UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE MATEMATICA
CADERNOS DE MATEMATICA E ESTATISTICA
SERIE A: TRABALHO DE PESQUISA

OPEN BILLIARDS: CANTOR SETS. INVARIANT AND
CONDITIONALLY INVARIANT PROBABILITIES

ARTUR OSCAR LOPES
ROBERTO MARKARIAN

SERIE A, N© 39
PORTO ALEGRE. AGOSTO DE 18994



OPEN BILLIARDS: CANTOR SETS,
INVARIANT AND CONDITIONALLY
INVARIANT PROBABILITIES

Artur Lopes *
and

Roberto Markarian **

* Instituto de Matematica
Universidade Federal do Rio Grande do Sul - UFRGS
Porto Alegre — RS — 91509-900 - Brasil
ALOPES IF1.UFRGS.BR

** Instituto de Matematica y Estadistica “Prof. Ing. Rafael Laguardia”
Universidad de la Republica
Facultad de Ingenieria - C.C.30 - Montevideo - Uruguay
ROMA IMERL.EDU.UY

Abstract - Billiards are the simplest models for understanding statistical properties
of the dynamics of a gas in a closed compartment. We analyze the dynamics of a class of
billiards (the open billiard on the plane) in terms of invariant and conditionally invariant
probabilities. The dynamical system has a horse-shoe structure. The stable and unstable
manifolds are analytically described. The natural probability g is invariant and has sup-
port in a Cantor set. This probability is the conditional limit of a conditional probability
itr that has a Holder continuous density with respect to the Lebesgue measure. A formula
relating entropy, Liapunov exponent and Hausdorff dimension of a natural probability p
for the system is presented. The natural probability 1 is a Gibbs state of a potential
(cohomologous to the potential associated to the positive Liapunov exponent, see formula
(0.1)), and we show that for a dense set of such billiards the potential 3 is not lattice.
As the system has a horse-shoe structure one can compute the asymptotic growth rate of
n(r), the number of closed trajectories with the largest cigenvalue of the derivative smaller
than 7.
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0. Introduction. The main purpose of this paper is to give a partial answer to
a question proposed by G. Pianigiani and J.Yorke [25] about probabilistic properties of
trajectories of billiards:

“There is a variety of phenomena in which trajectories appear chaotic for an
extended period of time but then settle down. Consider a particularly difficult
problem of this type. Picture an energy conserving billiard table with smooth
obstacles so that all the trajectories are unstable with respect to the initial data.
Now suppose a small hole is cut in the table so that the ball can fall through.
We would like to investigate the statistical behavior of such phenomena. In
particular, suppose a ball is started on the table in some random way according
to some probability distribution. Let p(¢) be the probability that the ball stays
on the table for at least time ¢ and let pg(t) be the probability that the ball is in
a measurable set E after time £. Does f(tt tend asymptotically to some constant
i(E) as t goes to infinity? And if it does, what are the properties of u? Does it
depend on the initial distribution? ”

We thank to S. Martinez that proposed to one of us to study the existence of quasi-
stationary measures and its limit laws for billiard systems. For a Markov process analogous
results were obtained firstly in [18] (see also [10]).

We will consider a class of billiards that we call open billiards. In this case we will
present mathematical proofs of the results that answer the questions proposed above. For
the open billiards there is no small hole where the ball can fall through, but the ball can
get lost to infinity.

The first contribution in the direction of analyzing this type of problems in billiards
was done by Pianigiani and Yorke in their mentioned paper, where they consider not
billiards, but a related problem for one-dimensional C'*? expanding maps on the interval.
They show the existence of a density F' that plays an important role in the one-dimensional
case. The measure pp = F(z)dz associated to this density is not invariant for the one-
dimensional expanding map, but it is conditionally invariant. This result generalizes the
Lasota-Yorke theorem [12] to the case where the non-wander ing set is a Cantor set. More
recently P.Collet, S. Martinez and B. Schmitt [6] present another nice result related to the
one-dimensional C? case. They showed that the measure pp obtained by Pianigiani-Yorke
conditionally converges to a certain invariant measure v. We will apply these two results
in the context of open billiards. In fact the C? case is not enough for our purposes, and
we need a C'1F¢€ version that will be proved in the appendix.

We are able to present a complete picture of the dynamical properties of the billiards
we analyze. The dynamics of these billiards is basically the one of a horseshoe (if one
considers a certain special metric). Stable and unstable manifolds can be precisely de-
scribed and several results about a certain “natural” measure will be presented in the next
sections.

The setting and our main results will be briefly presented in the next paragraphs.

The simplest example of the class of billiards we consider is the one given by three
non-intersecting discs with equal radius and such that the centers of the disks are at the
vertices of an equilateral triangle. This is a good example for the reader to have in mind
(even if most of the results we obtain can be applied to more general open billiards).
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This billiard is not what is usually called a Sinai billiard [27], since in our case most
trajectories (in the Lebesgue sense) will go to infinity. The set of trajectories that remain
on the table in the past and in the future defines a Cantor set. The main obstacles to
extend the result presented here to a Sinai billiard (with a hole in the table where the ball
could fall through) are the singularities that appear in the system due to the corners and
the trajectories that are tangent to the boundaries of such billiards. Therefore we analyze
open billiards where such pathologies do not occur.

What we call the “natural” measure p (sometimes called the escape measure in the
literature) was previously considered by C. Grebogi, E. Ott and J. Yorke (see for instance
[22] section 5.6) and has the following description: suppose we are considering in the plane
a certain expanding map whose non-wandering set is a Cantor set with Lebesgue measure
zero. A natural generalization of the Bowen-Ruelle-Sinai measure in this case is obtained
in the following way. Given a set B contained in the Cantor set C, we are going to define
the value p(B). Consider a grid of squares with side € . Denote by b, the number of squares
that intersect B and ¢, the number of squares that intersect the Cantor set C. Now, when
€ goes to zero, if there exists the limit

. be
- w(B)
and if this limit is independent of the grid for any Borel set B, then we say that pu
is a “natural” measure. This procedure is quite natural from the point of view of an
experimental observer. Given what is left after n observations (this will produce a slightly
distorted grid with a value € inverse ly proportional to n), then one should consider the
proportion of what is left of the set that one wants to measure over the full set that still
remains. The role of the grid is to give a computable approximation of the Lebesgue
measure. We would like to have a procedure allowing to obtain p as a limit involving the
Lebesgue measure (or a measure equivalent to Lebesgue measure).

We will present a precise definition of the probability p as a Gibbs state [24](28] of
the potential associated with the positive Liapunov exponent, but the reader should keep
in mind the above procedure.

We will also present a formula relating the entropy /,,, the positive Liapunov exponent
X and the Hausdorff dimension ¢ of the transverse mecasure (to be defined later):

hy=6 x,.

For the general case of Axiom-A systems, a proof of this formula appears in [13]. Our
result is analogous to the one obtained by Chernov-Markarian [4] for hyperbolic billiards,
with a correction term § due to the fractal structure of the Cantor set.

The Liapunov exponent of a point z will be expressed in terms of the time between
bounces t(z) and k(z) (a continued fraction expression involving the time ¢ between
bottiices of the trajectory by x, the curvature I of the boundaries of the billiard and
the angles ¢ of the collisions with the boundary of the trajectory by x). More precisely for
almost everywhere z, the Liapunov exponent yx, is equal to

_ f Lo [1.4- 40V )

3



The precise definitions will be presented in the next paragraphs.
The probability y can be defined as the Gibbs state associated with the potential

(0.1) ¥(z) = —log |1 +#(z)k(x)l;

this potential is cohomologous to the potential given by minus log of the positive Liapunov
exponent: — log fIIE., (where f is the billiard map to be defined on the next section). It
is therefore natural to ask if the potential 3 is not lattice. We are able to show that for
a dense set of billiards, this is so (see section 8). When one consider the statistics of the
periodic orbits, it is important to know if the potential is lattice or not [24].

As the system is Axiom A, we are able to estimate the asymptotic growth rate of
n(r), the number of periodic trajectories with positive Liapunov exponent smaller than r.
The value n(r) grows like > (see[24] Theorem 6.9 and section 9). In a related result,
Morita[20] shows that #(z) is not lattice for a general class of billiards.

The class of billiards we analyze here, apparently has some importance in the theory
of quantum chaos (see [7],[8],[21],[22],(26]). The asymptotic growth rate of the number of
periodic orbits is of indubitable relevance in this theory.

