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O. I n t roduction. The main purpose of this pnpcr is to give a partia! answer to 
a question proposed by G. Pianigiani and J.Yorke [25] about probabilistic properties of 
trajectories of billiards: 

"There is a variety of phenomena in which trajcctories appear chaotic for an 
extended period of time but then settle down. Consider a particularly difficult 
problem of this type. Picture an energy conserving billiard table with smooth 
obstacles so that all the trajectories are unstable with respect to the initial data. 
Now suppose a small hole is cut in the tablc so tha.t the ball can fall through. 
vVe would like to investigate the statistical bchavior of such phenomena. In 
particular, suppose a ball is started on the table in some random way according 
to some probabili ty distribution. Let p(t) be the proba.bility that the ball stays 
on the table for at least time t and let PE(t) be thc probabili ty that the ball is in 
a measurable set E a.fter time t. Does P;(W tcnd a.symptotically to some constant 
J.L(E) as t goes to infinity? And if it does, what are the properties of J.L? Does it 
depend on the initial distribution? " 

We thank to S. Martinez that proposed to one of us to study the existence of quasi
stationary measurcs anel its limit laws for billiard systcms. For a Markov process analogous 
results were obtained firstly in [18] (see also [10]). 

We will consider a class of billiards that we call open billiards. In this case we will 
present mathematical proofs of the results that answcr the questions proposed above. For 
the open billiards there is no small hole where the ba.ll can fall through, but the ball can 
get lost to infinity. 

The first contribution in the direction of analy~ing this typc of problems in billiards 
was clone by Pianigiani and Yorke in their mentioned paper, where they consider not 
billiards, but a related problem for one-dimensional C'2 expandiug maps on the interval. 
They show the existence of a density F that plays an important role in thc onc-dimcnsional 
case. The measure J.L F = F( x )dx associated to thi:j deus i ty is not invaria.11t for the OllC

dimensional expanding map, but it is conditionally invaria.nt. This result generalizes the 
Lasota-Yorke theorem [12] to the case where the non-wanclcr ing set is a Cantor set. More 
recently P.Collet , S. Martinez and B. Schmitt [6] prescnt a.nother nice resul t related to the 
one-dimensional C2 case. They showed that the mcasurc JlF obtained by Pia.nigiani-Yorke 
conditionally converges to a certain invariant measure v. vVc will apply thcse two resul ts 
in the context of open billiards. In fact the C 2 case is uot enough for our purposes, anel 
we need a Cl+{ version that will be proved in the appcndix. 

We are able to present a complete picture of the dynamical properties of the b illiards 
we analyze. The dynamics of these billiards is ba.sically the one of a horseshoe (if one 
considers a certain special metric) . Stable and unsta.ble manifolds can be precisely de
scribed and several results about a certain "natural" measure will be presenteei in the next 
sections. ·--r·-

The setting anel our main results will be briefly presenteei in the next paragrn.phs. 
The simplest example of the class of billiards we cousider is the one given by three 

non-intersecting d iscs with equal radius anel such tlmt thc centers of the disks are at thc 
vêi:tices of an equilateral triangle. This is a good example for the reader to have in mind 
( even i f most of the results we obtain can be applied to more general open billiards ). 
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This billiarcl is not what is usually callecl a Sinai bi lliard (27), since in our case most 
trajectories (in the Lebesgue sense) will go to infinity. The set of trajectorics that remain 
on the table in the past anel in the future defines a Cnntor set . The main obstades to 
extend the result presented here to a Sinai billiard ( with a. hole iu the table where the ball 
could fall through) are the singularities that appca.r in tlte system due to the corncrs anel 
the trajectories that are tangent to the boundarics of such billiards. Therefore we analyze 
open billiards where such pathologies do not occur. 

What we call the "natural" measure J.1. (some times callcd the escape measure in thc 
literature) was previously considered by C. Grebogi, E. Ott and J. Yorke (see for instancc 
[22] section 5.6) and has the following description: suppose '<Ve are considering in the plane 
a certain expanding map whose non-wandering set is a Cantor set with Lebesgue measure 
zero. A natural generalization of the Bowen-Ruellc-Sinni measure in this case is obtained 
in the following way. Given a set B conta.ined in the Cnntor set C, we are going to define 
the value J.L(B ). Considera grid of squares with side E . Denote by bE the number of squares 
that intersect B anel cE the number of squares that intcrscct the Cantor set C. Now, when 
E goes to zero, if there exists the limit 

and i f this limi t is independent o f the grid for any Dorel sct B, then we say that J.1. 

is a "natural" measure. This procedure is quite natural from the point of view of an 
experimental observer. Given what is left after n observa tions (this will produce a slightly 
distorted grid wi th a v alue e in verse ly proportional to n), then one should consider the 
proportion of what is left of the set that one wants to mcasure over the full set that still 
rema.ins. The role of the grid is to give a computablc a.pproximation of the Lebesgue 
measure. V\Te would like to have a procedure allowing to obtain J.1. as a limit involving the 
Lebesgue measure (ora measure equivalent to Lebesgue measure) . 

We will present a precise definition of the probabili ty J.1. as a Gibbs state [24][28] of 
the potential associated with the positive Liapunov exponent, but the reader should keep 
in mind the above procedure. 

Vve will also present a formula relating the entropy h1" the positive Liapunov exponent 
x,, anel the Hausdorff dimension ó of the transversc mc<tsure (to be defined latcr): 

h,,= ó x,,. 
For the general case of Axiom-A systems, a proof of this formula appears in [13] . Our 

result is analogous to the one obtained by Chernov-Markaria.n [4] for hyperbolic billiards , 
with a correction term 8 due to the fractal structurc of the Cantor set . 

The Liapunov exponent of a point x will be cxprcsscd in terms of the t ime bctween 
bounces t( x) anel k( x) (a continued fraction cxpression involving the time t betwecn 
·ooüifces of the trajectory by x, the curvature J( of tlte boundaries of the billiard anel 
the angles f/J of the collisions with the boundary of the trajectory by x). More precisely for 
almost everywhere x, the Liapunov exponent x" is equa.l to 

X"= j log 11 + t(x)/.;(x) icllt(x) . 
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The precise definitions will be presented in the ncxt pa.ragra.phs. 
The probability J.L can be defined as the Gibbs sta.te associated with the potential 

(0. 1) '1/;(x ) = -log 11 + t(x)k(x)l; 

this potential is cohomologous to the potential given by minus log of the positive Liapunov 
exponcnt: - logf~eu (where f is the billiard map to be defined on the next section). It 
is therefore natural to ask if the potentia l 'lj; is not la.ttice. Vve are able to show that for 
a dense set of billiards, this is so (see section 8). vVhen one consider the statistics of the 
periodic orbits, it is important to know if the potcntial is lattice or not [24]. 

As the system is Axiom A, we are able to estima.te the asymptotic growth rate of 
n(r), the number of periodic trajectories with posit ivc Liapunov exponent smaller tha.n 1· . 

The value n(r) grows like lo~r (see[24] Theorem 6.ü anel section 9). In a related result, 
Morita[20] shows that t(x) is not lattice for a general class of billiards. 

The class of billiards we analyze here, apparently has some importance in the theory 
of quantum chaos (see [7],[8],[21],[22],[26]). The asymptotic growth rate of the number of 
periodic orbits is of indubitable relevance in this theory. 

In [4], related results about quasi stationary mensures for horseshoe diffeomorphims 
were obtained. 

1. The billia rd map. Considera finite numbcr of closcd curves 5Qi (where Qi, i = 
1, 2, .. , s, s > 2 are nonintersecting compact convex sets in the plane), that can be eithcr 
cr+I , r > 2 with non-zero curvature or real analytic. vVe will call this system the open 
billiard. 

vVe will say that the open ball billiard satisfics coudition (lvf) if all curves are simple 
closed curves anel the convex hull o f 6 Q i U óQ i does uot intcrscct 6Q k for any tri plc o f 
three distinct índices i,j, k. We will assume that all thc billia rds we considcr here satisfy 
the condition (J..1) . 

vVe will denote by 5Q the union of all 5Qi, i= 1, ... , s anel by n(q) the normal to the 
curve 5Q at the point q. The normal will have norn1 onc anel point out to the outsidc of 
the curve. 

Consider the dynamical system describing thc frcc motiou of a point mass in thc plane, 
with elastic refiections on 8Q (angle of incidence with the normal to the curve equal to the 
angle of refiection). The phase space of such a dynamica.l system is 

Jvf={(q,v); qE5Q, lvl=1, <u,n(q)>2:0}. 

A coordinate system is defined on Jvf by the are lcngt.h paramcter r along 6Q (therefore 
tlíe~state space in these coordinates has more than three connected components because 
s > 2) and the angle <P between n(q) and v. Clearly I<PI :S 1rj2 and < n(q),v >= cos(</J). 

Consider the probability d>.. = ccos(<P)drd</J, where c= 2I5QI-1 is justa norma.lizing 
factor and 15QI stands for the totallength of 6Q. 

