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Abstract:

Recently, the study of time series has been focused on time series having
the long memory property, that is, series in which the dependence between
distant observations is not negligible. One model that shows properties of
long memory is the ARFIMA(p,d,q) when the degree of differencing d is
in the interval (0.0,0.5), range where the process is stationary. In this work,
we analyze the estimation of the degree d* in ARFIMA(0,d*,0) processes
when d* > 0.5, that is, when the processes are nonstationary, but still have
the property of long memory. We present a study, through simulations, for
the estimators of d* with different semiparametric and parametric methods
for nonstationary processes when d* belongs to the intervals (0.5,1.0) and

(1.0,1.5).
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1. INTRODUCTION

One characteristic that distinguishes a time series from other set of ob-
servations is the fact that the values of a time series, in different time t, are
correlated; in other words, the random variable X; is correlated with the
random variables X, for all s # .

A key problem in time series analysis is determining the degree of correla-
tion between values of a series in different time ¢ with the goal in constructing
a model for obtaining good forecasting values.

Many researchers are studying time series with long memory properties.
Hurst (1951) was the one who first studied long memory time series. Per-
sistence, or long memory, in a time series is the presence of significative
dependence between observations apart for a long period of time. This char-
acteristic has been observed in time series in different fields such as mete-
orology, astronomy, hidrology and economics (more details can be found in
Beran (1994) and Hosking (1981 and 1984)).

We can characterize persistence in two different ways:

a) in time domain, the autocorrelation function pr decays hyperboli-
cally to zero, that is, pr ~ k*¢~! when k — oo.

b) in frequency domain, the spectral density function fx(-) is un-
bounded when the frequency is near zero, that is, fx(w) ~ w™?? when
w — 0.

In this paper we study the ARFIMA(0,d,0) models, which are a class
of processes with long memory property, through the estimation of the dif-
ferencing parameter d. The contribution due to Geweke and Porter-Hudak
(1983), introducing the ch estimator, was very important giving rise to several
other works, and presenting a proof for the asymptotic properties only when
d € (—0.5,0.0). Reisen (1994) proposed a modified form of the regression
method based on a smoothed version of the periodogram function obtaining
the d,, estimator. Robinson (1994, 1995), making use of mild modifications
on dAp, deals simultaneously with d € (—0.5,0.0) and d € (0.0,0.5) proving the
asymptotic properties for this new estimator, denoted here by a?pr. Hurvich
and Deo (1998) and also Robinson (1994), addressed the problem of selecting
the number of frequencies that must be used in the linear regression model for
estimating the differencing parameter in the stationary case. Fox and Taqqu
(1986) have considered an approximated maximum likelihood procedure to
estimate the parameter, denoted here by d,. They adapted the approach of
Whittle (1951), introduced for weakly dependent random variables. Fox and
Taqqu (1986) and Dahlhaus (1989) have shown that the maximum likelihood
estimates of the ARFIM A(p, d, g) model are asymptotically unbiased. The
methods based on the use of the log-periodogram regression equation, such



as the ones in Geweke and Porter-Hudak (1983), Reisen (1994) and Robinson
(1994, 1995), are usually called semiparametric methods while the approx-
imated maximum likelihood approach presented by Fox and Taqqu (1986)
which uses the spectral density function is usually called parametric method.

The main goal of this paper is to evaluate estimators of the degree of dif-
ferencing d in the case where the stochastic processes are nonstationary, that
is, when d > 0.5. Hurvich and Ray (1995) consider the asymptotic charac-
teristics of the periodogram ordinates for cases when d > 0.5 and d < —0.5.
They find that the periodogram of a nonstationary or noninvertible fraction-
ally integrated process at the j-th Fourier frequency iy = Z%j, where n is the
sample size, has an asymptotic relative bias depending on j. They examine
the impact of periodogram bias only on the a?p estimator in finite samples.
Here we also consider the impact of periodogram bias on the smoothed re-
gression estimator‘azsp and also on the approximated maximum likelihood
estimator CZVv. We analyze the performance of those estimators of d based on
their bias and their mean squared errors.

