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A theory is proposed which allows us to self-consistently calculate the effective colloidal charge and
the counterion and coion density profiles in suspensions containing both multivalent and
monovalent electrolytes. The formation of counterion-coion clusters is explicitly taken into account.
The theory predicts that sufficiently strongly charged colloidal particles will become overcharged.
The addition of monovalent electrolyte decreases the counterion condensation and diminishes the
amount of charge reversal. Predictions of the theory are compared with the Monte Carlo simulations
and are found to be in excellent agreement without any adjustable parameters. © 2010 American
Institute of Physics. �doi:10.1063/1.3354120�

I. INTRODUCTION

Quantitative theories for systems with long range inter-
actions present an outstanding challenge to statistical me-
chanics. Even such basic question as the universality class of
a symmetric two component plasma has been debated vigor-
ously until very recently.1 Asymmetric systems, such as col-
loidal suspensions, are significantly more difficult.2

For aqueous colloidal suspensions containing only 1:1
electrolyte, Poisson–Boltzmann �PB� theory provides an ac-
curate description of thermodynamic properties.3 It also
gives a very simple picture of colloid-colloid interactions.
Strong attraction between colloidal particles and counterions
leads to formation of colloid-counterion complexes interact-
ing by a screened Yukawa-like potential. The renormalized
colloidal charge—the net charge of the complex—can be sig-
nificantly lower than its “bare” chemical charge.

For suspensions containing multivalent ions, PB theory
fails dramatically. In this case, strong ionic correlations be-
tween condensed counterions can lead to attraction between
like-charged colloidal particles2,4 and charge reversal.5 Elec-
trostatic correlations can also result in a reversal of the elec-
trophoretic mobility.6 This means that more counterions con-
dense onto colloidal particle than is necessary to completely
neutralize its bare charge. This is in stark contrast to predic-
tions of the PB theory, which finds that the effective colloidal
charge saturates, but remains of the same sign as the bare
charge.7

To calculate the effective charge within the PB theory
one can use the, so called, Alexander prescription.7 A colloi-
dal particle with its counterions and coions, is placed inside a
spherical Wigner–Seitz �WS� cell. The numerical solution of
the nonlinear PB equation is then asymptotically matched to
the solution of the linearized PB equation with an effective
colloidal charge. The prescription works very well for aque-

ous 1:1 electrolytes, for which the interaction between the
counterions and coions is weak.

Unfortunately, there appears to be no direct way to ex-
tend the Alexander prescription to suspensions containing
multivalent salts.8 The reason for this is that even the bulk
thermodynamics of asymmetric multivalent electrolyte �such
as 3:1 or 4:1 salts� is difficult to describe quantitatively. For
these systems, one finds that cations and anions associate to
form charged clusters, and the PB theory looses its validity.
In this paper, we will present a new theory which will allow
us to quantitatively calculate both the far-field ionic density
profiles and the effective charges of colloidal particles, for
suspensions containing multivalent electrolyte.

II. THE MODEL

To model a colloidal suspension containing � :1 electro-
lyte we will use the usual WS cell approach. Each colloidal
particle of radius a and charge −Zq, where q is the proton
charge, is placed at the center of a WS cell of radius R,
determined from the colloidal concentration. The cell also
contains Nsalt counterions ��-ions� of charge +�q, and radius
rc; and �Nsalt coions of charge −q and radius r−. In order to
keep the electroneutrality, Z monovalent counterions of
charge +q and radius r+ are also present within the cell. The
solvent is treated as a structureless medium of dielectric per-
mittivity �. To simplify notation, we will take all the ions to
have the same radius r+=r−=rc. In the rest of the paper, the
colloidal radius will be fixed at a=30 Å and the ionic radius
at rc=2 Å. The Bjerrum length �B=q2� /�, where �
=1 /kBT, will be fixed at �B=7.2 Å, the value for water at
room temperature.