Now we define the transformation map f in the following way: 
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f(xo) = f(qo,vo) = (qt, ut ) 

with 1]1 the point of óQ (if there exists such a point) whcre the oriented line through ( q0 , v0 ) 

first hits óQ anel v1 the angle with the normal n(q1) madc by that line after reflection on 
the tangent line through q1 E óQ. Formally, v1 = v0 - 2 < n(qi),v0 > n(q1 ) (see fig 1). 
This transformation map f may not be defined for all x 0 E lvf . 

The measure À is not globally invariant under f (any invariant measure is singular with 
respect to Lebesgue measure), but if x and f (x ) are in small open sets, then the image of 
the measure À by f is preserved. f is a cr diffeomorphism in these small neighbourhoods. 
The Euclidean length t (o r time) between q0 anel q1 is dcnoted by to. Hence, q1 = q0 + t 0 v0 

(a trajectory inside the billiard travels with constan t velocity equal to one). 
The map f is called the billiard map. We are intcrcsted in analyzing trajectories with 

infinite bounces. The trajectories that do not have this propcrty are the ones that in some 
finite (positive or negative) time escape to infinit.y. 

vVe will denote by Xi = (qi, vi) E M, i E N the successive hits of a trajcctory 
beginning at time O, xo = (qo,vo), with the boundary óQ, that is, f(q;, v;) = (qi+I ,Vi+d· 
vVe are interested among other things in proper tics for trajectories with x 0 = (q0 , v0 ) in a 
set of full J.L-measure (J.L stands for the natural measure). 

Given a trajectory beginning at x 0 = (q0 , v0 ) E óQ, wc will denote by ](i = K(xi), i E 
N, the curvature of óQ at IJi· For instance, if one consiclers the model where all Qi, i = 
1, .. , s, are disks, then the ](i are all constants. The angle between n( I] i) and v; will be 
denotcd by </>i anel finally, ti denotes the Euclidean clis tance between the bounces IJi and 
IJi+l, i E N (see fig 1). The backward orbit x; = (q;, v;), i E Z, is analogously defined. 
In any case, the main property is f(xi) = Xi+b i E Z. 

In the case we are considering, i f f is defincd for xo = ( qo, vo) E NJ, then i t is also 
defined in an open neighbourhood of xo unless thc trajcctory through xo hits the image 
f (x 0 ) = f (qo ,vo ) = (q1 ,v1 ) = x 1 in a position tangcnt to óQ, that is, V t = 1rj2 or 
v1 = - 1r /2. In this case f is defined in an left or right open neighbourhood. vVhen we 
speak about neighbourhoods we are considering any one of the possiblc cases described 
above. The set o f points x 0 = ( q0 , v0 ) E M w lto::;c forwa.rcl o r backward trajcctory is 
tangcnt to óQ for some Xi, i E Z has À-measure zero. 

If x1 = (t}J ,vi) = f( x0 ) is defined for x0 = (q0 ,uo), then for all xo = (qo, vo) ma 
ncighbourhood of x0 the derivative matrix is givcn by (scc [4},[16]) 

(1.1) 
__!.g_ ) cos f/l a 

_ JS.ill._ - 1 
COS cP I 

Note that when the image of (qo, vo) by f is ta.ngent to óQ (that 1s , q1 
q1 = - 1r /2), then the entries of the above matrix bccome infinity. 

1r /2 or 

2. The open billiard with three circumfcr e nces. vVe will consicler now a par
ticular example where the hypotheses of all results prcsen ted in this paper are satisfied. 
Corisider three circular disks of radius one (fig 2) who~c cen ters are located in the ver tices 
of an equilateral triangle of side a > 2. 
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Thc more natural system of coordinates to consicler in this problem is to denote by 1' 

the angle of the q coordinate in each circle. 
In this case the phase space is given by three rectangles M 1 , M 2 anel Jv13 , where each 

one is a copy o f a rectangle wi th base O :::; r :::; 47r /3 anel height -1r /2 :::; <P :::; 1r f2. ( see fig . 
2 and 3). 

vVc will denote by 6Qi the circle corresponding to the set Mi, i = 1, 2, 3. 
As an example notice that the point ( 1r /2, O) E JV11 is a perioelic point with period 2, 

because f( 1r /2, O) = (57r /6, O) E M2 anel f(57r /6, O) = ( 1r /2, O) E M 1 . There exist severa! 
trajectories that are not periodic but have infini tely many bounces. The map f is not 
defined everywhere (see fig 3) ; for example, it is not dcfined at the point ( 47r /3, O) . 

In fact the map f anel its inverse f- 1 are not defincd outside the elasheel region in fig 
3. The horseshoe structure of the map f will be more carcfully explaineel later. 

Notice that if a :::; 2 then the billia.rel is an exmuple of a cla.ssical Sinai billiard, 
bccause different components of the bounelary intersect with non zero angle. The statistical 
properties of this kinel of billiards have been extensivcly stuelied. 

If 2 < a :::; 4/ V3, then it is easy to see that for such open billiarels the condition (JVJ) 
defineel above is not satisfied. The case a = 2 is extremcly intcresting but it will not bc 
analybed here. 

The three circles open billiard subject to the condition a > 4/ v'3 satisfies the condition 
(M) anel it is uneler the assumptions of the thcorems that we will prove later. It is the 
simplest example of such a class of open billiards. Apparently, the results we present in 
the next sections can be also extented to the case 2 < a < 4/ V3. Vve will indicate why we 
believe this is true (see the end of section 3). 

The dynamics of f in the case a > 4/ J3 is the same as of a shift of finite type. This 
can be seen as follows. Denote by 1r : domain of .f -+ {1, 2, 3} the map that assigns to each 
x = (q,v) E Jvfthevalueisuchthatq E 6Qi. Givcna.ccrtain scquence Oi E {1 , 2, 3} , i E Z , 
such that for any i, Oi =I Oi+ 1 , i E Z, there exists a unique x o = ( qo, v 0 ) such tha.t 

It is also true that 1r o f(x) =a o 1r(x), where a is a ::ohift of finite type on thrcc symbols 
{ 1, 2, 3}. In other words, 1r is a conjugacy of f with the shift o- . Therefore, the dynamics of f 
is the one of a shift of finite type (remember that Oi f= Oi+l, but this is thc only rcstriction). 
This result was shown by Morita[17]. vVe will neeel to analyze metrical questions anel 
therefore we will need more delicate properties anel cstimatcs about the dynamics; the 
fact that f is conjugated to the shift o- is not cnough. Among other problems, we will 
need to take special attention when the entries of the ma.trix (1.1) become infinity due to 
tangencies of the orbit, etc ... 

Mor i ta[20] also shows that the ceiling function t( x) ( the time betwccn bounces) is 
.ij~lder continuous anel non-lattice. We will consider hcre another potential '1/; ( cliffereut 
from t) that is natural in the setting we are working in. V\Te will also show that for a dense 
set of values a > 4/ V3, the potential '!f; is not latticc. This allows one to estimate the 
g_r9~~th number of periodic trajectories subject to weights, a.s in [24] . 
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3. Trajectories with infinitely many bounces. Our first goal is to analyze 
geometrical and dynamical properties of the set of points that have infinitely many bounccs 
in the past and in the future. This subset of lv1 will ha.ve the structure of the product of 
two Cantor sets. We will begin considering the trajcctorics such that there exist infini tcly 
many bounces in the future. We need thcrefore to analyze the set 

We will carefully analyze the case a > 4/VS, evcn if at the end of our reasoning, we 
will be able to indicate why we believe it is also true for a > 2. 

From the symmetry of the problem, it follows that we have to analyze the structure uf 
the set lv11 intersccted with nos,jf-i(Mii ), whcre i 0 = 1, because for the other connectcd 
components lvh and 11113 the structure is basicall y thc same ( we have of course to assume 
respectively that io = 2 or io = 3). 

In fig 4, we represent some of the backward itcrates . 
Note that the line A= {(1-, -rr/2), rr/3 ~ 7' ~ rr/2} C lv11 iterated by f goes on the 

curve f(A) C 1\112 shown in fig 4. The curve f(A) can be also parametrized by 1·, given 
by the projection (</>,r)-+ r·, over rr/2 ~r~ 4rr/3 (sce fig 4). vVe draw two strips in M 1 

corresponding to the pre-images f- 1(1vi2 ) and f - 1 (JVh) in fig 4. There are also two othcr 
important strips, the ones corresponding to the ima.gcs f(NI2 ) and f(M3 ) in 1VI1 (see the 
first squa.re in fig. 3). vVe only draw in fig. 4 the set f( At/2 ) in order to make more clear 
the other curves and sets that we will describc in thc sequei. The intersections of these 
four strips are four non-linea.r rectangles in lvh tha.t correspond to the cylinders (with 
coordinates ()in the shift) {2, 1,2}, {3,1 ,2}, {2,1,3} and {3,1,3}. 

Similar picturcs can be drawn in lvf2 and lvf3 . From this picture the reader can realize 
the horse-shoe structure of the dynamics of f (see also fig. 3). It is important to point 
out that the distortion could be very bad dose to thc boundaries and this requires a more 
delicatc analysis . In other words we need extra care with the almost tangent trajectorics 
because in this case the expanding properties are not so good. This question will appear 
in the next sections. 

