
J. Chem. Phys. 133, 244506 (2010); https://doi.org/10.1063/1.3511704 133, 244506

© 2010 American Institute of Physics.

Effects of the attractive interactions in the
thermodynamic, dynamic, and structural
anomalies of a two length scale potential
Cite as: J. Chem. Phys. 133, 244506 (2010); https://doi.org/10.1063/1.3511704
Submitted: 31 May 2010 . Accepted: 17 October 2010 . Published Online: 29 December 2010

Jonathas Nunes da Silva, Evy Salcedo, Alan Barros de Oliveira, and Marcia C. Barbosa

ARTICLES YOU MAY BE INTERESTED IN

Thermodynamic, dynamic, and structural anomalies for shoulderlike potentials
The Journal of Chemical Physics 131, 094504 (2009); https://doi.org/10.1063/1.3213615

Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and
germanium
The Journal of Chemical Physics 145, 214502 (2016); https://doi.org/10.1063/1.4967939

Comment on “The putative liquid-liquid transition is a liquid-solid transition in atomistic
models of water” [I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)]
The Journal of Chemical Physics 148, 137101 (2018); https://doi.org/10.1063/1.5029463

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519827791&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ec42be1e5157177578ec02e7b63d7170461d1664&location=
https://doi.org/10.1063/1.3511704
https://doi.org/10.1063/1.3511704
https://aip.scitation.org/author/da+Silva%2C+Jonathas+Nunes
https://aip.scitation.org/author/Salcedo%2C+Evy
https://aip.scitation.org/author/de+Oliveira%2C+Alan+Barros
https://aip.scitation.org/author/Barbosa%2C+Marcia+C
https://doi.org/10.1063/1.3511704
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.3511704
https://aip.scitation.org/doi/10.1063/1.3213615
https://doi.org/10.1063/1.3213615
https://aip.scitation.org/doi/10.1063/1.4967939
https://aip.scitation.org/doi/10.1063/1.4967939
https://doi.org/10.1063/1.4967939
https://aip.scitation.org/doi/10.1063/1.5029463
https://aip.scitation.org/doi/10.1063/1.5029463
https://doi.org/10.1063/1.5029463


THE JOURNAL OF CHEMICAL PHYSICS 133, 244506 (2010)

Effects of the attractive interactions in the thermodynamic, dynamic,
and structural anomalies of a two length scale potential

Jonathas Nunes da Silva,1,a) Evy Salcedo,2,b) Alan Barros de Oliveira,3,c)

and Marcia C. Barbosa1

1Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970,
Porto Alegre, RS, Brazil
2Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, 88010-970, Brazil
3Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil

(Received 31 May 2010; accepted 17 October 2010; published online 29 December 2010)

Using molecular dynamic simulations, we study a system of particles interacting through a continu-
ous core-softened potentials consisting of a hard core, a shoulder at closest distances, and an attractive
well at further distance. We obtain the pressure–temperature phase diagram of this system for vari-
ous depths of the tunable attractive well. Since this is a two length scale potential, density, diffusion,
and structural anomalies are expected. We show that the effect of increasing the attractive interac-
tion between the molecules is to shrink the region in pressure in which the density and the diffusion
anomalies are present. If the attractive forces are too strong, particle will be predominantly in one
of the two length scales and no density of diffusion anomaly is observed. The structural anomalous
region is present for all the cases. © 2010 American Institute of Physics. [doi:10.1063/1.3511704]

I. INTRODUCTION

Water is one of the most abundant substance on the
planet, however, its thermodynamic and dynamic properties
are away from being fully understood.1 Unlike other liquids,
its specific volume at ambient pressure increases when cooled
below T = 4 oC.2 Besides, the isothermal compressibility, κT

and the specific heat at constant pressure, CP , have a mini-
mum at T = Tmin. For temperatures below Tmin, κT

3, 4 and CP

increase with temperature decrease and above Tmin,2, 5 κT and
CP increase with temperature increase.

