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Abstract

A Large Deviation Principle (LDP) at level-1 for random means of the type

n—1
My =~ ;}ijm, n=1,2,400,

is established. The random process {Z,}n>0 is given by Z,, = ®(X,,) + &, n=0,1,2,--+,
where {Xp}n>0 and {€,}n>0 are independent random sequences: the former is a stationary
process defined by X, = T"(Xy), Xy is uniformly distributed on [0,1), 7" is a uniquely
ergodic transformation preserving the Lebesgue measure on [0,1) and the later is a random
sequence of independent and identically distributed random variables; ¢ is a continuous real
function.

The LDP at level-1 for the means M, is obtained by using the level-2 LDP for the
Markov process {V, = (Xn,&n,&n41)}nz0 and the Contraction Principle. For establishing
this level-2 LDP, Donsker and Varadhan’s (1975a) approach is followed.

The analogous result for the case of autocovariance of order k is also true.

Keywords and Phrases: Large deviation, level-1 entropy function, level-2 entropy function,

contraction principle, ergodic transformations, Markov process.
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1. Introduction

Given a probability space (,F,P) and a measurable transformation 7': @ = Q, we

say that T is measure preserving if
(1.1) P(T"'(A)) = P(A), YA€ F.

We say that T is uniquely ergodic if there exists only one invariant measure for T, in the
sense of (1.1).

The results we present in this paper apply only for uniquely ergodic transformations
T :[0,1) — [0,1) preserving the Lebesgue measure or preserving a measure absolutely
continuous with respect to the Lebesgue measure. For simplifying the exposition we shall
assume that T preserves the Lebesgue measure.

Let us introduce the random mean

n—1

1
(1.2) n-f,ls;Zz,Z,H. n=1,2,--
j=0
where
(1.3) Zn=P(X,) + &, n=0,1,:--,

{Xn}n>o and {&,}n>0 are independent random sequences in some probability space: the

former is the stationary process defined by
(1.4) X, =T Xo),

Xo is uniformly distributed on [0,1), T is a uniquely ergodic transformation preserving the
Lebesgue measure on [0,1), and T™" is the composition of 7', n times, the later is a sequence
of independent and identically distributed random variables with common distribution 7; ®
is a continuous real function. In particular, if &, is Gaussian with zero mean, then {,}.>0
is called the (white) noise of the system (1.3). In Time Series Analysis, the process in (1.4)

is called signal process.



One of the examples of transformations we are interested in is 7' defined by
(1.5) T(z)=(r+a)mod 1, z€l0,1),

where « is irrational. It is well known that this transformation preserves the Lebesgue
measure A on ([0,1),5([0,1))), where B(A) is the Borel o-field of subsets of A ; moreover,
T is uniquely ergodic (Durrett, 1996). For this example, the process {X,},>0 in (1.4)
is stationary if and only if Xy is uniformly distributed on [0,1). We observe that this
process may be viewed as a Markov process with transition function p(z, A) = §4(T(x)),
A € B([0,1)),

I, ve A

5"(”)={0 v A

with a unique stationary distribution: the Lebesgue measure on [0,1). When ®(z) =
cos(2xrz) and T is given by (1.5), the process Z, is called the harmonic model. Other
examples of uniquely ergodic transformations appear in Lopes and Rocha (1994), Coelho et
al. (1994), and Lopes and Lopes (1995,1996).

The main goal in this paper is to establish a level-1 Large Deviation Principle (LDP) for
the random mean in (1.2) with {X,},>0 as in (1.4). The strategy we shall follow is firstly

to get a level-2 LDP for the process
(16) ‘/;l=(*an£ﬂ!£!2-Fl)s n=05112v"' 3

and then, using the Contraction Principle (see Ellis, 1985), to obtain the level-1 LDP for
(1.2). We refer the reader to Lopes and Lopes (1995,1996) for the motivation of analyzing
such process.

The level-2 LDP is considered in §2 and §3 which contain the main results of this paper.
In §4 we obtain the level-1 LDP for (1.2). In §5 we make some remarks about special situations
and extension results. In Remark 5.5 we point out that similar results are also valid for the

autocovariance of order k, that is, for sums of the form
n—k

1
= > Z;Z;4k.
i=0

In what follows we introduce notations, definitions, and we state the main results of this

paper.



The random process {V,}n>0 in (1.6) is a Markov process with phase space S = [0, 1) x

IR? and transition function
(1.7) O((x,y, 2),d(x1,y1,21)) = 01(z) (d21)d(:y (din) n(dzy), (x,y,2) € S.

It is worth to remark that, given a Markov process with phase space S, transition function
I, and initial distribution g, the Kolmogorov Extension theorem (see Billingsley, 1995) allows
one to construct a measure IP,, on sequence space (S™,0(C)) so that the sequence Y, (w) =
wy, w € SN, has the same distribution as the original Markov process.

