# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE METAMÁTICA E ESTATÍSTICA SÉRIE A: TRABALHO DE PESQUISA

### A LEVEL-1 LARGE DEVIATION PRINCIPLE FOR THE AUTOCOVARIANCES OF UNIQUELY ERGODIC TRANSFORMATIONS WITH ADDITIVE NOISE

S. C. CARMONA, C. LANDIM, A. LOPES and S. LOPES

SÉRIE A, Nº 47 PORTO ALEGRE, FEVEREIRO DE 1997

# A LEVEL-1 LARGE DEVIATION PRINCIPLE FOR THE AUTOCOVARIANCES OF UNIQUELY ERGODIC TRANSFORMATIONS WITH ADDITIVE NOISE

S.C. Carmona<sup>1</sup>, C. Landim<sup>2</sup>, A. Lopes<sup>1</sup>, and S. Lopes<sup>1</sup>

<sup>1</sup> Instituto de Matemática - UFRGS

Porto Alegre-RS-Brasil

<sup>2</sup> IMPA - Rio de Janeiro-RJ-Brasil

FEBRUARY 4, 1997

#### Abstract

A Large Deviation Principle (LDP) at level-1 for random means of the type

$$M_n \equiv \frac{1}{n} \sum_{j=0}^{n-1} Z_j Z_{j+1}, \quad n = 1, 2, \cdots,$$

is established. The random process  $\{Z_n\}_{n\geq 0}$  is given by  $Z_n = \Phi(X_n) + \xi_n$ ,  $n = 0, 1, 2, \cdots$ , where  $\{X_n\}_{n\geq 0}$  and  $\{\xi_n\}_{n\geq 0}$  are independent random sequences: the former is a stationary process defined by  $X_n = T^n(X_0)$ ,  $X_0$  is uniformly distributed on [0,1), T is a uniquely ergodic transformation preserving the Lebesgue measure on [0,1) and the later is a random sequence of independent and identically distributed random variables;  $\Phi$  is a continuous real function.

The LDP at level-1 for the means  $M_n$  is obtained by using the level-2 LDP for the Markov process  $\{V_n = (X_n, \xi_n, \xi_{n+1})\}_{n\geq 0}$  and the Contraction Principle. For establishing this level-2 LDP, Donsker and Varadhan's (1975a) approach is followed.

The analogous result for the case of autocovariance of order k is also true.

Keywords and Phrases: Large deviation, level-1 entropy function, level-2 entropy function, contraction principle, ergodic transformations, Markov process.

Partially supported by CNPq and PRONEX: "Fenômenos Críticos em Probabilidade e Processos Estocásticos".

#### 1. Introduction

Given a probability space  $(\Omega, \mathcal{F}, P)$  and a measurable transformation  $T : \Omega \to \Omega$ , we say that T is measure preserving if

$$(1.1) P(T^{-1}(A)) = P(A), \forall A \in \mathcal{F}.$$

We say that T is uniquely ergodic if there exists only one invariant measure for T, in the sense of (1.1).

The results we present in this paper apply only for uniquely ergodic transformations  $T:[0,1)\to[0,1)$  preserving the Lebesgue measure or preserving a measure absolutely continuous with respect to the Lebesgue measure. For simplifying the exposition we shall assume that T preserves the Lebesgue measure.

Let us introduce the random mean

(1.2) 
$$M_n \equiv \frac{1}{n} \sum_{j=0}^{n-1} Z_j Z_{j+1}, \quad n = 1, 2, \cdots$$

where

(1.3) 
$$Z_n = \Phi(X_n) + \xi_n, \quad n = 0, 1, \dots,$$

 $\{X_n\}_{n\geq 0}$  and  $\{\xi_n\}_{n\geq 0}$  are independent random sequences in some probability space: the former is the stationary process defined by

$$(1.4) X_n = T^n(X_0),$$

 $X_0$  is uniformly distributed on [0,1), T is a uniquely ergodic transformation preserving the Lebesgue measure on [0,1), and  $T^n$  is the composition of T, n times, the later is a sequence of independent and identically distributed random variables with common distribution  $\eta$ ;  $\Phi$  is a continuous real function. In particular, if  $\xi_n$  is Gaussian with zero mean, then  $\{\xi_n\}_{n\geq 0}$  is called the (white) noise of the system (1.3). In Time Series Analysis, the process in (1.4) is called signal process.