In Section 2 we present the ARFIM A(p, d, q) process, for d € (—0.5,0.5),
giving several properties of an ARFIMA(0,d,0) process. In Section 3 we
present methods for estimating the parameter d, in the stationary case and
we also extend them for the nonstationary case. In Section 4 we analyze the
nonstationary case. Section 5 presents the results for the estimators obtained
from the methods described in Section 3 for the parameter of differencing in
ARFIMA(0,d*,0) nonstationary process but with long memory properties.
Conclusions are given in Section 6.

2. THE ARFIMA(p,d,q) PROCESS

DEFINITION 1: Let {e},cz be the white noise process with mean zero
and variance o? > 0, B the backward-shift operator, that is, BX; = X;_;,
®(B) and ©(B) polynomials of orders p and ¢, respectively, given by

O(B) =1—¢1(B) — - — 4,(B?)

and

O(B) =1—061(B) — - —0,(87),
where ¢;, 1 <7 <p, and §;, 1 < j < g, are real constants. If {Xihez isa
linear process given by

O(B)(1 - B)*X, = O(B)e;, t € Z, (1)

then { X}z is called a general fractional differenced process ARFIMA(p,d,q),
where d is the degree or parameter of differencing. The process

U=(1-B)'X, teZ,
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given by

3(B)U; = O(B)ey, t € Z,

Is an autoregressive moving average process ARM A(p, q).

For a process to be invertible, that is, there exists a sequence {7k} >0
such that }pso 7 < 00 and € = Yyog mp Xy, for t € Z, the roots of the
equation @(Bj = 0 must lie outside the unit circle; for the same process to
be stationary the roots of the equation ©(B) = 0 must lie outside the unit
circle (assuming that ®(B) = 0 and ©(B) = 0 do not have common roots).

If d € (—0.5,0.5), then the process {X:},c7z is stationary and invertible.
The term (1 — B)%, for d € IR, is defined by the binomial expansion

i_~x~[d k d 2
(1-B) _];(k)(—za) _1—d8—2!(1—d)8---. (2)

When p = ¢ = 0 in the expression (1), one has the ARFIMA(0,4d,0)
process.

The ARFIMA(p, d, q) process exhibit the property of long memory when
d € (0.0,0.5) and of short memory when d € (—=0.5,0.0). If d > 0.5 the
ARFIMA process is nonstationary although for d € [0.5,1.0) it is level- re-
verting in the sense that there is no long-run impact of an innovation on the
value of the process (see Cheung and Lai (1993) and Wu and Crato (1995)).
The level-reversion property no longer holds when d > 1. If d < —0.5 the
ARFIMA process is noninvertible. The reader can find more properties of
the ARFIMA(p, d, q) process in Hosking (1981).

Consider now p = ¢ = 0 in the expression (1) and let {X:},czz be an
ARFIMA(0,d,0) process. Then the spectral density function of {Xihiez is
given by

w 1-24
fx(w) = [2 sin(;)} , for 0 <w < 7, (3)

L

as w — 0, fx(w) ~ w™?¢; and the autocorrelation function is given by

_ ()i +d 1))
= A=k —d)

for ke Z,

as k — oo, pp ~ %kw"l.



3. ESTIMATES OF THE DIFFERENCING PARAMETER

We describe now the estimation of the degree or parameter of differenc-
ing through the regression method based on the periodogram and smoothed
periodogram functions. The regression method using the periodogram func-
tion was first introduced by Geweke and Porter-Hudak (1983) and has been
widely used for many researchers. However, the periodogram function is not
a consistent estimator for the spectral density function (see Brockwell and
Davis (1987)). Reisen (1994) proposed a modified form of the regression
method based on a consistent estimator for the spectral density function
(when d € (—0.5,0.0)), that is, a smoothed version of the periodogram func-
tion. We use the notation pr and c?sp for the estimators of d based respectively
on the periodogram and smoothed periodogram functions. Robinson (1994)
establishes some consistency properties for dAp and also provides an asymp-
totic distribution theory for any value of d under mild conditions. We shall
denote the Robinson estimator by chr. We also consider an approximated
maximum likelihood estimator of the differencing parameter using the ap-
proach suggested by Whittle (1953) and we shall denote it in the sequel by

dvw.