In the last years, the interest for the supercooled region
of the pressure–temperature phase diagram has increased. In
this region, water is forced to be in liquid state due to fast
freezing of the system. Different from normal liquids, the
self-diffusion, D, of the supercooled water increases with the
compression up to maximum value Dmax(T ) at p = pDmax .3, 5

Beyond this maximum value, for higher pressures, the
“normal” behaviors are restored and diffusion decreases with
pressure.6–10 These results are supported by numerical sim-
ulation using the SPC/E water model where the supercooled
region is easily accessed.11

In addition to the thermodynamic and dynamic anoma-
lies, water also exhibits a very complex phase diagram with
a large number of stable solid phases and two amorphous
phases, the high density amorphous phase and low density
amorphous phase.12, 13 Supported by numerical results, it is
speculated that the two amorphous phases give rise to two liq-
uid phases in the deeply supercooled region: the high density
liquid and low density liquid.14, 15 A possible scenario is that
the transition line between these two liquid phases finishes
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at a liquid–liquid critical point.16 The presence of a critical
point would also explain the increase in the isothermal com-
pressibility and other response functions.

Water is not an isolated case. Thermodynamic anoma-
lies do not occur only in water, experiments for Te,17 Ga,
Bi, S,18, 19 and Ge15Te85,20 liquid metals21 and graphite22 and
simulations for silica,23–25 silicon,26 and BeF2

23 shown that
these systems also have thermodynamic anomalies. In addi-
tion, silica25, 27 and silicon28 show diffusion anomalous be-
havior. Unfortunately a coherent and general interpretation of
the mechanism, which leads to the anomalies and to the two
liquid phases, is still missing.

In order to understand about the fundamental origin of
the anomalous behaviors and multiple liquid phases, sim-
plified isotropic pair interaction potentials were developed.
They are capable to reproduce qualitatively the properties ob-
served by complex anisotropic potentials. These simplified
potentials are called core-softened (CS) potential. The CS po-
tential is formed by repulsive core with a softening region
as a shoulder or a ramp.29–40 This approach generates mod-
els analytically41–44 and computationally29–37 tractable. Most
of these CS potential exhibit thermodynamic and dynamic
anomalies and show the presence of two liquid phases.

In addition, these systems also present a number of solid
phases,37, 45–48 including low density solid phases and reen-
trant melting lines. The existence of anomalous properties,
two liquid phases, and polymorphism opened a discussion
about the relation between these features and the form of the
potential.

Following the idea of simplified models to explain such
properties, de Oliveira et al.35, 49–53 proposed a simple CS
model. It has a repulsive core that exhibits a region of soft-
ening where the slope changes drastically. This model ex-
hibits density, diffusion, and structural anomalies like the
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anomalies present in experiments3, 5 and simulations6–8 for
water. This simple system has no attraction between the par-
ticles and, therefore, no liquid–gas or liquid–liquid critical
points are present. Realistic models for representing the in-
termolecular forces should have attractive interactions since
most molecules attract each other either due to van der Waals
interactions or to more sophisticated electrostatic forces. If
instead the CS model represents effective interaction between
group of particles,54, 55 the attractive interaction would be the
ingredient for the appearance of two liquid phases.

Which effect in the pressure–temperature phase diagram
one might expect from the addition of a larger attractive part
in the potential? For one length scale potentials, the increase
of the attractive well leads to an increase in the temperature of
the liquid–gas critical point. In the case of the continuous two
length scale potential, the same behavior might be expected
for the liquid–gas critical point but it is not clear which ef-
fect the depth of the well has in the location in the pressure–
temperature phase diagram of the liquid–liquid critical point.
Moreover, it is also not obvious which effect the attraction has
in the location in the pressure–temperature phase diagram of
the density, diffusion, and structural anomalous regions.

In this paper, we address these two questions by studying
the pressure–temperature phase diagram of a potential with a
repulsive core followed by a tunable attractive well. We check
if the introduction of the attraction between particles affects
the liquid–liquid critical point and the density, diffusion, and
structural anomalies.

The remaining of this paper goes as follows. In Sec. II,
the model is introduced and the methods are presented. De-
tails of simulations are given in Sec. III. In Sec. IV, the results
are discussed and, finally, the conclusion are made in Sec. V.

II. THE MODEL

The model consists of a system of N particles of diameter
σ , inside a cubic box with volume V , resulting in a number
density ρ = N/V . The effective interacting potential between
particles is given by

U ∗(r ) = 4

[(σ

r

)12
−

(σ

r

)6
]

+ a exp

[
− 1

c2

(
r − r0

σ

)2
]

+ b exp

[
− 1

d2

(
r − r1

σ

)2
]

, (1)

where U ∗(r ) = U (r )/ε. The first term of Eq. (1) is a Lennard-
Jones potential of well depth ε. The second and third terms are
Gaussians centered on radius r = r0 and r = r1, with heights
a and b, and widths c and d, respectively. This potential can
represent a whole family of two length scale intermolecular
interactions, from a deep double wells potential56, 57 to a re-
pulsive shoulder,33 depending on the choice of the values of
the parameters.