We draw the curve A in the left square of fig. 4 anel its imagc f( A) in the right square 
of fig. 4. To be more explicit about the dynamics of f we denote by A , B, C, D, E, F 
points in thc curve A. Note the position of the imagcs of these points in thc set f(A) in 
the right square in fig. 4. Note also the curve B and its image f(B) (sec fig. 4). Thc curve 
C reprcsents positions (r·o,</>o) whose image f(7·o,</>o) = (r t ,</>I) will hit the circle 2 in a 
tangent positon ( </>1 = -rr /2) (see fig. 4) 

The strip that appears in M1 between the two strips {1,2} and {1, 3} corresponds to 
the trajectories of NI1 that are lost in the middle of the two circles Nh and /v/3. Thc two 
other components in M 1 , external to { 1, 2} and { 1, 3}, corrcspond to the tra.jectories tlmt 
are lost between lvh and M2 or between lvf1 and N/3 . The cylinders {1,2, 1}, {1,2,3}, 
-{(3, 1} a.nd {1,3, 2} correspond in M 1 to four strips conta.ined in the two strips {1,2} a.nd 
{1, 3} (see fig 5). These four strips are strictly inside the two previous ones. 

lnductively, the cylinders {1,i1,i2, ... ,in}, Íj f= Íj+J, j E {1,2, .. ,n -1}, correspond to 
nj-:::·1 ... ,nf- j ( lv!Íj) and are 211 thin increasing strips going from the bottom to the top of 
}.;fl · 
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These cylinders form a nested sequence of sets (see fig 5). It is easy to see from a 
geometrical argument that each strip is strictly inside the prcvious one: notice that for 
a fixed q in Nij, if one considers all possible anglcs </J , then this will determine irnagcs 
J(q,</>) = (qt(</>),</>t(</>)) in such a way that qt (</>) is monotonica.l (when defined) anel al!:io 
</>1 ( </>) is monotonical. For a fixed qo, as </> ranges from - 7r /2 to 7r /2, half a horizon will 
be covered by f( qo, </>) and the part corresponding to hits in the other circles is strictly 
inside this half horizon ( when observed from the point q0 ). Clearly, the boundaries of thc 
cylindcr {1, i 1, i2, .. , in} are curves that correspond to tra.jectorics that at the n-th bounce 
are tangent to 8Q. 

Note the important geometrical property presentcd in fig 4, showing how the set A 
goes by f into the curve f(A). The boundary of JV/1 n f - 1 Nh goes by f into the upper 
and lower boundary of N/2 • The correct understanding of the geometrical position of all 
these boundaries and its images by f is essential for the next scctions. 

The interscction of an infinite sequence of nestcd sets is given gcnerically by 

nf==1 J-i (Mij ), Í j f:. i i +1, j E N, 

and it is a curve coming from the bottom to the top of 11111 (in order to prove this property, 
which follows from expansiveness, we need to use an analytical expression that will bc 
shown in section 4 and 5). vVe will show finally that the union of all such possiblc nested 
sequences of sets can be parametrized as the product of a Cantor set by such curves. 

The analysis that we have just made is valid for all opcn billiards satisfying condi tion 
(M). Dut in the case of three circumfercnces, it sccms to bc true also if 2 < a :S 4/-/3. 
We will briefiy discuss this case in the next paragru.ph. Note that in this situa.t ion thcre 
exist trajectorics that are tangent to one disk, reflect at anothcr disk and thcn escape to 
infini ty. 

As we have seen before (case a > 4/ J3) the fig 4. describcs the general picture of 
the dynamics of f. The strip of points bctween f - 1 (1\12 ) anel f - 1 (Jvf:J) corresponds to 
points that will not hit the circle 2 or 3 but will cross betwccn thesc two circles. More or 
less the same picture will be obtained for the boundary of thc band of points x such tha.t 
f( x) escapes to infinity in the case 2 < a ::::; 4/ J3. The differcnce is that in the present 
situation the two strips will collapse (see fig 6). Procceding inductivcly, the trajcctorics 
that remain on the table for infinite iterations are in "distortcd rectanglcs" in the same 
way as it happcned in thc case a;:::: 4/ ,J3 (see fig 4). In conclusion, the general picture of 
the case a ::::; 4/ ,J3 is basically the same as a > 4/ .J3 in topological terms. 

4. Ana lytical expressions . We will now ol>ta.in thc a.na.lytical exprcssion of the 
differential equations satisfied by the invariant curves tha.t gcnerate the Cantor set , which 
were mentioncd in the last paragraph. 
__ ~"", • ..To illustrate our reasoning, we will first obtain the equation of the curve B C Nft 
through x such that J(B) C Nfz and P(B) C lvh, with </>2 = 7r /2 , ct;// = O (we are using 
the notation Ji(x) = x; =(r;,</>;)). This curve B contains the 2-pcriodic point PJ21· It 
f<:>~J.?.ws from [4], [16] that 

d</>1 ( · ) _ } "". ( ·) cos </>1 (x) 
d X - \.1 X + ( ) , 

1'1 it X 
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d~o 1 d (X) = ](O (X) + COS ~O (X) ) l 
7'o to(x + 7KtCz:> 1 

c:oo~tCzJ+~ 

The last cquation describes the parametrization </>o of B. 
Now, by induction, it follows that the boundary of the strips that succcssively appca.r 

when we remove the trajectorics that go to infinity at time n, is given by 

d~o 1 d = Ko + cos ~o--------:------
7'0 to + """'I'T.:>":"I-+- - --:j. --:_ -;, -;._ -=~~=-c-= -I-=-=-=-=-=-=-=-

c:oa~ l , 1 + 
~ ..1 
C:Oh'2 + + ; I . .. 2..!!.l.t... + ..L 

coe ~n t n 

We omitted the reference to the point x in the above formula. 
vVhcn n goes to infinity the above equation will converge to the equation of the param

etrization of the curve of points y E M 1 with the same future specification of bounces Oi, 
iENasx. 

The continued fraction that appears multiplying cos </>o is given by 

( 4.1) 

with 

(4.2) b2k x = 2J((jk(x)) = 2 , 
( ) cos ~(Jk(x)) cos ~(Jk(x)) 

This continucd fraction converges if J((jk (x)) > O and 2:~0 t(Jk(x)) = oo (sce 
[5],[16]). For the open billiard we consider here, this is the case bccause K(.[k (x)) = 1 and 
t(f l.: ( x)) > a - 2 for all k . Therefore, the curves that in the future h ave infini tely many 
bounces are defined by the differential equation 

d</> (x) = K(x) + k8 (x) cos ~(x ). 
dT 

vVe point out that this is also true for the billiards considered by 1Vlorita, when the 
obstacles are convex and the condition (M) is true. 

We will use the notation 

(4.3) 

to enhance that this differential equation determines the paramctrization </> 8 (1·) in the 
vàriã.ble 1') of the stable manifold (7·, </>s ( 7')) through X o = (To, ~o). Note tha.t thc difFerential 
equation is non-autonomous because we take derivativcs in 1·, but k depends on (r,</>). 
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In an analogous way one can show that the curve through x0 , given by the set of points 
( 7', 4>) with infinitely many bounces in the past ( the unstable manifold passing through x) 
is parametrized by (r, cf>u(r·)), with cf>u(r) given by: 

( 4.4) 

where 

(4.5) 

and 

1 
k"(x) = a 1 (x) + --------=--

a2(x) + aa(x)+ I 1 
o .a (o:J+ ... 

5 . The h y p erbolic s tructure : stab le a nd unstable m a nifolds. Considcr in the 
descending strip of type { 1, 2, 1}, the unstable manifold of the 2-periodic point p = p 121 = 
( 1r /2, O) = P( 1r /2, O) E M 1 • The stable manifold is given by 

and the unstable manifold through p is givcn by 

More generally, consider the 2-periodic points J>iji in lvfi, i =f:. j, i, j E { 1, 2, 3}; there 
is a total of 6 such periodic points of period 2. 

Unstable manifolds are defined by graphs of decrea.sing functions and stable manifolcls 
are described by graphs of increasing functions. This follows from the inclination of the 
parametrizations 4> given by the analytical exprcssions ( 4.3) anel ( 4.4) of thc differential 
equations described in section 4. 

Let I"(Piji) be the u nstable manifold through ]Jiji intcrsected with the sct J..1; anel 

(5.1) 

Note that the curve I"(Piji) goes from the bottom to the top of i\!Ji, but for 1ij = 1ij 
this is not t r ue. 

Denote by ;..!]' = Ui,k:;éjNiijk the union of the twelve quadrilatcrals, where Niijk = 
J(Mi) n Mi n J-1 (1\lh). T he dynamics of the trajectorics that do not go to infini ty can be 
.s.t~ied in NI'. These quadrilaterals are far away from 4> = ±7r /2 and hence, for x E N/, 
coscf>(x) > c1 >O. 

