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Abstract 

A Large Deviation Principie (LDP) at lcvel-1 for random means of the type 

1 
n -1 

A-In::- "' ZJZi+t• n = 1,2, · ··, n L.t 
i=O 

is established. T he ranclom process {Z,.}n>O is given by Z,. = cJl (X11 ) + Ç,., n =O, 1, 2, · · ·, 

where {X n} n;?:O anel { ~"} n;:::o are independem random sequences: the former is a stationary 

process defined by X 11 = T"(Xo), Xo is uniformly distributed on [0, 1), T is a uniquely 

ergodic transformation preserving the Lebesgue measure on [0, 1) anel the later is a random 

sequence of independent and identically distributed ranelom variables; <I> is a continuous real 

function. 

The LDP at level-1 for the means !1111 is obtained by using the level-2 LDP for the 

Markov process {V.t = (X, ,{n,{ra+ t)}n;:::o anel the Contraction Principie. For establishing 

this level-2 LDP, Donsker anel Varadhan's (1975a) approach is followeel. 

The analogous result for the case of autocovariance of oreler k is also t rue. 

K eywords and Phrases: Large deviation, level-1 ent1'0]>y function, level-2 entropy function, 

contmction principie, eryodic transfor·mations, Markov process. 
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1. Introdu ction 

Given a probability space (0, :F, P) and a measurable transformation T : n --* O , we 

say that T is meastu·e preserving if 

(1.1) P(T- 1(A)) = P(A), VA E :F. 

We say that T is uniquely eryodic if there exists only one invariant measure for T , in the 

sense of (1.1) . 

The results wc present in this paper apply only for uniquely ergodic t ransformations 

T : (0, 1) 4 [0, 1) preserving the Lebesgue measure or prcserving a mcasure absolutely 

continuous with rcspect to the Lebesgue rneasure. For simplifying the exposition we shall 

assume that T preserves the Lebesgue measure. 

Let us int roduce the random rnean 

(1.2) 

where 

(1.3) Zn = ll> (Xn) + Ç11 , n =O, 1, · · · , 

{Xn}n~o and {Ç,.} 11>o are independent random sequences in some probability space: the 

forrner is the stationary process defined by 

(1.4) 

Xo is uniformly distributed on [0, 1), T is a uniquely ergodic transformation preserving the 

Lebesbrue measure on {0, 1), and T 11 is the composition of T, n t ime:;, the later is a scquence 

of independent and identically distributeclrandorn va.riables with common distribution 17 ; <I> 

is a continuous real function. In particular, if Ç11 is Gaussian with zero mean, then {Ç"}n~o 

is callecl the (white) noise of the system (1.3). In Time Series Analysis, the process in (1.4) 

is called signal process. 
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One of the examples of transformations we are interested in is T defined by 

(1.5) T (x) = (x +a) mod 1, x E [O, 1), 

where a is irrational. It is well known that this t ransformation preserves the Lebesgue 

measure À on ([0, 1), 6 ([0, 1))), where 6 (.4) is the Borel a-field of subsets of A; moreover, 

T is uniquely ergodic (Durrett, 1996). For this example, the process {Xn}n?:O in (1.4) 

is stationary if and only if X0 is uniformly distributed on [0, 1). We observe that this 

process may be viewed as a .tvlarkov process with transition function p(x,A) = 8A (T(x)), 

A E 6([0, 1)), 

ÓA(v) = { 1, v E A 
O, v i A, 

with a uniquc stationary distribution: the Lebesgue mcasure on [0, 1). When ci> (x) = 
cos(2-;rx) and T is given by {1.5), the process Z, is called the hannonic modcl. Othcr 

examples of uniqucly ergodic transformations appear in Lopes and Rocha (1994), Coelho et 

a i. (1994), and Lopes anel Lopes (1995,1996). 

The main goal in this paper isto establish a level-1 Large Deviat ion Principie (LDP) for 

the random mean in (1.2) with {Xn}n>O as in (1.4). T he strategy we shall follow is firstly 

to get a levcl-2 LDP for the proccss 

(1.6) V, = (X,., f.n, f.n+l ), n =O, 1, 2, · · · , 

and thcn, using the Contract ion Principie (see Ellis, 1985), to obtain the level-1 LDP for 

(1.2) . We refer the reader to Lopes and Lopes {1995,1996) for the motivation of analyzing 

such process. 

The level-2 LDP is considered in §2 and §3 which contain the main results of this paper. 

In §4 we obtain the level-1 LDP for (1.2). In §5 we make some remarks about spccial situations 

and extension results. In Remark 5.5 we point out that similar results are also valid for thc 

autocovariance of order k, that is, for sums of the form 

In what follows wc introduce notations, dcfinitions, and we state the main results of this 

paper. 
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The random process {Vn}n;:::o in (1.6) is a Markov process with phase space S = [0, 1) x 

IR2 and transit ion function 

It is worth to remark that, given a Markov process with phase space S, t ransit ion function 

II , and initial distribut ion J.L, the Kolmogorov Extension theorem (see Billingsley, 1995) allows 

one to construct a measure IP1, on sequence space (SN, a( C)) so that the sequencc Y,,(w) = 

Wn, w E sN, h as the same distribution as the original Markov process. 