From now on, let us assume = S™ as being the space of sequences of elements of
S, o(C) be the o-field generated by the cylinder sets, and IP, the probability measure on
(©,0(C)) given by

(18)  Pu[Vo € Aoy--,Va € An] = /n(dun)fﬂ(vg,dv;)---/ﬂ(v,._l,riv"),
Ag A An
YAg, -+, A, € B(S), where p is a (initial) distribution on (S,B(S)). If u(-) = §,(-), for
v € S, the above measure is denoted by IP, and the corresponding expectation by IE,.
It is not difficult to see that the product measure A x n x n on (S,B(S)) is the unique
stationary distribution for the Markov process {V;,}.>0 (in the sense that the only initial
distribution that makes {V,}n>0 a stationary process is A x ) x 5). By the ergodic theorem

(see Durrett, 1996), for any A x 1 x n-integrable function g,

n—1
(1.9) nlergQZ!J("G(W)) = fy(v) (A x 7 x n)(dv), Prxnxy—as.,
j=0 5

where Vj(w) = (X;,&;,&+1)(w) = w;j, for all w € Q. Moreover, the above convergence holds
P, — as., Yv € § (see Doob, 1953).

Let. M;(S) be the space of probability measures on B(S); it is a Polish space (complete,
separable metric space) if we impose on it the weak topology (which is compatible with the
Lévy metric) (see Appendix in Dembo and Zeitouni, 1993). For measures in M, (S5) we shall
introduce some definitions. By writing S = S; x Sy x S3, for i € {1,2,3} let w; be the
projection of S onto S;, and m;; be the projection of S onto S; x Sj, for ,j € {1,2,3},
defined by m;(sy, 82,53) = s; and m;j(sy, 82, 53) = (si,8;). If v is a measure in M, (S), then

define a probability measure m;» on B(S;) by requiring that, for each i € {1,2,3},
mv(F) = v(r7 (F)) = v{(s1,52,53) € S :5; € F}, VF € B(S:).

4



The measure w;v is called the i-dimensional marginal of v. Similarly, define 7;;v as the

probability measure on B(S; x S;), for each ¢, 5 € {1,2,3}, given by
mi¥(F) = v(n ;' (F)) = v{(s1,52,53) € S : (si,8;) € F}, YF € B(Si x §;).

The measure 7;;v is called the (i,j)-dimensional marginal of v. We also define, for each

v € M,(S), a new measure vT~! in M,(S) by requiring
vT Y (AxBxC)=v(T"'(A) x BxC),

for all measurable rectangle A x B x C.

Let us introduce the empirical means
n—1 n—1

1 1
(1-10) Ln(w» ) w— H Z ‘st;{w)(‘) = E Z ‘5(.\',(m},£,(us),£,-.,_1(m)}(')a
=0

=0

we SN, n=12---. Clearly, for each w € SV, L,(w,-) € M;(S). Moreover, L, is

o (C)-measurable:

L7Y(A)={weQ: Ly(w,") € A} € 0(C), VA€ B(M,(S)).
The distribution of L, on B(M;(S)) is Qn.(-) given by
(1.11) Qnu(A) = PL7'(A)], VA€ B(M,(S)),

where g is a distribution on (S, B(S)). In particular, if p(-) = §,(-), for v € §, we shall use
the notation Q,, ,(-).

Since

n-1
o) Latwdv) = 3 9(Vi(w)
3=0

S

it follows from (1.9) that
Lp(w, )= Axnygxn P,—-as, YVES,

and then

lim Qn.(A4) =0
n—oo
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if Axngxn g A, A€ B(M,(S)), where A is the closure of A. Hence, the sequence
{Qn.y() :n=1,2,---} converges weakly, when n goes to infinity, to the unit point measure
Saxnxn on M;(S). We shall show that the sequence V; obeys a LDP at level-2 (see Ellis,
1985), as n goes to infinity, with the entropy function I(v), v € M;(S) (this statement is
equivalent to that the family {Q,.(:) : n > 1} obeys a LDP with entropy function I(v)).
In §2 and §3 we prove that I(v) is given by

JIn2-dv, ifveMgand [ |ln %‘ dv < 400
(1.12) I=s ° 5 .
+00, otherwise
where
(1.13) Mo={veM(S):mrv=\mar=mavT™', v<Axnxn},
m(z,y,z) = m(éﬁ Y, z)
and
(1.14) my2(z,y) = / m(z,y, z)n(dz).
m
We may say that
m(z,y,z)

=m(z/z,1
5l 0} (z/z,y)

is the conditional density of m3v/m1or, with respect to the measure 7).

Now we state the main result in this paper which will be proved in §2 and §3.

Theorem 1.1. For I(v) given in (1.12) and for any (z,y,z) € S,
(a) Lower Bound: for all open set G C M,(S),

ok .
- = > - X
(1.15) lim = InQy (2,4,:)(G) = '}IGIfcf(U}

n—oo

(b) Upper Bound: for all closed set F C M;(S),

-— 1
im — ! < —i .
(1.16) n!me?l Q2 (F) < 325:!(”)
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(c) Compactness of the Level Sets: ¥s > 0, {vr € M(S): I(v) < s} is a compact set in the

weak topology.