In [4], related results about quasi stationary measures for horseshoe diffeomorphims
were obtained.

1. The billiard map. Consider a finite number of closed curves §@Q; (where Q;,7 =
1,2,..,s, s> 2 are nonintersecting compact convex sets in the plane), that can be either
C™1, r > 2 with non-zero curvature or real analytic. We will call this system the open
billiard.

We will say that the open ball billiard satisfies condition (M) if all curves are simple
closed curves and the convex hull of §Q; U 6Q; does not intersect 6Qy for any triple of
three distinct indices ¢, j, k. We will assume that all the billiards we consider here satisfy
the condition (M).

We will denote by 6Q the union of all 6Q;, @ =1,...,s and by n(¢) the normal to the
curve 6@ at the point ¢. The normal will have norm one and point out to the outside of
the curve.

Consider the dynamical system describing the free motion of a point mass in the plane,
with elastic reflections on 6@ (angle of incidence with the normal to the curve equal to the
angle of reflection). The phase space of such a dynamical system is

M ={(¢g,v); q€8Q, lv[=1, <v,n(g)>20}

A coordinate system is defined on M by the arc length parameter r along 6(Q) (therefore
fhié state space in these coordinates has more than three connected components because
s > 2) and the angle ¢ between n(q) and v. Clearly |¢| < 7/2 and < n(g),v >= cos(¢).

Consider the probability d\ = ccos(¢)drd¢, where ¢ = 2|6Q|~" is just a normalizing
factor and [6Q)| stands for the total length of 6Q.

Now we define the transformation map f in the following way:
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f(zo) = f(qo,v0) = (q1,01)

with ¢; the point of 6@ (if there exists such a point) where the oriented line through (¢o, vo)
first hits 6@ and v; the angle with the normal n(¢,) made by that line after reflection on
the tangent line through ¢; € 6Q. Formally, v; = vy — 2 < n(q1),v0 > n(q) (see fig 1).
This transformation map f may not be defined for all zy € M .

The measure A is not globally invariant under f (any invariant measure is singular with
respect to Lebesgue measure), but if  and f(z) are in small open sets, then the image of
the measure A by f is preserved. f is a C" diffeomorphism in these small neighbourhoods.
The Euclidean length ¢ (or time) between go and ¢; is denoted by to. Hence, ¢; = qo +tovo
(a trajectory inside the billiard travels with constant velocity equal to one).

The map f is called the billiard map. We are interested in analyzing trajectories with
infinite bounces. The trajectories that do not have this property are the ones that in some
finite (positive or negative) time escape to infinity.

We will denote by z; = (qi,vi) € M, i € N the successive hits of a trajectory
beginning at time 0, x¢9 = (qo,v0), with the boundary 6@, that is, f(qi,vi) = (gi+1,vi4+1)-
We are interested among other things in properties for trajectories with zo = (go, %) in a
set of full g-measure (¢ stands for the natural measure).

Given a trajectory beginning at xo = (qo,vo) € 6, we will denote by K; = K(z;), 7 €
N, the curvature of §Q) at ¢;. For instance, if one considers the model where all Q;, 7 =
1,..,s, are disks, then the K; are all constants. The angle between n(¢;) and v; will be
denoted by ¢; and finally, t; denotes the Euclidean distance between the bounces ¢; and
¢i+1, 1 € N (see fig 1). The backward orbit z; = (¢;,vi), ¢ € Z, is analogously defined.
In any case, the main property is f(z;) = zit1, 1 € Z.

In the case we are considering, if f is defined for ¥y = (go,v0) € M, then it is also
defined in an open neighbourhood of z¢ unless the trajectory through z¢ hits the image
f(zo) = f(qo,v0) = (q1,v1) = z; in a position tangent to 6@Q, that is, v; = 7/2 or
v; = —n/2. In this case f is defined in an left or right open neighbourhood. When we
speak about neighbourhoods we are considering any one of the possible cases described
above. The set of points zyg = (qo,v0) € M whose forward or backward trajectory is
tangent to 6Q) for some z;, ¢ € Z has A-measure zcro.

If &, = (G1,01) = f(&0) is defined for g = (Go,09), then for all 2y = (go,v0) In a
neighbourhood of ¥, the derivative matrix is given by (sce [4],[16])

: to Wo+cos g 1%'
— COs cos ¢
(1.1) f (;1;0) = ( ,—co _"'_,l "
- tgNg+cosd - _Kytg _
I\; Cos ¢ : e I\U cos ¢ 1

Note that when the image of (go,v0) by f is tangent to §Q (that is, ¢; = 7/2 or
q1 = —m/2), then the entries of the above matrix become infinity.

- —_ iy —

2. The open billiard with three circumferences. We will consider now a par-
ticular example where the hypotheses of all results presented in this paper are satisfied.
Consider three circular disks of radius one (fig 2) whose centers are located in the vertices
of an equilateral triangle of side a > 2.



The more natural system of coordinates to consider in this problem is to denote by r
the angle of the ¢ coordinate in each circle.

In this case the phase space is given by three rectangles My, M, and Mj, where each
one is a copy of a rectangle with base 0 < r < 47/3 and height —7/2 < ¢ < 7/2. (see fig.
2 and 3).

We will denote by 6Q); the circle corresponding to the set M;, i=1,2,3.

As an example notice that the point (7/2,0) € M, is a periodic point with period 2,
because f(7/2,0) = (57/6,0) € M, and f(57/6,0) = (7/2,0) € M;. There exist several
trajectories that are not periodic but have infinitely many bounces. The map f is not
defined everywhere (see fig 3); for example, it is not defined at the point (47/3,0) .

In fact the map f and its inverse f~! are not defined outside the dashed region in fig
3. The horseshoe structure of the map f will be more carefully explained later.

Notice that if @ < 2 then the billiard is an example of a classical Sinai billiard,
because different components of the boundary intersect with non zero angle. The statistical
properties of this kind of billiards have been extensively studied.

If 2 < a < 4//3, then it is easy to see that for such open billiards the condition (M)
defined above is not satisfied. The case a = 2 is extremely interesting but it will not be
analyzed here.

The three circles open billiard subject to the condition a > 4/ V/3 satisfies the condition
(M) and it is under the assumptions of the theorems that we will prove later. It is the
simplest example of such a class of open billiards. Apparently, the results we present in
the next sections can be also extented to the case 2 < a < 4/ V3. We will indicate why we
believe this is true (see the end of section 3).

The dynamics of f in the case a > 4/v/3 is the same as of a shift of finite type. This
can be seen as follows. Denote by 7 : domain of f — {1,2,3} the map that assigns to each
a = (q,v) € M the value i such that ¢ € §Q;. Given a certain sequence 6; € {1,2,3}, i € Z,
such that for any 7, 6; # 6i4+1, t € Z, there exists a unique x9 = (qo, vo) such that

7(f*(z)) = 7(qu,va) = On.

It is also true that 7 o f(z) = o o w(x), where o is a shift of finite type on three symbols
{1,2,3}. Inother words, 7 is a conjugacy of f with the shift o. Therefore, the dynamics of f
is the one of a shift of finite type (remember that 6; # 6,41, but this is the only restriction).
This result was shown by Morita[17]. We will need to analyze metrical questions and
therefore we will need more delicate properties and estimates about the dynamics; the
fact that f is conjugated to the shift o is not enough. Among other problems, we will
need to take special attention when the entries of the matrix (1.1) become infinity due to
tangencies of the orbit, etc...

Morita[20] also shows that the ceiling function #(x) (the time between bounces) is
Hglder continuous and non-lattice. We will consider here another potential 3 (different
from t) that is natural in the setting we are working in. We will also show that for a dense
set of values a > 4/\/5, the potential 1 is not lattice. This allows one to estimate the
growth number of periodic trajectories subject to weights, as in [24].



3. Trajectories with infinitely many bounces. Our first goal is to analyze
geometrical and dynamical properties of the set of points that have infinitely many bounces
in the past and in the future. This subset of M will have the structure of the product of
two Cantor sets. We will begin considering the trajectories such that there exist infinitely
many bounces in the future. We need therefore to analyze the set

Nog;if (M), i #ij41, Vj€EN.

We will carefully analyze the case a > 4/v/3, even if at the end of our reasoning, we
will be able to indicate why we believe it is also true for a > 2.

From the symmetry of the problem, it follows that we have to analyze the structure of
the set M) intersected with Ng<;jf~7(M;; ), where iy = 1, because for the other connected
components M, and Mj the structure is basicall y the same (we have of course to assume
respectively that ig = 2 or 75 = 3).