One of the examples of transformations we are interested in is T defined by

(1.5) 
$$T(x) = (x + \alpha) \mod 1, \quad x \in [0, 1),$$

where  $\alpha$  is irrational. It is well known that this transformation preserves the Lebesgue measure  $\lambda$  on  $([0,1),\mathcal{B}([0,1)))$ , where  $\mathcal{B}(A)$  is the Borel  $\sigma$ -field of subsets of A; moreover, T is uniquely ergodic (Durrett, 1996). For this example, the process  $\{X_n\}_{n\geq 0}$  in (1.4) is stationary if and only if  $X_0$  is uniformly distributed on [0,1). We observe that this process may be viewed as a Markov process with transition function  $p(x,A) = \delta_A(T(x))$ ,  $A \in \mathcal{B}([0,1))$ ,

$$\delta_A(v) = \left\{ \begin{array}{ll} 1, & v \in A \\ 0, & v \notin A, \end{array} \right.$$

with a unique stationary distribution: the Lebesgue measure on [0,1). When  $\Phi(x) = \cos(2\pi x)$  and T is given by (1.5), the process  $Z_n$  is called the *harmonic model*. Other examples of uniquely ergodic transformations appear in Lopes and Rocha (1994), Coelho et al. (1994), and Lopes and Lopes (1995,1996).

The main goal in this paper is to establish a level-1 Large Deviation Principle (LDP) for the random mean in (1.2) with  $\{X_n\}_{n\geq 0}$  as in (1.4). The strategy we shall follow is firstly to get a level-2 LDP for the process

$$(1.6) V_n = (X_n, \xi_n, \xi_{n+1}), \quad n = 0, 1, 2, \cdots,$$

and then, using the Contraction Principle (see Ellis, 1985), to obtain the level-1 LDP for (1.2). We refer the reader to Lopes and Lopes (1995,1996) for the motivation of analyzing such process.

The level-2 LDP is considered in §2 and §3 which contain the main results of this paper. In §4 we obtain the level-1 LDP for (1.2). In §5 we make some remarks about special situations and extension results. In Remark 5.5 we point out that similar results are also valid for the autocovariance of order k, that is, for sums of the form

$$\frac{1}{n}\sum_{j=0}^{n-k}Z_jZ_{j+k}.$$

In what follows we introduce notations, definitions, and we state the main results of this paper. The random process  $\{V_n\}_{n\geq 0}$  in (1.6) is a Markov process with phase space  $S=[0,1)\times \mathbb{R}^2$  and transition function

(1.7) 
$$\Pi((x, y, z), d(x_1, y_1, z_1)) = \delta_{T(x)}(dx_1)\delta_{\{z\}}(dy_1)\eta(dz_1), (x, y, z) \in S.$$

It is worth to remark that, given a Markov process with phase space S, transition function  $\Pi$ , and initial distribution  $\mu$ , the Kolmogorov Extension theorem (see Billingsley, 1995) allows one to construct a measure  $\mathbb{P}_{\mu}$  on sequence space  $(S^{\mathbb{N}}, \sigma(\mathcal{C}))$  so that the sequence  $Y_n(w) = w_n, \ w \in S^{\mathbb{N}}$ , has the same distribution as the original Markov process.

From now on, let us assume  $\Omega = S^{\mathbb{N}}$  as being the space of sequences of elements of S,  $\sigma(\mathcal{C})$  be the  $\sigma$ -field generated by the cylinder sets, and  $\mathbb{P}_{\mu}$  the probability measure on  $(\Omega, \sigma(\mathcal{C}))$  given by

(1.8) 
$$\mathbb{P}_{\mu}[V_0 \in A_0, \dots, V_n \in A_n] = \int_{A_0} \mu(dv_0) \int_{A_1} \Pi(v_0, dv_1) \dots \int_{A_n} \Pi(v_{n-1}, dv_n),$$

 $\forall A_0, \dots, A_n \in \mathcal{B}(S)$ , where  $\mu$  is a (initial) distribution on  $(S, \mathcal{B}(S))$ . If  $\mu(\cdot) = \delta_v(\cdot)$ , for  $v \in S$ , the above measure is denoted by  $\mathbb{P}_v$  and the corresponding expectation by  $\mathbb{E}_v$ .