THE ESTIMATOR d,

Consider {X:},czz an ARFIM A(p,d, q) process, with d € (—0.5,0.5),
whose spectral density function is given by

fx(w) = fU(w)[Q sin(%)} _Qd, for w € [—m, 7],

where fy(-) is the spectral density function of the ARMA(p,q) process.
Consider the set of harmonic frequencies Wy = z%j, J=0,1,---)[n/2]

where n is the sample size and [-] here means the integer part. By taking

the logarithm of the spectral density function fx(w) and adding In fi7(0) and

In I(w;) to both sides we have

In I(w;) = In fy(0) — dln[? sin(%)}2 - ln{J}JU((I(U)J))} 5 ln{ I(wj?) }’ (4)

where I(-) is the periodogram function.
The estimator of d given by

W (a; - 2)?
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is asymptotically normally distributed with E(czp) = d and

Var(d,) = > Where g(n) is a function of n, z; = In{2 sin(w;/2)}?

6 Z_: (z;—%)2
and y; = In I(w;).

THE ESTIMATOR d,,

This regression estimator is obtained by replacing the spectral density
function in the expression (4) by the smoothed periodogram function with
the Parzen lag window. Reisen(1994) shows that czsp, given by the same
expression as in (5) but now with y; = In f;(w;), is asymptotically nor-
mally distributed when d € (—0.5,0.5) with E(d,,) = d and Var(d,,) ~
0.539285—™——, where m is a function of n and usually referred to as the

n Z (z;—%)?
1=1

truncation point in the Parzen lag window (m =nf,0 < 8 < 1).
THE ESTIMATOR d,,

Robinson (1995) suggests that the range of j in the equation given by the
expression (4) should be j = 1,14+ 1,---,m with I > 1 where m is given by

A(d,a)n%3T, if d € (0.0,0.25),
m = | ' (6)
A(d,a)n=i==2, if d € (0.25,0.5),

with o € (0,2] and n the sample size. In the simulations presented in Section
5 we consider A(d,a) = 1.

Considering the expression (4) with j € {I,I+1,--- ,m}, the estimator
based on the least square method is the estimator of d due to Robinson
(1995) and we shall denote it by d,,. In Theorem 1 of Robinson (1995), one
can find some results related to the asymptotic properties of the estimator
prr, and this theorem does not imply that choosing [ > 1 in the regression
equation is essential in order that this estimator achieves good asymptotic
properties, but the author suggests that this may be a desirable practical
policy. Considering [ = 1 is based to the fact that the random variables

€y = ln{%} + ]E{—In %ﬂ—;}, J =1,2,---,g(n) are approximately un-

correlated and identically distributed. However, the Theorem 1 in Robinson
(1995) consider that, for d € (—0.5,0.5), the variables e; are asymptotically
either uncorrelated or identically distributed when n — oo but 7 stays fixed.



THE ESTIMATOR dy

The estimator of d due to Whittle (1951) is also based on the periodogram.
It involves the function
™ I(w)

Om) = - fx(wiﬁ)dw

where I(-) is the periodogram and fx(w;7) is the espectral density function of
the {X:};cz, and n denote the vector of unknown parameters. The Whittle
estimator is the value of  which minimizes the function Q(-). When we
are dealing with ARFIMA(0,d,0) models, 7 is given only by the parameter
d. For more details see Fox and Taqqu (1986), Beran (1994) and Dahlhaus

(1989). For computational purposes, it is easier to minimize the function

1 2t I(wj)
Ln(n) = 5= {ln fx(wj;n) + ——2—,
)= ; ! fx(wjsn)
where w; are the Fourier frequencies, for j = 1,---,n. Dahlhaus (1989)

for general ARFIMA(O,d,0) Gaussian processes, has shown that the maxi-
mum likelihood estimator of d is strongly consistent, asymptotically normally
distributed and asymptotically efficient in the Fisher sense. This estimator
requires more computational time to be obtained.