In fig 4, we represent some of the backward iterates.

Note that the line A = {(r,—7/2), 7/3 <r < xw/2} C M, iterated by f goes on the
curve f(A) C M; shown in fig 4. The curve f(A) can be also parametrized by r, given
by the projection (¢,7) — r, over 7/2 < r < 47 /3 (sce fig 4). We draw two strips in M,
corresponding to the pre-images f~!(M3) and f~!(M;) in fig 4. There are also two other
important strips, the ones corresponding to the images f(Msz) and f(Ms3) in M; (see the
first square in fig. 3). We only draw in fig. 4 the set f(M;) in order to make more clear
the other curves and sets that we will describe in the sequel. The intersections of these
four strips are four non-linear rectangles in M; that correspond to the cylinders (with
coordinates 6 in the shift) {2,1,2},{3,1,2}, {2,1,3} and {3,1,3}.

Similar pictures can be drawn in My and M3. From this picture the reader can realize
the horse-shoe structure of the dynamics of f (see also fig. 3). It is important to point
out that the distortion could be very bad close to the boundaries and this requires a more
delicate analysis. In other words we need extra care with the almost tangent trajectories
because in this case the expanding properties are not so good. This question will appear
in the next sections.

We draw the curve A in the left square of fig. 4 and its image f(A) in the right square
of fig. 4. To be more explicit about the dynamics of f we denote by A,B,C,D,E, F
points in the curve A. Note the position of the images of these points in the set f(A) in
the right square in fig. 4. Note also the curve B and its image f(B) (see fig. 4). The curve
C represents positions (7o, ¢o) whose image f(ro,¢o) = (r1,¢1) will hit the circle 2 in a
tangent positon (¢; = —7/2) (see fig. 4)

The strip that appears in M; between the two strips {1,2} and {1,3} corresponds to
the trajectories of M, that are lost in the middle of the two circles M, and M3. The two
other components in M), external to {1,2} and {1,3}, correspond to the trajectories that
are lost between M; and M; or between M, and Mj. The cylinders {1,2,1}, {1,2,3},
{1,3,1} and {1, 3,2} correspond in M; to four strips contained in the two strips {1,2} and
{1,3} (see fig 5). These four strips are strictly inside the two previous ones.

Inductively, the cylinders {1,i1,i25e.sin}, 2 7 tj+1, J € {1,2,..,n — 1}, correspond to
I f‘j(ﬁ:[gj) and are 2" thin increasing strips going from the bottom to the top of

M,.



These cylinders form a nested sequence of sets (see fig 5). It is easy to see from a
geometrical argument that each strip is strictly inside the previous one: notice that for
a fixed ¢ in Mj, if one considers all possible angles ¢, then this will determine images
f(a,9) = (q1(#), ¢1(¢)) in such a way that ¢;(¢) is monotonical (when defined) and also
¢1(¢) 1s monotonical. For a fixed qo, as ¢ ranges from —n/2 to 7/2, half a horizon will
be covered by f(qo,#) and the part corresponding to hits in the other circles is strictly
inside this half horizon (when observed from the point ¢p). Clearly, the boundaries of the
cylinder {1,7;,12,..,i,} are curves that correspond to trajectories that at the n-th bounce
are tangent to Q).

Note the important geometrical property presented in fig 4, showing how the set A
goes by f into the curve f(A). The boundary of M; N f~' M, goes by f into the upper
and lower boundary of Mj. The correct understanding of the geometrical position of all
these boundaries and its images by f is essential for the next sections.

The intersection of an infinite sequence of nested sets is given generically by

ﬂ?ilf_J(Mij )s z_J' 7{" i}"{']? j € N!
and it is a curve coming from the bottom to the top of M, (in order to prove this property,
which follows from expansiveness, we need to use an analytical expression that will be
shown in section 4 and 5). We will show finally that the union of all such possible nested
sequences of sets can be parametrized as the product of a Cantor set by such curves.

The analysis that we have just made is valid for all open billiards satisfying condition
(M). But in the case of three circumferences, it scems to be true also if 2 < a < 4/V/3.
We will briefly discuss this case in the next paragrapli. Note that in this situation there
exist trajectories that are tangent to one disk, reflect at another disk and then escape to
infinity.

As we have seen before (case a > 4/\/5) the fig 4. describes the general picture of
the dynamics of f. The strip of points between f~'(M;) and f~'(M3) corresponds to
points that will not hit the circle 2 or 3 but will cross between these two circles. More or
less the same picture will be obtained for the boundary of the band of points z such that
f(z) escapes to infinity in the case 2 < a < 4/V/3. The difference is that in the present
situation the two strips will collapse (see fig 6). Proceeding inductively, the trajectories
that remain on the table for infinite iterations are in “distorted rectangles” in the same
way as it happened in the case a > 4//3 (see fig 4). In conclusion, the general picture of
the case a < 4/1/3 is basically the same as a > 4//3 in topological terms.

4. Analytical expressions. We will now obtain the analytical expression of the
differential equations satisfied by the invariant curves that generate the Cantor set, which
were mentioned in the last paragraph.

e To illustrate our reasoning, we will first obtain the equation of the curve B C M,
through z such that f(B) C M, and f*(B) C My, with ¢ = 7/2 , 5 dr = 0 (we are using
the notation fi(z) = x; = (ri,¢:)). This curve B contains the 2-periodic point piz;. It
follows from [4], [16] that cos u(2)

d¢y . cos ¢ (x
T() Ki(e) b ——s el



%4‘%(1( ) = Ko(z) + cos ¢o(z)
Ty

1

1 .
to(z) + s ++3
cos¢1izi lliaj

The last equation describes the parametrization ¢y of B.
Now, by induction, it follows that the boundary of the strips that successively appear
when we remove the trajectories that go to infinity at time n, is given by

deo 1
— = K + cos ¢¢ :
dryg to + TR 1
cos ¢ £+ _‘”"2 1 ;
+
cos ¢y "”W“L_'—
T e g

We omitted the reference to the point z in the above formula.

When n goes to infinity the above equation will converge to the equation of the param-
etrization of the curve of points y € M; with the same future specification of bounces 6;,
t€ENasz.

The continued fraction that appears multiplying cos ¢ is given by

1

bile) + e —r—

(4.1) z)= l
22)+ oy

b}

with

2K(f(z) 2

2 2le) = ) ~ s s )

barsr(z) = t(f*(2)).

This continued fraction converges if K(f*(z)) > 0 and Y io, t(f*(x)) = oo (see
[5],[16]). For the open billiard we consider here, this is the case because K(f*(x)) = 1 and
t(f*(x)) > a — 2 for all k. Therefore, the curves that in the future have infinitely many
bounces are defined by the differential equation

% (@) = () + K(z) cos 6(a).

We point out that this is also true for the billiards considered by Morita, when the
obstacles are convex and the condition (M) is true.
We will use the notation

d¢®
dr

g o (4.3) () = K(2) + k*(z) cos ¢°(z)

to enhance that this differential equation determines the parametrization ¢*(r) in the
variable r, of the stable manifold (r, ¢*(r)) through @y = (9, ¢0). Note that the differential
equation is non-autonomous because we take derivatives in r, but & depends on (7, ¢).
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In an analogous way one can show that the curve through zg, given by the set of points
(r, ¢) with infinitely many bounces in the past (the unstable manifold passing through z)
is parametrized by (r, ¢%(r)), with ¢*(r) given by:

d u
(4.4) j; (2) = K(z) — k*(z) cos *(z),
where i
4.5 k' (z) = a(z
( ) ( ) 1( ) ¥ 02(:8) * aa(:)+':4i-'c)¥,.. ,
and 0
aaksa(z) = an(z) = t(f (@), keN.

cos ¢(f~*(z))’

5. The hyperbolic structure: stable and unstable manifolds. Consider in the
descending strip of type {1,2,1}, the unstable manifold of the 2-periodic point p = py2; =
(7/2,0) = f*(x/2,0) € M,. The stable manifold is given by

7'(p) = {z7(f*"(2)) =1, «(f*"*(z)) =2, VneN}

and the unstable manifold through p is given by
7' (p) = {zm(f*(2)) = 1, =(f~*"*(2)) =2, VneN}.

More generally, consider the 2-periodic points p;j; in M;, ¢ # j, 1,j € {1,2,3}; there
is a total of 6 such periodic points of period 2.