Now we define the p-length of a general curve 1 C N/ by 

(5.2) p( 1) = 1 c os cf>d1·. 
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More precisely, if 1 is defined by (1-, t,b(r)), 1·0 $r $ r 1 , then 

If 1 is any decreasing curve ( <,6
1 
(r) < O), and f is continuous in -y, then 

(5.3) p(J(F)) = f rl (t(7·)(K(,·) - <,61 (7·)) + 1) cos </>dr, 
} r o COS </> 

where t(r) = t(x) is the distance to the next bounce beginning at x = (r,t,b(r)) . Since 
P(l) is of order cos <Pod1· (for small 1), for small -y passing through x 0 = (1·0 , <,60), 1'~~~))) is 

I 

apJ)roximately equal to 1 + t( r· o)( K( '·o) -4> ( ro)) wi th x E "'. 
c os</>( r 0 ) O t 

This property will lead us to define a kind of partia! derivative 8f~(x0 ) using the 
p-length defined above. 

D efinition 1. Given a curve 1 through xo, we define the p-derivati·ve o f 1 at x 0 as 
the limit 

8 f p ( ) - r PU ( 1)) 
1 xo - p( ~)2..o p('Y) . 

For decreasing curves, parametrized by (1·, </>(r)) the p-derivative of 1 at x0 is given by 

(5.4) J:JP( ) _ t(1'o)(K(ro) - <,6
1 
(1·0)) 

u 'Y xo - 1 + .J.( ) . cos 'P ro 

Under the hypothesis considered here, the p-derivative of decreasing curves 1 given 
by the last expression is uniformly bounded below by 1 + tmin, where the tmin =a- 2 is 
the minimum of the distances between bounces. 

Analogously, for the increasing curves 1 parametribed by (r, <,6(1·)), the p-derivative of 
1 on Xo = (1·o, </>o) is given by 

(5.5) 

In f- 1 (M1 ), any increasing curve 1 satisfies O < À < 8f~(xo) < 
(4.4) it follows that, for lu in JvJ' we have 

-···~· 

< 1. From 

and from ( 4.3) it follows that 8f~. < 1/w. In conclusion, from the above reasoning it 

follows that there exist f( > w > 1 and À < 1/w such that such for ali xo in 1\1 
I 

(5.6) W < 8f~u (xo) < ]{ 
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anel 

(5.7) À < 8f~. (xo) < !_, 
w 

These estimates will be important later on. 
From these last properties ((5.6) anel (5.7)) anel the way the Cantor set structure of 

the non-wandering set appears (see section 3), we can say that the dynamics of f is one of 
a horse-shoe eliffeomorphism. Therefore, all the consiclerations in chapter 2 of [23] can be 
applieel anel we concluele that there exist Cl+E foliations of stable anel unstable manifolels 
arounel the non-wanelering set 

r = Ui~j,k n 1ez f 1(Jvlijk). 

It easily follows (see [23], chapter 2) that the projection along stable (anel unstable) 
leaves is Cl+e. This property explains why we will neeel in the fu ture a Cl+E version of 
the results of class C2 that were previously obtaineel by other authors [6] [25]. 

6. Expanding transformations and invariant measures. We will state in this 
section the Cl+c results that we will neeel in section 7. These results will be provcd in the 
appenelix. 

A piecewise continuous map T is transitive 011 compone11ts if for every two maximal 
sets B, C where Tis continuous, there exists n = n(B, C) E N such that T 71 B n C i= 0. 

vVe will say that a probability measure J.L, defineel 011 the elements of a u-álgebra A of 
A., is co11ditionally invariant with respect to T : A. - TA. if J.L(T- 1 C) = O:J.L( C) for every 
elemcnt C E A , for some positive constant a. 

It results a: = J.L(T- 1 A). Hence J.L is conelitiona.lly invariant if anel only if 

This implies that 0: 11 = J.L(T-n A) for every n ~ O. 
vVe will represent by J.LF, the probability mcasure dpp = Fdv where vis another fixed 

probability measure on A , anel JA Fdv = 1. 

Hypothesis A: Assume T: Ã- R , B =A n T-1 A., is such that 
a) A= U7=1 Ai where Ai are disjoint open intcrvals; 
b) A. C T(A) (strictly ); 
c) A nT(BA) = 0; 
el) Ã is eneloweel with some metric d, such that the derivative Td of T with respect to 

this metric, is well elefineel on B ; i. e.: there exists 

(6.1) T ( ) 1
. d(T y, Tx) 

d X = 1111 
y-x d(y, X) 

for every x E B; 
... ·- ···'e) Td is 1-Holder continuous on B ; i. e.: there exist k > O anel O < 1 < 1, such that 
!Td(x) - Td(Y) $ kd'Y(x, y) for every x, y E B; 
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f) there exist NI > /3 > 1 such that inf{Td(x): x E B} ~ /3 anel sup{Td(x): x E B} ~ 
Jvf. 

g) TIÃ; is an homeomorphism for every i= 1, .. . , k. 
Let be v the probabili ty measure induced by the metric d on Borel sets of A, /31 

[1/ /3]' < 1, P = {Ãi}f=1 anel Prl = V/::01T-i P. 

Lemma 1. There exists a constant k1 > O such that 
a) I(T")d(x)- (T")d(Y) I ~ /31M11

-
1 k1 

b) 

for every z , w E I E Pn . 

Pro of: a) Td satisfies the chain rule for derivatcs. Then 

n-1 

I(T11 )d(x)- (T11 )d(Y) I ~ Jvf"-l 2: kd'Y(T~, T;) ~ 
1=0 

n-1 

Nfn-lk "Ç' /3n- ld(Tn T 11 ) < 111! 11
-

1 /3 k 
~ XI y - 1 1 

1=0 

b) The bounded distortion property for expanding maps establishes that 

(see, for exarnple [23) 4 .1). 

From b) of Lemma 1, we can choose N ~ 1 such that k1 /3f < 1. Since all our results 
can be written in terms of TN, instead of T (subclivid ing Ai), from here on we will suppose 
that T satisfies the last inequality for N = 1. 

T he proof of the next two theorems for the case C 1+t will be clone in the appendix. 

Theorem 1. (see Pianigiani-Yorke[25] for the case C 2
). Let T : Ã -+ R satisfies 

Hypothesis A a)-g). Then 
i) There exists a 1-Holder continuous function F: A-+ R, 

F E }C= {G E C 0(A), inf G > O,supG < oo, j Gdv = 1} 
xEA xEA 

such that J.lF is absolutely continuous with rcspect to the measure v, anel conditionally 
invariant with respect to T. 
·····-·-·ii) If T is also transitive on components, then there exists a unique F E }C such that 
J.lF is conditionally invariant with respect to T. 

13 



iii) If, furthermore T" is transitive on components for all n E N then, for every g E K, 

Here llllt means the L1 norm on L 1(A, v) anel 
P1: L1 (A,v)-+ L1(TA, v) is the Perron-Frobeniusoperator defineel by 

(6.2) 

We consieler P1 : L 1(A, v)-+ L 1(A, v) by taking the restriction of P1 f to A. 
Then JA f.(g o T)dv = frA(P1f)gdv for f E L 1(A, v), g E L 1(TA, v), anel 

f f.(g o Tn)dv = j (P{' f)gdv, 
JT-" (A) A 

for every J,g E L 1(A,v). 
We define now the operator Q: L1(A,v)-+ L1(A,v) by 

(6.3) Qg(x) = [CYF(x)t1 P1(gF)(x) 

where C\' = J.l.F(T- 1 A) = SFdv. Since P1F = CYF, we have that Ql = 1. 

The reaeler familiar with Thermodynarnic Formalism (sce [24]) will rccognize the op
erator Q as the Ruelle-Perron-Frobenius operator obtaineel from the potcntial 

1 
ITdl-1 (x )F(x) 

og CYF(T(x )) · 

This potential is cohomologous to the potential -log ITd(x )I . The proceelure of elefin
ing Q by (6.3) above is usual in Thermoelynamic Formalism when one knows the eigen
function F anel the eigenvalue C\'. This procedure is somctimes called normalization of the 
operator. 

We refer the reaeler to (24] where the theory of Thermodynamic Formalism eleveloppecl 
initialy by Bowen, Ruelle anel Sinai is carefully clescribed. 

In terms of the variational problem of the pressure the two cohomologous potentials 
will determine the sarne Gibbs state . 

... mrr....1'he reacler shoulcl take care with the elifferent elomains where the two operators are 
elefineel: the Perron-Frobenius operator of Lasota-Pianigiani-Yorke is elefineel over L 1 func
tions anel the Ruelle-Perron-Frobenius operator of Thermoelynamic Formalism is elefineel 
over Holeler continuous functions. The most surprising property of the Pianigiani-Yorke 
~es-~lt is the existence of the elerivatiye of F in a full neighbourhooel of the Cantor set 
uneler the C2 hypothesis. Uneler the Cl+E hypothesis, wc will show in the appenelix that 
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F will be Holder continuous. 

Now we will need another result related to Theorem 1. 

