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The authors investigate the phase diagram of a three-dimensional associating lattice gas �ALG�
model. This model combines orientational icelike interactions and “van der Waals” that might be
repulsive, representing, in this case, a penalty for distortion of hydrogen bonds. These interactions
can be interpreted as two competing distances, making the connection between this model and
continuous isotropic soft-core potentials. The authors present Monte Carlo studies of the ALG
model showing the presence of two liquid phases, two critical points, and density anomaly. © 2007
American Institute of Physics. �DOI: 10.1063/1.2434974�

I. INTRODUCTION

Water is an anomalous substance in many respects. Most
liquids contract upon cooling. This is not the case of water, a
liquid where the specific volume at ambient pressure starts to
increase when cooled below T=4 °C.1 Besides, in a certain
range of pressures, water also exhibits an anomalous increase
of compressibility and specific heat upon cooling.2–4 Far less
known are its dynamic anomalies: while for most materials
diffusivity decreases with increasing pressure, liquid water
has an opposite behavior in a large region of the phase
diagram.5–11

It was proposed a few years ago that these anomalies are
related to a second critical point between two liquid phases,
a low density liquid �LDL� and a high density liquid
�HDL�.12 This critical point was discovered through com-
puter simulations. This work suggests that the critical point is
located at the supercooled region beyond the line of homo-
geneous nucleation and thus cannot be experimentally mea-
sured. In spite of this limitation, this hypothesis has been
supported by indirect experimental results.13,14

Water, however, is not an isolated case. There are other
examples of tetrahedrally bonded molecular liquids, such as
phosphorus15,16 and amorphous silica,17 that also have two
liquid phases. In the case of phosphorus, a fluid-fluid phase
transition between a P4 fluid and a polymeric P is experi-

mentally observed, while in the case of silica, the transition
is between two amorphous phases. Moreover, other materials
such as liquid metals18 and graphite19 also exhibit thermody-
namic anomalies. Unfortunately a coherent and general inter-
pretation of the low density liquid and high density liquid
phases is still missing.

What kind of potential would be appropriate for describ-
ing the tetrahedrally bonded molecular liquids, capturing the
presence of thermodynamic anomalies? Realistic simulations
of water20–22 have achieved a good accuracy in describing
the thermodynamic and dynamic anomalies of water. How-
ever, due to the high number of microscopic details taken
into account in these models, it becomes difficult to discrimi-
nate which is essential to explain the anomalies. On the other
extreme, a number of isotropic models were proposed as the
simplest framework to understand the physics of the liquid-
liquid phase transition and liquid state anomalies. From the
desire of constructing a simple two-body isotropic potential
capable of describing the complicated behavior present in
waterlike molecules, a number of models in which single
component systems of particles interact via core-softened po-
tentials have been proposed. They possess a repulsive core
that exhibits a region of softening where the slope changes
dramatically. This region can be a shoulder or a ramp.23–41

Unfortunately, these models, even when successful in show-
ing density anomaly and two liquid phases, fail in providing
the connection between the isotropic effective potential and
the realistic potential of water.

It would, therefore, be desirable to have a theoretical
framework which retains the simplicity of the core-softened
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potentials but accommodates the tetrahedral structure and the
role played by the hydrogen bonds present in water. A num-
ber of lattice models in which the tetrahedral structure and
the hydrogen bonds are present have been studied.42–53 One
of them is the three-dimensional model proposed by Debene-
detti and co-workers44–46 and further studied by Pretti and
Buzano,49 defined on the body centered cubic lattice. Ac-
cording to their approach, the energy between two bonded
molecules rises when a third particle is introduced on a site
neighbor to the bond. Using a cluster mean-field approxima-
tion and computer simulations, they were able to find the
density anomaly and two liquid phases. In this case, the co-
existence between two liquid phases may arise from the
competition between occupational and Potts variables intro-
duced through a dependency of bond strength on local den-
sity of states.

In other lattice models the main strategy has been to
associate the hydrogen bond disorder with bond48,54–56 or
site47 Potts states. In the former case, the density anomaly
and the coexistence between two liquid phases may follow
from the presence of an order-disorder transition, and a den-
sity anomaly is introduced ad hoc by the addition to the free
energy of a volume term proportional to a Potts order param-
eter. In the second case, the density anomaly and the two
liquid phases are related to the bond strength density depen-
dence.