Unstable manifolds are defined by graphs of decreasing functions and stable manifolds
are described by graphs of increasing functions. This follows from the inclination of the
parametrizations ¢ given by the analytical expressions (4.3) and (4.4) of the differential
equations described in section 4.

Let v*(piji) be the unstable manifold through p;j; intersected with the set M; and

(5.1) vl =" (piji) O F7(M;).

Note that the curve y*(p;;i) goes from the bottom to the top of M;, but for v{; = 7}
this is not true.

Denote by M = U; x£;Mijr the union of the twelve quadrilaterals, where Mjjx =
f(M;)n M; N f~1(My). The dynamics of the trajectories that do not go to infinity can be
studied in M'. These quadrilaterals are far away from ¢ = £#/2 and hence, for z € M ¢
cos@(z) > ¢y > 0.

Now we define the p-length of a general curve v C M by

(5.2) ply) = /cos pdr.
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More precisely, if v is defined by (7, ¢(r)), 70 <r < ry, then

LB}

() :/ cos ¢(r)dr.
70

If v is any decreasing curve (¢ () < 0), and f is continuous in +, then

(5.3) P = [ ! (“"’”“’“) =gl 1) —

- cos @

where #(r) = t(z) is the distance to the next bounce beginning at z = (r, ¢(r)). Since
p(7) is of order cos ¢odr (for small ), for small vy passing through z¢ = (19, ¢0), pU(Y) g

: r(v)
t(ro)(K(ro)—¢ : "
{ u)(co(s";(?‘u) (rﬂ)) Wlt-h Lo € e

This property will lead us to define a kind of partial derivative § f?(zy) using the
p-length defined above.

approximately equal to 1 +

Definition 1. Given a curve v through g, we define the p-derivative of v at x¢ as

the limit (f(7)
6 P o 1' u.
b= _J, p(7)

For decreasing curves, parametrized by (r, ¢(r)) the p-derivative of v at z is given by

t(ro)(K(ro) — ' (r0))
cos ¢(rg) '

Under the hypothesis considered here, the p-derivative of decreasing curves v given
by the last expression is uniformly bounded below by 1 + #,,in, where the t,,;, = a —2 is
the minimum of the distances between bounces.

Analogously, for the increasing curves 4 parametrized by (r, ¢(r)), the p-derivative of
v on zg = (7o, ¢o) is given by

(5.4) 6f2(x0) = 1+

1
5 e .
() 83(20) = 1 + Hro)(K(r)+6'(r1)) °
cos ¢
In f~'(M;), any increasing curve v satisfies 0 < A < §fF(zg) < m < 1. From
(4.4) it follows that, for v* in M we have
- pop—— 6f.{:u (3‘0) = 1 + t(l‘g)ku(xo) > ]. +t”;;'ﬂal(:£0) > 1 + gt;nin =w > 1

and from (4.3) it follows that §fF. < 1/w. In conclusion, from the above reasoning it

follows that there exist X > w > 1 and A < 1/w such that such for all 2 in M
(5.6) w < 6f.’;..(a;u) < K

11



and i
(5.7) A< ofFi(mo) < =

These estimates will be important later on.

From these last properties ((5.6) and (5.7)) and the way the Cantor set structure of
the non-wandering set appears (see section 3), we can say that the dynamics of f is one of
a horse-shoe diffeomorphism. Therefore, all the considerations in chapter 2 of [23] can be
applied and we conclude that there exist C1*¢ foliations of stable and unstable manifolds
around the non-wandering set

' =Uigjr Nicz fl(ﬂ’fijk)'

It easily follows (see [23], chapter 2) that the projection along stable (and unstable)
leaves is C1*¢, This property explains why we will need in the future a C''*¢ version of
the results of class C? that were previously obtained by other authors [6] [25).

6. Expanding transformations and invariant measures. We will state in this
section the C'1+¢ results that we will need in section 7. These results will be proved in the
appendix.

A piecewise continuous map T is transitive on components if for every two maximal
sets B, C where T is continuous, there exists n = n(B,C) € N such that T"B N C # .

We will say that a probability measure p, defined on the elements of a g-algebra A of
A, is conditionally invariant with respect to T': A — TA if u(T71C) = au(C) for every
element C € A, for some positive constant a.

It results a@ = pu(T~'A). Hence p is conditionally invariant if and only if

T~ 4) =ulC).

This implies that a™ = u(T7"A) for every n > 0.
We will represent by pp, the probability measure dup = Fdv where v is another fixed
probability measure on A, and fA Fdv=.

Hypothesis A: Assume T: A —» R, B=ANT!A4, is such that

a) A= Uf=l A; where A; are disjoint open intervals;

b) A C T(A) (strictly);

c) ANT(0A) =0;

d) A is endowed with some metric d, such that the derivative Ty of T' with respect to
this metric, is well defined on B; i. e.: there exists

o . d(Ty,Tz)
. (6.1) Ta(z) —-—31_.11‘;1: iy, 2)

for every = € B;
T7e) Ty is y-Holder continuous on B; i. e.: there exist & > 0 and 0 < 4 < 1, such that
|Ta(z) — Ta(y) < kd?(z,y) for every z, y € B;

12



f) there exist M > B > 1 such that inf{Ty(z) : € B} > B and sup{Tu(z) : 2 € B} <
M.
g) 7|4, is an homeomorphism for every : = 1,..., k.

Let be v the probability measure induced by the metric d on Borel sets of A, 3; =
1/81" <1, P = {A;}%, and P, = Vi5'T-7P.

Lemma 1. There exists a constant k; > 0 such that
a) [(T™)a(z) = (T")a(y)| < BiM™1ky
b)
(T™)a(z)
(T™)a(w)

,
d(zsw) . an
d(T:,T,z)] =

for every z, w € I € P,.

Proof: a) Ty satisfies the chain rule for derivates. Then

'y

n—1
(T™)a(2) = (T™)a(y)| € M1 Y kd (T3, Ty) <
=0

n—1
M"Y prd(TE, TR < M Biky

=0

b) The bounded distortion property for expanding maps establishes that

(T")a(2)/(T" )a(w) < Ky

(see, for example [23] 4.1).

From b) of Lemma 1, we can choose N > 1 such that klﬂ{v < 1. Since all our results
can be written in terms of TV, instead of T (subdividing 4;), from here on we will suppose
that T satisfies the last inequality for N = 1.

The proof of the next two theorems for the case C''*¢ will be done in the appendix.

Theorem 1. (see Pianigiani-Yorke[25] for the case C?). Let T : A — R satisfies
Hypothesis A a)-g). Then
1) There exists a y-Holder continuous function F': A — R,

“mp

FeK={GeCA),inf G>0,supG < o0, [ Gdv =1}
T€EA zCA

such that pp is absolutely continuous with respect to the measure v, and conditionally
invariant with respect to 7'.
""7711) If T is also transitive on components, then there exists a unique F' € K such that
jup 1s conditionally invariant with respect to T

13



iii) If, furthermore T is transitive on components for all n € N then, for every ¢ € K,

Prn.‘i

lim —
1P gl

Here || ||; means the L! norm on L!(A4,v) and
Py : L'(A,v) — L}(TA,v) is the Perron-Frobenius operator defined by

d(pg s L)

(62)  Pg(a)= > (Tu)ely) = =2

yTy=z

We consider Py : L'(A,v) — L'(A,v) by taking the restriction of P, f to A.
Then fA f(goT)dv = fTA(Plf)gdu for f € L'(A,v), g € L'(TA,v), and

f £.(g 0 T dv = / (P! f)gdv,
T-n(A) A

for every f,g € L'(A,v).
We define now the operator @ : L'(A4,v) — L'(A,v) by

(6.3) Qg(z) = [aF(z)] ™' Pi(gF)(x)
where a = pp(T~'A) = SFdv. Since P, F = aF, we have that Q1 = 1.

The reader familiar with Thermodynamic Formalism (see [24]) will recognize the op-
erator () as the Ruelle-Perron-Frobenius operator obtained from the potential

[T~ (=) F(z)

o8 = F(T(=))

This potential is cohomologous to the potential —log |T4(z)|. The procedure of defin-
ing @@ by (6.3) above is usual in Thermodynamic Formalism when one knows the eigen-
function F' and the eigenvalue a. This procedure is sometimes called normalization of the
operator.

We refer the reader to [24] where the theory of Thermodynamic Formalism developped
initialy by Bowen, Ruelle and Sinai is carefully described.

In terms of the variational problem of the pressure the two cohomologous potentials
will determine the same Gibbs state.