For b = 0, the attractive part vanishes and the potential
becomes purely repulsive. This case was previously studied
for determining the pressure–temperature phase diagram as
well as the regions where waterlike anomalies occur.35, 49
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r* = r/σ
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2

4

6

U
*
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Case A (b=0)
B (b = -0.25)
C (b = -0.50)
D (b = -0.75)
E (b = -1.00)

FIG. 1. Interaction potential Eq. (1) with parameters a = 5.0, r0/σ = 0.7,
c = 1.0, r1/σ = 3.0, and d = 0.5 for all cases. b is shown in Table I for each
case.

How the addition of an attractive part in the potential
affects the overall pressure–temperature phase diagram? In
order to answer this question in Secs. III–V, we obtain the
pressure–temperature phase diagram of the potentials illus-
trated in Fig. 1 where the attractive part is increased system-
atically without changing the core-softened part of the poten-
tial. This is done by fixing the parameters of Eq. (1): a = 5.0,
r0/σ = 0.7, c = 1.0, r1/σ = 3.0, d = 0.5 and varying the pa-
rameter b as shown in Table I for the five cases studied in this
work.

III. DETAILS OF SIMULATIONS

For the case in which b = 0, the results shown in this
paper were adapted from Refs. 35 and 49. For the other cases
(b �= 0) the details of the simulations go as follows.

The quantities of interest were obtained by NVT-constant
molecular dynamics using the LAMMPS package.58 The
system consists of N = 1372 particles into a cubic box
with periodic boundary conditions in all directions. The in-
teraction potential between particles, Eq. (1), has a cut-
off of rc = 4.5σ and the potential was shifted in order to
have U = 0 at rc. The Nose–Hoover heat-bath with cou-
pling parameter Q = 2 was used in order to keep fixed the
temperature.

All simulations were initialized in a liquid phase previ-
ously equilibrated over 5 × 105 steps at T ∗ = 0.6. The time
step used was 0.001 in reduced units and the runs were carried
out for a total of 3 × 106 steps, dumping instantaneous con-
figurations for every 2000 steps, giving then a total of 1500
independent configurations. The first 200 configurations were
discarded for equilibration purposes, thus 1300 configurations
were used for sampling averages. The highly number of inde-
pendent configurations guarantees percentage uncertainty of

TABLE I. Parameter b in the potential Eq. (1) for each case studied in this
work. The other parameters are a = 5.0, r0/σ = 0.7, c = 1.0, r1/σ = 3.0,
and d = 0.5 for the five cases.

b

Case A 0
Case B −0.25
Case C −0.50
Case D −0.75
Case E −1.00
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pressure and temperature of the isochores on PT diagram to
be smaller than 1%. Thus, the uncertainties are smaller than
the point size on PT diagram.

Preliminary simulations showed that depending on the
chosen temperature and density, the system was in a fluid
phase but became metastable with respect to the solid phase.
In order to locate the phase boundary between the solid and
the fluid phases, two sets of simulations were carried out, one
beginning with the molecules in an ordered crystal structure
and the other beginning with molecules in a random liquid
state, obtained from previous equilibrated simulations. The
stability of the system was checked by analyzing the depen-
dence of pressure on density and also by visual analysis of the
final structure, searching for cavitation.

The critical points were located as the locus where the
isochores cross. The coexistence line between two different
phases was estimated by the mean point between the spin-
odals.

Temperature, pressure, density, and diffusion are mea-
sured in dimensionless units,

T ∗ ≡ kB T

ε
,

ρ∗ ≡ ρσ 3,

(2)

P∗ ≡ Pσ 3

ε
,

D∗ ≡ D(m/ε)1/2

σ
.

The pressure of the system is calculated by means of the
the virial theorem,

P = ρkB T + 1

3V

〈∑
i< j

f
(
ri j

) · ri j

〉
, (3)

where rij is the vector that connects particle i with particle j,
f(r) =–∇U(r). The symbol 〈...〉 indicates ensemble average.

The mobility of particles is evaluated by the mean square
displacement, given by〈

�r (τ )2〉 = 〈
[r (τ0 + τ ) − r (τ0)]2〉 . (4)

The diffusion coefficient is then obtained from Einstein’s
relation, namely

D = lim
τ→∞

〈�r (τ )2〉
6τ

. (5)

For normal fluids, the diffusion at constant temperature
grows with decreasing density. Actually in most cases it is
expected that it would follow the Stokes–Einstein relation,
i.e., D ∝ T .