From now on, let us assume !1 = SIN as being the space of scquences of elements of 

S, a(C) be the a-field generated by the cylinder sets, and IP1, the probability measure on 

(!1,a(C)) given by 

(1.8) IP1,[Vo E Ao,·· · , V,, E An] = llt(dvo) I IT(vo, dvt) ···I IT(uu-1 ,dv,.), 
Ao 

\t'A0 , · · · , A,. E B(S), where tL is a (initial) distribut ion on (S, B(S)). If /L (-) = 8.,(-), for 

v E S , the above measure is denoted by !Pu and the corresponding expcctation by IE., . 

It is not difficult to see that the product measure À x rJ x 11 on (S, B(S)) is the uniquc 

stationary distribution for the Markov proccss {V,.} n;:::o (in the sense that the only initial 

distribution that makes {V.,}n;:::o a stationary process is À x 17 x 'I)· By thc ergodic theorem 

(see Durrett, 1996), for any À x 1J x ry-integrable function g, 

(1.9) 
n -1 

lim '""' g(Vj(w)) = l g(v) (À x TJ x ry)(dv), 1P>. x,1x 11 - a.s., 
n-+oo L 

j=O S 

where Vj(w) = (Xj, Çj , Çi+l)(w) = Wj, for a li w E n. Moreover , the above convergence holds 

IP., - a.s., 'r/v E S (see Doob, 1953) . 

Let M 1 (S) be the space of probabili ty measures on B(S) ; it is a Polish space (complete , 

separable metric space) if we impose on it the weak topology (which is compatible with thc 

Lévy metric) (see Appenelix in Dembo anel Zeitouni , 1993). For measures in M 1 (S) we shall 

introduce some definitions. By writing s = St X 52 X s3 , for i E {1, 2, 3} let 7Tj be thc 

projection of S onto S;, anel 7T;j be the projection of S onto S; x S1, for i,j E {1, 2, 3}, 

defined by n ;(s1 ,s2,s3) = s; anel 7T;j(St,S2,SJ) = (s;,Sj). If vis a measure in JVIt(S) , then 

define a probability measure n;v on B(S;) by requiring that, for each i E {1, 2, 3}, 
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The measure 1r;11 is callcd the i-dimensional mar'!}inal o/ v. Similarly, define 7r;j l/ as the 

probability measure on B(S; x Sj), for each i , j E {1, 2, 3}. given by 

The measure 1r;;v is called the {i,j}-dimensional marginal of v. We also define, for each 

v E M 1 ( S), a new measure vT- 1 in M 1 ( S) by requiring 

vT- 1(.-1 x B x C)= v (T- 1(A ) x B x C), 

for ali measurable rectangle A x B x C . 

Let us introduce the empirical means 

(1.10) 
1 

n-1 
1 

n-1 

L,(w , ·) = :;:;: ~ óv,(w)O = :;:;: [; Ó(X,(w),(,(w),(Hdw))(·), 

1U E sN. n = 1, 2 , .... Clearly, for each w E SIN . Ln(w, ·) E ;\lf I (S). Moreover, L, is 

a(C)-measurable: 

L ;; 1(A) = {w E n: Ln(w, ·) E .4} E e7(C) , \IA E 8 (M1(S)) . 

The distribution of L n on 8 (M 1(S)) is Q,..~, (·) given by 

(1.11) 

where 11. is a distribution on (S, B(S)) . In particular , if JJ.O = Óu(·) , for v E S, wc shall use 

the notation Qr~,uO -

Since 
n - 1 

f g(v)Ln(w,dv) = ~ L g(Vj(w)) 
n . s ]=0 

it follows from (1.9) that 

L,(w, ·)::}À x TJ x r] , IPu- a.s., V·u E S , 

and then 

lim Qn 11 (.4) = O 
11--+00 ' 
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if À x 1J x 1J (/. Ã, A E 6(M 1 ($)), where .4 is the closure of A . Hence, the sequence 

{ Qn,vO : n = 1, 2, · · ·} converges weakly, when n goes to infinity, to the unit point measurc 

c5>.x,1x 'I on M 1 (S). We shall show that the sequence Vn obeys a LDP at level-2 (see Ellis, 

1985), as n goes to infinity, with the ent ropy function ! (v), 11 E M 1 (S) (this statement is 

equivalent to that the family {Q11,u0 : n ~ 1} obeys a LDP with entropy function I (v)). 

In §2 and §3 we prove that ! (11) is given by 

{1.12) I (v) = s m•2 . 
{ 

f In...!!!..... dv, if 11 E Mo and f
5 

ltn nm••~ I dv < +oo 

where 

{1.13) 

and 

(1.14) 

\Ve may say that 

+oo, otherwise 

dv 
m(x,y,z) = d>. (x,y,z) 

X TJ X 1} 

ml2(x, y) =f m(x, y, z)1J(dz). 

11?. 

m(x, y ,z) _ ( f ) 
) = m z x,y 

m.12(x,y 

is the condit ional density of 7i3 11/7r l2 ,; , with respect to the measure 17. 

Now we state the main result in this paper which will be proved in §2 and §3. 

Theorem 1.1. For I (v ) given in (1.12) and for any (x, y , z) E S, 

(a) Lower Bound: for all open set G C M 1 (S), 

(1.15) lim .!_ In Qn,(x,y,:)(G) ~ - i1E1Gf l (v). 
n-+oon v 

(b) Upper B ound: for ali closed set F C M 1 (S), 

(1.16) lim .!. tn Q,1 (x !I :)(F)~- inf I ( v). 
n-+oon ' ' ' 11E F 
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(c) Compactness oftl! e Levei Sets: Ys >O, {11 E M 1(5): ! (11 ) ~ s} is a compa.ct set in the 

weak topology. 