A corollary (see Theorem 4.3.1 in Dembo and Zeitouni, 1993) of this theorem is that if

¥ is a bounded real-valued weakly continuous functional on M, (S), then

- 1 Qn. PR _n‘p(”) — H
lim —In JE%n (=2 {e } = —ye’ﬂf[m[@(u} + I(v)).

n—oo7n

To prove Theorem 1.1 we use the same approach of Donsker and Varadhan (1975a):

starting with the functional

& e, i Iy
(1.17) I(v) = —wlggvfln?dv,
S
where
(1'18) n"f’(l‘;? 'Z) = fip(:rl!ylvzl)n((I:? ,Z),d(:ﬂ[,y[,Z'[)),
5

with Il defined in (1.7) and

W ={¥: S — IR : v is continuous, 3a,b such that
(1.19)
0<a<¥y(r,y,z) <b< +oo, ¥(z,y,2) € S},

we prove that I(v) in (1.17) coincides with I(») in (1.12) and then we show that {Q, .(:) :
n > 1} obeys a Weak Large Deviation Principle with entropy function I(v) (i.e., Theorem
1.1 is valid but the upper bound holds only for compact subsets of M,;(S)). To extend the
upper bound to closed sets, it is enough that {Q, .(-) : n > 1} be exponentially tight, which
is proved in Lemma 3.1 of §3.

It is important to observe that the functional I(-) in (1.17) is lower semicontinuous in
the weak topology of M;(S) and convex. Moreover, I(v) = 0 if and only if v is the invariant
measure of II (see Lemma 2.5 in Donsker and Varadhan, 1975a).

Now, returning to the means (1.2), we have

ZjZj1 = [2(X;) + §)[(T(X;)) + &)
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If g: S — IR is defined by
(1.20) g9(z,y,z) = [2(z) + y)[(T(z)) + 2],
we may write

1 n-=1 1 n—1
(1.21) =) ZiZin(w) = -~ Z!}Wj)('w) = /9(”) dLn(w,v).
i=0 5

T
j=0

Using the Contraction Principle (see Ellis, 1985), the LDP at level-1 for (1.2) is obtained

taking into account (1.21): the level-1 entropy function Iz(-) is given by

Iz(r)= inf I(v)=inf{I(v):ve€ MI(SJ,/g(U)v(dv) =r}
(vg)=r g

where I(:) is the level-2 entropy function for {Qn.(-) : n > 1}. In this way the LDP at

level-1 follows from the LDP at level-2.
2. Level-2 Large Deviations: Lower Bound

The goal here is to prove part (a) of Theorem 1.1. For proving it we need some lemmas.
First we consider the random process {X,},>0 introduced in (1.4). It can be seen as
a Markov process with transition function p(z, A) = d4(7T(z)), z € [0,1). As T is uniquely
ergodic and preserves the Lebesgue measure, the uniform distribution on [0,1) is the unique

stationary measure for this process.

Let
1 n—1 1 n—1
LY () = =3 dx,@() = =D drim(), z€[0,1).
j=0 j=0

The ergodic theorem says that
LS'I”(Ii'} = ’\()1 Vz € [U! 1))
n—0o0

where A is the Lebesgue measure on [0,1).
Let Q'%(-) be the distribution of L\ (z,-) on B(M,([0,1))). Notice that, once the
initial point  is fixed, the process {X,}n>0 is deterministic as well as LY (z,-). The next

lemma follows from this observation.



Lemma 2.1.

(a) For all open set G C M([0,1)),

lim o QLL(G) > - inf IM(w),

n—od
and

(b) for all closed set F € My([0,1)),

lim -an(” (F) < = inf, IM(w),

n—+o00 7l
where the entropy function at level-2 I'V)(v) for the process {Xp}n>0 is given by

0, ifir=X

I = {
=9 tos, v,

Secondly, we consider the Markov process {lr‘}.},,zg introduced in (1.6). Its transition
function II is given in (1.7) and its phase space is S = [0,1) x IR*. Let I(-) be the entropy
function defined in (1.17).

Lemma 2.2. I(v) < +oo if and only if v € My and the density m(x,y,z) of v with

respect to A x 1 x 1 satisfies
@.1) / m(z,y,z)
m;-:(.r y)

where my»(zx,y) is given in (1.14) and My is the set introduced in (1.13). Moreover,

m(x,y, z)(A xn xn)(d(z,y,z)) < +oo

myza(z,y)

(2.2) 1) = { f n BEL2) ) (g(x y 2)),  ifv € Mg and (2.1) holds
. v

+00, otherwise.
Proof: Suppose that v € Mg and that (2.1) holds. Let

dv

d,\x—m(ﬂf,y,z), (z,y,2) €S

m(z,y,z) =

and

dmyav
ma(z,2) = /m(x,y'z)n(dy) = 1; n(u:,Z)-



Since msvT~}(A x B) = m3v(T~'(A) x B), for all A € B([0,1)), B € B(R), and T is
A-preserving, we get

d;‘Tl;;UT_l

T5n (z,2) = m3(T"(z), 2).