T h eo rem 2. (see Collet, Martinez, Schmitt[6] for the C 2 case). Let T : Ã - R 
satisfies Hypothesis A a)-g) and suppose that Tn is transitive on components for all n E JV. 
Then 

i) Q"g(x) - p(g) for every 1-Holder continuous function g on A. p(g) defines a 
probability measure J..L, with support on f{= nn>O T-nA; 

ii) The conditional probability measure of staying in A, when the evolution occurs 
with probability J.LF, J.LF(CIT-n A)- p(C) when n- +oo, for every Borel set C C A; 

iii) J.L is Gibbsian with potential -log Td( x ); i. e. 

for every io, ... , ill-t E {1, 2, ... , k}, every n E N and some z E n7=o Ti-l Ãt. 
So, (A, T, A, p) is a Kolmogorov system, satisfies the property of exponential decay of 

correlations, and 

7J is an invariant probabili ty measure } , 
where hTJ(T) is the entropy of T with respect to 17 . 
Now we will make some comments about different properties claimed by the above 

T heorem. 
The precise meaning of the limit in property i) will be explained later in the appendix. 

The conditions above allows one to apply the Ries~ Theorem, defining in this way a prob
abili ty J.l such that p(g) = J g( x )dft( x ). Thc measure fL is invariant for T and therefore 
the support of J.L is the non-wandering set of T (having in this case a Cantor set structure 
on the line) . The property ii) is the more important one. It claims that if we calculate 
J.LF(VIT- n(A)), the part of V in T-n(A) (the subset of A that still remains in A after n 
iterations ), then when n goes to infinity, the system will determine in the limit a certain 
measure p(V). The analogy of the natural measure we mcntion before and the m easure J.L 
we just defined (and satisfying property ii)) is transparent. 

Property iii) is also very important because a Gibbsian measure has severa! nice 
properties: the system is Kolmogorov (therefore ergodic), there exists exponential dccay 
Qf,...ç~rrelation, etc .... (see[24]). _ 

Both Theorems can be formulated for T : A - R 11
, A = UAi, where Ai C R'1

· are 
disjoint connected uniformly arcwise-boundcd sets. This means that there exists a number 
b such that any two points in each Ai can be joined by a polygonal line of length at most 
iJ'"(see[6}[25]). 
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7. Measures for open billia rds: invariant and conditionally inva ria nt. Now 
we will return to the consielerations of section 5, anel show how the results of section 6 can 
be applicel to the open billiard. 

Note for example that for the point (7r/2,0) E i\1!1 , j(1rj2,0) = (57r/6,0) E i\1!2 and 
/ (57r / 6, O) = ( 1r /2, O) E M 1 • Therefore the 2-periodic orbit ( 1r /2, O) E M1 and (51!' /6, O) E 
i\112 has an unstable manifold with two components. Since there exist three pairs of 2-
periodic orbi ts, we will consider six small pieces of unstable curves around these six periodic 
points. 

Formally, let Piii the 2-periodic point such that p(J2n(Piji)) =i anel p(J2n+l (Piji)) = 
j , where n E Z. The local unstable manifold of Piji is defined by 

Let us write /ij = 'Yu(Piji ) n f- 1 (Mj), therefore, as we have seen in (5.1 ), 

Note that the image of each one of the /ij six small picces of unstable manifold is thc full 
unstable manifold ( from bottom to the top) through another 2-periodic point. 

Denote also by Iljk : Nlj n /-1 (Jvh) -+ / ik the projection along stable fibers; as we 
mentioneel before, this projection is Cl+E (this is the reason for the neeel of Cl+E theorcms 
in the present paper). 

Theorem 3: - Consider the syst em described in section 2. Let A be the set Ui#j /i j . 
W e define T on Ã as a continuous extension of its values on the twelve connected pieces of 
curves /ii n f- 2 (Mz), l =I j. On these curves, Tis defined by T(x) = f(x) , if f(x) E /ji, 
and TP]kf(x), if f (x) E /- 1 (Nh), k #i. 

Then T: Ã-+ T(Ã) satisfies the Hypothesis A and also the hypotheses of Theorems 1 
and 2. 

Remark 1: Note that now Ais a union of pieces of curves in R 2 anel not a union of 
intervals in R as in Theorems 1 anel 2, but the proof of the analogous result is the same. 

R emark 2: To be more precise, we will need to consider JN, a high iterate of f 
as having the hypotheses of Theorems 1 and 2 satisficd, but this is no problem for our 
purposes, as will be explaineel later. 

In fig 6, we have representeel schematica.lly the gra.ph of T. 

Proof of Theorem 3: 
-~'!"..,..-· 

The verification of conelitions a) and b) follow immediately from the elcfinition. Con
dition c) follows from section 5. 
·- ··-·-Condition d) can be seen as follows: let d(x, y) = p('Y) where 1 is the curve, containecl 
in /ij, which joins x, y E /ij · Recall that if T' (x0 ) is the rate of expansion uneler the 
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Euclidean norm (dl = ..jd1·2 + d4>2 ) of f at x 0 , on unstable directions, then 

(7.1) IT'(xo)l = ójP .. cos4>(xo) (1 + h2(f(xo)))-l/2 
1 cos4>(f(xo)) 1 + h2 (xo) ' 

where h(y) = dJr" (y) (see for instance section 5 in [4]) . Note that logiT' I and logój~ .. are 
cohomologous. Condition d) is now a consequence of the following considerations: T~(x0 ) 
is either ój~ .. (xo) or [ój~ .. (xo )][ó(Iljk)~ .. (f(xo ))]. 

Now comes the crucial point: IIjk is a Cl+E function in the Euclidean metric and this 
metric is equivalent to the p-metric on unstable m anifolds because these are not too dose 
to the vertical lines and therefore cos 4> is bounded away from zero. 

T is an expanding map if 

If this conelition is not satisfieel we must consieler JN instead of j, with N E N such that 
wN m > 1. Note that m is positive because II~ .. is a eliffeomorphism. 

The topological mixing property inclueleel in the elefinition of transitivity is satisfieel 
because of the consielerations maele at the end of section 3 about the angles varying mono
tonically anel covering half horizons. 

Therefore all the conelitions listeel above are true for our system. This is the end of 
the proof of Theorem 3. 

Remark 3: Note that T' (xo) = IJ~"(xo)l anel the potential -loglf~"(x)l is cohomol
ogous to '1/;(x) (see (0.1), (7.1) anel elefinition in the beginning of section 8). 

As a elirect consequence of Theorems 1 anel 2 ( and the fa.ct that thc mea.sure~ in
eluceel by p anel J.LF) are absolutely continuous with respcct to the Lebesgue measure on 
unstable fibers), we obtain a conelitionally invariant probability J.LF absolutely continuous 
with respect to the Lebesgue measure on A, with elcnsity F a positive Holder continuous 
function. 

Furthermore, from Theorem 2, there exists a measure J.l-I such that for any Borel set 
VcA, 

. J.LF(T-n(A) n V) 
}:._~ J.LF(T-n(A)) = J.i-1 (V), 

where J.l-I is Gibbsian with potential -log IT~(x )I. The support of J.Lt is the Cantor set 
J(1 = n;:o=0T-'l(A), the intersection with A of the sct of poiuts whose tra.jcctorics hnve 
infinitely many bounces in the future (do not escape to infinity ). f-L l is an invariant measure 
rüf""T. 

In an analogous way, we can apply to f- 1 the same rcasoning we did beforc for f. 
Consider C= Ui#i'Yij, then applying Theorems 1 and 2 to f- 1 on C, we are able to 

find· a Holeler continuous function G defineel on C such that J.lG is conditionally i1wariant. 
More precisely, let S denote the ineluceel map for f- 1 , using projection along unstable fibcrs 
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on the stable manifolds of periodic points of period two; then t here exists f3 such that J.LG 
satisfies J.La( S - 1 (D)) = f3J.Lo(D) for every Borel set D. It also follows from Theorem 2 
that the measure J.LG conditionally converges to an S-invariant measure J.L2 whose support 
is in K2 = n~=os-n(C) . 

Now using the symmetry of the problem with three disks of radius one, each one placed 
at the vertices of an equilateral triangle, it follows the a = f3 = fs-l (C) GdJ.L2 . From the 
symmetry one can conclude that the two one-dimensional systems T anel S are basically 
the same. 

Now we will construct the natural two dimensional measure for the open billiard 
problcm. 

Remember that M' = Ui, k=l=jMijk· 

T h eorem 4 : Consider the system f : 1'.1/' -+ M' described in section 2 anel 5. Then 
there exists a conditionally invariant posite measure J.L+ anel a measure J.L{(V) such that 

for every Borel set V C 1'11'. The measure !L{ is invariant undcr f , supported 011 K 1E2 
and (1'1/, f, J.LT) is a K-system. 

Proof: vVe begin constructing the measure J.L+ on NI', that extends the l-dimensional 
measure J.l.F· First of all we define a probability measure J.Lo over the 0'-algebra 6 = 
(l1fj)-1 (A ) , where Ais the Borel a -algebra on Ã. For a set D E B we define fto(D ) = 
J.l.F(IT fi( D )). 