4. ESTIMATION OF THE DEGREE OF DIFFERENCING IN
NONSTATIONARY ARFIMA(0,d*,0) PROCESS

We have considered in Section 3 stationary stochastic processes. However,
in practice, one often deals with nonstationary processes. In this section we
present a picture of one time series obtained from a nonstationary process.
For the estimation procedure we consider the estimators described previously.

Let us now consider the class of process {X;},.z7 ARFIM A(0, d*,0), that

18, processes given by
(1-B)"X; = ¢, withd* =d +r, (7

where d € (0.0,0.5) and r > 0 such that d* € (0.5,1.5). This equation can
be rewritten as

Y,=(1-B)X, tcZ

So
(1 - B)dYt =¢, 1 €Z, (8)

is an ARFIMA(0,d,0) process.
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Figure 1: (a) {X;}}27® obtained from the process given by the expression
(7), when d* = 0.8, with d = 0.3, r = 0.5 and o2 = 1.0; (b) the sample
autocorrelation of the process and (c) the periodogram of the process.



The ARFIMA(0,d,0) processes {Y:}.czz were simulated as suggested by
Hosking (1981) with ¢ ~ AN(0,02). The process {Xi},czz were obtained
through the algebraic form X; = (1 — B)™Y;, for t € IN — {0} with X; = Y;.

The Figure 1 shows a time series {X,;}?% the sample autocorrelation
and periodogram obtained from the process given by the expression (7),
when d* = 0.8, d =0.3, 7 =1 and ¢? = 1.0. One can see the nonstationary
property from it.

Observe that the process {X;},.z given by the expression (7) doesn’t have
spectral density function, since it is not a stationary process. Nevertheless,
we shall see that in the nonstationary case, the function fx(-) given before,
plays the role usually played by the spectral density function in determining
some of the statistical properties of the periodogram function (more details

can be found in Hurvich and Ray (1995)).

5. SIMULATIONS

We compare the performance of estimating d* for the ARFIMA(0,d*0)
process. The results were obtained by considering n = 2? observations, where
p = 8,9,10,11 over 300 replications. In the tables we have the sample size
n, the mean of the estimators df, the mean of the standard deviation sd(dy)
and the mean of the mean squared error mse(d;) for i = p, sp, prand w.

The results on Tables 1 to 5, were obtained considering 8 = 0.9 in the
truncation point for the smoothed periodogram function, as suggested by
Reisen (1994), and for the cZ;T estimator we consider [ = 2, o = 1 and
A(d, @) = 1 in the expression (6).

For the case when d* € (0.5,1.0) the estimators present good results
where dy; is the best followed by d.. This may be explained by the fact
that more frequencies are involved in the regression equation used to obtain
the Robinson estimator which improved the estimation procedure. The ds,
has better performance than dy in terms of mean squared error, as it was
expected since d, uses the smoothed periodogram to estimate the spectral
density function. As n increases the estimators get even better.

In the case when d* > 1.0, the estimators work poorly since now the
level reversion property does not hold. None of the methods used in this
simulation study seem to be apropriated when d* > 1. One option is to
apply first difference and hence estimating d*. However this procedure must
be investigated and it will be a topic for future research.

The box-plots shown in Figures 2, 3 and 4 illustrate results of the estima-
tors for d* = 0.6, 0.8, 1.3 respectively with n = 2048 . From Figures 2 and 3
1t appears that all the estimators have small bias. From Figure 4 we can see
that di; has less variance than the other estimators.