The structure of the system was analyzed by using the
translational order parameter, defined as8, 25, 59, 60

t =
∫ ξc

0
|g(ξ ) − 1| dξ, (6)

where ξ = rρ1/3 is the inter-particle distance divided by the
average separation between pairs of particles ρ−1/3. Here g(ξ )
is the distribution function of pairs. ξc is the distance cutoff,

where we use half of the length of the simulation box, rc, mul-
tiplied by ρ1/3. Another alternative to rc would be the first or
the second peak in the g(r ). Our choice is preferable, first, be-
cause it is the maximum distance allowed for the calculation
of g(r )61 giving us a better approach allowed for t . Second,
the peaks of g (r ) change place according to density and tem-
perature of the system. Thus additional work would be neces-
sary to find such positions.

For the ideal gas, g = 1 thus t = 0. As the system be-
comes more structured a long range order (g �= 1) appears
and t assumes large values. The translational order parame-
ter has its maximum value in the crystal phase. Therefore, t
gives a measurement of how close is the fluid close to the
crystallization. For a fixed temperature normal fluids present
a monotonic t(ρ) curve, increasing with density.

IV. RESULTS

In this section we show what is the effect of increasing
the attractive part of the potential in the pressure–temperature
phase diagram regarding: (a) the presence and location of dif-
ferent phases and critical points; (b) the presence of a density
anomalous region; (c) the presence of diffusion anomalous re-
gion; (d) the presence of a structural anomalous region.

A. Phase diagram

Figures 2(a)–2(e) illustrates the pressure–temperature
phase diagram obtained through simulations for the cases
A–E using the potential shown in Fig. 1. The gray lines are
the isochores. In all cases, at high temperatures the system ex-
hibit a fluid phase and a gas phase. These two phases coexist
at a first order line that ends at a critical point (open circle at
figure) for B–E cases. At low temperatures and high pressures
there are two liquid phases coexisting at a first order line (not
shown) ending at a second critical point (filled point at figure)
for C–E cases. These critical points are identified in the graph
by the region where isochores cross. The location was also
checked by the peak of the specific heat. The coexistence line
between the gas and the liquid phases and between the low
density liquid phase and the high density liquid phase (both
illustrated as solid lines) were obtained as the mean point be-
tween the respective spinodals.

At low pressures and temperatures, the region where no
isochore is present the liquid phase is metastable or unstable
against solid phases. Since polymorphism characterizes the
CS potentials, a number of solid phases might be expected.
Here we do not explore the stability of the different solids.
Also, in the case E, the liquid–liquid phase transition appears
at negative pressures. The negative pressure indicates that the
system wants to contract but since the volume is fixed it is not
possible.

The main effect of the increase of depth of the attractive
well at the location of the different phases in the PT phase
diagram is to move the critical points to higher temperature.
To get some intuitive understanding of this effect at liquid–
gas critical point, we use the cluster expansion methods for
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FIG. 2. Pressure-temperature phase diagram. The gray lines are the isochores. (a) Case A (b = 0): ρ∗ = 0.04, 0.06, 0.07, . . . , and 0.20 from bottom to top.
(b) Case B (b = −0.25): ρ∗ = 0.01, 0.015, . . . , and 0.165 from bottom to top. (c) Case C (b = −0.50): same as panel (b), (d) case D (b = −0.75): same as
panel (b). (e) Case E (b = −1.00): ρ∗ = 0.02, 0.025, . . . , and 0.2 from bottom to top. The solid, bold line is the T M D line, the dashed line marks the diffusion
extrema and the dotted line bounds the region of structural anomaly. The filled and open circles are the liquid–liquid and liquid–gas critical points, respectively.
The thin solid lines are the coexistence lines.

low density:

β P

ρ
= 1 − 2πρ

∫
f (r )r2dr − 8π2ρ2

3∫ ∫ ∫
f (r ) f (r ′) f (|r − r ′|) sin θr2r ′2drdr ′dθ,

(7)

where f (r ) = e−βU (r ) − 1. This method allows to approach
to Pρ phase diagram from pair interaction potential U (r ). At
Pρ phase diagram, critical points are located as

∂ P

∂ρ
= 0,

(8)
∂2 P

∂ρ2
= 0.