Define the measure fln on fn(l3) by ftn(E) = a- nJ.to(J-n(E)) . It is easy to see that 
f - 1 (8) C l3, if we restrict the range of f- 1 to 111'. Therefore j'l(B) C Jn+ 1 (B) for evcry 
n E N anel we conclude that J.Ln+l (D) = J.Ln(D) holds for D E fn(B). 

This last equality allows one to define a finite ly additive measure J.L oo 011 the a.lgebra 
o<nf11 (B ) by J.Loo(D) = J.Ln(D), if D E f 11 (l3 ). Note that Uo<nfn (!3) is an algebra because if 
J5 E fn(l3), E E fm(l3), m :s; n, then DnE E f't(l3) and J.L~(DnE) = a - n J.Lo(f- n(DnE)). 
The measure p 00 satisfies J.Loo(f-1 (C)) = a J.L00 ( C'), because, if C E j 11 (l3 ), thenf-1 (C') E 
fn - 1 ( l3 ) and 

= Q-n+l}.Lo(f-n(C')) = Q-n+lan~tn(C') = Q}.Loo(C'). 

The rest o f the construction is exactly the same as the one for Anosov system ( see for 
example ((14], Ch. III , Th. 2.3). Therefore, the mcas ure J.L+ on M' is conditionally 
-iflV&'iant: p.+(J-1 (D)) = aJ.L+(D) for every Borel set D C NI'. 

Now we will analyze the limit of the conclitioned measure. If D E fk (l3 ), for some 
fixed 1.: E N , then as n goes to infinity 

J.Lo(f- k(D n f-n(NJ')) 
an+k 
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J.LF( ITs f-k (D n T-"(A)) (T-k(ITs(D))) 
an+k --t J.ll • 

If ~LJ is the measure constructed on M' by extending f.LI (following the same procedure 
we used to construct J.L+ given J.LF ), we have proved that: 

for all Borel sets D in M'. J.Lt is an invariant probability measure whose support is con
tained in K 1 x K2. Since f.Ll is Gibbsian, (A, T, f.Ll) is a Kolmogorov system, and therefore 
the same is true for (!VI', f, J.Lt) (See [14]). 

The same procedure applied to the stable conditionally invariant probability f.LG allows 
one to construct a measure J.L- on M' such that J.L-U(D)) = <l'J.L-(D). In the case we 
analyze here, we can not compare the two measures J.L+ and J.L - , but for Anosov systems 
it is possible to show that the two measures are equivalent if p+ is equivalent to Lebesgue 
measure in the R 2 (see[14] and [13]). 

Considering now S : C--+ T(C) and f- 1 instead of respectively T and f, we obtain 
in a similar way the Kolmogorov system (M' ,f, J.L2) · The support of J.L2 is contained in 
](1 X J(2· 

The set of trajectories in !VI having infinite bounces in the past and in the future is 
J(l X J(2 = r (see section 5). 

The dynamical system (!VI, f, J.LT) is ergodic anel one can apply the formula for com
puting the entropy of the f-invariant probability J.LT (see[13,19]): 

(7.2) 

In this way, we are able to obtain the measure theoretical entropy h of f wi th respect to J.L i 
in terms of 8, the Hausdorff dimension of the transverse measure J.LT and x+, the Liapunov 
exponent of the measure J.Li. The Pesin Formula is a similar exprcssion (not involving 
dimension) but for the case when the natural probability is equivalent to Lebesgue measurc 
(see for instance [14]). 

We point out that from (7.1), x1,, the integral of log IT'I = log l f~t:u I with respcct to 

the invariant measure J.L, is equal to - J '1/;(x )dJ.L(x) (the two potentials are cohomologous). 
Note that the Hausdorff dimension of our measure J.L (Gibbsian for -log IT'I) has 