Taking into account that mov = m3vT ™1, we have mys(x,y) = mi3(T~(x),y). Let

li= fm(;r:,y, z)In %n(dﬁr}q(dy]dx.
S - 1

By hypothesis, | < +o0c. Notice that, for » € W,

In %(Jﬁy,z) =In /'HJ(T(m),z,u)n(du) —Iny(z,y,z), V(z,y,z2)€S.
n

So, if we show that, for all v e W,

f/ [Inft,b(T(:r:),z,u)r}(du)] mys(z, z) nldz) do—

(2.3) [0,1) R Jid

= [ma,v.2) 0 (a0, 2) 002 ntdy) o > 1
s

then I(v) <, I(:) being the functional in (1.17).

Recall that the marginal density of m v is my(z) = 1, for all z € [0,1), so that, for
each = € [0,1), m(x,y,z) is a probability density (with respect to 7 x ) of some measure
jz on B(IR?). For each z € [0,1), let us define A, = {(y,z) € R? : m(z,y,z) > 0}. Clearly
iz(A;) = 1. Let B, = {y € IR : mya(z,y) > 0}. Since the first marginal pt") of p, has

density my2(z,y) with respect to 7, ,ui”(B,,) = 1 which means that

1= [mut o) = | [ / m(a:,y,z)n(dz)] n(dy).
B. B, LR

Hence, p.(B; x IR) = 1 and we may identify A, with B, x IR, in terms of integration.
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Then,

I= ]m{:c ¥, z) Int(z, y, 2) n(dz) n(dy) de = f//[lnﬁz(;r,y,::)]m(z,w v2)n(dy) n(dz) de =

[0.1) A:
/ f/ [:i(;h: ’"”(I‘y)]%’Ndﬂmm(r,wn(dwdﬁ
[0,1) AL
/ff m(z,y,z) m(z,y,2) n(dz) n(dy) dz
‘.I'np(_r J) Sy, z)nidz) nlay s
[0,1) A

But, for each (z,y) € [0,1) x IR with ma(z,y) > 0, %f-%—;% is a density with respect to
7 for some probability measure on B(IR). Using Jensen’s inequality in the first integral on

the right hand side of the last equality (this is possible if one substitutes A, by B, x IR),

r< [ [m [/ w{z,y.z)n(d:)] maa(z,y) n(dy) dz + L.

[0,1) IRt n

we obtain

Since wor = mzvT™ ! and A = AT™!, we may write

8. //ln ilf)(‘.{:,? c2)n(dz) | mys (T~ Ha), y) n(dy) dT Y (z) + 1 =

[0,1) R

= / f In / w(r(v),y,z)n(dzJ‘ mia(u,y) nldy) dv +1

[0,1) IR LR

and we get (2.3).
Now suppose that I(v) < +oco. Let I(v) =1 for v € M;(S). Then,

(2.4) / /[ln[qf} T(x),z,u)n du)] mav(d(r, z))—

[0,1)
- [ @y e, ) 2 <L VeEW.
s

From Lusin’s theorem (see Rudin, 1974), (2.4) also holds for all nonnegative measurable

functions on S, bounded away from zero and infinity. We denote this set by W=,
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Let 3 € W* be defined by (z,y,2) = ¥ ()2 (y)1pa(z), where 1, is any continuous
function with ¥,(z) >0, Yz € [0,1), ¥» =1, and

k, ze A

where k> 1 and A € B(R). For such 1, (2.4) implies that

(2.5) mav(A)Ink <!+In[kn(A)+n(A%)] + / Inyy (T'(x)) myv(de) — [ Iny (z) myv(de).
[0.1) [0.1)

Suppose that mjv # X. From Lemma 2.1, we know that for all M > 0, there exists a

positive continuous function 1, on [0,1) such that

Y1 (T(z)) - wld B
/ln —tf'il('-t) w(dr) < =M.

[0,1)
So, we may choose M, ¥, and k in such a way that (2.5) implies that
mav(A)Ink <l+In[kn(d) +n(A%)) - M <0

which is a contradiction, if M is large enough. Therefore, myv = A.

Now take ¢(z,y,z) = ¥ (x)ib2(y)ts(2) with

k! (I, y) € Al BS -4".’.
1! (x:y)e’Al XA-'Z!

wi()a) = {
where A; € B([0,1)), A2 € B(JR), and 3 = 1. Notice that
P (T(@))a(y) =k & (z,y) € T™H (A1) x Ay,

Hence (2.4) implies that, for k> 1,

l
'JT]‘_!U(.‘&; X Ag) . ﬂlgv(T-l(.‘h) X .43) < m

By making k — co, we get

mav(A; x Az) < mgvT ' (A; x A),

12



from what follows the equality of measures 7av and w307 ~!, if one takes the complement

of the set.
To show that v < A x 7 x 5 first we show that 73071 < X x 5. Choose ¥ € W*
such that ¥(z,y,z) = ¥y (x, 2)¢2(y), Y2 =1, and for A € B([0,1) x R),

k, (z,z) € 4,

Vile,2) = { 1, (z,z) € A°.