A corollary (see Theorem 4.3.1 in Dembo and Zeitouni , 1993) of this theorem is that if 

IJ! is a bounded real-valued weakly continuous functional on lvt 1 (S ), then 

lim .!.lnlEQ"·<• ·•·•> { e- n•v (v) } = - inf [ll! (v) +!(v)) . 
n~oon vElvi 1 (S) 

To prove Theorem 1.1 we use the same approach of Donsker and Varadhan (1975a) : 

starting with the functional 

( 1.17) 

where 

(1.18) 

! (v ) = - inf f In ~t dv, 
1/JEW 'V 

s 

il't/J(x ,y,z) = I if;(xt .Yt ,zl)n((x , y ,z),d(3;t ,Yt ,zt)) , 

s 

with n defined in (1.7) and 

(1.19) 
W = { '1/J : S ~ IR : 'ljJ is continuous, 3 a, b such that 

O< a~ ljJ(x, y ,z) ~ b < +oo, Y(x,y , z) E 5 }, 

we prove that !(v) in (1.17) coincides with I(v) in (1.12) anel then we show that {Q,,uO : 

n ~ 1} obeys a Weak Largc Deviation Principie with ent ropy function ! (v) (i.e., Theorem 

1.1 is valid but the upper bound holds only for compact subsets of JVI 1 (S) ). To extend thc 

upper bound to closed sets, it is enough that {Qn,vO: n ~ 1} be exponcntially tight, which 

is proved in Lemma 3.1 of §3. 

It is important to observe that the functional ! (·) in (1.17) is lower scmicont inuous in 

the weak topology of M 1(5) and convex. l'vloreover, !(v) = O if and only if vis the invariant 

measure of rr (see Lemma 2.5 in Donsker and Varadhan, Hl75a). 

Now, returning to the means (1.2), we have 

7 



If g : S , IR is delineei by 

(1.20) g(x,y,z) = [<I>(x) +y][<I>(T(x)) +z], 

we may write 

(1.21) 

Using the Contraction Principie (see Ellis, 1985), the LDP at level-1 for (1.2) is obtained 

taking into account (1.21): the level-1 entropy function l z(·) is givcn by 

lz (r) = inf I (v) = inf{/(11): v E M 1(S),fg(v)v(clv) =r·} 
(v,g)=r 

s 

where /(-) is the level-2 entropy function for { Qn,vO : n 2:: 1}. In this way the LDP at 

level-1 follows from the LDP at level-2. 

2. Level-2 Large D eviations: Lower Bound 

The goal here isto prove part (a) of Theorem 1.1. For proving it wc need some lemmas. 

First we consider the random process {Xn}n~o int roduced in (1.4) . It can be seen as 

a ivlarkov process with transition function p(x, A) = óA(T(x)), x E [0, 1) . As T is uniqucly 

ergodic anel preserves the Lebesgue measure, the uniform distribution on [0 ,1) is the unique 

stationary measure for this process. 

Let 

The ergodic theorem says that 

L~l)(x, ·) =} .X(-), Vx E [0, 1), 
n-+oo 

where À is the Lebesgue measure on [0,1) . 

Let Q~,1.~(-) be the distribution of L!,1l(x, ·) on B(;\.1 1([0, 1))). Notice that, once the 

initial point x is fixed , the process {Xn}n>o is deterministic as well as L~1 l(x , ·). The ncxt 

lemma follows from this observation. 
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Lemma 2.1. 

(a) For ali open set G C Mt([O, 1) ), 

lim .!. lnQ(l) (G) >- inf J C1l(v) 
11

_.
00

n n,:c - vEC ' 

and 

(b) for ali closed set F C Mt([O, 1)), 

wbere the entropy function at level-2 J(ll(v) for the process {Xn}n>O is given by 

J (l)(v) = { O, 
+oo, 

jf v=). 

jf v :I >.. 

Secondly, we consider the Markov process {V,}n>o introduced in (1.6) . Its transition 

function 11 is given in (1.7) and its phase space is S = [0, 1) x IR?. Let / (·) be the entropy 

function defined in (1.17). 

Lemma 2.2. /(v) < +oo íf and only if v E JVfo and the density m(x, y, z) of v with 

respcct to .>. x fJ x fJ satisfies 

(2.1 ) f I m(x,y,z) I In . ( ) m(x,y,z)(...\ xryxrJ)(d(x,y,z))<+oo 
rn12 x, y 

s 

where m 12(x, y) is given in (1.14) and Mo is the set introdlJCed in (1.13). Moreover, 

(2.2) { 
f I m(:c.,,,;) (d( )) 

( ) 
n m12(~,y)v x,y,z , 

I v = s 
+oo, 

if v E Mo and (2.1) lwlds 

otllerwise. 

Proof: Suppose that v E 1\110 and that (2.1) holds. Let 

dv 
m(x, y, z) = d>. (x, y, z), (x, y, z) E S 

X1]X 1] 

and 

f d1r13V 
m 13 (x, z) = m (x, y, z)TJ(dy ) = d>. x 

77 
(x, z) . 