In order to investigate the mixtures of water with other
chemical species as that present in a number of biological
and industrial processes, it would be interesting to have a
simpler model capable of capturing the same essential fea-
tures observed in water and also be able to bridge the gap
between the realistic models for water and the isotropic
softened-core potentials.

Thus, in this paper we investigate a three-dimensional
associating lattice-gas model that can fulfill both require-
ments. Our model system is a lattice gas with ice variables57

which allows for a low density ordered structure. Competi-
tion between the filling up of the lattice and the formation of
an open four-bonded orientational structure is naturally intro-
duced in terms of the ice bonding variables, and no ad hoc
introduction of density or bond strength variations is needed.
In that sense, our approach bares some resemblance to that of
continuous softened-core models.58–60 Using this simple
model we are able to find two liquid phases, two critical
points, and the density anomaly. The remainder of the paper
is as follows. In Sec. II the model is introduced and the
simulation details are given. Section III is devoted to the
main results and conclusion.

II. THE MODEL

We consider a body centered cubic lattice with V sites,
where each site can be either empty or filled by a water
molecule. Associated to each site are two kinds of variables:
occupational variables ni and an orientational one, �i

ij. For
ni=0 the i site is empty, and ni=1 represents an occupied
site. The orientational state of particle i is defined by the
configuration of its bonding and nonbonding arms, as illus-
trated in Fig. 1. Four of them are the usual ice bonding arms

with �i
ij =1 distributed in a tetrahedral arrangement, and four

additional arms are taken as inert or nonbonding ��i
ij =0�.

Therefore, each molecule can be in one of two possible states
A and B, as illustrated in Fig. 1. A potential energy � is
associated to any pair of occupied nearest-neighbor �NN�
sites, mimicking the van der Waals potential. Here, water
molecules have four indistinguishable arms that can form
hydrogen bonds �HBs�. A HB is formed when two arms of
NN molecules are pointing to each other with �i

ij =1. An
energy � is assigned to each formed HB.

From the above, the total energy of the system is given
by

E = �
�i,j�

ninj�� + ��i
ij� j

ji� . �1�

The interaction parameters were chosen to be ��0 and
��0, which implies an energetic penalty on neighbors that
do not form HBs. From this condition results the presence of
two liquid phases and the density anomaly.

The ground state of the system can be inferred by simply
inspecting Eq. �1� and taking account of an external chemical
potential �. At zero temperature, the grand potential per vol-
ume is �=e+��, where � is the water density and e=E /V.
At very low values of the chemical potential, the lattice is
empty and the system is in the gas phase. As the chemical
potential increases, at �=2��+��, a gas phase with �=0 and
a LDL with � /a3=1/2 �here a is the distance between two
neighbor sites that in our calculations is assumed to be equal
to unity� coexist. In this case, each molecule in the LDL
phase has four occupied NN sites, forming four HBs, and the
energy per site is e=�+�. As the chemical potential in-
creases even further, a competition between the chemical po-
tential that favors filling up the lattice and the HB penalty
that favors molecules with only four NN sites appears. At
�=6�+2�, the LDL phase coexists with a HDL with � /a3

=1. In the HDL, each molecule has eight NN occupied sites,
but forms only four HBs. The other four nonbonded mol-
ecules are repealed, which can be viewed as an effective
weakening of the hydrogen bonds due to distortions of the
electronic orbitals of the bonded molecules. The energy per
molecule is then e=4�+2�.

Our model may be interpreted in terms of some sort of
average soft-core potential for large hydrogen-bond energies.
The low density phase implies an average interparticle dis-

FIG. 1. The two possible states of the water molecules in the body centered
cubic lattice. A and B molecules form a hydrogen bond since two of their
arms are pointing to each other.
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tance dLD=�LD
−1/3=21/3, whereas for the high density phase we

have dHD=�HD
−1/3=1 at T=0. The corresponding energies per

pair of particles are ep
LDL=�+� and ep

HDL=4�+2�. Figure 2
illustrates this effective pair potential for the case of � /�=
−2. The hard core is offered by the lattice, since two particles
cannot occupy the same site. Thus, for distances r�a, the
potential diverges. For 1�r /a�1.26, the effective potential
vanishes, which means that a system with this average inter-
particle distance is in the HDL phase. When 1.26�r /a
�1.42, the potential is minimum and the LDL phase is fa-
vored. For r /a�1.42, the potential is null again and the gas
is present. The values r /a=1.26 and r /a=1.42 are the aver-
age distances of the low density liquid, as will be shown later
�see Fig. 3�.