The low density behavior obtained using the clus-
ter expansion is illustrated in Fig. 3. For T ∗ = 0.60,

Fig. 3 shows the pressure–density phase diagram for b
= 0.0,−0.25,−0.50,−0.75,−1.00 using the second and
the third virial. For b = −1.00 the unstable region of the
pressure–density phase diagram is large and the system at
this temperature is deep in the liquid–gas coexistence region
of the pressure–temperature phase diagram. For b = −0.75
the unstable region is present but is rather small. For b
= 0.0,−0.25, and −0.50 no unstable region in the pressure-
density phase diagram is observed indicating that the sys-
tem is above the liquid–gas transition and that T = 0.60 is

larger than the critical point temperature. The comparison be-
tween the cases with b = 0.0,−0.25, and −0.50 suggests
that since the slope of the pressure–density phase diagram
increases as b increases, the liquid–gas critical temperature
decreases as b increases, T ∗

c (b = −0.25) < T ∗
c (b = −0.50)

< T ∗
c (b = −0.75) < T ∗

c (b = −1.00). Consequently, the at-
tractive part favors the liquid phase to exist for higher temper-
atures what is also observed in discontinuous potentials.62, 63

Figure 4 obtained from the simulations summarizes the effect
of the attractive part in the location of the critical points in the
pressure–temperature diagram.

At high densities where the liquid–liquid phase transi-
tion is present, the cluster expansion with second and third

0.02 0.03 0.04 0.05

ρ∗

-0.4

-0.2

0

0.2

P*

b=0.0
b=-0.25
b=-0.50
b=-0.75
b=-1.00

FIG. 3. Pressure vs density obtained using virial expansion for T ∗ = 0.60
for the cases b = 0.0,−0.25,−0.5,−0.75, and − 1.00 from top to bottom.
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FIG. 4. Location of the critical points obtained using NVT simulations for
the cases B–E considered in this work. The case A does not present any fluid-
fluid critical point whereas the case B has a liquid–gas but no liquid-liquid
critical point. The critical points were located by the crossing of the isochores.
The symbols have the same meaning as in Figs. 2(a)–2(e), i.e., filled and open
circles mark the liquid–liquid and liquid–gas critical points, respectively. The
arrows indicate the direction of increasing the attractive interaction.

virial is not appropriated. Simulations show that as b de-
creases the pressure needed to form the high density liquid
phase, decreases. The attractive part favors the high density
liquid phase over the low density liquid phase. The attraction
leads in this case to a more compact liquid phase what is also
observed in discontinuous potentials.62, 63

B. Density anomaly

In order to test for the presence of density anomaly, we
proceed as follows. From the Maxwell relation,(

∂V

∂T

)
P

= −
(

∂ P

∂T

)
V

(
∂V

∂ P

)
T

, (9)

the maximum in ρ(T ) versus temperature at constant pres-
sure given by (∂ρ/∂T )P = 0 is equivalent to the minimum of
the pressure versus temperature at constant density, namely
(∂ P/∂T )ρ = 0. While the former is suitable for NPT-constant
experiments/simulations the latter is more convenient for our
NVT-ensemble study, thus adopted in this work.

The temperatures of minimum pressure at constant den-
sity or equivalently the temperatures of maximum density
at constant pressure, the TMD , obtained by NVT simula-
tions are illustrated in Figs. 2(a)–2(d) as a bold line. As the
attractive well becomes deeper, the region in the pressure–
temperature phase diagram occupied by the density anoma-
lous region shrinks and moves to lower pressures and higher
temperatures until to the limiting case, b = −1.00, shown in
Fig. 2(e), in which no density anomaly is present. This result
can be understood using the radial distribution function. The
T M D is related to the presence of large regions in the sys-
tem in which particles are in two preferential distances repre-
sented by the first scale and the second scale represented by
the two first peaks in the radial distribution function in our
potential.40, 64–66

Figure 5(e) illustrates the behavior expected for normal
liquids. As the temperature is increased the percentage of par-
ticles in closest scales decreases. The decrease of particles in
the first scale leads to a decrease of density with the increase
of temperature. In Figs. 5(a)–5(d), as the temperature is in-
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FIG. 5. Radial distribution function obtained using NVT simula-
tions vs distance for (a) case A (b = 0.0) with ρ∗ = 0.14 and
T ∗ = 0.25, 0.35, 0.45, 0.55, 1.0, 2.0, 3.0, and 4.0; (b) case B (b = −0.25)
with ρ∗ = 0.085 and T ∗ = 0.32, 0.36, 0.44, 0.56, 0.68, and 0.80; (c) case
C (b = −0.50) with ρ∗ = 0.06 and T ∗ = 0.44, 0.48, 0.60, 0.72, 1.0, 1.6,
2.0, and 3.5; (d) case D (b = −0.75) with ρ∗ = 0.06 and T ∗ = 0.40, 0.44,
0.48, 0.56, 0.60, 0.68, 0.72, 0.80, and 1.0; and (e) case E (b = −1.00) with
ρ∗ = 0.07 and T ∗ = 0.45, 0.50, . . . , and 0.80. The arrows indicate the
direction of increasing temperature.