By Jensen’s inequality and (2.4) we get

In //I,b;(T(m),u)n{du)dx - //lmf;l{u:,z)mgu{d(:c, z)) > -l

[01) R [01) R
Since A = AT!, the last inequality implies that
miav(A)Ink <1+ In[(k = 1)(A x 7)(4) +1].

If (Axn)(A) =0 we have

l
aplAd) < — ) ‘hon bk ;
mav(A) < nE 0, whenk = +cc

Hence, mjav < A x 5. Consequently, mzvT~! <« A x 1 since
mavT (A x B) = mzv(T " (A) x B)
and we conclude that

dmav ) _ d?Tl;;VT_l

(z,y) = ma(T~}(z),).

Using this fact and that T is A-preserving, (2.4) may be written as

(2.6) // I:ln w(z:,z,u)n(du):\ mavT ~ (d(x, 2)) —/lnl}){w,yTz)u(d(m,y,z}) > -l
R s

[0.1) R

Finally, for having v < XA x 1) x n it suffices that v & m3vT~" x 5. To prove this last

statement, choose ¥ € W* as

13



k! (I!y1 z) G A

Y(x,y,2) ={ 1, (x,y,2)€ A,

where A € B(S). Jensen's inequality and (2.6) imply that

V(A) € o T (R fman T x n)(4) + [man T x 1)(A))

from what we conclude, by taking k — 400, that v < misvT~! x 7.

It remains to show that (2.1) holds. By defining

1 3 1 l
un(z,y,2) = (E{E—-“Lz—) v —) An=(a(z,y.2)V-)An, n>1
mp2(z,y) n n

and following the same arguments as in the proof of Lemma 2.1 in Donsker and Varadhan
(1975a), we get (2.1). In what follows we outline the main steps.

From the Dominated Convergence theorem,

(2.7) JLI&/IH,;(I,y,Z)"tlz(m'y) —m(x,y,2)| (A x n x n)(d(z,y,z)) =0.
5

But I(v) =1 < 400 implies that (2.6) holds for all 1» € W and then from Lusin’s theorem it

also holds for 1 € W*. Hence, for ¢ = u,, and using Jensen’s inequality, we get from (2.6),

(2.8) fln un(z,y, 2)v(d(z,y,2)) < lnfu,.(:v,y,Z)mm(:r‘y)?}(dy)f}(dZ)dm +1;
s ]

for obtaining the above inequality we also used the fact that mz¢T~! = mpav. Since
m(z,y,z) is a probability density with respect to A x 5 x 7, it follows from (2.7) and (2.8)

that

n—

(2.9) E/ Inu,(z,y, 2)v(d(z,y,2)) <L
5

By the Monotone Convergence theorem
/(ln u,)"dv T f(ln a)"dv = /a (In @)~ d(m2v) dny < 400
n=oo
s S S
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and then (2.9) implies that

lim [(ln up)tdv < 1 + [a (Ina)~d(m2v) dn < +00.

n—oa
S

Hence

/|ln aldv < +oc
5

which is (2.1). Moreover,

/m(.r: y,z)In tzEIEf’J)) (A xnxn)(d(z,y,2)) <1=I).

From the whole proof we also conclude that, if I(rv) < +oc then

I(v) = [ iz, y, £) 1 %(A % % 7)(d(z,3,2))
| iz,

so we have (2.2); besides, (1.17) and (2.2) are equal.
=]

For proving the lower bound (1.15) in Theorem 1.1 we shall consider a new Markov
process with transition function I’ absolutely continuous with respect to II.

Let us introduce the set

Mo ={re Mp: y,z) = m(z,y,z) and

v (
d,\xnxqz’

Jde,d such that 0 < e < m(x,y,z) <d < +o0, ¥(z,y,2) € S}

Let v be in M, with density m(z,y,z). Define

1) (@) n) = Sy, 2), d, )

with IT as in (1.7).



Lemma 2.3. Under the above conditions, v is the only invariant measure for II'.

Proof: Clearly I(rv) < 4+cc which implies, from Lemma 2.2, that v € My . It is not difficult

to show that

/H’((:r:, ¥, z), A1 X As x Ag)e(d(z,y,2)) = v(4; x As x A3),

for any measurable rectangle 4; x 4, x Aj.