-l he reader should take care with the different domains where the two operators are
defined: the Perron-Frobenius operator of Lasota-Pianigiani-Yorke is defined over L; func-
tions and the Ruelle-Perron-Frobenius operator of Thermodynamic Formalism is defined
over Holder continuous functions. The most surprising property of the Pianigiani-Yorke
result is the existence of the derivative of F in a full neighbourhood of the Cantor set
under the C? hypothesis. Under the C'*¢ hypothesis, we will show in the appendix that
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F will be Holder continuous.
Now we will need another result related to Theorem 1.

Theorem 2. (see Collet, Martinez, Schmitt[6] for the C? case). Let T : A — R
satisfies Hypothesis A a)-g) and suppose that T™ is transitive on components for all n € N.
Then

1) Q"g(z) — p(g) for every y-Holder continuous function g on A. pu(g) defines a
probability measure p, with support on K =), 5,77 "4;

ii) The conditional probability measure of staying in A, when the evolution occurs
with probability pp, pp(C|T"A) — u(C) when n — +o0, for every Borel set C C A4;

iii) p is Gibbsian with potential —log Ty(z); i. e.

M T)a(z)] o < u[ﬂ T“(Af,)] < el(T")a(=)] 0"
=0

for every 7¢,...,in—1 € {1,2,...,k}, every n € N and some z € [, Tl-_l.‘i;.
So, (A,T, A, 1) is a Kolmogorov system, satisfies the property of exponential decay of
correlations, and

loga = h,(T) - /1 log Ty(z)du(z) = sup{h,(T) — /log Tu(z)dn(z) :

7 is an invariant probability measure },

where h,(T') is the entropy of T with respect to 1.

Now we will make some comments about different properties claimed by the above
Theorem.

The precise meaning of the limit in property i) will be explained later in the appendix.
The conditions above allows one to apply the Riesz Theorem, defining in this way a prob-
ability y such that u(g) = [g(z)dpu(x). The measure p is invariant for T and therefore
the support of i is the non-wandering set of 7' (having in this case a Cantor set structure
on the line). The property ii) is the more important one. It claims that if we calculate
pp(V|T~™(A)), the part of V in T7"(A) (the subset of A that still remains in A after n
iterations), then when n goes to infinity, the system will determine in the limit a certain
measure p(V'). The analogy of the natural measure we mention before and the measure p
we just defined (and satisfying property ii)) is transparent.

Property iii) is also very important because a Gibbsian measure has several nice
properties: the system is Kolmogorov (therefore ergodic), there exists exponential decay
of correlation, etc.... (see[24]).

Both Theorems can be formulated for T : A — R"*, A = UA;, where A; C R" are
disjoint connected uniformly arcwise-bounded sets. This means that there exists a number
b such that any two points in each 4; can be joined by a polygonal line of length at most

b (see[6][25)).
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7. Measures for open billiards: invariant and conditionally invariant. Now
we will return to the considerations of section 5, and show how the results of section 6 can
be applied to the open billiard.

Note for example that for the point (7/2,0) € M;, f(x/2,0) = (57/6,0) € M, and
f(57/6,0) = (7/2,0) € M;. Therefore the 2-periodic orbit (7/2,0) € M; and (57/6,0) €
M, has an unstable manifold with two components. Since there exist three pairs of 2-
periodic orbits, we will consider six small pieces of unstable curves around these six periodic
points.

Formally, let p;j; the 2-periodic point such that p(f*"(piji)) = ¢ and p(f2"*+(piji)) =
J, where n € Z. The local unstable manifold of p;j; is defined by

Y (piji) = {z € Mi;p(f7*"(2)) =i, p(f~*"*V(2)) =j, VneN}.

Let us write v;; = v*(piji) N f~1(Mj), therefore, as we have seen in (5.1),
F(vij) = 7" (piij)-

Note that the image of each one of the 4;; six small pieces of unstable manifold is the full
unstable manifold (from bottom to the top) through another 2-periodic point.

Denote also by II3, : M; N f~Y (M) — vk the projection along stable fibers; as we
mentioned before, this projection is C'*¢ (this is the reason for the need of C''*¢ theorems
in the present paper).

Theorem 3: - Consider the system described in section 2. Let A be the set Uiz jvij.
We define T on A as a continuous extension of its values on the twelve connected preces of
curves vi; N f72(M)), l # j. On these curves, T is defined by T(z) = f(), if f(z) € v;i,
and 115, f(z), z'_f f(z) E_f_I(M';,.), kA

Then T : A — T(A) satisfies the Hypothesis A and also the hypotheses of Theorems 1
and 2.

Remark 1: Note that now A is a union of pieces of curves in R? and not a union of
intervals in R as in Theorems 1 and 2, but the proof of the analogous result is the same.

Remark 2: To be more precise, we will need to consider fV, a high iterate of f
as having the hypotheses of Theorems 1 and 2 satisfied, but this is no problem for our
purposes, as will be explained later.

In fig 6, we have represented schematically the graph of T

... Proof of Theorem 3:

The verification of conditions a) and b) follow immediately from the definition. Con-
dition c¢) follows from section 5.
"7 Condition d) can be seen as follows: let d(z,y) = p(v) where v is the curve, contained
in v;j, which joins z,y € 7ij. Recall that if T' (x¢) is the rate of expansion under the
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Euclidean norm (dl = /dr? + d¢?) of f at zy, on unstable directions, then

v e cos@(za) (14 h2(f(z))) M2
(7.1) T (xo)l—éf’f“cosé(f(mu))( 1+ h2(zo) ) ’

where h(y) = d—d'd:,:(y) (see for instance section 5 in [4]). Note that log |T"| and log 6 fhu are
cohomologous. Condition d) is now a consequence of the following considerations: T;(.‘l-'g)
is either 6 f7u (o) or [6f5u(20)][6(113; )5 (f(20))].

Now comes the crucial point: II3; is a C'*¢ function in the Euclidean metric and this
metric is equivalent to the p-metric on unstable manifolds because these are not too close
to the vertical lines and therefore cos ¢ is bounded away from zero.

T is an expanding map if

min{§(ILj; )5« (y); y € M; N UMY} =m > 1/w.

If this condition is not satisfied we must consider f* instead of f, with N € N such that
w™¥m > 1. Note that m is positive because H’.;.. is a diffeomorphism.

The topological mixing property included in the definition of transitivity is satisfied
because of the considerations made at the end of section 3 about the angles varying mono-
tonically and covering half horizons.

Therefore all the conditions listed above are true for our system. This is the end of
the proof of Theorem 3.

Remark 3: Note that 7" (zo) = If;E"(ro)l and the potential —iog|fl,:.,(x)| is cohomol-
ogous to 1(z) (see (0.1), (7.1) and definition in the beginning of section 8).

As a direct consequence of Theorems 1 and 2 (and the fact that the measures in-
duced by p and pup) are absolutely continuous with respect to the Lebesgue measure on
unstable fibers), we obtain a conditionally invariant probability yup absolutely continuous
with respect to the Lebesgue measure on A, with density F' a positive Holder continuous
function.

Furthermore, from Theorem 2, there exists a measure u; such that for any Borel set
V CA,

. pr(TTN(A4)NV)

e pr(T-"(A))

= m(V),

where p; is Gibbsian with potential —log |T(}(:.-,)| The support of u; is the Cantor set
K; = N2 ,T7"(A), the intersection with A of the set of points whose trajectories have
infinitely many bounces in the future (do not escape to infinity). j; is an invariant measure
In an analogous way, we can apply to f~! the same reasoning we did before for f.
Consider C' = U;%;7{;, then applying Theorems 1 and 2 to f~! on C, we are able to
find a Holder continuous function G defined on C' such that pg is conditionally invariant.
More precisely, let S denote the induced map for f~!, using projection along unstable fibers
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on the stable manifolds of periodic points of period two; then there exists 8 such that ug
satisfies ug(S~'(D)) = Buc(D) for every Borel set D. It also follows from Theorem 2
that the measure g conditionally converges to an S-invariant measure g, whose support
is in K3 = N2 ,S~(C).

Now using the symmetry of the problem with three disks of radius one, each one placed
at the vertices of an equilateral triangle, it follows the a = 8 = [, 5-1(C) Gdu,. From the
symmetry one can conclude that the two one-dimensional systems T' and S are basically
the same.

Now we will construct the natural two dimensional measure for the open billiard
problem.

Remember that M’ = U; g Mijx.