Table 1: Estimators of the parameter d* when d* = 0.6.

n ? d: | sd(dr) | mse(dr)

256 | p | 0.6074 | 0.1984 | 0.0393
sp | 0.5517 | 0.1714 | 0.0316
pr | 0.6121 | 0.1564 | 0.0245
w | 0.6011 | 0.0576 | 0.0033

912 | p | 0.6207 | 0.1674 | 0.0284
sp | 0.5772 | 0.1435 | 0.0210
pr | 0.6172 | 0.1112 | 0.0126
w | 0.6099 | 0.0399 | 0.0017

1024 | p | 0.6079 | 0.1282 | 0.0164
sp | 0.5797 | 0.1175 | 0.0142
pr | 0.6077 | 0.0820 | 0.0068
w | 0.6040 | 0.0253 | 0.0006

2048 | p | 0.6102 | 0.1163 | 0.0136
sp | 0.5896 | 0.1005 | 0.0102
pr | 0.6081 | 0.0654 | 0.0043
w | 0.6042 | 0.0181 | 0.0003

Table 2: Estimators of the parameter d* when d* = 0.8.

n 0 d; | sd(d7) | mse(dy)

256 | p | 0.8397 | 0.2008 | 0.0418
sp | 0.7831 | 0.1716 | 0.0296
pr | 0.8272 | 0.1284 | 0.0172
w | 0.8224 | 0.0598 | 0.0040

912 | p | 0.8343 | 0.1592 | 0.0264
sp | 0.7918 | 0.1463 | 0.0214
pr | 0.8358 | 0.0859 | 0.0086
w | 0.8194 | 0.0430 | 0.0022

1024 | p | 0.8352 | 0.1409 | 0.0210
sp | 0.8130 | 0.1195 | 0.0144
pr | 0.8272 | 0.0663 | 0.0052
w | 0.8200 | 0.035 | 0.0016

2048 | p |0.8237 | 0.1123 | 0.0131
sp | 0.8063 | 0.0963 | 0.0093
pr | 0.8269 | 0.0539 | 0.0036
w | 0.8160 | 0.0253 | 0.0009
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Table 3: Estimators of the parameter d* when d* = 1.1.

n ? dr sd(d;) | mse(dy)
256 | p | 1.0627 | 0.1789 | 0.0333
sp | 1.0423 | 0.1346 | 0.0214

pr | 1.0547 | 0.1234 | 0.0173

w | 1.0371 | 0.0559 | 0.0071

912 | p | 1.0538 | 0.1516 | 0.0250
sp | 1.0567 | 0.1189 | 0.0160

pr | 1.0474 | 0.0932 | 0.0115

w | 1.0454 | 0.0418 | 0.0047

1024 | p | 1.0453 | 0.1154 | 0.0163
sp | 1.0725 | 0.0944 | 0.0096

pr | 1.0353 | 0.0703 | 0.0091

w | 1.0397 | 0.0330 | 0.0047

2048 | p | 1.0533 | 0.0991 | 0.0120
sp | 1.0763 | 0.0727 | 0.0058

pr | 1.0401 | 0.0559 | 0.0067

w | 1.0422 | 0.0320 | 0.0043

Table 4: Estimators of the parameter d* when d* = 1.3.

n 7 dF sd(dy) | mse(dy)
256 | p [ 1.0771 | 0.1807 | 0.0822
sp | 1.1262 | 0.1222 | 0.0451

pr | 1.0577 | 0.1100 | 0.0715

w | 1.0623 | 0.0867 | 0.0640

912 | p | 1.0781 | 0.1568 | 0.0738
sp | 1.1235 | 0.1070 | 0.0426

pr | 1.0469 | 0.0959 | 0.0732

w | 1.0625 | 0.0891 | 0.0643

1024 | p | 1.0616 | 0.1208 | 0.0714
sp | 1.1243 | 0.0816 | 0.0375

pr | 1.0529 | 0.0938 | 0.0698

w | 1.0509 | 0.0861 | 0.0694

2048 | p | 1.0617 | 0.1166 | 0.0704
sp | 1.1228 | 0.0788 | 0.0376

pr | 1.0403 | 0.0872 | 0.0750

w | 1.0535 | 0.1098 | 0.0727
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Figure 2: Estimators of d*, when d* = 0.6 and sample size n = 2048.
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Figure 3: Estimators of d*, when d* = 0.8 and sample size n = 2048.