creased the percentage of particles at the closest distance in-
creases while the percentage of particles in the second scale
decreases. The increase of particles in the first scale leads to
an increase of density with temperature what characterizes the
anomalous region. The density anomaly is, therefore, related
to the increase of the probability of particles to be in the first
scale when the temperature is increased while the percentage
of particles in the second scale decreases. As the potential
becomes highly attractive this “mobility” between scales dis-
appears, i.e., the high density liquid becomes dominant and
no anomalous region is observed.

C. Diffusion anomaly

The mobility was obtained from the slope of the mean
square displacement as shown in Eqs. (4) and (5). Figures
6(a)–6(e) show the behavior of the dimensionless transla-
tional diffusion coefficient, D∗, as the function of the di-
mensionless density, ρ∗, at constant temperature for b = 0.0,
−0.25, −0.50, −0.75, and b = −1.00 from the simulations.
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FIG. 6. The diffusion coefficient against density for the (a) case A, with
isotherms 0.2, 0.23, 0.262, 0.3, 0.35, 0.4, and 0.45 from bottom to top.
(b) Case B with isotherms 0.16, 0.20, . . . , and 0.56, (c) case C, whose tem-
peratures shown are 0.36, 0.40, . . . , and 0.68, (d) case D, with temperatures
0.48, 0.52, . . . , and 0.80, and (e) case E with isotherms 0.70, 0.75, . . . , 1.0,
1.10, . . . , and 1.70. The dashed lines mark the local maxima/minima in the
D(ρ) curves. For the region enclosed by these lines particles move faster un-
der compression. The dashed lines in this figure have the same meaning as
those ones in Figs. 2(a)–2(e). The diffusion coefficient was obtained from the
slope of the mean square displacement versus time. The mean square dis-
placement was obtained by NVT simulations.

The solid lines are polynomial fits to the data obtained
through simulation [dots in Figs. 4(a)–4(e)].

For normal liquids, the diffusion coefficient at constant
temperature decreases with increase of the density. For the
cases A–D [shown in Figs. 4(a)–4(d)] D∗ anomalously in-
creases with the increase in the density in a certain range of
pressures and temperatures. From Figs. 4(a)–4(d) show that
for very small and very high densities D∗ decreases with
increasing density as expected for a normal liquid. For in-
termediate values of density, ρDmax > ρ > ρDmin, D∗ in-
creases with increasing density what leads to local maxima at
ρDmax and a local minima at ρDmin. These local extrema
in the diffusion versus density plots bound the region in-
side which the diffusion behaves anomalously [dashed lines
in Figs. 4(a)–4(d)]. This region is mapped into the pressure–
temperature diagram illustrated in Figs. 2(a)–2(d) as dashed
lines in (a)–(d). As the attractive well becomes deeper, the
diffusion anomalous region in the pressure–temperature phase
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FIG. 7. Translational order parameter obtained by NVT simulations against
density for (a) case A, where each line correspond to an isotherm. The
isotherms are: 0.25, 0.30, . . . , 0.55, 0.7, 1.0, 1.5, 2.0, and 2.5 from top to
bottom. (b) Case B, with isotherms 0.20, 0.28, . . . , 0.68, 0.80, 1.0, 1.2, 1.6,
2.0, and 2.5 from top to bottom. (c) Case C whose temperatures are 0.36,
0.40, . . . , 0.80, 1.0, 1.2, 1.6, 2.0, 2.5, and 3.0 from top to bottom. (d) Case
D with T ∗ = 0.52, 0.56, . . . , 0.80, 1.0, 1.2, 1.6, 2.0, 2.5, 3.0, and 3.5 from
top to bottom. Finally, (e) case E with T ∗ = 0.70, 0.75, . . . , 1.0, 1.10, . . . ,
1.70, 2.0, 2.5, and 3.0 from top to bottom. The dotted lines bound the region
of structural anomalies, i.e., the region where the parameter t decreases upon
increasing density.

diagram shrinks and it goes to lower pressures. In the case in
which b = −1.00, shown in Fig. 6(e), the diffusion constant
behaves as in a normal liquid. The diffusion anomalous re-
gion lies, as one would expect, in the low density liquid phase
where particles are less bound. As the attractive part of the
potential becomes deeper, particles become more bound, fa-
voring the high density liquid phase, and eliminating the pos-
sibility of anomalous mobility.