It is not difficult to see that the product measure  $\lambda \times \eta \times \eta$  on  $(S, \mathcal{B}(S))$  is the unique stationary distribution for the Markov process  $\{V_n\}_{n\geq 0}$  (in the sense that the only initial distribution that makes  $\{V_n\}_{n\geq 0}$  a stationary process is  $\lambda \times \eta \times \eta$ ). By the ergodic theorem (see Durrett, 1996), for any  $\lambda \times \eta \times \eta$ -integrable function g,

(1.9) 
$$\lim_{n\to\infty} \sum_{j=0}^{n-1} g(V_j(w)) = \int_{S} g(v) (\lambda \times \eta \times \eta)(dv), \quad \mathbb{P}_{\lambda \times \eta \times \eta} - \text{a.s.},$$

where  $V_j(w) = (X_j, \xi_j, \xi_{j+1})(w) = w_j$ , for all  $w \in \Omega$ . Moreover, the above convergence holds  $\mathbb{P}_v - \text{a.s.}, \ \forall v \in S \ \text{(see Doob, 1953)}.$ 

Let  $\mathcal{M}_1(S)$  be the space of probability measures on  $\mathcal{B}(S)$ ; it is a Polish space (complete, separable metric space) if we impose on it the weak topology (which is compatible with the Lévy metric) (see Appendix in Dembo and Zeitouni, 1993). For measures in  $\mathcal{M}_1(S)$  we shall introduce some definitions. By writing  $S = S_1 \times S_2 \times S_3$ , for  $i \in \{1,2,3\}$  let  $\pi_i$  be the projection of S onto  $S_i$ , and  $\pi_{ij}$  be the projection of S onto  $S_i \times S_j$ , for  $i,j \in \{1,2,3\}$ , defined by  $\pi_i(s_1,s_2,s_3) = s_i$  and  $\pi_{ij}(s_1,s_2,s_3) = (s_i,s_j)$ . If  $\nu$  is a measure in  $\mathcal{M}_1(S)$ , then define a probability measure  $\pi_i \nu$  on  $\mathcal{B}(S_i)$  by requiring that, for each  $i \in \{1,2,3\}$ ,

$$\pi_i \nu(F) = \nu(\pi_i^{-1}(F)) = \nu\{(s_1, s_2, s_3) \in S : s_i \in F\}, \forall F \in \mathcal{B}(S_i).$$

The measure  $\pi_i \nu$  is called the *i-dimensional marginal of*  $\nu$ . Similarly, define  $\pi_{ij}\nu$  as the probability measure on  $\mathcal{B}(S_i \times S_j)$ , for each  $i, j \in \{1, 2, 3\}$ , given by

$$\pi_{ij}\nu(F) = \nu(\pi_{ij}^{-1}(F)) = \nu\{(s_1, s_2, s_3) \in S : (s_i, s_j) \in F\}, \ \forall F \in \mathcal{B}(S_i \times S_j).$$

The measure  $\pi_{ij}\nu$  is called the (i,j)-dimensional marginal of  $\nu$ . We also define, for each  $\nu \in \mathcal{M}_1(S)$ , a new measure  $\nu T^{-1}$  in  $\mathcal{M}_1(S)$  by requiring

$$\nu T^{-1}(A \times B \times C) = \nu (T^{-1}(A) \times B \times C),$$

for all measurable rectangle  $A \times B \times C$ .