1.5 — *
i -
1.4 — : ¥ %
i %
134 i f
’ *
1.2 — , ‘ ¥
i r
1.0 4 | f g(* Cé
0.9 = .
0.8 - %
S : -
dp dsp dpr dw

Ifigure 4: Estimators of d*, when d* = 1.3 and sample size n = 2048.
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Table 5: Estimators of the parameter d* when d* = 1.45,

n ? dx sd(dr) | mse(dy)
256 | p | 1.0424 | 0.1327 | 0.1837
sp | 1.1236 | 0.0786 | 0.01127
pr | 1.0149 | 0.0625 | 0.1932
w | 1.0211 | 0.0803 | 0.1903
1.0454 | 0.1294 | 0.1804
sp | 1.1243 | 0.0775 | 0.1121
pr | 1.0182 | 0.0667 | 0.1909
w | 1.0269 | 0.0831 | 0.1858
1024 | p | 1.0305 | 0.1011 | 0.1861
sp | 1.1095 | 0.0644 | 0.1201
pr | 1.0095 | 0.0398 | 0.1957
w | 1.0183 | 0.0686 | 0.1910
2048 | p | 1.0341 | 0.1026 | 0.1835
sp | 1.1068 | 0.0671 | 0.1223
pr | 1.0070 | 0.0294 | 0.1971
w | 1.0284 | 0.0996 | 0.1875

212

e}

The estimation of d*, considering 8 = 0.8, generates smaller mean squared
error, but greater standard deviation compared with the results obtained
when B = 0.9. We also considered B = 0.7 but the results obtained were
not better than those when 8 € {0.8,0.9}. For the sake of brevity we do
not present here these simulations. For other simulations with results and
respective analysis we refer the reader to QOlbermann (1998).

Now, we present the results obtained with the modifications suggested by
Robinson (1994) to estimate the degree of differencing through the method
of regression using the periodogram function with more values of I and m in
the expression (6).

In the following two tables we consider the same notation as before. Ob-
serve that the results for the estimator dA; appear in bold face on the first
line for every sample size n in Tables 6 and 7. This makes easier to compare
the estimators ci; and CZ;T.

In Table 6 we consider / € {1,2} and o € {0.5, 1,2} in the expression
(6). When a = 0.5 we have m = g(n) = n%%, which is the value of g(n) used
before in Tables 1 to 5 for a?;

13



Table 6: Estimators of the parameter d* when d* = 0.7. The first line for
every different value of n, given in bold face characters, presents the estimator

dr.

n m | 1 @ sd(d;T) mse(d;T)
256 16 | 1] 0.7143 | 0.0668 | 0.0447
2 0.7345 | 0.2817 | 0.04176
40 | 1] 0.7380 | 0.1162 0.0149
21 0.7314 | 0.1353 0.0197
84 | 1] 0.7142 | 0.0848 0.0074
21 0.7097 | 0.0937 | 0.0088
512 22 |1 1/0.7316 | 0.1670 | 0.0288
21 0.7130 0.225 0.0506
64 | 1] 0.7141 | 0.0920 0.0086
21 0.7194 | 0.1044 0.0113
147 | 1| 0.7141 | 0.0620 0.0040
21 0.7212 | 0.0732 0.0058
1024 | 32 |1 ]0.7283 | 0.1459 | 0.0220
21 0.7286 | 0.1552 0.0248
101 | 1] 0.7218 | 0.0748 0.0060
21 0.7237 | 0.0854 | 0.0078
256 | 1| 0.7130 | 0.0488 0.0025
21 0.7088 | 0.00511 | 0.0027
2048 | 45 | 1| 0.7183 | 0.1191 | 0.0145
2| 0.7236 | 0.01296 | 0.0173
161 | 1| 0.7148 | 0.0585 0.0036
21 0.7169 | 0.0630 0.0042
445 | 1 | 0.7148 | 0.0348 0.0014
21 0.7138 | 0.0366 0.0015