nothing to do with the Hausdorff measure of the non-wandering set. The Hausdorff mea
sure of the non-wandering set of a one-dimensional expanding systcm T ha.s a density 
with respect to the Gibbsian measure of the potential - s log IT'I, whcre s is the Hausdorff 
~~~.nsion of the non-wandering set (see remarks in [13]). 

8. The non-lattice prope rty of t h e potential '!/;. vVe say that a potcntial B is 
lattice if it is cohomologous to an integer valued function; i.e., if thcrc cxist an integer 
vãlued function G, a real positive constant 1 and a continuous function g sud1 tha.t B = 
g o T- g + G,. 
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\Vhen one wants to prove asymptotic growth rate properties of the perioelic orbits 
(see[24]), the proofs are elifferent for the lattice anel non-lattice potential. It is possible 
to obtain such properties by means of Tauberian Theorems combined with Fourier Series 
arguments (in the case of lattice potentials) or Fourier Transforms arguments (in the case 
of non-lattice potentials ). The lattice potentials appear only in very special situations. 
One shoulel expect that in general the potentials that ocurr in mathematical problems are 
non-lattice. This is the Claim of the main Theorem of the present section. 

In this section we will show that for the billiard given by three circles of radius one 
centereel at the corners of an equilateral triangle with side a, the Lia.punov exponent po
tential is not la.ttice for a elense set of possible va.lucs a. This claim is equivalent to showing 
that the potential 'lj; defineel before is not lattice, because these potentials ( up to a minus 
sig) are cohomologous as shown in Remark 3. From this result, we obtain the asymp
totic growth r ate property of Liapunov exponents of periodic orbi ts that was mentionecl 
in section O (see [24]). The next theorem shows the existence of a clense set of interesting 
examples. 

Theorem 5 - The potential 'lj; is non-lattice 

Pro o f: The claim is equivalent to showing that there is no continuous function g such 
that 'lj; = g o T- g + G1, where G is an integer valueel function anel 1 is a real positive 
constant. 

Suppose there exist g anel G as above; we will arrive at a contraeliction as follows. If 
there exists such a G, the sum of the values of the function 'lj; along a perioelic orbit is 
always of the form n1, with n E N elepeneling on the orbit. 

We will show that for a elense set of values a > 4/ V§, the open billiard with this 
parameter a is such that the periocl two anel period three orbits do not have the above 
mentioneel property. The values a will be rationals of the form a = Pi!!_:12 = 1 _ 

2 
1 , 

(P I q ) 2 

p, q E N. From the continui ty o f the function r( x) = 
1

_
2 

-:::2 , i t is easy to see tha.t the set o f 
., 

such values a is elense in a > 4/VS. 
Denote by t 2 anel t 3 the length between bounces respectively for the perioel two anel 

perioel three orbit (see fig 7). Denote also by k2 and k3, respectively, the expressions k 11 (x2) 
anel ku(x 3 ) (see (4.5)), where x 2 anel x 3 are, respectively, points on a orbit of periocl two 
anel three. 

vVe want to show that there are no n2 anel n3 such that 

(8.1) 

anel 
(8.2) 

·Eq{il·~alently, we will show that there are no n 2 anel n3 such that 

(8.3) (1 + t2k2)2113 = (1 + t3k3)3
n

2
• 

Fi:oin simple geometrical arguments (see fig 7), it is easy to see that t2 

t3 =a- V§. 
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Now we will analyze the value k2. From (4.5) (the continued fraction expression of 
k u) it follows that a 2-periodic point x 2 satisfies the property 

and therefore k2 satisfies 

(8.4) 

As t2 = a- 2 and a = P;~:2 , it follows from the quadratic formula that k2 = 1 + pj q is 
rational. Therefore (1 + t 2 k2 )2 113 is rational. 

VVe will show that up to a fin ite numbcr of values a E Q , the value (1 + t 3 1.:3 ) 311 2 is 
not rational, from which Theorem 5 will follow. 

Now we will analyze k3. From the symmetry of the orbit of period three, it follows 
from ( 4.5) that k3 satisfies 

and therefore k3 satisfies the quadratic equation 

(8.5) 2 4 4 
k3- -k3- =o. J3 aVS- 3 

Theorem 5 follows at once from the next Lemma. 

Lemma 2 - Let a E Q , a > 2, and let Ç be the positive r-oot of 

(8.6) x 2
- (4/VJ)x - 4/(aVJ- 3) =O. 

Ther·e exists a finite set S C Q such that if 2 <a E Q- S, then (1 +(a- J3)()'"'1 = 

(1 + t3()m is not in Q for any mE N. 

Pt·oof: Remember that a number ais callcd algebraic if it is a root of an equation 

We may assume that this equation is ireducible over Q. vVe refcr the rcader to [11} for 
general properties on algebraic structures that will be used in this section. Denote by a 

··~~ ~<;>_httion of the above equation. The equation above is uniquely defined in this situation 
and all roots are different. The set of solutions of such an equation is called the sct of 
conjugates to a. Therefore, a has n conjugatcs and also a is conjugate to itself. The 
degree of the extension Q [a}/Q is equal to n. Any automorphism of C !caves fixed ea.ch 

-~atiÕnal number and transforms a in a conjugate of a . Any conjugate of a is the image of 
a by some automorphism. 
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An algebraic number a is calleel totally real, if a is real anel all its conjugates are also 
real . 

Cla im: Lei a be an irrational algebraic totally real n·umber. Suppose that there exists 
m E N such that am E Q. Then, Q[a] is of de[JTee two over Q and the conj-u[Jates of a 
are a and -a. 

Proof of the Cla im: Let a 1 , ... , <l'n be the conjugates of a . Since O'm E Q , we have 
arp = am, because aj is conjugate to 0'

111
• Therefore, (a i I a)'" = 1. Since a i I a E R , 

we have that aila is equal to 1 or - 1. Hence, any conjugate of ais equal to a or -a. 
But a is not in Q , thus n ;:::: 2 anel therefore n = 2, proving of the Claim. 

P roof of Lemma 2: The Lemma will follow from the four properties listed below. 

i) Ç is totally real. This is so because, any conjugate of Ç is a root of (9.6) or of 
x2 + ( 41 J3)x + 4l(a.J3 + 3) =O, since any automorphism of C takes J3 to J3 or -J3. 
Therefore, all conjugates of Ç are real. 

ii )ry = 1 + (a- /3)( is totally real. Any conjugate of T} is of the form (1 + (a - J3)() 
or (1 +(a + J3)(), where ( is conjugate to(. Therefore, any conjugate of 7J is real. 

iii)Snppose (8.6) is i7·reducible oveT Q[J3]; then 7Jrn is not in Q, foT all mE N and 
for all a E Q , a > 2. 

The proof of iii) is by contradiction. Suppose there exists m E N such that T}m E Q . 
From the Claim above, [Q [ry]: Q ] :::; 2. Since (a- J3)ç = 1J -1 E Q [TJ], (a- J3)Ç is a root 
of an equation of degree 2 over Q ; assume 

x 2 + 1·x + s = O, 1·, s E Q , 

is such an equation. Then Ç is a root of the cqua.tion 

(8.7) 
1' s 

x 2 + x + =O. 
a-J3 (a - J3)2 

Therefore, we concluele that (8.6) anel (8. 7) are both equations with coefficicnts in 
Q [/3] with a common root (. Since we are assuming that (8.6) is irreelucible over this 
fielel, equations (8.6) anel (8. 7) are the same. In particular: -7:r = a_'fi, anel thcrefore, 

-4a + ( 4- r )vÍ3 = O. But r E Q , hence a= O, which con traelicts the fact that a > 2 . 

.. l . 1f''''iv) S1tppose now that (8. 6) is reducible over Q[ J3]; then there exists a finite set S C Q 
such that if a E Q , a > 2 and a is not in S , then 17 111 is not in Q for ali m E N. 

___ .. If (8.6) is reelucible, then Ç E Q [/3]. Hcnce 7J E Q [/3]. For the proof, we supposc 
that there exists m E N such that T}m E Q anel we prove that a must be containecl in 
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some finite set S C Q . From the last Claim, 7J E Q or -7] is conjugated to 7] . vVrite 
( = u+vvÍ3,u, v E Q ; then 

17 = (1 + au - 3v) + ( av - u )Vs 

and therefore, either 7J E Q and we have 

(8.8) av - u = O 

or else -7] is conjugate to 17 and we have 

(8.9) 1 + au- 3v = O. 

Suppose (8.9) is true. Then v = 1-t:Jau anel therefore, ( = u + 1±
3
au Vã". Equation (8.6) 

is equiva.lent to 

Vsx2 - 4x - 4( a + J3) = O 
a 2 - 3 ' 

hence, 

Vs( u + 1 + au J3? _ 4( u + 1 + au J3) _ 4( a+ J3) = O. 
3 3 a 2 - 3 

Since a, u E Q , we should consider the set of two equations: 

(8.10) 
1 2 2 2 4 

(1 + -a )u - - au- 1 - = O 
3 3 a 2 - 3 

anel 

(8. 11 ) 2 4a 
2au - 2tt - 2 3 

= O. 
a -

If there exist infinitely many values a such that the two equations (8.10) and (8.11) 
have a common root, the resultant of these two polynomials would be identically zero ( the 
coefficients of this polynomials depend on a) . In particular, for a = 1 there would be a 
common root, but this is not true. 

Hence, there exists a fini te set S 1 C Q such that i f a is not in Q , thcn ( 8.1 O) anel 
(8.11) do not have a common root. Therefore, if a is not in S1 , 1 + au - 3v =J. O, and this 
is a contradiction with (8.9). 

· '""":1"""1 ........r -r 

Now assume alternatively that (8.8) is true, that is av - u O. In this case ( 
a v - v J3. Proceeding as before, we obtain 

(8.12) 
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and therefore the system of equations: 

(8.13) 
2 

3v2 + 2v + 2 = O, 
a -3 

and 

(8.14) 
4 

( a2 + 3)v2 + 4v - 2 = O. 
a -3 

Analogously, as in the case (8.9), the fact that these two equations do not have a 
common root if a = 1 implies that there exist a finite set S2 c Q such that av - u =f. O if 
ais not in S2. 