Theorem 4: Consider the system f : M' — M' described in section 2 and 5. Then
there exists a conditionally invariant posite measure g+ and a measure p]"(V) such that

lim p*(VIf~(M) = uf (V)

for every Borel set V C M'. The measure ui is invariant under f, supported on K; I,
and (M, f, uF) is a K-system.

Proof: We begin constructing the measure i+ on M, that extends the 1-dimensional
measure pp. First of all we define a probability measure pg over the o-algebra B =
(Hfj)‘l(.A) , where A is the Borel o-algebra on A. For a set D € B we define uo(D) =
ur(1L3,(D))

Define the measure g, on f"(B) by pa(E) = a " puo(f™"(E)). It is easy to see that
f~Y(B) C B, if we restrict the range of f~! to M . Therefore f*(B) C f*+1(B) for every
n € N and we conclude that p,41(D) = pn(D) holds for D € f*(B).

This last equality allows one to define a finitely additive measure g, on the algebra
0<nf"(B) by pteo(D) = pn(D), if D € f"(B). Note that Us<n f"(B) is an algebra because if
D e f*(B),E € f*(B),m < n,then DNE € f*(B) and ptoo(DNE) = a ™" puo(f~"(DNE)).
The measure fio satisfies proo(f1(C)) = apioo(C), because, if C € f*(B),thenf(C) €
f*~1(B) and

poo(fHC)) = pa-1(FTHC)) = @™ o (f T f7H(C)) =

= ™" Hpg(F7(C)) = o~ a" 1y (C) = apeo(C):

The rest of the construction is exactly the same as the one for Anosov system (see for
example ([14], Ch. III, Th. 2.3). Therefore, the measure ut on M is conditionally
davariant: ut(f~1(D)) = aut (D) for every Borel set D C M .

Now we will analyze the limit of the conditioned measure. If D € f¥(B), for some
fixed k € N, then as n goes to infinity

pHDN M) po(fHD N MM

am G‘"'H‘
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pr(I*f~¥(DNT-"(4))
antk

— m(TH(I(D))).

If u7 is the measure constructed on M’ by extending j; (following the same procedure
we used to construct ut given pup), we have proved that:

lim p*(DIf"M') = uf (D),

for all Borel sets D in M . p is an invariant probability measure whose support is con-
tained in I; x (5. Sincp p1 is Gibbsian, (A, T, u1) is a Kolmogorov system, and therefore
the same is true for (M, f, u7) (See [14]).

The same procedure applied to the stable conditionally invariant probability u¢ allows
one to construct a measure g~ on M such that u_(f(D)) = ap—(D). In the case we
analyze here, we can not compare the two measures u* and p~, but for Anosov systems
it is possible to show that the two measures are equivalent if % is equivalent to Lebesgue
measure in the R? (see[14] and [13]).

Considering now S : C — T(C) and f~! instead of respectively T and f, we obtain
in a similar way the Kolmogorov system (‘M’ , fy i3 ). The support of u; is contained in
Ky x Ifs.

The set of trajectories in M having infinite bounces in the past and in the future is
Ky x I{; =T (see section 5).

The dynamical system (M, f, »“T) is ergodic and one can apply the formula for com-
puting the entropy of the f-invariant probability u; (see[13,19]):

(7.2) h=6x".

In this way, we are able to obtain the measure theoretical entropy h of f with respect to uj
in terms of &, the Hausdorff dimension of the transverse measure g and x ¥, the Liapunov
exponent of the measure pi". The Pesin Formula is a similar expression (not involving
dimension) but for the case when the natural probability is equivalent to Lebesgue measure
(see for instance [14]).

We point out that from (7.1), x,, the integral of log IT| = log |f|f.'3..| with respect to
the invariant measure p, is equal to — [ 9(z)du(z) (the two potentials are cohomologous).

Note that the Hausdorff dimension of our measure g (Gibbsian for —log|T’|) has
nothing to do with the Hausdorff measure of the non-wandering set. The Hausdorff mea-
sure of the non-wandering set of a one-dimensional expanding system T has a density
with respect to the Gibbsian measure of the potential —slog |T"|, where s is the Hausdorff
___d'i_rrn"_gnsion of the non-wandering set (see remarks in [13]).

8. The non-lattice property of the potential . We say that a potential I is
lattice if it is cohomologous to an integer valued function; i.e., if there exist an integer
valued function G, a real positive constant v and a continuous function ¢ such that B =
goT — g+ Gr.

19



When one wants to prove asymptotic growth rate properties of the periodic orbits
(see[24]), the proofs are different for the lattice and non-lattice potential. It is possible
to obtain such properties by means of Tauberian Theorems combined with Fourier Series
arguments (in the case of lattice potentials) or Fourier Transforms arguments (in the case
of non-lattice potentials). The lattice potentials appear only in very special situations.
One should expect that in general the potentials that ocurr in mathematical problems are
non-lattice. This is the Claim of the main Theorem of the present section.

In this section we will show that for the billiard given by three circles of radius one
centered at the corners of an equilateral triangle with side a, the Liapunov exponent po-
tential is not lattice for a dense set of possible values a. This claim is equivalent to showing
that the potential 9 defined before is not lattice, because these potentials (up to a minus
sig) are cohomologous as shown in Remark 3. From this result, we obtain the asymp-
totic growth rate property of Liapunov exponents of periodic orbits that was mentioned
in section 0 (see [24]). The next theorem shows the existence of a dense set of interesting
examples.

Theorem 5 - The potential Y s non-lattice

Proof: The claim is equivalent to showing that there is no continuous function g such
that ¢ = g o T — ¢ + G~, where G is an integer valued function and 7 is a real positive
constant.

Suppose there exist ¢ and G as above; we will arrive at a contradiction as follows. If
there exists such a G, the sum of the values of the function 3 along a periodic orbit is
always of the form nvy, with n € N depending on the orbit.

We will show that for a dense set of values a > 4//3, the open billiard with this
parameter a is such that the period two and period three orbits do not lla,ve the above
2p _ 2

= 1

Z 2
D 1——F
£ % (pfq)

mentioned property. The values a will be rationals of the form a =

p,q € N. From the continuity of the function r(z) = sz_?, it is easy to see that the set of

such values a is dense in a > 4//3.

Denote by t; and t3 the length between bounces respectively for the period two and
period three orbit (see fig 7). Denote also by k2 and k3, respectively, the expressions k" (z2)
and k%(z3) (see (4.5)), where z2 and z3 are, respectively, points on a orbit of period two
and three.

We want to show that there are no ny and nj such that

(8.1) 2log(1 + tak2) = nay

and
(8.2) 3log(1l + t3k3) = na7y.

Fquivalently, we will show that there are no ny and nz such that
(8.3) (14 tok2)*™ = (1 + taks)®"2,

From simple geometrical arguments (see fig 7), it is easy to see that 12 = a — 2 and

tg-——a.—\/g.
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‘Now we will analyze the value k. From (4.5) (the continued fraction expression of
k") it follows that a 2-periodic point z, satisfies the property

2 1
k*(z = ky =
(2) = kz c050+t2+,7‘2-

and therefore k, satisfies
(8.4) k3 —2ky — 2/t = 0.

Asty =a—2and a = ;;2{% , 1t follows from the quadratic formula that k2 = 1+ p/q is
rational. Therefore (1 + t2k)?"* is rational.

We will show that up to a finite number of values « € Q, the value (14 taks)®"2 is
not rational, from which Theorem 5 will follow.

Now we will analyze k3. From the symmetry of the orbit of period three, it follows
from (4.5) that k; satisfies

2 1
k¥(23) = kg =
(z3) = k3 cosr/6+t3+t

and therefore k3 satisfies the quadratic equation

4 4
8.5 7 S WO . )
(&) 1B avB—a

Theorem 5 follows at once from the next Lemma.
Lemma 2 - Let a € Q,a > 2, and let ¢ be the positive root of
(8.6) 2% — (4/V3)z — 4/(aV3 - 3) = 0.

There exists a finite set S C Q such that if 2<a€ Q—=35, then (14 (a — V3)()™ =
(14 1t3¢)™ 18 not in Q for any m € N.

Proof: Remember that a number a is called algebraic if it is a root of an equation
2™ +ai2” L + ot an =0, aj €Q,n>1.

We may assume that this equation is ireducible over Q. We refer the reader to [11] for
general properties on algebraic structures that will be used in this section. Denote by a
2 gqnlution of the above equation. The equation above is uniquely defined in this situation
and all roots are different. The set of solutions of such an equation is called the set of
conjugates to a. Therefore, a has n conjugates and also a is conjugate to itself. The
degree of the extension Q[a]/Q is equal to n. Any automorphism of C leaves fixed each
rational number and transforms a in a conjugate of a. Any conjugate of a is the image of
a by some automorphism.
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An algebraic number «a is called totally real, if « is real and all its conjugates are also
real.