For 1:1 salt, ionic charge distribution can be calculated
accurately using the PB equation2a�Electronic mail: levin@if.ufrgs.br.
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�2��r� =
Zq

�a2��r − a� −
4�q

�
��+�r� − �−�r�� , �1�

where ��r� is the electrostatic potential at distance r from the
colloidal center, and the densities are

�	�r� =
N	 exp�
�q��r��

4��a
Rdrr2 exp�
�q��r��

, �2�

where N	 are the number of 	 particles.
If suspension contains � :1 electrolyte, or if the dielectric

constant is low, the correlations between cations and anions
become important, and the PB equation looses its validity. In
Fig. 1, we compare the density profiles of 3:1 electrolyte
calculated using the PB equation to the results of the Monte
Carlo �MC� simulations. The simulations were performed in
the NVT ensemble using the Ewald summation method.9 It is
clear that PB theory fails dramatically, even far from colloi-
dal surface. An alternative to PB is to use integral
equations10–12 or weighted density functional theories,13–15

which, however, also lack in quantitative accuracy and are
more difficult to solve numerically, than the simple PB equa-
tion.

III. THE THEORY

The failure of PB equation is a consequence of two ef-
fects: strong electrostatic correlations between the condensed
counterions, and strong electrostatic correlations between the
cations and anions of the bulk. Let us start with the ionic
correlations in the bulk. In the rest of the paper, we fix �
=3. Electrostatic attraction between trivalent counterions and
monovalent coions results in their association. From simula-
tions we observe that the dominant cluster consists of one
monovalent coion associated with one trivalent counterion,
forming a pair. To simplify the theory, we will neglect the
formation of higher order clusters for now. The law of mass
action relates the electrochemical potential of the cluster and
of free ions

�p = � f + �−. �3�

The electrochemical potentials are given by

��p = ln� cp�6

p
� + ��p

ex, �� f = ln�cf�
3� + �� f

ex,

��− = ln�c−�3� + ��−
ex. �4�

Substituting Eqs. �4� into Eq. �3�, we can relate the concen-
tration of cation-anion pairs cp, to the concentrations of free
�-ions cf, and to the concentration of monovalent coions c−

�Ref. 16�

cp = pcfc−e−���p
ex−�f

ex−�−
ex�. �5�

The internal partition function of a cluster is �Ref. 16�

p = 4��
rc

Rs

e−�U�r�r2dr �6�

where U�r�=−rcb /r is the Coulomb potential, b=��B /2rc

and Rs=rcb /2. Integrating we obtain

p =
16�rc

3
�b3�Ei�b� − Ei�2� + e2� − eb�b2 + b + 2�� , �7�

where Ei�x� is the exponential integral function.16 The excess
chemical potentials of ions and clusters can be obtained us-
ing the Debye–Hückel theory.2 We find �Refs. 16 and 17�

��p
ex = −

�� − 1�2�B�

2�1 + 2�rp�
, �� f

ex = −
�2�B�

2�1 + 2�rc�
,

��−
ex = −

�B�

2�1 + 2�rc�
�8�

where rp=1.191rc, �=	8��BI is the inverse Debye length
and I= ��2Nf + ��−1�2Np+N−+N+� /2V is the ionic strength.
V is the volume accessible to ions, Nf =cfV, Np=cpV, N−

=c−V, and N+=Z. Note that Nbulk=Nsalt−Nc=Nf +Np, where
Nc is the number of condensed counterions, and �Nsalt=N−

+Np.
To account for electrostatic correlations between the

condensed counterions, we shall adopt an argument proposed
by Shklovskii.18 Shklovskii suggested that it might still be
possible to use the PB theory, however, the boundary condi-
tion at the colloidal surface must be renormalized to account
for the counterion condensation. Previously, we saw that be-
cause of cation-anion association, naive PB theory cannot be
used to describe suspensions containing 3:1 electrolyte.
However, the renormalized boundary condition can be
implemented in a modified PB �mPB� equation that explic-
itly takes into account cluster formation,