IR 
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Since 7r!31/T-1 (A x B) = 1r13v(T-1(A) x B ), for ali A E 6{!0,1)), B E l3(JR), and Tis 

À-preserving, we get 

f 
rrl(x,y,z) 

l= m(x,y,z) ln ( )TJ(dz)TJ(dy)dx. 
m12 x,y 

s 

By hypothesis, l < +oo. Notice that, for 1jJ E W , 

In n:: (x, y, z) =In frp(T(x), z, tt)1J(du) - In 1/J(x, y , z), V (x, y, z) E S. 
IR 

So, if we show that, for ali 1/J E W , 

(2.3) 

f f [In f 1/J(T(x),z , u)rJ(du)] m 13 (x,z)1J(dz)dx -
[O,l} IR lfl 

- f m(x,y,z) ln'ljJ(x,y,z)1J(dz)1J(dy)dx;:::: -l 

s 

then I (v) ::; l , I (·) being the functional in (1.17). 

Recall that t he marginal dcnsity of 1r1 v is m 1 (x) = 1, for ali x E !O , 1), so that, for 

each x E !O, 1) , m(x, y, z) is a probability density (with respect to 1J x 1J) of some measure 

JJ-z on 6(JR2 ). For each x E !O, 1), let us define Az = {(y,z) E JR2 : m(x,y,z) > 0}. Clcarly 

J-Lz(Az) = 1. Let Dx = {y E IR: m 12(x, y) > 0}. Since the first marginal JJ-~1 } of JJ-x has 

density m 12(x,y) with respect to 1J, JJ-~1 )(Bx) = 1 which means that 

1 = f m12(x,y)r7(dy) =f [f m(x,y,z)1J(dz)]1J(dy). 
B, 8, IR 

Hence, fl. z(Bx x IR) = 1 and we may identify Ax with Bx x IR, in terms of integration. 
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Then, 

I = f m(x,y ,z) ht 1/J(x, y , z)ry(dz) 1J(dy)dx = f jj[Jn 'I/J(x, y ,z)]m (x , y ,z) 7J(dy) r](dz) dx = 
S JO, l ) A, 

= f Jfln [ 1/J~x, y , z~m12(x, y)] m (xt,z? 1J(dz )ml2(x, y ) TJ(dy)dx+ 
1n x , y , z m 12 x ,y 

JO, l ) A, 

+ f JJJn [m(xt,z?J m(x, y , z) 1J(dz) ry(dy) dx . 
rn 12 x, y 

IO, I) A, 

But , for each (x, y) E [0, 1) x IR with mt.,(x , y) > O, m(z("=~ is a density with respect to 
... ua 12 z,y 

1] for some probability measure on B(IR). Using Jensen's inequality in t he fi rst integral on 

the right hand side of the last equality (this is possible if one subst itutes A:r. by Bz x IR), 

wc obtain 

I $ j j In [! 1/J(x, y, z ) ry(dz)] ml2(x, y) 17(dy) dx + l. 
jO, l ) D? IR 

Since 1r12v = tr,3vT - 1 and >. = >.T- 1
, we may write 

I ~ f f In [f 1/;(:c, y, z)rJ(dz)] m13 (T- 1 (x), y) 17(dy) dT- 1 (~;) + l = 
[0, 1) IR 1R 

=f /In [!1/l(T(v) , y,z)1J(d=)] m 13 (v,y) ry(dy) dv +l 
JO , I ) IR 07. 

and wc get (2.3). 

(2.4) 

Now suppose t ha t I (v) < +oo . Let J(v) = l for v E M 1 (S). Then, 

- j ln .,P(x,y , z)v(d(x ,y ,z)) ~ -l , 'T/ 'Ij; E W . 

s 

From Lusin's t heorem (see R udin, 1974) , (2.4) a lso holds for ali nonnegative measurable 

functions on S, bounded away frorn zero and infinity. We denote this set by vv· . 
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Let 'ljJ E w· be defined by '1/J(x, y, z) = 1f;1 (x)l/J2(y)1/J3 (z), where 7/h is any cont inuous 

function with ljJ1 (x) > O, 't/x E [0, 1) , l/J2 :: 1, and 

{ 
k , z E A 

l/J3(z) = 1, z E Ac
1 

where k > 1 a.nd A E ô (JR). For such 'ljJ 1 (2.4) implies that 

(2.5) 7r3v(A)Ink ::;l+ ln[k7J(A)+ry(Ac)J+ f ln ljJI{T(x))rrlv(dx) - f ln ljJI(x)rrtv(dx) . 

(0 ,1} [0, 1) 

Suppose that 7i1 v :f; À. From Lemma 2.1 1 we know that for ali J\l > O 1 there exists a 

positive continuous function ljJ1 on [0,1) such that 

f '1/J t (T(x)) 
In ( ) 7T 11/{dx) < -AI. 

l/J1 X 
(0, 1) 

So1 we may choose J\l 1 ljJ1, and k in such a way that {2.5) implies that 

which is a contradiction, if M is Iarge enough. Therefore, 1r1v =À. 

Now take 'ljJ(x 1 y,z) = l/Jt(X)1P2 (Y)l/Ja(z) wi th 

( ) ( ) { 
k 1 (x,y) E A1 x A2 

l/J1 X '1/J'> Y = 
- 11 (x,y) (/. A 1 x A2 1 

where A 1 E 6 ([0, 1)) 1 A2 E 6 (IR)1 and ljJ3 = 1. ·atice that 

Hence {2.4) implies that1 for k > 1 1 

lly making k ~ oo , we get 
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from what follows the equality of measures 1i12 v and 7i13vT- 1 , if one takes t he complement 

of t he set. 