Let us introduce the empirical means

(1.10) 
$$L_n(w,\cdot) = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{V_j(w)}(\cdot) = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{(X_j(w),\xi_j(w),\xi_{j+1}(w))}(\cdot),$$

 $w \in S^{\mathbb{N}}$ ,  $n = 1, 2, \cdots$ . Clearly, for each  $w \in S^{\mathbb{N}}$ ,  $L_n(w, \cdot) \in \mathcal{M}_1(S)$ . Moreover,  $L_n$  is  $\sigma(\mathcal{C})$ -measurable:

$$L_n^{-1}(A) = \{ w \in \Omega : L_n(w, \cdot) \in A \} \in \sigma(\mathcal{C}), \quad \forall A \in \mathcal{B}(\mathcal{M}_1(S)).$$

The distribution of  $L_n$  on  $\mathcal{B}(\mathcal{M}_1(S))$  is  $Q_{n,\mu}(\cdot)$  given by

$$Q_{n,\mu}(A) = \mathbb{P}_{\mu}[L_n^{-1}(A)], \ \forall A \in \mathcal{B}(\mathcal{M}_1(S)),$$

where  $\mu$  is a distribution on  $(S, \mathcal{B}(S))$ . In particular, if  $\mu(\cdot) = \delta_v(\cdot)$ , for  $v \in S$ , we shall use the notation  $Q_{n,v}(\cdot)$ .

Since

$$\int_{S} g(v)L_{n}(w,dv) = \frac{1}{n} \sum_{j=0}^{n-1} g(V_{j}(w))$$

it follows from (1.9) that

$$L_n(w,\cdot) \Rightarrow \lambda \times \eta \times \eta, \quad \mathbb{P}_v - \text{a.s.}, \quad \forall v \in S,$$

and then

$$\lim_{n \to \infty} Q_{n,v}(A) = 0$$

if  $\lambda \times \eta \times \eta \notin \bar{A}$ ,  $A \in \mathcal{B}(\mathcal{M}_1(S))$ , where  $\bar{A}$  is the closure of A. Hence, the sequence  $\{Q_{n,v}(\cdot): n=1,2,\cdots\}$  converges weakly, when n goes to infinity, to the unit point measure  $\delta_{\lambda \times \eta \times \eta}$  on  $\mathcal{M}_1(S)$ . We shall show that the sequence  $V_n$  obeys a LDP at level-2 (see Ellis, 1985), as n goes to infinity, with the entropy function  $I(\nu)$ ,  $\nu \in \mathcal{M}_1(S)$  (this statement is equivalent to that the family  $\{Q_{n,v}(\cdot): n \geq 1\}$  obeys a LDP with entropy function  $I(\nu)$ ). In §2 and §3 we prove that  $I(\nu)$  is given by

(1.12) 
$$I(\nu) = \begin{cases} \int_{S} \ln \frac{m}{m_{12}} d\nu, & \text{if } \nu \in \mathcal{M}_{0} \text{ and } \int_{S} \left| \ln \frac{m}{m_{12}} \right| d\nu < +\infty \\ +\infty, & \text{otherwise} \end{cases}$$

where

$$\mathcal{M}_0 = \{ \nu \in \mathcal{M}_1(S) : \pi_1 \nu = \lambda, \, \pi_{12} \nu = \pi_{13} \nu T^{-1}, \, \nu \ll \lambda \times \eta \times \eta \},$$

$$m(x,y,z) = \frac{d\nu}{d\lambda \times \eta \times \eta}(x,y,z)$$

and

(1.14) 
$$m_{12}(x,y) = \int_{\mathbb{R}} m(x,y,z) \eta(dz).$$

We may say that

$$\frac{m(x,y,z)}{m_{12}(x,y)} \equiv m(z/x,y)$$

is the conditional density of  $\pi_3 \nu / \pi_{12} \nu$ , with respect to the measure  $\eta$ .

Now we state the main result in this paper which will be proved in §2 and §3.

**Theorem 1.1.** For  $I(\nu)$  given in (1.12) and for any  $(x, y, z) \in S$ ,

(a) Lower Bound: for all open set G ⊂ M<sub>1</sub>(S),

$$(1.15) \qquad \lim_{n \to \infty} \frac{1}{n} \ln Q_{n,(x,y,z)}(G) \ge -\inf_{\nu \in G} I(\nu).$$

(b) Upper Bound: for all closed set F ⊂ M<sub>1</sub>(S),

(1.16) 
$$\overline{\lim}_{n\to\infty} \frac{1}{n} \ln Q_{n,(x,y,z)}(F) \le -\inf_{\nu\in F} I(\nu).$$

(c) Compactness of the Level Sets: ∀s > 0, {ν ∈ M₁(S) : I(ν) ≤ s} is a compact set in the weak topology.