�2��r� = −
4�q

�
��� f�r� + �� − 1��p�r� + �+�r� − �−�r�� ,

�9�

where

� f�r� =
Nf exp�− ��q��r��

4��a
Rdrr2 exp�− ��q��r��

, �10�
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FIG. 1. Ionic density profiles for 3:1 electrolyte at concentration 0.075 M.
The colloidal charge is −270q. The WS cell radius is 93.05 Å. The symbols
are the simulation data and the lines are the solution of the PB equation.
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�p�r� =
Np exp�− ��� − 1�q��r��

4��a
Rdrr2 exp�− ��� − 1�q��r��

, �11�

and the densities of monovalent counterions and coions are
given by Eq. �2�. The zero of the electrostatic potential will
be set at the boundary of the WS cell where the electric field
also vanishes due to the charge neutrality. To obtain the
boundary condition at the colloidal surface, we note that a
strong attraction between the multivalent counterions and
colloidal particles results in counterion condensation. The
condensed �-ions will form a quasi two dimensional strongly
correlated fluid on top of colloidal surface. This fluid will be
in thermodynamic equilibrium with the bulk electrolyte. The
electrochemical potential of condensed counterions is

��sc = ��c + ln��sc�
3� + ��q��a� , �12�

where � is the thermal de Broglie wavelength, �sc is the
average �coarse-grained� concentration of condensed counte-
rions near the colloidal surface, �q��a� is the mean electro-
static energy of bound counterions, and

��c = − �1.65� − 2.61�1/4 + 0.26 ln � + 1.95� �13�

is their excess chemical potential,19 with plasma parameter
�=�2�B

	Nc /2�a+rc�. The electrochemical potential of dif-
fuse layer counterions at distance r from colloidal center is

�� f
bulk�r� = ln�� f�r��3� + ��q��r� + �� f

ex. �14�

We only need to know the excess electrochemical potential
� f

ex, since predominantly free �-ions will condense from the
bulk. Condition of thermodynamic equilibrium then relates
the density of free �-ions in the bulk with the coarse-grained
counterion density �sc near the colloidal surface,

� f�r� = �sce
���c+q����0�−��r��−�f

ex�. �15�

Near the surface, variation of the mean electrostatic energy is
much smaller than �c, so that Eq. �15� simplifies to

� f�a + �� = �sce
���c−�f

ex� �16�

which can be extrapolated all the way to the colloidal sur-
face, �→rc. A scaling argument20,21 suggests that

�sc = Nc/4�a2�GC �17�

where �GC=2�a+rc�2 /Z��B is the Gouy–Chapman length.
The concentration of trivalent electrolyte in the diffuse layer,
extrapolated to colloidal surface is then

� f
PB�a + rc� =

Nc

4�a2�GC
e���c−�f

ex�, �18�

This will serve as the renormalized boundary condition for
the mPB, Eq. �9�, which can now be solved iteratively. For a
given Z and Nsalt, we guess the number of condensed coun-
terions. With this Nc, we calculate Nbulk=Nsalt−Nc. We then
solve the law of mass action Eq. �5� to obtain Np and Nf.
With these values we numerically integrate the mPB equa-
tion to obtain the diffuse density at the surface � f�a+rc�. If

this is not the same as required by Eq. �18�, the value of Nc

is modified, and the procedure is repeated. In practice, the
adjustment of Nc is performed by coupling the mPB solver to
a root finding subroutine, such as the Newton–Raphson, and
is very quick.

The total �-ion concentration in the bulk is ���r�
=� f�r�+�p�r�. In Fig. 2 and Fig. 3, we compare the calcu-
lated ionic density profiles with the ones obtained using the
MC simulations for various colloidal charges and electrolyte
concentrations. The theory is found to describe very accu-
rately the ionic diffuse layer.