To show that v « À X 'TI X 'TI first we show that 1itJVT- 1 « À X TJ . Choosc 1p E w· 
such that '1/J(x,y,z) ='if;1 (x,z)'if;2 (y), 'lj;2 = 1, and for A E 8((0,1) x IR.), 

{ 
k, (x,z) E A, 

'if;1(x,z) = 
1, (x, z) E A c. 

By Jensen's inequality and (2.4) we get 

In f f v;t(T(x),u)ry(du)dx - f flt11/Jt(x,z)1i13 v(d(x,z)) ~ -l. 
(0,1 ) IR [O, I) IR 

Since À= ÀT-1 , the last incquality implies that 

1i 1311(A) In k::; l + In [(k- 1)(À x 17)(A) + 1]. 

If (À x r1)(A) = O we have 

l 
1i t3v(A) ::; In k --+ O, whcn k --+ +oo. 

Hence, 1i13v «À x 17. Consequently, 1i13vT- 1 «À x 1J since 

and we concludc that 

Using t his fact and that T is À-preserving, (2.4) may be written as 

(2 .6) f f [In f '1/J(x, z, u)7J(du)] 7i13vT-1 (d(x, z)) - f In '1/J(x, y, z)v(d(x , y, z)) ~ - l. 

[0 ,1) IR IR S 

Finally, for having v « À x 'TI x 1J it suffices t hat v « 1i13vT- 1 x TJ. To prove this last 

statement, choose '1/J E w· as 
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) {
k, (x,y,z)EA 

1/J(x y z = 
'' 1, (x,y,z)EAc, 

where A E B(S). Jensen's inequality and (2.6) imply that 

from what we conclude, by taking k--+ +oo , that v« ?T13vT- 1 x T}. 

It remains to show that (2.1) holds. By defining 

(
m(x,y,z) 1) _ 1 

un(x,y,z)= ( )V - An=(a(x,y,z) V-)An, n2:1 
m12 x,y n n 

and following the sarne arguments as in the proof of Lemma 2.1 in Donskcr and Varadhan 

{1975a), we get (2.1). In what follows we outline the main steps. 

From the Dominated ConYergence thcorem, 

(2 .7) lim f lun(X, y, z)mt:.!(x, y)- m(x, y , z) l (>. x 17 x rJ )(d(x, y , z)) =O. 
n->oo 

s 

But !(11) = l < +oo implies that (2.6) holds for ali 1/J E W and then from Lusin 's theorcm it 

also holds for 1/J E w·. Hence, for 1/J = Un and using J ensen's incquality, we get from (2.6), 

(2.8) f ln tt11 (x,y,z) v(d(x,y,z)) :S In f Un(x,y,z)ml2(x,y)ry(dy)ry(dz)dx + l; 
s s 

for obtaining the above inequality we also uscd the fact that 7f13vT- 1 = 7f12 v. Since 

m(x,y,z) is a probability density with respect to>. x TJ x 17, it follows from (2.7) and (2.8) 

that 

(2.9) lim /lnu11 (x,y,z)v(d(x,y,z)):::; l. 
n-+oo 

s 

By the Monotone Convergence theorem 

f (In u,)-dv nloo f (In a)-dv = f a (In a)- d(?T12 v) d17 < +oo 

s s s 
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and then (2.9) implies that 

Hence 

lim / (In tLn)+ dv :5 l + Ja (In a) - d(11'1zv) d7J < + oo. 
n -+oo 

s s 

J !ln a!dv < +oo 
s 

which is (2.1). lVIoreovcr , 

Jm(x, y, z) In m(xt, z? p, x 7J x ry)(d(x, y, z)) :5 l = I (v). 
m12 x,y 

s 

From the whole proof we also conclude that, if ! (v) < +oo thcn 

I m(x,y,z) 
! (v) = m(x, y, z) In ( ) (.À x 17 x rJ){d(x, y, z)) 

m12 x,y 
s 

so we have (2.2); besides, {1.17) and (2 .2) are equal. 

• 
For proving the lower bound (1.15) in Theorem 1.1 we shall consider a new Markov 

process with transition function n' absolutely continuous with respect to n. 
Let us introcluce the set 

dv 
Mz ={v E Mo : d.À (x,y,z) = m(x,y,z) and 

X 7]X1] 

3c,d such that O< c :5 m(x,y,z) :5 d < + oo, 'v'( x, y ,z) E 5}. 

Let v be in M 2 with density m(x, y, z). Define 

(2.10) 

with n as in (1.7). 
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Lemma 2.3. Under the above conditions, 11 is the only invariru1t measure for fi ' . 

Proof: Clearly ! (11) < +oo which implies, from Lemma 2.2, that 11 E Mo. It is not difficult 

to show that 

f fi' ((x, y,z), At x A2 x A3)11(d(x,y ,z)) = 11(A1 x A2 x A3 ), 

s 

for any measurable rectangle A1 x A2 x A3. 

Lemma 2.4. Let G be ru1 open subset of M 1 (S). Then 

inf !(11) = inf !(11). 
vEC veCnM1 

• 

Proof: This lemma can be proved as Lemma 2.9 in Donsker anel Varadhan (1975a) so wc 

o mit il. 