Lemma 2.4. Let G be an open subset of M(S). Then

Japt) =, Jik, Tl

Proof: This lemma can be proved as Lemma 2.9 in Donsker and Varadhan (1975a) so we
omit it.

|

Lemmas (2.2)-(2.4) allow one to prove the lower bound (1.15) of Theorem 1.1 by using

the same arguments as in Donsker and Varadhan (1975a). In what follows, we outline the

main steps of the proof.
Proof of the Lower Bound

Let v € M» and, for simplifying the notation,

m(zx,y, z)

W(z,y,z) =In mya(z,y)

= Ina(r,y,2), (z,¥.2) €S,

where m is the density of v with respect to A x 1 x 5. Then I(v) = fs W dv.
Let S(v;e) be the sphere with center v of radius € > 0, in the weak topology on
M, (S). Define E, ,. = {w: L,(w,-) € S(v;€)}. One may show that

m(xj,y;,2;)

Qo [SWwie)] = / H mz-w(:r_; v;) dIP!,

where IP! is the probability measure in @ = S induced by the transition function II'(v, du)
defined in (2.10).
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For each &' > 0, define

X7 {1/ - fra
By = A | L RNR)ER) & n*’“ (Vo1)(w) -fufdu <&
5

Then
Qn.v [S(v;e)] > exp {—n[I(v) + €]} P, [Enve N Fupe].

By Lemma 2.3, v is the unique invariant measure for I1'. From the ergodic theorem
(see Doob, 1953),
L.(w,”)=>v, IP.—as., YveS,

so that, Ve >0, V&' > 0,
nETmP:’[E“‘”"] =1 and nHI:.looP;[F"""E'] =1.

Hence,

lim 10 Qu [S(ie)] > ~I(r), ¥ € Ms.

=400

Now, let. G be an open subset of M, (S) and take v € G N Mj. Since G is an open
set, there exists £ > 0 such that S(v;£) C G. By using the last inequality and Lemma 2.4
we get (1.15).

3. Level-2 Large Deviations: Upper Bound

Following the same ideas as in Donsker and Varadhan (1975a), one can prove the upper
bound in (1.16) of Theorem 1.1 for compact sets. Since M;(S) is not a compact set, the
inequality for closed sets does not follow as a consequence.

Proof of the Upper Bound

Let » € W, u=1II, and e~ = 9/u. Notice that W = InTly) —In4) is bounded and

continuous. From the Markov property it follows that
E, {exp{=[W (Vo) + -+ + W(Vaz)]}u(Va1)} =0(v), VYveES, nz>1,

17



where V,, = (X,,,&,,€n41) as before. Then
E, {exp{—[W (Vo) +--- + W(Vh_1)]} < M,

for some constant M > 0. This inequality may be written as

E9 { exp —n/W dp <M
s
where p € M;(S) is the integration variable.
First, take F' C M,(S) as being any measurable set. From the above inequality we get

Qu.(F) £ Msup/ln (rf, ) du, Yy ew,

neF
-

and then

lml —ln Qnu(F) < ulf :;up[ (T%) dyu.

J-lc.r
s

Secondly, for any F C Uf‘=lF,-‘ for F; measurable sets,

lml —ln Qno(F) < . inf sup mf sup /ln( - ) dy.

n—+ v P 1 <icr VEW e
Fcut, Fi

Now, if F' is a compact set it can be shown (see Donsker and Varadhan, 1975b) that
the expression on the right hand side of the above inequality is equal to

i Iy :
sup inf [1 dp = — inf I(p).
per vEW "( v ) =t

Up to now, (1.16) holds for compact sets F. Therefore, {Q, () : n > 1} satisfies a
weak LDP with rate function I(-) given in (1.17). But Lemma 3.1, to be proved below, tells
us that this family of measures is exponentially tight, so (1.16) holds for closed sets F as
well (see Lemma 1.2.18 in Dembo and Zeitouni, 1993).

|

Relying on Lemma 1.2.18 in Dembo and Zeitouni (1993), since the lower bound in (1.15)
holds for all open sets and the family of measures {Q,.(:) :n > 1} is exponentially tight,
then I(-) in (2.2) is a good rate function, that is, the level sets {v : I(v) < s} are compact
in the weak topology. Moreover, this property is carried out to the rate function Iz(-) for

the process M, in (1.2).

18



Lemma 3.1. The family of measures {Q, (z,,:)(*) : m > 1} is exponentially tight.

Proof: We shall prove that YL > 1, there exists a compact set C, C [0,1) x IR* such that
— 1 5
Jim = 1InQn (z,,5(CL) < —L.

For each 1 € W and t > 0 define the functional

W (v) = exp [nt-/wdu:l , vEM(S).
s

Then

n—1
Uy (Ln(w,-)) = exp |:t Z ‘o"’(l’}(w))] )
=0

where (Vy)n>0 is the random process in (1.6) and L, (w,-) is defined in (1.10). Besides,
n—1
(3.1) EC v ,(.) = / exp nt/r,bdu Qn.(z.y.2)(dv) = E(; .-y exp tz (Vi) |,
Mi(S) s =

where JE9n(=v.2) is the expectation corresponding to the measure & JRy

For each & > 0, define

As =S veM(S): I,bduZJ}.
[resem: |

Using (3.1), we get

n—1
(32) Qn.(:.y.;}(Aﬁ) S EXP{_n’tJ} E(z.y,:] exp [t Z "f‘("{J)] ¥

=0

Choose {K,,} as a sequence of compact subsets of IR for which n(K5) — 0 as
m — +00. Define K,, =[0,1) x K2, m > 1. Clearly K,, is a compact subset of S and
K; =10,1) x (K2)° = [0,1) x {(K5)* U (K7, x Km) U (Km x K7)}
=[0,1) x (B}, UB2 UB}).
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Let us introduce the functions i, = A% m > 1, and the sets

