-
sity ρ f (a + rc). Numerical integration is performed using the
usual Runge–Kutta algorithm. Equations (6) and (7) can then
be used to calculate the bare colloidal charge. In practice, of
course, we know the bare charge and would like to calcu-
late Zeff. This can be easily done by coupling the JPB solver
with a root finding subroutine, such as the Newton–Raphson
method. For each Zeff there is a corresponding Zbare. The root
finding subroutine allows us to efficiently search the values of
Zeff to find the one that corresponds to the given Zbare.

IV. RESULTS

Figure 1 compares the effective charge as a function of
the bare charge for several colloidal concentrations, using the
modified boundary condition within the RJM (solid curves)
and within the WS cell model (dashed curves).13 In all the
calculations, the counterion and the colloidal radii used are
rc = 2 Å and a = 100 Å, respectively.

Although both models predict similar qualitative behav-
iors, there is a significant quantitative difference between the
two effective charges. The effective charges calculated using
the RJM lie below the ones calculated in the WS cell ap-
proach. A similar result was found for the monovalent ions:
apparently, the colloid–colloid correlations, implicit in the
cell model, reduce the counterion condensation.28 The differ-
ence, however, becomes smaller as the colloidal concentration
decreases, as is also observed in the case of 1:1 electrolyte.

Unlike the monovalent situation, the effective charge
in the case of trivalent counterions is not a monotonically
increasing function of the bare charge, as can be clearly seen
in Fig. 1. Instead, after reaching a maximum, the effective
charge decreases with further increase of the bare charge. This
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FIG. 1. Effective charge as a function of the bare charge for suspensions with
trivalent counterions. The volume fractions are (a) η = 0.125, (b) η = 0.01,
(c) η = 0.005 and (d) η = 0.001. The solid lines have been calculated using
the RJM, while the dashed lines have been obtained using the WS cell model
(Ref. 13). The difference between the two models diminishes as the volume
fraction decreases.
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FIG. 2. Density profiles calculated using the RJM (solid lines) and the cell
model (dashed lines). The volume fractions are (a) η = 0.125, (b) η = 0.01
and (c) η = 0.001. The plasma parameter is � = 4.413. We see very small
discrepancy, which is further reduced as the volume fraction is decreased.

general trend is in perfect agreement with the findings of the
Monte Carlo simulations.13

In Fig. 2, the counterion density profiles calculated us-
ing both Jellium and WS cell models for a fixed bare charge
Zbareλb/a = 41.8 are displayed for different colloidal concen-
trations. We conclude that the difference in the density pro-
files is even less pronounced when compared with the cor-
responding discrepancy in the effective charges calculated
using the two models. It is important to remember that the
density profiles obtained using the above theory are only
valid after some distance from the colloidal surface. At short
distances, the strong-coupling regime dominates over the
mean field. The present theory coarse-grains the whole near-
field region into a modified boundary condition for the JPB
equation.

Besides the effective charges and the ionic distributions,
the thermodynamic properties can also be easily calculated in
the framework of the renormalized Jellium and the cell mod-
els. The osmotic pressure P within the RJM is a function of
the bulk counterion concentration:17, 29

4πλba2β P = 3ηλb

a
+ (κa)2

α
. (9)

Employing Eq. (9), we have calculated the osmotic pressure
as a function of the volume fraction for two fixed bare col-
loidal charges, Zbareλb/a = 41.8 and Zbareλb/a = 100.0, us-
ing both the WS cell model and the RJM. The results are
shown in Fig. 3. Again, we see only a very small difference at
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FIG. 3. Osmotic pressure as a function of the volume fraction for colloidal
suspensions with trivalent counterions and bare charges Zbareλb/a = 41.8
(upper curves) and Zbareλb/a = 100.0 (lower curves). The corresponding
plasma parameters are � = 4.413 and � = 6.826, respectively. The solid
lines have been calculated using the RJM, and the dashed lines have been
obtained using the WS cell model.

moderate volume fractions. For small volume fractions, the
osmotic pressures are identical within the two models.

V. SUMMARY AND CONCLUSIONS

We have extended the range of applicability of the renor-
malized Jellium model to describe suspensions with multi-
valent counterions in the absence of added salt. The model
uses Shklovskii’s idea to include the counterion correlations
as a modified boundary condition for the JPB equation. A
similar strategy has already proven to be successful for the
modified WS PB model.13, 14 Comparing the predictions of
the renormalized Jellium model and the WS model, we find a
quantitative difference in the values of the effective charge of
colloidal particles. Since the far field potential within the
renormalized Jellium formalism has precisely the DLVO
form, we expect that the effective charges calculated using
this formalism should be more reliable for structural calcula-
tions. On the other hand the measurable thermodynamic quan-
tities such as the osmotic pressure come out to be practically
identical in the two models.

Besides providing an alternative to the cell model, the
RJM can be further extended to take into account the colloid–
colloid correlations. The homogeneous background charge
distribution can be replaced by a nonhomogeneous one re-
lated to the colloid distribution function. This approach has
been successfully implemented for suspensions with mono-
valent electrolyte.20, 21 Unfortunately, for the case of multiva-
lent counterions, inclusion of colloidal correlations is not so
straightforward. To have an accurate structure function one
needs to know the interaction potential not only in the far
field, but also in the near field. The DLVO effective interaction
potential, however, is not valid at short distances where it be-
comes strongly modified by the counterion correlations.30, 31

The work in this direction is now in progress.
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