D. Structural anomaly

Besides the density and the diffusion anomalies, a struc-
tural anomalous region might be present. Figures 7(a)–7(e)
show the translational order parameter defined by Eq. (6) as a
function of density for fixed temperatures for the potential we
are studying for b = 0.0,−0.25,−0.50,−0.75, and −1.00.
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FIG. 8. Excess entropy vs density for:(a) b = 0.00 and T ∗ = 0.25,0.30,. . . ,
0.7, 1.0, 3.0, and 5.0; (b) b = −0.25 and T ∗ = 0.08, 0.10, . . . , 0.18, 0.24,
0.26, 0.28, 0.32, 0.36, 0.44, 0.48, 0.52, 0.54, 0.56, 0.64, 0.68, 0.72, 1.20,
1.60, and 2.50; (c) b = −0.50 and T ∗ = 0.08, 0.10, . . . , 0.18, 0.24, 0.26,
0.28, 0.32, 0.36, 0.44, 0.48, 0.52, 0.54, 0.56, 0.64, 0.68, 0.72, 0.76, 0.80,
1.00, 1.20,1.60, 2.00, 2.50, and 3.00; (d) b = −0.75 and T ∗ = 0.24, 0.26,
0.28, 0.32, 0.36, 0.40, 0.44, . . . , 0.80,1.00, 1.20,1.60, 2.00, 2.50, and 3.00;
(e) b = −1.00 and T ∗ = 1.10, 1.15, 1.20, 1.30, . . . , 1.70, 2.00, and 3.00.

The dots represent the simulation data and the solid lines are
polynomial fit to the data.

The nonmonotonic behavior of these curves indicates
that there is a region in which t decreases with density. This
means that the system becomes less structured for increas-
ing density. Dotted lines determine the local maxima and
minima of t , bounding the structural anomalous region. This
region was mapped into the pressure–temperature phase di-
agram (dotted lines), as can be seen in Figs. 2(a)–2(e). The
comparison between the behavior for different b values indi-
cates that as the attractive well becomes deeper the structural
anomalous region in the pressure–temperature phase diagram
shrinks and moves to lower pressures and it is still present
even in the deepest case, b = −1.00. According to these re-
sults, we believe that for b < −1.00, i.e., cases in which the
attractive part is more intense than one showed in case E, the
structural anomalous region will also vanish. This result again
is consistent with the idea that a deeper attractive term favors
the high density liquid phase.
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FIG. 9. Derivative of the excess entropy with respect to density vs den-
sity for: (a) b = 0.00 and T ∗ = 0.25, 0.30, . . . , 0.5, 0.7, 1.0, 3.0, and 5.0;
(b) b = −0.25 and T ∗ = 0.08, 0.10, . . . , 0.18, 0.20, 0.24, 0.28, 0.32,
0.36, 0.44, 0.48, 0.52, 0.54, 0.56, 0.64, 0.68, 0.72, 1.20, 1.60, and 2.50;
(c) b = −0.50 and T ∗ = 0.08, 0.10, . . . , 0.18, 0.24, 0.26, 0.28, 0.32, 0.36,
0.44, 0.48, 0.52, 0.54, 0.56, 0.64, 0.68, 0.72, 0.76, 0.80, 1.00, 1.20, 1.60, 2.00,
2.50, and 3.00; (d) b = −0.75 and T ∗ = 0.24, 0.26, 0.28, 0.32, 0.36, 0.40,
0.44, 0.48, 0.52, 0.56, 0.60, 0.64, 0.68, 0.72, 0.76, 0.80, 1.00, 1.20, 1.60,
2.00, 2.50, and 3.00; (e) b = −1.00 and T ∗ = 1.10, 1.15, 1.20, 1.30, 1.40,
1.50, 1.60, 1.70, 2.00, and 3.00.