In Table 7 we consider / € {1,2} and « € {0.4,0.5,1,2} in the expression
(6). When « = 0.4 we get g(n) = n%°, the same value of g(n) used in Tables
1tod.
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Table 7: Estimators of the parameter d* when d*

= 1.3. The first line for

every different value of n, given in bold face characters, presents the estimator

d:.
n m |1 dz. | sd(dz) mse(ds.)
256 | 16 |1 |1.0771 | 0.1807 | 0.0822
2| 1.0760 | 0.1932 | 0.0873
21 |1 1.0835 | 0.1711 0.0758
2| 1.0801 | 0.1688 | 0.0767
92 | 1| 1.0699 | 0.1149 | 0.0661
2| 1.0577 | 0.1100 | 0.0715
101 | 1| 1.0563 | 0.1039 | 0.0701
2| 1.0552 | 0.1053 | 0.0710
512 | 22 | 1| 1.0781 | 0.1568 | 0.0738
2| 1.0654 | 0.1562 | 0.0793
32 | 1] 1.0756 | 0.1425 | 0.0705
2| 1.0694 | 0.1646 | 0.0802
85 | 1] 1.0541 | 0.1063 | 0.0718
2| 1.0469 | 0.0959 | 0.0732
181 | 1 | 1.0543 | 0.0889 0.0683
2 | 1.0404 | 0.0883 0.0752
1024 | 32 | 1| 1.0616 | 0.1208 | 0.0714
2| 1.0764 | 0.1326 | 0.0675
47 |1 | 1.0568 | 0.1025 | 0.0696
2 | 1.0650 | 0.0121 0.0711
141 | 1 | 1.0475 | 0.0859 | 0.0711
2| 1.0529 | 0.0938 | 0.0698
322 | 1| 1.0322 | 0.0728 | 0.0769
2| 1.0357 | 0.0755 | 0.0755
2048 | 45 |1 |1.0617 | 0.1166 | 0.0704
2 | 1.0540 | 0.1187 | 0.0745
69 | 1| 1.0484 | 0.0994 | 0.0731
2] 1.0551 | 0.1044 0.0708
231 | 1| 1.0425 | 0.0824 | 0.0731
2| 1.0403 | 0.0872 | 0.0750
974 | 1| 1.0348 | 0.0741 0.0758
2 | 1.0267 | 0.0640 | 0.0787

From Tables 6 and 7 we observe that while the value of m in the expression
(6) increases, the value of the variance of the estimators decreases.
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We also consider other values for A(d,a), in the expression (6), besides
the value A(d, o) = 1, but we didn’t find significant differences on the results.
For this reason we do not present these simulations here.

6. CONCLUSION

When the differencing parameter d* is in the interval (0.5,1.0) the ana-
lyzed estimators behaved better than when d* ¢ (1.0,1.5) as was reported
by Hurvich and Ray (1995). In the first case the results obtained for the
estimator d%, were better than any other estimator. The estimator d,, is
valuable in the sense of the asymptotic properties, even though for practical
purposes it is useless since it depends on the value of the parameter. So, one
will need iterative procedures when dealing with the estimator dApT.

In the nonstationary case with no level-reversion property, that is, when
d* € (1.0,1.5), we observe that all different estimators for the differencing
parameter underestimate it. This was also reported by Hurvich and Ray
(1995) for the estimators d, and d, analyzed by them.
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