Claim: Let a be an irrational algebraic totally real number. Suppose that there exists
m € N such that a™ € Q. Then, Qo] is of degree two over Q and the conjugates of «
are & and —a.

Proof of the Claim: Let ay,...,a, be the conjugates of a. Since a™ € Q, we have

aj' = a™, because a' is conjugate to a™. Therefore, (aj/a)™ = 1. Since aj/a € R,
we have that aj/a is equal to 1 or —1. Hence, any conjugate of a is equal to a or —a.
But « is not in Q, thus n > 2 and therefore n = 2, proving of the Claim.

Proof of Lemmma 2: The Lemma will follow from the four properties listed below.

1) ¢ s totally real. This is so because, any conjugate of ¢ is a root of (9.6) or of
z? + (4/V3)z + 4/(av/3 + 3) = 0, since any automorphism of C takes v/3 to /3 or —/3.
Therefore, all conjugates of ( are real.

i) = 1+ (a — V3)C is totally real. Any conjugate of 7 is of the form (1 + (a — v/3)¢)
or (14 (a+ \/_)C), where ( is conjugate to (. Therefore, any conjugate of 7 is real.

iii) Suppose (8.6) is irreducible over Q[V/3]; then ™ is not in Q, for allm € N and
for alla € Q,a > 2.

The proof of iii) is by contradiction. Suppose there exists m € N such that ™ € Q.
From the Claim above, [Q[7] : Q] < 2. Since (a — v3){ =71 —1 € Q[n], (a — V3)( is a root

of an equation of degree 2 over Q; assume
2 4+rz+s=0, r,s € Q,

is such an equation. Then ¢ is a root of the equation

r

a—\/ﬁa'+(a#\/§)2 =

Therefore, we conclude that (8.6) and (8.7) are both equations with coefficients in
Q[V/3] with a common root . Since we are assuming that (8. 6) is irreducible over this
field, equations (8.6) and (8.7) are the same. In particular: —7- 7, and therefore,

—4a + (4 — r)V/3 = 0. But » € Q, hence a = 0, which contradicts the fact that a > 2.

(8.7) z? +

b b aling

iv) Suppose now that (8.6) is reducible over Q[\/_], then there exists a finite set S C Q
such that if a € Q,a > 2 and a is not in S, then n™ 1s not in Q for allm € N.

“If (8.6) is reducible, then ¢ € Q[v/3]. Hence n € Q[V3]. For the proof, we suppose

that there exists m € N such that ™ € Q and we prove that a must be contained in
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some finite set S C Q. From the last Claim, 7 € Q or —75 is conjugated to n. Write
¢ =u+vV3,u,v € Q; then

n=(1+au—3v)+ (av —u)V3
and therefore, either 7 € Q and we have
(8.8) av—u =0
or else —7 is conjugate to n and we have

(8.9) 14 au—3v =0.

Suppose (8.9) is true. Then v = L™ and therefore, ( = u + U‘;—“\/ﬁ Equation (8.6)
1s equivalent to

\/§$2_43;_M:0,
a? -3

hence,

\/§(H+1-|‘;au\/—) _4(u+1+au\/—) (a-f-\/-) 0.

Since a,u € Q, we should consider the set of two equations:

4
a? -3

I
o

1
(8.10) (L 5

5 2
a®)u? — FoU = 1=

and 4
8.11 Qati? — B e o =,
(8.11) au Rl 0

If there exist infinitely many values a such that the two equations (8.10) and (8.11)
have a common root, the resultant of these two polynomials would be identically zero (the
coefficients of this polynomials depend on a). In particular, for ¢ = 1 there would be a
common root, but this is not true.

Hence, there exists a finite set S; C Q such that if a is not in Q, then (8.10) and
(8.11) do not have a common root. Therefore, if a is not in Sy , 1+ au — 3v # 0, and this
is a contradiction with (8.9).

" "Now assume alternatively that (8.8) is true, that is av — u = 0. In this case ( =
av — vv/3. Proceeding as before, we obtain

S (a + \/_)

(8.12) V3(av — vV3)? — 4(av — vV3) — =0,
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and therefore the system of equations:

(8.13) 3v2 4 2v +

az—3=0’

and

(8.14) (a? + 3)v% +4v — = 0.

a* -3

Analogously, as in the case (8.9), the fact that these two equations do not have a
common root if a = 1 implies that there exist a finite set S C Q such that av — u # 0 if
a is not in Ss.

Finally the set S is obtained as the union of S| and Sz, proving iv).

This 1s the end of the proof of the Lemma 2 and therefore Theorem 5 is proved.

9 Appendix. The C1*¢ theorems. In this appendix we will prove Theorem 1 and
2 for the case C'*¢, addapting the proofs in [6] and [25].

Proof of Theorem 1. a) Let be

C(A) = {so = Sup{w rx,y € Ax # y} < 00},

the set of y-Holder continuous functions defined on A. For every non-negative function in
C7(A), we define its regularity to be

R(p) = Sup{% rz,y € A p(z) > 0}.

Define H = {¢ € C(4) : ¢ > 0,R(p) < o0, [pdv =1} and H, = {¢ € H : R(p) < p}
for every p > 0. Let be P, the normalized Perron-Frobenius operator, P : L'(A,v) —
L'(A,v), defined by
o(z)
oy = F0) _ S
| P1(0)ll Jr-14dv

b) We claim that there exists a p > 0, independent of ¢ such that

limsup R(P"p) < p
n—-+4oc
for all p € H.
We begin evaluating R(P¢). Since Tj4; is an homeomorphism, we can consider the
local inverses S; : TA — A; such that T 0 S; = Id and, if Tw; € A; there exists S; such
"that’S; o T(w) = w. We suppose that w; and z; are respectively the preimages of y and z
in the same ”inverse branch”: i. e. w;, z; € A;, Tw; =y, T'z; = .
Then,
A | E iy (@) Ta(w) ™! = P,y 0(2)(Tu(2)) | -

d7($’y)27‘z=z Lfo(‘?:)(’--"-ﬂa'(z))_1 =
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wi)—@(zi) i %i
‘ 24 %w_‘f)_ ‘ Z: Ti((w.) ﬁ({zi))
d¥(z,y) 3, ¢(2:i)(Ta(2i))?

e Ta(z) lp(wi) = o(z0)l [ dwi, 20|
T Ta(wi) dY(wi, zi)e(zi) | d(z,y)

| Ta(z:) — Ta(wi)l 1 [d(zi,wi)]’
d¥(zi,w;)  Ta(w;)| d(z,y)

+ max

(we have applied Lemma 4.1 of [22]:

for any real numbers a;, b;, b; > 0,1 =1,...,¢).
As was remarked immediately after the statement of Lemma 1,

v ¥
Td(Zg) d(wg,z;) 1
<kil=| =A2l
Tu(wi) | d(z,y) | = |B
then the first term of the last expression is less than AR(yp).
The second term is less than

So, we have that R(Py) < M + AR(y), and, iteration of this inequality yields
R(P ") < M(1+ A+ ...+ A" 1) + A" R(yp) and finally

M
li R{P" ;
e (P"p) < Ty

¢) For the value of p that we have just defined, it results that H), is invariant under
p, since R(Pp) < M+ Ap=pifp € H,.
d) H, is convex because, if ¢ € H,

la(p(z) — o)) + B &) — $)
o Blaw + B¥) S oup = e Y aw(@) + FE)

S le(@) = o) [¥(2) — $(y)]
L SR ““”‘{ &1(z,y)p(2) ' d(z,y)¥ () } =

(we have applied once again Lemma 4 of [25]).
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e) H, is compact. If p € H, we have that,

lo(y)]
w(z)

S 1+ pd'(z,y)

for every z, y € A; and
L7¢(z) < ¢(y) < Le(z).

In particular ¢ is either zero on A; or inf,ec 4, ¢(x) > 0. Furthermore

(9.1)  supp(y) < L inf ¢(z)
yEA T€EA

and infzea @(z) < ¢, independent of ¢ because [, ¢dv = 1. Then H, is equibounded;
¢(y) < Le.