Kg
APl = /wmdp > 8y = {v:v(KE) > ).
s
Then, by using (3.2),

3
Qn,{z,y,:}(-‘i?) S ZQn.(:.y‘:)({V : U(IO, 1) X B:-n) Z 6/3}} S
=1

(3.3)
3 n—1 3
< exp{-ntd/3} " Eexp {t 3 Xy (€, &41) § = exp{-ntd/3} S I,
i=1 i=0

=1
where IE is the expectation corresponding to the independent and identically distributed
random process §,, & =y and £ = z with probability one.

One can see that

n—1

I = fexp tY Xpy (z5,2j41) ¢ nldza) - n(dz),

-1 =0

where zy = y and z; = z. Since
n—1 n—1
D Xpy (zi:z541) € ) X, (2541)
j=0 =0

we get, for any 0 < & < 1 and for m large enough such that z € I,

n-—1

L | [en{tti @) | <l X @) 2 eh) +enl{v: X () < DI
n

Now, for each t > 0 we choose m so large that
e'n({v: Xk (v) 2€}) < 1.

This is possible because Xg: () converges to zero as m goes to infinity in 7-measure.
Besides, 0 < £ < 1 being arbitrary, we choose & so small that e'* < 2. Hence, for m large

enough and depending on t, I} < 3".
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Similarly, there exists m sufficiently large and depending on t such that I, < 3™ and
I3 < 3", Therefore, ¥t > 0, 3m = my > 0 such that I} + I, + I3 < 9" which implies by
(3.3) that

Qn,(z.y,:)(A.?ll) < exp{—nt6/3}9“.
Let L>1.Forl>L,taked =1/land t =3[ (l+In9+1). Then, by writing m; = my

(34) Qn.(z.y.:)(-‘;;’}‘{) < e"n“+”: Vn 21, Vi z L.

Let
CL= ﬂ {v v(Km) 21— %} C M, (S).

1>L

This set is relatively compact. By Prohorov’s theorem (see Appendix of Dembo and Zeitouni,

1993, page 319), C'p is compact in M,(S). Since

¢ = U{u:lv(ﬂ',‘m)>l}

I>L

we get, from (3.4),

Qn,(2.4,2)(CL) £ e ML >,

4. Level-1 Large Deviations

The rate function that governs large deviations for the means

n—1

1
M, = ; IEOZJ'Z_H_], n=1,2--
J:

introduced in (1.2) is obtained by using the level-2 large deviations for {15, },.>0 in (1.6).
Since Z; = ®(X;) + &;, we have
ZjZjw = [2(X;) + GlR(T(X;)) + ).
If g: S — IR is defined by

g(z,y,2) = [P(z) + y][P(T(x)) + 2]
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and taking into account (1.21) the ergodic theorem implies that

lim M, = fg(v) (A x 7 x n)(dv) =
n—=++0c
s

" /fll(at)lb{T(J:))d:n+ //@(I)zn(dz)d:r:+

[0,1) [0,1) R

3 f f B(T(z)) yn(dy) dz + f f yzn(dy) n(dz),
[01) R R R

Pyxyxy —as. and P; . —as., VY(r,y,z)eS.

In particular, if &, has zero mean, then

lim M, = /‘I’(H)‘I’(T(u))du‘ Py — a8, ¥(z.9,2)€S.

n—400
[0.1)

In §2 and §3 of this paper we established a full LDP for the family of distributions
Qn (2,y,2)() of Ly(w,-). Taking into account (1.21) and using the Contraction Principle (see

Ellis, 1985), the entropy function for {My},> is given by

(4.1) Iz(r) = (vi?)f_rf(u) = inf {I(u) tv € M(9), /g(u} v(dv) = r} ;

s
where /() is the level-2 entropy function for the process {V},},>0. Clearly Iz(r) =0 if and
only if r = fsg(v) (A x n xn)(dv) because I(v) =0 ifand only if v = Axnxn. If &, has
zero mean then Iz(r) =0 if and only if r = f[o.n G (u)® (T (u)) du.

5. Some Remarks

Remark 5.1: Large deviations for the empirical pair measures

1 n—1
= > b0 ()
j:ﬂ

may be studied similarly to what was done in §2 and §3. One can prove that its entropy

function is given by

R?
+00, otherwise,

In 228 4 (d(z,y)), ifveM
I{'.!](u) = { ff my(zx)

22



where

my ()

M={ve M (R?) : my=mv, v X7, /f ‘ln m(z,y) y v(d(z,y)) < +oc},
n:

with m(z,y) = E:—;-ﬁ(m,y) and my(z) = [m(z,y)n(dy).
R

Remark 5.2: Let Y, = (X,,&,), n > 0, and consider the empirical measures

n—1

1
;j;)fsn(')-

Large deviations for the family of distributions of the above empirical measures is governed

by the entropy function

[ lnm(z,y)v(d(z,y), ifreM
I () =< bxR
+00, otherwise,

where
M={re Mi(0,1) x R): mr =X, v<Ax1,

d
miz.y) = g @), [[ Inmey)dep) <-+oo).