A corollary (see Theorem 4.3.1 in Dembo and Zeitouni, 1993) of this theorem is that if  $\Psi$  is a bounded real-valued weakly continuous functional on  $\mathcal{M}_1(S)$ , then

$$\lim_{n\to\infty}\frac{1}{n}\ln I\!\!E^{Q_{n,(x,y,z)}}\left\{e^{-n\Psi(\nu)}\right\}=-\inf_{\nu\in\mathcal{M}_1(S)}[\Psi(\nu)+I(\nu)].$$

To prove Theorem 1.1 we use the same approach of Donsker and Varadhan (1975a): starting with the functional

(1.17) 
$$I(\nu) = -\inf_{\psi \in \mathcal{W}} \int_{S} \ln \frac{\Pi \psi}{\psi} d\nu,$$

where

(1.18) 
$$\Pi \psi(x, y, z) = \int_{S} \psi(x_1, y_1, z_1) \Pi((x, y, z), d(x_1, y_1, z_1)),$$

with  $\Pi$  defined in (1.7) and

$$\mathcal{W} = \{ \psi : S \to I\!\!R : \psi \text{ is continuous, } \exists \, a, b \text{ such that} \\ 0 < a \le \psi(x,y,z) \le b < +\infty, \, \forall (x,y,z) \in S \},$$

we prove that  $I(\nu)$  in (1.17) coincides with  $I(\nu)$  in (1.12) and then we show that  $\{Q_{n,\nu}(\cdot): n \geq 1\}$  obeys a Weak Large Deviation Principle with entropy function  $I(\nu)$  (i.e., Theorem 1.1 is valid but the upper bound holds only for compact subsets of  $\mathcal{M}_1(S)$ ). To extend the upper bound to closed sets, it is enough that  $\{Q_{n,\nu}(\cdot): n \geq 1\}$  be exponentially tight, which is proved in Lemma 3.1 of §3.

It is important to observe that the functional  $I(\cdot)$  in (1.17) is lower semicontinuous in the weak topology of  $\mathcal{M}_1(S)$  and convex. Moreover,  $I(\nu) = 0$  if and only if  $\nu$  is the invariant measure of  $\Pi$  (see Lemma 2.5 in Donsker and Varadhan, 1975a).

Now, returning to the means (1.2), we have

$$Z_j Z_{j+1} = [\Phi(X_j) + \xi_j][\Phi(T(X_j)) + \xi_{j+1}].$$

If  $g: S \to IR$  is defined by

$$(1.20) g(x, y, z) = [\Phi(x) + y][\Phi(T(x)) + z],$$

we may write

(1.21) 
$$\frac{1}{n} \sum_{j=0}^{n-1} Z_j Z_{j+1}(w) = \frac{1}{n} \sum_{j=0}^{n-1} g(V_j)(w) = \int_S g(v) dL_n(w, v).$$

Using the Contraction Principle (see Ellis, 1985), the LDP at level-1 for (1.2) is obtained taking into account (1.21): the level-1 entropy function  $I_Z(\cdot)$  is given by

$$I_Z(r) = \inf_{\langle \nu, g \rangle = r} I(\nu) = \inf \{ I(\nu) : \nu \in \mathcal{M}_1(S), \int_S g(v) \nu(dv) = r \}$$

where  $I(\cdot)$  is the level-2 entropy function for  $\{Q_{n,v}(\cdot): n \geq 1\}$ . In this way the LDP at level-1 follows from the LDP at level-2.

#### 2. Level-2 Large Deviations: Lower Bound

The goal here is to prove part (a) of Theorem 1.1. For proving it we need some lemmas. First we consider the random process  $\{X_n\}_{n\geq 0}$  introduced in (1.4). It can be seen as a Markov process with transition function  $p(x,A) = \delta_A(T(x))$ ,  $x \in [0,1)$ . As T is uniquely ergodic and preserves the Lebesgue measure, the uniform distribution on [0,1) is the unique stationary measure for this process.