From, the equiboundedness and the definition of R(¢y) it follows that H, is equicon-
tinuous |p(z) — @(y)| < pd?(z,y)e(y) < pLed(z,y); given € there exists

1/
£
b= |—

such that if d(z,y) < § then |p(y) — ¢(z)| < e.
It is also closed because there is a uniform Hélder constant equal to pLc and all the
inequalities hold for the limit functions.
f) Then we can apply Schauder Fixed Point Theorem [9] and obtain a function F' € H,,
such that PF = F. The measure ur defined by dup = Fdv satisfies the first assertion.
g) The proof of the second assessment is almost the same of that of Theorem 2 in [25].
We remark that if ¥ € K and B,(¥) = ||P*(¥)||1 then sup, ||P"(¥)|lo < oo (]| - [[o s
the supremum norm in C°(A4)), as a consequence of the following observation. Since the
functions P"*(«) are in H,, from (9.1) it follows that sup ||P"(1)|| < co. We have also that

Ba(1l)infrea ¥(z) < Bn(¥) < Bn(1) < Ba(1l)sup, ¢4 ¥(x), and

_ Pr¥)@) _ swpy PP()(@) _ sup¥ b,

P*(¥)(x) Ba(¥) — infyy Ba(l)  inf¢ DI
Then .
5 SUPY bngq)(p
ilétﬁf’ (¥)(z) < inf zeﬁp (1)(=),

_.and finally sup || P"()|lo < oo.
" This remark is used in the proof of Proposition 1 of [25].
h) Our assessment iii) is exactly the same of Theorem 3 in [25].

""" This is the end of the proof of Theorem 1.
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Proof of Theorem 2. The proof of Theorem 2 will be divided in tree lemmas, as
was done in the proof of the C*%-case [6].

a)Lemma 3: If I € P,, denote by Sy : A — I, the inverse branch of T" : T" 0 Sy = Id
and, if z € I, then S;o0T"z = 2. Since Q"¢ = (a"F)~"1P"*(Fyp), we have that Q"¢ =
(a'“F)‘l Z(Td (o] S})_IF o] (S; i K,D) 0.Sr.

In C7(A), consider the norms

) () = e(y)]
llelly = buP{ Wﬁf FYT,Y € A}

and ||¢|lz = |lelly + ll¢lleo: Then B = {p € C7(A) : ||¢|l < oo} in a Banach space.
An operator ) acting on a Banach space is quasi-compact if there exists a compact
operator H such that |Q" — H|| < 1 for some N € N.

b) Lemma 4. @Q is a quasi-compact operator on B. Consider the operator L,, defined
by

Lnp = (@FY™ Y (Tuo Sy (Fo 1) [ o

I€P,

If 1;(z) = 1 for z € I and zero is any other point, then {Q1; : I € P,} is a base of the
image of L,. So L, is (of finite rank and then) compact.
We will prove that for some large enough n, ||Q" — L,||p < 1. We have, for ¢ € B

1
(Q" = La)p = (a"F)™' Y (T" 0 5™ (Fo sn(so ° 81~ orm /{ ?JV)

Iel

with

6051(a) = 55 [ ov| = lol) = o)l < gl ()

< llells((D)" < llells H .

Then |(Q" — Ln)¢| < (a"F)~Y(P"F)|l¢|lsAT = ll¢llpBt, which implies that [|(Q" —
Ly)¢|loo goes to zero when n — +o0. Denote by Si(z) = 2, Si(y) = w, then

e ((Q™ — La)p)(z) = ((Q" — La)p)(y)
d(z,y)
o )" F(@)(Q" - La)p)(@)+
a"F(z) a"F(y)
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- 2@ (o) = - [ i

&“F(y) Ign((F(Z) - (F(w))(Td (")) (99(‘-) V(I) ,/;tpd )-}-
1 n -1 n -1 1

a™F(y) I;ﬂ(F(w))[Td (2)7" = T4 (w) ](tp(z) e m/@du)

1 " ndi
" F () %;,.(F(w))m (@) [p(2) = () gy S n + bt ca+ dy
with
_ Fly) - F(a) 11l

© a

e m((@n — La)p)(z) 5 |an| £ ian”‘P”Bﬁl = Ma||¢|lBBY

(inf F > 0 since F € K).

=L O Ry Aol gy (o) - L g
© b = S W) !gn dzw)yt dz,g)7 Ld ) (‘P( )= 7D /(aod )),

1 1 Il k™ 1
bl £ i il no_ ¥ — an < n
bal < gl Flle D BT gllellsfy = St 2Bl < MiBTllells

IGP"
1 T (w) — Tj(2)
d(z,y)”

1 n - n =
® on = F ) .r;,, F(w)(T{ (=)™ (T} (w))

1
X (gp(z) — m -/Itpdu)

1 |TF (w) = T (2)]
d(z,y)?

1

(PrF)w) RO S [

ay F(y)

< BB M I ol BT < MeBrllells

lea| <

sup(Ty (2))

if n is large enough

. o\ ()1 242 — (W)
© dn = 5y %F( (TE (@)™ =gy

(PrF)y)  lo(z) — p(w) [(d(z,w))’ g
|dﬂl S O.’I"F(y) sup d(z,w)'\' (d(&'},y)) S ”[‘P”‘f s

-

nf2

We conclude that [|(Q™ — La)¢lls < ¢B)'"|l¢lls for some constant ¢ and for a large

enough n. The lemma is proved.



c) Lemma 5. Restricted to B, the operator Q has 1 as simple eigenvalue and the
rest of the spectrum is in a disk of radius r < 1. The previous lemma allows us to apply
VIIL.8.6 of [9] and conclude that the spectrum of Q can be decomposed into the union of
a closed set which lies inside the circle |z| < r < 1 and a finite number of simple poles p;,
1= 1!“'1?! |p] =1.

If ¢ € B satisfies Qp = py for |p| = 1, choose k > 0 such that ¢ + k& > 0. Hence
¢+ k € IX. Since Q1 =1 we have that Q" (¢ + k) = p"¢ + k. From Theorem iii)

Qe +k) _ FTIPM((p+k)F)  |IPM((p+ k)Pl
IRQ™(e+K)lls PP+ E)F)ly [ F-1PM(¢ + k)F)dv

Therefore
ple +k

-
llo™e + k|l
But, for k large enough, p"¢+k is bounded and bounded away from zero, for every |p| = 1,

n € N. Then p must be 1. This relation also shows that the eigenfunctions associated to
1 are the constant functions

1.

e+ k
lle + klls

Therefore 1 is a simple eigenvalue.

d) Let now be ¢,, the eigenfunctions of the eigenvalues ¢,,, |em| < r < 1. Then, for
any § € B, % = k1 + 3 am@m, and Q"% = K1 + ¥ amelpm — k as n — +oo. So,
G : C°(B) — R defined by G(¢) = k is a linear positive functional. From Riesz Theorem
there exists a unique measure g such that Sgdp = G(g) for every g € C°(B) (the relation
is valid for every g € B.

This measure is invariant under 7' since

Q(QOT)=(05F)_1ZQOTDS;"FOS,‘(T{;OS,']_I =

=(aF)g) FoSi(Ti-Si)™" =(aF)'¢PiF=g

Hence Q"' (9o T) = Q™(g) and [goTdv = G(goT) = G(g) = [ gdv, for every
g € C°(B). )

e) Denote by K = (1,507 "(4), the limit Cantor set. The measure p is supported
by K. In fact, if g vanishes on a neighbourhood of the Cantor set, Q"¢ converges to zero.
This Cantor set can be coded by the partition of connected components of P. As usual,

-.__%f;l‘ﬁffe by [i0y..+sZn—1], the set y

ﬂ el € B,

1=0

“andlet Jig,...,in—1 = Th(y) for some y € [ig,...,in-1].
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Lemma 6. There exists a constant ¢ > 0 such that for every n

A R

10yeenyin=—1

o™ < pfioyeyinea]) S €I ;@™
Its proof 1s exactly the same of Lemma 3 in [6].

f) We have proved parts i) and iii) of Theorem 2. It remains to prove ii). We know
that

ur(C AT "4) = / g (L 0% « Fdp = f PM(1cF)dv.
T-"A A
(see the remarks between the statements of Theorems 1 and 2).

From the definition of 7 we obtain
pr(CNT-"A) = ]Aa"FQ”(lc)du.

But Q"(1¢) converges to u(C) in L'(A,v), and F is bounded: then
ur(C AT A)a~" = fA Fu(C)dv.

It was observed at the beginning of §6 that a™ = up(T~"A); then iii) is proved.
This is the end of the proof of Theorem 2.
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