Complementary to the structural anomalous region ob-
tained by analyzing the parameter t , we can gain some un-
derstanding about the presence or absence of these anomalies
and the shape of the potential by analyzing the density depen-
dence of the excess entropy.67 The excess entropy is defined
as the difference between the entropy of the real fluid and that
of an ideal gas at the same temperature and density. Erring-
ton et al. have shown that the density anomaly is given by the
condition �ex = (∂sex/∂ ln ρ)T > 1.67 They have also shown
that the two body contribution of sex,

sex ≈ s2 = −2πρ

∫
[g(r ) ln g(r ) − g(r ) + 1]r2dr , (10)

gives a good approximation of sex. The radial distribution
function, g(r ), is proportional to the probability to find a
particle at a distance r to another particle placed at the ori-
gin. Errington et al.67 have also suggested that the diffusion
anomaly can be predicted by using the empirical Rosenfeld’s
parametrization.68 They found the condition �2 > 0.42 for a
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FIG. 10. (a) TMD line for the cases considered in this paper. Note that there
is no density anomaly in the case E [see Figs. 2(a)–2(e)]. (b) The diffusion
anomaly region for the cases A–D. No diffusion anomaly was found for the
case E [see Figs. 6(a)–6(e)]. The shadowed regions correspond to the region
between the dashed lines in Figs. 2(a)–2(e). In (c) is shown the structural
anomalous region for cases A–E. Here, the shadowed region corresponds to
the region between the dotted lines in Figs. 2(a)–2(e). All these results were
obtained by NVT simulations.

diffusion anomalous behavior. They also claim that �2 > 0 is
a good estimate for determining the region where structural
anomaly occurs.67

Here we test these assumptions in our potential for the
different depth of the attractive term.

Figures 8(a)–8(e) illustrate the excess entropy ver-
sus density for the cases b = 0,−0.25,−0.50,−0.75
and b = 1.0 for various temperatures. For the case b
= 0,−0.25,−0.50,−0.75, the excess entropy as a function
of density has a range of temperatures and densities where
the excess entropy has positive slope.

Figures 9(a)–9(e) illustrate the derivative of the excess
entropy with respect to the density versus density for the
cases b = 0,−0.25,−0.50,−0.75 and b = 1.0 for various
temperatures. For the cases b = 0,−0.25,−0.50,−0.75 the
derivative of the excess entropy as a function of density
has a range of temperatures and densities where �2 > 1,

�2 > 0.42, �2 > 0 what indicates the presence of density,
diffusion, and structural anomalous regions. This is not the
case for b = 1.0.

Figure 10 gives an overview of the density, diffusion,
and structural anomaly locations in the pressure–temperature
phase diagram.

V. CONCLUSIONS

In this paper, we have explored the effect of the addition
of an attractive part in a two length scale potential. Partic-
ularly we analyze if the depth of the attractive part changes
the position (and the presence or not) of the two liquid–gas
and liquid–liquid critical points and of the density, diffusion,
and structural anomalous regions in the pressure–temperature
phase diagram.

Our results show that the depth of attractive part of pair
interaction potential is directly related with the low density
liquid. Analyzing the evolution of liquid–gas critical point at
PT phase diagram, we noted that it moves out to higher tem-
peratures as the attractive part of pair potential increase. The
increase of the deep brings stability to the low density liquid
phase. Thus, more energy is necessary to push out the system

from this state. When this energy is given through an increase
of temperature, the system goes to the gas phase.

The main effect of the pressure is to keep particles close
to the equilibrium point of the repulsive part. This makes
it possible for the particles to move from the attractive part
to the repulsive part of the potential. As the well becomes
deeper, particles are trapped in the minimum of the attractive
part. Hence a high pressure is not necessary to keep particles
closer to the repulsive shoulder.

For sufficiently intense attraction between particles, both
the liquid–liquid and the liquid–gas critical points are present.
These two critical points are observed even for a very at-
tractive potential. For a small attractive interaction, only the
liquid–gas critical point was found what indicates that for the
coexistence of two liquid phases the attractive well have to be
deeper than a certain threshold.

Since the attraction favors the liquid phase (particularly
the high density liquid phase), as the b decreases the liquid–
gas critical point moves to higher temperatures (shown in
Fig. 4) and the liquid–liquid critical point to lower pressures.

The density, diffusion, and structural anomalous regions
are present even in the absence of attraction. As b de-
creases, the high density liquid structure is favored and so
the anomalous regions in the pressure–temperature phase di-
agram (shown in Fig. 10) shrinks, moves to lower pressures,
and disappears for very attractive potentials. The analysis of
the excess entropy with density supports these results.

In order to resume, the density and the diffusion anoma-
lies are present in systems which interact through two length
scale potentials if the particle move from one scale to the
other. If the attractive scale is too deep, the flux of particles
between the scales decreases and no anomalies are observed.
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