[0,1) <R
This result may be obtained similarly to §2 and §3 of this paper.

Remark 5.3: One can generalize level-2 large deviations by considering the empirical pair

measures corresponding to Y, = (X,,,&,),n > 0. Let

n-=1

= 1
(5.1) Ln(w,") = ~ > 8w Y () = = D Sexs et grrtan )
j=0 j=0

Clearly, for each w € SV, L,(w,-) € M(S), where S =[0,1)* x IR*.

The ergodic theorem implies that

Lﬂ(ws ) = ’-\ XX, P{z.n oy ) s a.5., V(E;' 1 2, t) € S;

where A is a measure on B([O,l)z) defined by

AMA; x A2) = MA1NT1(43)), VA, As € B([0,1)).
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For each v € M, (S), we define the measure vT~' € M;(S) by
vIY(Ax BxC xD)=v(T"'(A) x T™(B) x C x D),

for any measurable rectangle.

Let us define
Mo={reM(S):mar=X v<KAXnXn, mav= m2avT 1}

If v € Mg, let m(z,y,z,t) be the density of v with respect to A x 7 x 1, myas(z,y,2)
be the marginal density of mj23v with respect to X x n and myos(x,y,t) be the marginal

density of w24 with respect to X x 1. The definition of w247~ tells us that

dryagvT™ :
d\ x 7

(:':l Y, Z) =my24q (T_I {I)‘! T_l (y}s Z), {I': Y, Z) G [01 1)2 x '!R'
Moreover, from the condition a3 = woqrT ™, we have

1”123(1"91 * 2) = "“i‘.’-i(T_l{I)!T_l(y)s 2)1 (Ia Y, :) = [0 1)3 x R.

One can prove, as in §2 and §3 of this paper, that the level-2 large deviations for L, (w, )

in (5.1) is governed by the entropy function

myza myza
S

z JIn2-dv, ifve Mpand [|In 2-|dv < +c0
I("j(v) = S
400, otherwise.

Remark 5.4: Returning to the process {V,},>0 in (1.6), let us define

n—1

A@) = Tim l1n sup IE, exp Zw(p}) '
ves

n=400Tl
3=0

where JE, is the expectation corresponding to the measure IP, on (S™,0(C)), introduced
in (1.8). Let B(S : IR) be the set of bounded measurable real functions.
Let

A*(v) = sup /uﬂvdu - A(wp) :1p € B(S:IR)
5

24



By Lemma 4.1.36 in Deuschel and Stroock (1989), A*(v) = I(v), v € M, (S), where I(v)
is defined in (1.17).

Remark 5.5: The results for random means {M,},>; in (1.2) may be extended to

n—=k
1
(5.2) M=~ > Z3Z4k, n2k, k21

j=0

When {Z,}n>0 has zero mean they are called the autocovariances of order k of the process
Ly

The level-1 LDP for the random means (5.2) follows from the level-1 LDP for the corre-
sponding autocovariances of order 1, in (1.2). To see this, let us consider first the case k = 2.

One can verify that the process {M,},>2 in (5.2) has the same distribution as the process
aV MV + P MP, n>1

n ?

where
1 n—1 1 n—1
M = - > YV and M = = DWWy,
j=0 j=0

{Yalnzo and {Wy}a>0 are independent random sequences with the same distribution as

the process {Z,}n>0 given by (1.2), with T? instead of T, since T? is a uniquely ergodic

transformation, where T is given by (1.1). The sequences {aL”}nZl and {a\f )},,21 are real

sequences converging to % as n goes to infinity.

Since {aﬁ,”}uz! and {an’},.zl are deterministic sequences their entropy function is

= 0, ifr=
Itr) = { boo;, Wik

b= b=

The level-1 entropy functions for MY and M? are equal and coincide with Iz(r) in (4.1).
Relying on the independence of the sequences a,(r,”, a!?’, ;'l—I,{l”, M,(.'” and using the
Contraction Principle (see Dembo and Zeitouni, 1993), we obtain the level-1 entropy function

for a\" MV (which is the same for a'? M{P):

IM(w) = sigg?{fu/z) +I(s) : % = u} =Iz(2u), u€ R
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Hence, the level-1 entropy function for al) MY + af.g) M? s given by

@ = (1) M) () - -
I (t) = u,‘.féfn{f (w) + I'M(v) :u v =1t}
= u,‘:gm{fzmu) +1z(2v):v=t—-u}=

= nig;?{fz(%) + Iz(2(t —u))}, forte R.

Similarly, for each k > 1, the level-1 entropy function for {My},>k in (5.2) is

k k
Iﬁ*’(z):migf“ {Zfz(ku,-):Zu,-zt}, for t € R.
ik L=t i=1
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