• 
Lemmas (2.2)-(2.4) allow one to prove the lower bound (1.15) of Theorem 1.1 by using 

the samc argumcnts as in Donsker and Varac.lhan (1975a). In what follows, we outlinc the 

main steps of the proof. 

Proof of the Lower B ound 

Let 11 E J\.lf2 and, for simplifying the notation, 

r;v( )- 1 rn(x,y,z) I ( ) ( ) S 
Y x,y,z = n ( ) = na x,y,z, x,y,z E , 

1n12 x,y 

where rn is the density of 11 with respect to À x 1} x 17. Then J(v) = J5 W dv. 

Let S(v; E) be the sphere with center v of radius E > O, in the weak topology on 

M 1(S). Define En,v,e = {w: Ln(w, ·)E S(v; e)}. One may show that 

where JP~ ÍS thc probability measure in f2 = $N induced by thc transit ÍOII funct io n fi' (v, du) 

defined in (2.10). 
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For each é 1 > O , define 

F -{ . W(Vo)(tu)+···+W(V., - t)(tu)_j1x;d 
n 11 ~' - W. ' V V ',... n 

s 

Tben 

Qn,v [S(v; é)] ~ exp { - n[/(v) +é']} IP~ [En,v,e- n Fn ,v,e-' I· 

By Lemma 2.3, v ís the uníque ínvaríant measure for TI' . From the ergodíc theorem 

(see Doob, 1953) , 

Ln(tu, ·) => v , IP~ - a.s., Vv E S, 

so that, V é > O, 't:lé' > O, 

lím JP~ [E"·"·' I = 1 anel lím IP~ [ Fn " e' I = 1. 
n--++oo n--++oo ' ' 

Hencc, 

lím _!In Qn,u [S(v; é)l ~-!(v), v E M2. 
n--++oo n 

Now , let C be an open subset of M 1 (S) and take v E C n J\.12. Since C is an open 

set, there exists é > O such that S(v; c) C C. By using the last inequality and Lemma 2.4 

we get (1.15). 

• 
3. Level-2 Large D evia tions: Upper Bound 

Following thc same ídeas as in Donsker and Varadhan (1975a), one can prove the upper 

bound in {1.16) of Theorem 1.1 for compact sets. Since M 1(S) is nota compact set, the 

inequalíty for closed sets does not follow as a consequence. 

Proof of the Upper Bound 

Let 1j; E W, u = IT'Ij;, anel e-w = 1/J/u. Notíce that W = In IT'Ij; - In 1j; is bounded anel 

continuous. From the Markov property it follows that 

IEv {exp{ - [W(Vo) + · · · + W(Vn _t)]}u(Vra- l)} = '1/J(v), \:/v E S, n ~ 1, 

17 



lEu {exp{ -(W(Vo) + · · · + W(Vn-1)]} $ M, 

for some constant !v! > O. This incquality may be written as 

where f.l E M 1 (S) is the integration variable. 

First, take F C M 1 (S) as being any measurable set. From the nbove inequality we get 

and then 

- 1 I (Ot/J) lim -In Q,.,u(F) $ inf sup In -:;:-
n..,+oon tbE W I'EF 'I' 

s 

Secondly, for any F C U~=t F;, for F; measurable scts, 

Now, if F is a compact set it can be shown (see Donsker anel Varadhan, 1975b) that 

the expression on the right hand side of the above inequality is equal to 

sup inf /In (~t) dfl. = - inf l(Jt). 
Jl EF l/IEW 'I' 1•EF 

s 

Up to now, (1.16) holds for compact sets F. Therefore, {Q11 , 11 (·) : n 2: 1} satisfies a 

weak LDP with rate function I(·) given in (1.17). But Lemma 3.1, to be proved below, tells 

us that this family of measures is exponentially tight, so (1.16) holds for closed sets F as 

well (see Lemma 1.2.18 in Dembo and Zeitouni, 1993). 

• 
Relying on Lemma 1.2.18 in Dembo anel Zeitouni (1993), since the lower bound in (1.15) 

holds for a li open sets anel the family of measures { Q 11 , 11(·) : n 2: 1} is exponentially t ight, 

then I (·) in (2.2) is a good rate function, that is, the levei sets {v: ! (v)$ s} are compact 

in the weak topology. Moreover, this property is carried out to the rate function l z(-) for 

the process Mn in (1.2) . 
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Lemma 3.1. The family ofmeasures {Q,. ,(:c,y,.:)O : n ~ 1} is exponent ially tight. 

Proof: We shall prove that 'V L~ 1, there exists a compact set CL C [0, 1) x IR2 such that 

1im .!.In Q,. (z v .:)(eLe) :::; -L. 
n --toon ' ' ' 

For each 1/J E W and t > O define the functional 

Then 

[ 

n-1 l Wt w(Lu(w, ·)) = exp t .?= 1/J(VJ(w)) , 
)=0 

wherc (V,.),.~o is the random process in (1.6) and Ln(w, ·) is definccl in (1.10). Besides, 

(3. 1) JEQ .. . ( •. v.•l 'l! t.p(-) = f exp [nt/ 1/Jdv] Qn,(:r,y,.:)(dv) = IE(:z:,y,.:)exp [t~ lf;(Vj)l , 
MI(S) S J-0 

where JEQ .. ,( •. v.•l is the expectation corresponding to the measure Qn,(z,y,.:) · 

For each 8 > O , define 

Using (3.1 ), we get 

(3.2) 
[ 

n - 1 l 
Qn ,(z,y,.:)(A.s) :::; exp{ -nt8}1E(x,y . .:) exp t .?= 1/J(Vj) . 