Finally the set S is obtained as the union of S1 and 5 2 , proving iv). 
This is the end of the proof of the Lemma 2 and therefore Theorem 5 is proved. 

9 Appendix. The Cl+f theorems. In this appendix we will prove Theorem 1 and 
2 for the case Cl+f, addapting the proofs in [6] and [25]. 

Proof of Theorem 1. a) Let be 

C"'~(A) = {t.p: sup{ lr.p(y)(- r.pjx)l : x,y E A,x =f. y} < oo}, 
d"Y x,y 

the set of (-Holder continuous functions defined on A. For every non-negative function in 
Q"Y(A), we define its regularity to be 

{
lr.p(y)- r.p(x) l } 

R(r.p) = sup d"Y(x,y)r.p(x) : x,y E A,r.p(x) >O . 

Define H = {r.p E Q"Y(A): t.p 2: O,R(r.p) < oo,J r.pdv = 1} and Hp = {r.p E H: R(r.p)::; p} 
for every ]J > O. Let be P, the normalized Perron-Frobenius operator, P : L1 (A, v) -+ 

L 1 (A, v) , defined by 
~ <p(z) 
wy,Tz=x Ti('Z) 

f r- I A r.pdv . 

b) vVe claim that there exists a p > O, inclependent of t.p such that 

limsupR(Pnr.p)::; p 
n--++oo 

for all t.p E H. 
\r..Te begin evaluating R(Pr.p). Since TIA; is an homeomorphism, we can consider the 

local in verses Si : TA -+ Ai such that To Si = I d anel, if Tw 1 E Ai there exists Si such 
-rtlíã't$j o T( w) = w. We suppose that Wj and Zj are respectively the preimages of y and X 

in the same "inverse branch": i. e. Wi, Zi E Ai, Twi = y, Tzi = x . 
Then, 

I L:rtu=y r.p(w)(Td(w))-1 - L:rz=x r.p(z)(Td(z)) -11 < 
d"Y(x, y) L:rz=x r.p(z)(Td(z))-1 
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< I L ~ci]<-;:,i•;l I+ I L~-~~ 
- d-r(x, y) L: i <,o(zi)(Td(zi))- 1 

< Td(zi) lcp(wi)- <p(zi)l [d(wi, Zi)l-r 
max + 

- Td(wi) d-r(wi,Zi)t.p(zi) d(x,y) 

+max ITd(zi) -Td(wi)l 1 [d(zi,Wi)l-r 
d-r(zi,wi) Td(wi) d(x,y) 

(we have applied Lemma 4.1 of [22]: 

for any real numbers ai, bi, bi >O, i = 1, ... , q). 
As was remarked immediately after the statement of Lemma 1, 

then the first term of the last expression is less than >..R( <p ). 
The second term is less than 

[ l 
'Y+l 

k ~ = !11. 

So, we have that R(P<p) :::; 1\1 + >..R(<,o), anel, iteration of this inequality yielels 
R(Pnt.p):::; !11(1 +À+ ... + >..n-l) + >..nR(t.p) anel finally 

limsupR(Pn<,o):::; ( .M >..) = p. 
n-oo 1-

c) For the value of p that we have just elcfineel, it results that Hp is invariant uncler 
p, since R(Pt.p) :::; M + >..p = p if t.p E Hp. 

el) Hp is convex because, if <p E Hp , 

R(at.p + {3'1/J) < sup !a(<p(x)- <p(y)) + [3( '1/J(x) -'1/J(y))l < 
- d-r(x,y)(acp(x) + {3'1/J(x)) -

< {
l<,o(x)-<,o(y) l I'I/J(x)-1/J(y) l} < 

supmax p 
- d-r(x,y)cp(x)' d-r(x,y)'I/J(x) -

( we have applied once again Lemma 4 of [25]). 

25 



e) Hp is compact. If <p E Hp we have that, 

I~P(Y )I I 
<p(x) $1+pcl(x,y) 

for every x , y E Ai and 

In particular <p is either zero on Ai or infxEA; <p(x) > O. Furthermore 

(9.1) sup <p(y) $ L in f <p( x) 
yEA x EA 

and infxEA <p(x) < c, independent of <p because JA <pdv = 1. Then Hp is equiboundcd; 
<p(y) $ Lc. 

From , the equiboundedness and the definition of R(<p) it follows that Hp is equicon
tinuous l<p(x)- <p(y) l $ pd1 (x,y)<p(y) $ pLcd1 (x,y); given e there exists 

8 = [-ê llh 
pLc 

such that if cl(x , y) < 8 then l<p(y)- <p(x)l < ê . 

It is also closed because there is a uniform Holder constant equal to pLc and all the 
inequalities hold for the limit functions. 

f) Then we can apply Schauder Fixed Point Theorem (9] and obtain a function F E H P 

such that P F= F. The measure fLF defined by dfLp = Fdv satisfies the first assertion. 
g) The proof of the second assessment is almost the same of that of Theorem 2 in [25]. 
vVc remark that if 1/J E J( and f3n(1/J) = IIPr ('!/J)II t then supn II P 11 (1/J)IIo <ex> (11 · llo is 

the supremum norm in C0 (Ã)), as a conscquence of the following observation. Since the 
functions P 11(1) are in H p, from (9.1) it follovvs that sup IIPn(1)11 <(X). vVe have also that 
B11 (1) infxEA 1/;(x ) $ f3n(1/J) $ f3n(1) $ Bu(1)supxEA 1/;(x ), and 

pn('!/J)(x) = Pj'('ifJ )(x) < sup 'I/J Pj' (l )(x) = sup 'I/J P" (l)(x) . 
Bn('I/J) - inf 'l/; Bn(1) inf 'l/; 

Then 
sup 1/; 

sup pn('l/; )(x) $ -:---f·'· sup P 11 (1)(x), 
xEA 111 ~ xEA 

- ..,.ar~4 ... finally sup IIP11(1/J)IIo <ex>. 
This remark is used in the proof of Proposition 1 of (25]. 
h) Our assessment iii) is exactly the same of Theorem 3 in [25]. 

·- -·- ·· · This is the end of the proof o f Theorem 1. 
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Proof of Theorem 2. The proof of Theorem 2 will be divided in tree lemmas, as 
was clone in the proof of the C2-case [6]. 

a)Le m.ma 3: If I E Pn, denote by S1: A--. I , the inverse branch of Tn: T 11 oS1 = I d 
and, if z E I, then S1 o Tnz = z. Since Q11t.p = (a11F)- 1Pn(Ft.p), we have that Qnt.p = 
(an F)-1 L:(Td o S1)-1 F o (S1. t.p) o S1. 

In C"Y(A), consider the norms 

{ 
l'P(x)- t.p(y)l } II'PII-r = sup d(x,y )-r ,x =J y,x,y E A 

and II 'P IIa = II'PII.,. + II ~PIIoo · Then B = {t.p E C"Y(A): ll'PIIa < oo} in a Banach space. 
An operator Q acting on a Banach space is quasi-compact if there exists a compact 

operator H such that IIQN- Hll < 1 for some N E N. 

b) Lemma 4. Q is a quasi-compact operator on B. Consider the operator Ln defined 
by 

If 11(z) = 1 for z E I and zero is any other point, then {Ql1 : I E Pn} is a base of the 
image of Ln. So Ln is (of finite rank and then) compact. 

with 

We will prove that for some large enough n, IIQ 11
- Lnlla < 1. We have, for <.p E B 

<P o S1(x)- v(~) j <.pdv = l~.p(z)- <.p(w )l ~ ll'Pll.,.d""Y(z, w) 

~ llv>ll o(v(I ))' ~ llv>llo [ ~] "' 
Then I(Qn- Ln)<t'l ~ (anF) - 1(Pn F) ll'Plla.Bil = ll~Plla.Bi\ which implies that II(Q11

-

Ln)~P II oo goes to zero when n --. +oo. Denote by S1(x) = z , S1(y) = w, thcn 

((Qn - Ln)<t')(x)- ((QTI- Ln)'P)(y) 
d-r(x,y) 

( <>"~(x) - <>"~(y) ) a"F(x)((Q"- L. )v>)(x)+ 
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with 

<>" ~(y) It;;. (F(w))[Td(z)-
1 

- Td'(w )-
1 
{p(z) - v(ll) j opdv) 

011~(y) L (F (w))[Tcf (w)]- 1 [cp(z) - cp(w)]d'Y/ ) ~ CL 11 + bn +c,+ dn, 
IEPn x, Y 

(inf F> O since F E JC). 

G b _ 1 'Ç""' F(z) -F(w) d(z,w)7 Tn -I( 1 f ) 
n- {n F(y) Ifpn d(z,w)'Y d(x,y)'Y( d(z)) cp(z)-v(I) (cpdv), 

x (op(z)- vll) j opdv) 

lcnl < (Pt F)(y) sup(Tn(z))-I ITJtw)- T,ít(z)l (z)- _1_ dv < 
- ai1F(y) d d(x,y)'Y cp 1/(I) cp 

~ (3-nf31Mn-l Kzllcpllaf3f ~ .Nief3;12II'PIIs 

if n is large enough 

ld I< (ftF)(y) sup lcp(z)- cp(w) ( d(z , w) ) -r< llcpll (3n . 
n - anF(y) d(z, w)-r d(x,y) - -r 1 

We conclude that II(Qn- Ln)'PII B ~ c(3~ 12 ilcplla for some constant c and for a large 
'enoÜgh n . The lemma is proved. 
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c) Lemma 5. Restricted to B, the operator Q has 1 as simple eigenvalue and the 
rest of the spectrum is in a disk of radius r < 1. The previous lemma allows us to apply 
VIII.8.6 of [9] and conclude that the spectrum of Q can be decomposed into the union of 
a closed set which lies inside the circle lzl < r < 1 and a finite number of simple poles Ph 
i = 1, ... ,q, IPI= 1. 

If <p E B satisfies Q<p = p<p for IPI = 1, choose k > O such that <p + k > O. Hence 
<p + k E K. Since Q1 = 1 we have that Q"(<p + k) = pn<p + k. From Theorem iii) 

Qn(<p + k) 
IIQn(<p + k)ll1 

F - 1 Pr ( ( <p + k) F) -;;---"-II---'P1:.__
11 

('-'--( <p-:-:-+----'-k )~F"-'-') ll-:-1 _ --+ 1 
IIPt((<p + k)F)lb f F-1Pt((<p + k)F)dv 

Therefore 
pn<p + k 

-:-:--'---____;_---:-:-- --+ 1. 
IIP"<p + klb 

But, for k large enough, pn<p + k is bounded and bounded away from zero, for every IPI = 1, 
n E N . Then p must be 1. This relation also shows that the eigenfunctions associated to 
1 are the constant functions 

Therefore 1 is a simple eigenvalue. 
d) Let now be <pm the eigenfunctions of the eigenvalues em, leml <r < 1. Then, for 

any 1/; E B, 1/; = k1 + :Lam<pm, and Qn'l/; = k1 + :Lam e;~l<pm--+ k as n--+ +oo. So, 
G: C0 (B)--+ R defined by G('l/;) = k is a linear posi tive functional. From Riesz Theorem 
there exists a unique measure JJ. such that Sgdf-l = G(g) for every g E C0 (B ) (thc relation 
is vo.licl for evcry g E B. 

This measure is invariant under T since 

Q(g o T) = (aF)- 1 L g o To si. F o Si(Tci o Si) - 1 = 
i 

= (aF) - 19 L F o Si(Td · Si)-1 = (aF)- 1 gP1F = g 
i 

Hence Qn+ 1 (g o T) = Q11 (g) and f g o T dv = G(g o T) = G(g) = f gdv, for evcry 
9 E C0 (B). 

e) Denote by J( = nn>O T -n(Ã), the limit Cantor set. The measure f-l is supportcd 
by J(. In fact, if 9 vanishes on a neighbourhood of the Cantor set, Qn g converges to zero. 
This Cantor set can be coded by the parti tion of connected components of P. As usual, 
denote by (io, ... , Ín-1], the set -·:nry..,,.-· n -1 n T- 1 Ai, E Pn, 

i=O 

···ãncClet li0 , ... , Ín-1 = Tp(y) for some y E (io, ... , in-1]· 
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Lemma 6. There exists a constant c> O such that for every n 

-1 J-1 -n < ([ · · ]) < J-1 -n c i 1· a _ J.L t o, ... , tn-1 _ c 
1
· 

1
· a . o, ... , n-1 o, ... , n - 1 

Its proof is exactly the same of Lemma 3 in [6] . 
f ) We have proved parts i) and iii) of Thcorem 2. It remains to prove ii). vVe know 

that 

J.LF(C n T-nA) = r l c ·(lA o Tn) · Fdv = r P 11 (lcF)dv. 
Jr-nA }A 

(see the remarks between the statements of Theorems 1 and 2). 
From the definition of Q we obtain 

But Qn(lc) converges to p(C) in L 1(A, v), and F is bounded: then 

It was observed at the beginning of §6 that an = J.LF(T-n A); then iii) is proved. 

This is the end of the proof of Theorem 2. 
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