The system pressure P can be calculated from the grand
potential since �=−P. At the gas-LDL coexistence, P=0
and at LDL-HDL coexistence point, P=2�.

The model properties for finite temperatures were ob-
tained through Monte Carlo simulations in the grand-
canonical ensemble �chemical potential and temperature
were kept constant�. The total number of molecules is al-
lowed to change in time by means of the Metropolis algo-
rithm, where in one time unit �one Monte Carlo step� we test
all lattice sites in order to insert or exclude one water mol-
ecule. The insertion and exclusion transition rates are written
as w�insertion�=exp�−	
� and w�exclusion�=1 if 	
�0,
and w�insertion�=1 and w�exclusion�=exp�+	
� if 	
�0.
Here 	
=��emolecule−��−ln�2�, where emolecule is the energy
of the included �or excluded� molecule, and the factor ln �2�
guarantees the detailed balance.

The simulations were carried out for lattices with linear
size L=10, and the interaction parameters were set to � /�
=−2. Since the simulation box is defined by two interpen-
etrated cubic lattices, the maximum number of particles in
the lattice is 2L3. Runs were of the order of 104 Monte Carlo
steps. Some test runs were done for L=20, showing no rel-
evant change in the critical temperatures �the difference is
smaller than the symbols used to represent the points in the

graphs�. A detailed study of the model properties and the full
phase diagrams was undertaken for a L=10 lattice.

In order to obtain the pressure-temperature phase dia-
gram of the model, the pressure was calculated from the
simulation data. By numerical integration of the Gibbs-
Duhem relation, SdT−VdP+Nd�=0 at fixed temperature,
we obtain P�� ,T� using the condition that P=0 at �=0.
Since the model presents two first-order phase transitions
�from gas to LDL and from LDL to HDL phases�, the curves
� versus � have two discontinuities and hysteresis loops. The
hysteresis was observed when the simulations were started at
different initial conditions for a given chemical potential
around the transition point.

III. RESULTS AND CONCLUSIONS

The model properties for finite temperatures that were
obtained through simulations at constant temperature and
chemical potential are as follows. For sufficiently low values
of the chemical potential and at low temperatures, all at-
tempts to insert molecules are frustrated, and the total den-
sity � remains equal to zero. By increasing the value of �,
the molecules begin to enter the system, increasing � and
leading to two first-order transitions, one between the gas

FIG. 2. Effective potential vs interparticle distance for � /�=−2. The corre-
sponding energies per pair of particles are ep

LDL=�+� and ep
HDL=�+� /2 for

LDL and HDL, respectively.

FIG. 3. �a� Density isotherms vs reduced chemical potential for different
temperatures. �b� Number of bonds per site vs reduced chemical potential
for different temperatures. � is given in units of lattice space and the tem-
perature is in units of kB.
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and the LDL phases and another between the LDL and HDL
phases. The dependence between � and the reduced chemical
potential �̃=� /� for some temperatures is illustrated in Fig.
3�a�. Similarly the number of hydrogen bonds per site is
illustrated in Fig. 3�b�. The transition between one hydrogen
bond per site to two hydrogen bonds per site occurs at the
LDL-HDL phase transition. The coexistence of the gas and
LDL phases and that of the LDL and HDL phases were then
obtained from this data.

In order to confirm the loci of the coexistence lines and
the critical points, the histograms of the densities were col-
lected during a simulation run. The histograms for four dif-
ferent temperatures and chemical potentials are shown in
Fig. 4 for illustration. Near a first-order phase transition,
mainly inside the metastable region, the histogram is double
peaked, and the system density fluctuates around two char-
acteristic values. One can obtain the coexistence lines by
finding the chemical potential in which both peaks have the
same height �Figs. 4�a� and 4�c��. As the temperature ap-
proaches the critical value, the peaks converge to a single
one, and a homogeneous phase appears �Figs. 4�b� and 4�d��.