]=0 

Choose {f( m} as a sequence of compact subsets of IR for which 17(K;,) -+ O as 

m-+ +oo. Define Rm = [0, 1) x [(~, m ~ 1. Clearly Rm is a compact subset of S anel 

[(~, = [0, 1) X (K~Jc = [0, 1) X {(K~Y U (I(~, X Km) U (I<m X K~)} 

:= [0, 1) x (B~, U fl~, U B!.). 
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Let us int roduce the functions t/Jm = Xk~. , m ~ 1, and the sets 

T hen, by using (3.2) , 

3 

Qn,(x,y,.:)(A:S) ~ LQ11,(x,y,.:)({v : v([O, l ) X B:r,) ~ 8/3}) ~ 
i= 1 

(3.3) 
3 { n -1 } 3 

~ exp{ -ntó/3} ~ JEexp t ~ Xo;..(Çi, Çi+ 1) = exp{ - ntc5/3} ~I;, 

where IE is the expectation corresponding to the independent and identically distributed 

random process Ç,., Ço = y and Ç1 = z with probability one. 

One can see that 

whcre zo = y and z 1 = z. Since 

n - 1 n- 1 

L X a.~. (zj, zi+d $ L XK;;, (zi+d 
i=O i=O 

we get, for any O < é < 1 and for m large enough such that z E Km, 

Now, for each t > O we choose m so large that 

This is possible bccause XK:;, O converges to zero as m goes to infinity in 7}-measure. 

Besides, O < é < 1 being arbit rary, we choosc é so small that e1
' < 2. Hence, for m Iargc 

enough and depending on t , /1 $ 3" . 
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Similarly, there exists m sufficiently large and depending on t such that !2 :5 3" and 

h :5 3". Thercfore, lrlt > O, 3 m = rnt > O such that / 1 + h + / 3 :5 911 which irnplies by 

(3.3) that 

Let L~ 1. For L ~ L, take 8 = 1/l and t = 3l (L+ In 9 + 1). Then, by wri t ing mt = rn1 

(3.4) 

Let 

Q ( Am,) < - n(l+l) w > 1 w L > L 
n,(x,y,z) . 1/ 1 - e ' v n - , v - • 

CL = n {v: v(!(,.,)~ 1 - ~} ç Mt (S) . 
/~ L 

This set is relatively compact. By Prohorov's theorem (scc Appendix of Dembo and Zeitouni , 

1993, page 319), CL is compact in Mt (S). Since 

we get, frorn (3.4), 

Ct = U {v: lv(k~11 ) > 1} 
I~L 

4. Levei-I Large D e viations 

The rate function that governs large deviations for the means 

n-1 

!vi,.=~ L ZjZj+ 1 , n = 1, 2, · · · 
j=O 

introduced in (1.2) is obtained by using thc level-2 large deviations for { \ln}n > O in (1.6). 

Since z1 = cJ>(Xj) + ç1, we havc 

If 9 : S --t IR is defined by 

g(x,y, z) = (cJ> (x) + y][•I>(T(x)) + z] 

21 
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and taking into account (1.21) the ergodic theorem implies that 

lim /11/11 = fg (v) (-\ x T} x TJ)(dv) = 
n-++oo 

s 

=f ci>(x)<:P(T(x))dx+ f fci> (x)zTJ(dz)dx+ 

[0,1) [0,1) IR 

+ f f ci>(T(x))y TJ(dy) dx +f f y::17(dy) 17(dz), 
(0 ,1) 1R /RIR 

JF\xiJ xr1 - a.s. ancllPx,y,z - a.s ., 'r/(x,y,::) E S. 

In particular, if {,. has zero mean, thcn 

lim Mrl = f <I>{tt) <Jl(T(u)) du, IP(x, y,:) - a.s., 'r/(x, y, z) E S. 
n -++oo 

[0,1) 

In §2 and §3 of this paper we establishccl a fu11 LDP for the family of distributions 

Qn,(x,y,:)(·) of L 11 (w, ·). Taking into account (1.21) and using the Contraction Principie (see 

Ellis, 1985), the entropy function for {M71 } 11~ 1 is given by 

(4.1) /z (T) = inf /(v)= inf {/(v): v E M 1(S), fg( v) v (dv) =r}, 
(v,g)=r 

s 

where / (·) is the level-2 entropy function for the process {V,,}, ~o . Clearly l z(1·) =O if and 

only if r= fs g(v) (À x 1J x 17)(dv) because ! (v) =O if and only if v= À x 1J x 17. If Ç,. has 

zero mean then / z(r) =O if and only if r= fto,t) ci>(u)ci>(T(u))du. 