The effective charge of the colloid-counterions complex
is Zeff=Z−�Nc. This is a generalization of the Alexander
prescription for suspensions containing multivalent ions. Al-
though the calculation presented here is very different from
the one used by Alexander et al., the spirit of the two ap-
proaches is the same—charge renormalization allows us to
quantitatively calculate the ionic density distribution in the
far field using an approximate theory. In Fig. 4, we plot the
effective charge versus the bare charge for suspensions con-
taining various concentrations of 3:1 electrolyte. We see that
addition of a multivalent electrolyte results in a strong coun-
terion condensation. At sufficiently large concentration of
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FIG. 2. Density profiles for 3:1 salt �0.075 M� for various colloidal charges.
The WS cell radius is 93.05 Å. The symbols �same as in Fig. 1� are the
simulation data and the lines are obtained with the present theory.
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FIG. 3. Density profiles for 3:1 salt for various concentrations. The colloidal
charge is −270q and the WS cell radius is 93.05 Å. The symbols �same as in
Fig. 1� are the simulation data and the lines are obtained with the present
theory.
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electrolyte, the effective colloidal charge changes sign. Cu-
riously, there is a qualitative change in behavior of the renor-
malized charge between small and high colloidal charges.
For small charges, �Z�120, for parameters used in this pa-
per�, renormalized charge is not a monotonically decreasing
function of salt concentration. The reason for this apparently
contradictory behavior is that when the colloidal charge is
low and there are more coions in the bulk, trivalent ions can
gain more free energy by staying there, where their electric
field is screened by the cloud of coions. For strongly charged
particles �Z�120�, addition of electrolyte leads to increased
counterion condensation and a uniformly decreasing effec-
tive charge.

Since the Alexander prescription cannot be implemented
for suspensions containing multivalent counterions, over the
years there have been attempts to use a geometric criterion to
separate condensed ions from free.9,22,23 Unfortunately there
is no unique way to set a fixed distance within which ions
can be considered to be associated with the colloid. In Fig. 5,
we plot the effective colloidal charge that gives the correct
diffuse density profile—calculated using the present
theory— and compare it with the result of a geometric crite-
rion. We find that to get an optimal agreement, we must set
the distance within which ions are considered to be con-

densed in simulation to 3.75 Å from the colloidal surface—
that is about one ionic diameter.9 However, we see that this
distance criterion fails for the strongly charged colloidal par-
ticles and for large concentrations of multivalent electrolyte.
We conclude that the distance criterions for counterion con-
densation should be used with some caution. However they
can provide a qualitative picture of the counterion condensa-
tion.

Over the last few years, there has been a debate about
the effect of 1:1 salt on the charge reversal.17,24 It is quite
straightforward to include 1:1 salt in the theory presented
here. In Fig. 6, the ionic density profiles are compared with
the MC simulations, once again showing a good agreement
for the diffuse layer density distributions. In Fig. 7, we plot
the effective charge versus the concentration of 1:1 electro-
lyte at fixed concentration of multivalent salt. For small con-
centrations of multivalent salt, addition of 1:1 electrolyte
hinders the counterion condensation and diminishes the
charge reversal.9,17,22 At larger concentration of 3:1 electro-
lyte, small concentrations of 1:1 salt can favor slightly the
charge reversal. Large concentrations of 1:1 electrolyte are
found to always have a negative effect on the overcharging.
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FIG. 4. Effective charges vs colloidal charge, for various 3:1 salt concen-
trations. The WS cell radius is 93.05 Å.
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FIG. 6. Density profiles for 3:1 salt �at 80 mM� and 1:1 salt �at 50 mM�. The
colloidal charge is −225q and the WS cell radius is 93.05 Å. The symbols
�same as in Fig. 1� are the simulation data and the lines are obtained with the
present theory.
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IV. CONCLUSIONS

We have presented a theory which allows us to accu-
rately calculate the diffuse layer ionic density profiles in sus-
pensions containing both multivalent and monovalent elec-
trolyte, without any adjustable parameters. The theory also
allows us to obtain the number of condensed counterions and
to define the effective �renormalized� colloidal charge. The
dependence of the effective charge on the concentration of
multivalent and the monovalent electrolyte is found to be
highly non-trivial. This, to our knowledge, is the only theory
that is able to quantitatively describe charge renormalization
in colloidal suspensions containing both multivalent and
monovalent electrolyte.
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