In Fig. 5 we exhibit the reduced pressure, P̄= P /�, ver-
sus density isotherms. The gas-LDL and LDL-HDL first-
order phase transitions are evidenced by the presence of pla-

teaus in the P̄ versus � curves at low reduced temperatures,

T̄=T /kB.
The plot of density versus reduced temperature at con-

stant pressures shows that an inversion of the behavior of
density as a function of temperature takes place at interme-
diate pressures in the LDL phase. At smaller pressures, den-
sity decreases with temperature, whereas at higher pressures,
density increases with temperature. This yields a temperature
of maximum density for a fixed pressure, temperature of
maximum density �TMD�, in the higher range of pressures,
which we illustrate in Fig. 6.

The pressure-temperature phase diagram is illustrated in
Fig. 7. The gas, LDL, and HDL phases are shown together

with the two coexistence lines, the two critical points, and
the line of TMD as a function of pressure. Reduced tempera-
ture versus density illustrating the two coexistence regions
and the two critical points are shown in Fig. 8. As a matter of
comparison, the pressure versus temperature and the density
versus temperature phase diagrams for the Roberts and De-
benedetti model44–46 are slightly different from ours. For
some values of its parameters, the RD model presents a
LDL-HDL coexistence line with upper and lower critical
points, which results in a closed loop in the T versus � dia-
gram. Changing the model parameters make the LDL-HDL
coexistence disappear, and only the LDL-gas appears. In our
case, for ��0 and ��0, the two liquid phases and the den-
sity anomaly are always present. Conceptually the two mod-
els are quite different. While in the RD model the coexist-
ence between two liquid phases may arise from the
competition between occupational and Potts variables intro-
duced through a dependency of bond strength on local den-
sity of states, in our case it comes from the competition
between the chemical potential and the bond variables.

FIG. 4. Histograms of the total density �. �a� The coexistence between LDL
and HDL phases at T=0.8 and �b� a homogeneous phase at T=1.0 near the
LDL-HDL critical temperature. �c� The coexistence between gas and LDL
phases at T=1.2 and �d� a homogeneous phase at T=1.4 near the gas-LDL
critical temperature.

FIG. 5. Reduced pressure as a function of the total density � for some values

of T̄.

FIG. 6. Total density as a function of reduced temperature at constant values
of the reduced pressure. The maximum in the curves gives the temperature
of maximum density for a given pressure.
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We have shown that it is possible to incorporate some of
the microscopic properties of true water molecules into a
very simple minimal model that still contains some of the
ingredients of real water without having its whole complex-
ity.

The model includes orientational and occupational vari-
ables and guarantees the local distribution of hydrogens on
molecular bonds without the need of increasing the volume
artificially or introducing artificial orientational variables.43

In spite of the absence of an orientational order-disorder
transition,61 the model presents liquid-liquid coexistence,
with slightly positive slope in the pressure-temperature
plane, accompanied by a line of maximum density on the
low density side, a feature expected for real water. Besides,
this study points out to the fact that the presence of a density
anomaly, with the thermal expansion coefficient ��0, on
the low temperature side, and as a consequence, ��S /�p�T

�0, does not imply a negative slope of the liquid-liquid line,
contrasting with the results for most studies of metastable

liquid-liquid coexistence in models for water, which suggest
a transition line with negative gradient.24

The presence of both density anomaly and two liquid
phases in our model begs the question of which features of
this potential are responsible for such behavior. Averaged
over orientational degrees of freedom, our model can be seen
as some kind of shoulder potential, with the liquid-liquid
coexistence line being present only for a repulsive “van der
Waals” potential. The same was indeed observed for continu-
ous step pair potentials,25,28 for which, however, the density
anomaly is absent. On the other hand, a density anomaly has
been observed in a number of shoulderlike lattice models in
which the major ingredient is the competition between two
scales.29–31 This feature is present in our case. Therefore it
seems that the competition between two scales is the major
ingredient that warrant the presence of the density anomaly.
If, in addition, the model has an attractive interaction, two
liquid phases and two critical points emerge.
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