5. Some R emarks 

Remark 5.1: Large deviations for the empirical pair measures 

rnay be studied simila rly to what was clone in §2 and §3. One can prove that its entropy 

function is given by 

{ 
JJ In m (x.,) v(d(x , y)) , 

J(2)(v) = lfl2 mt(z) 

+oo, 

ifvE M 

otherwise, 
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whcre 

with m(x y) = ~(x y) and m,(x) = f m(x, y)1J(cly). 
' dq xq ' ~ 

Remark 5.2: Let Y,, = (Xn, Ç71 ) , n 2:: O, and consider the empírica! measures 

1 
u-1 

- L Óyn (·). 
n J=O 

Large deviations for the family of distributions of the above empirical measures is governcd 

by the entropy function 

whcre 

{ 

ff In m(x, y)v(cl(x, y )), 
J (2)(v) = IO, l )x~ 

+oo, 

if v EM 

otherwise, 

;\.11 = {v E ; \.11 1([0, 1) x IR): 1r1v = À, v« À x 17, 

m(x, y ) = dÀd~ 17 (x, y), JJ Jlnm(x,y)Jv(d(x, ?;)) < +oo}. 
!O, l)x~ 

This result may be obtaincd similarly to §2 and §3 of this paper. 

Remark 5.3: One can generalize level-2 large deviations by considering the empírica! pair 

measures corresponding to Y,, = (X,., Çn) , n 2:: O. Let 

(5 .1) 

Clearly, for each w E SiV , L,(w,·) E ; \.11 1 ($), where S = [0, 1)2 x IR2 . 

The ergodic theorem implíes that 

L,.(w, ·) =>.À x 1J x 1] , IP(x,y,;,t) - a .s., 'v'(x, y, z, t) E S, 

where X is a measure on B([O, 1)2) defined by 
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For each v E M 1(S) , we define the measure vT- 1 E M 1(S) by 

for any measurable rectangle. 

Let us define 

If v E Mo, lct m(x, y , z, t) bc the density of v with respect to X x 7J x 7J, m 123(x, y, z) 

be the marginal density of 11"123v with respect to X x 7J and m 12,1(x,y,t) be thc marginal 

density of 11"124 v with respect to >: x 7]. The dcfinition of 7r12.1vT- 1 tells us that 

d11"124vT-J _ 1 - 1 2 
- (x,y,z)==m 12<~(T (x),T (y),z), (x,y,z)E[O,l) x/R. 

d).. X 1} 

Moreover, from the condition 1r123v == 1T12,1vT- 1 , we have 

One can prove, as in §2 and §3 of this paper, that the level-2 largc deviations for L,. (w, ·) 

in (5.1) is governed by the entropy function 

{ 
J In ..2!!...... dv if v E Mo and Jlln ..2!!.....1 dv < +oo 

J(:!l(v) == s "'•~3 , s "'•~3 

+oo, othenvise. 

Remark 5.4: Returning to thc process {V,,},.>o in (1.6), let us define 

A('I/J) == lim .!.In ( suplE11 exp {I: 1/J(Vj) }) , 
n--++oon uES . 

J=O 

where lEu is the expectation corresponding to the measure !Pu on (SN, a( C)), introduced 

in {1.8). Let B(S : IR) be the set of bounded measurable real functions. 

Let 
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By Lemma 4.1.36 in Deuschel and Stroock (1989), A•(v) = I(v) , v E Mt(S), where ! (11 ) 

is defined in (1.17). 

R em ark 5.5 : The results for random means {Mn}n>I in (1.2) may be extcnded to 

(5.2) 
1 

n - k 

1\tln :: - L ZjZj+k , n ~ k, k ~ 1. 
n i=O 

\Vhen {Zn}n~o has zero mean they are called the autocovariances of or·der k of the process 

The Jevel-1 LDP for thc random means (5.2) foJlows from the level-1 LDP for the corre­

sponding autocovariances of arder 1, in (1.2). To see this, lct us consider first the case k = 2. 

One can verify that the process { M,d n~2 in (5.2) has the samc distribution as the proccss 

where 

l n - 1 

lvf(l ) = - ""'y. y .+l 
n n L...- JJ 

i=O 
and 

n - 1 

M<2> = 2_ "'Ç"' W ·vV·+• 
n -nL...- J J ' 

i=O 

{Yn}n~o and {Wn}n~o are independent random sequences with the samc distribution as 

the process {Z,}n~o given by (1.2), with T 2 instead of T, since T 2 is a uniquely ergodic 

t ransformation , where T is given by (1.1). The scquences {a!,l)}n~t and {a~2) }n~I are real 

sequences convcrging to t as n goes to infinity. 

Since {a~,1 >},.~ 1 and {a~? > }n~ t are deterministic sequences their entropy function is 

- {o, !(1") = 
+oo, 

if r=~ 

if r :f. t-

The level-1 entropy functions for MÁ1
) and M,\2 ) are equal and coincide with fz(r) in (4.1). 

Relying on the independence of the sequences a~• >, a~?> , i\ti,\1>, .M,~2) and using the 

Contraction Principie (see Dembo and Zeitouni, 1993), we obtain the level-1 entropy function 

for a!,•> M~1) (which is the same for al?> M,\2>): 

J<1>(u) = }~~ { i(l/2) + fz (s): ~ = u} = lz(2tt) , tt E IR. 
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Hence, the level- l entropy function for a~1 ) M,~ 1 ) +a!?> M~2> is given by 

= inf {lz(2u) + l z(2v) : v = t-u} = 
u,uE~ 

= inf {Iz(2u) + l z (2(t- u))}, for tE IR. 
uE IR 

Simila rly, for each k;::: 1, the levei-I entropy function for {M,.},~k in (5.2) is 

fortE IR. 
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