Let

$$L_n^{(1)}(x,\cdot) = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{X_j(x)}(\cdot) = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{T^j(x)}(\cdot), \quad x \in [0,1).$$

The ergodic theorem says that

$$L_n^{(1)}(x,\cdot) \underset{n \to \infty}{\Rightarrow} \lambda(\cdot), \quad \forall x \in [0,1),$$

where  $\lambda$  is the Lebesgue measure on [0,1).

Let  $Q_{n,x}^{(1)}(\cdot)$  be the distribution of  $L_n^{(1)}(x,\cdot)$  on  $\mathcal{B}(\mathcal{M}_1([0,1)))$ . Notice that, once the initial point x is fixed, the process  $\{X_n\}_{n\geq 0}$  is deterministic as well as  $L_n^{(1)}(x,\cdot)$ . The next lemma follows from this observation.

#### Lemma 2.1.

(a) For all open set  $G \subset \mathcal{M}_1([0,1))$ ,

$$\underline{\lim_{n \to \infty}} \frac{1}{n} \ln Q_{n,x}^{(1)}(G) \ge -\inf_{\nu \in G} I^{(1)}(\nu),$$

and

(b) for all closed set  $F \subset \mathcal{M}_1([0,1))$ ,

$$\overline{\lim_{n\to +\infty}} \frac{1}{n} \ln Q_{n,x}^{(1)}(F) \le -\inf_{\nu \in F} I^{(1)}(\nu),$$

where the entropy function at level-2  $I^{(1)}(\nu)$  for the process  $\{X_n\}_{n\geq 0}$  is given by

$$I^{(1)}(\nu) = \begin{cases} 0, & \text{if } \nu = \lambda \\ +\infty, & \text{if } \nu \neq \lambda. \end{cases}$$

Secondly, we consider the Markov process  $\{V_n\}_{n\geq 0}$  introduced in (1.6). Its transition function  $\Pi$  is given in (1.7) and its phase space is  $S=[0,1)\times \mathbb{R}^2$ . Let  $I(\cdot)$  be the entropy function defined in (1.17).

**Lemma 2.2.**  $I(\nu) < +\infty$  if and only if  $\nu \in \mathcal{M}_0$  and the density m(x, y, z) of  $\nu$  with respect to  $\lambda \times \eta \times \eta$  satisfies

(2.1) 
$$\int_{S} \left| \ln \frac{m(x,y,z)}{m_{12}(x,y)} \right| m(x,y,z) (\lambda \times \eta \times \eta) (d(x,y,z)) < +\infty$$

where  $m_{12}(x,y)$  is given in (1.14) and  $\mathcal{M}_0$  is the set introduced in (1.13). Moreover,

(2.2) 
$$I(\nu) = \begin{cases} \int \ln \frac{m(x,y,z)}{m_{12}(x,y)} \nu(d(x,y,z)), & \text{if } \nu \in \mathcal{M}_0 \text{ and (2.1) holds} \\ +\infty, & \text{otherwise.} \end{cases}$$

**Proof:** Suppose that  $\nu \in \mathcal{M}_0$  and that (2.1) holds. Let

$$m(x,y,z) = \frac{d\nu}{d\lambda \times \eta \times \eta}(x,y,z), \quad (x,y,z) \in S$$

and

$$m_{13}(x,z) = \int_{\mathbb{R}} m(x,y,z) \eta(dy) \equiv \frac{d\pi_{13}\nu}{d\lambda \times \eta}(x,z).$$

Since  $\pi_{13}\nu T^{-1}(A\times B)=\pi_{13}\nu(T^{-1}(A)\times B)$ , for all  $A\in\mathcal{B}([0,1))$ ,  $B\in\mathcal{B}(\mathbb{R})$ , and T is  $\lambda$ -preserving, we get

$$\frac{d\pi_{13}\nu T^{-1}}{d\lambda \times \eta}(x, z) = m_{13}(T^{-1}(x), z).$$

Taking into account that  $\pi_{12}\nu = \pi_{13}\nu T^{-1}$ , we have  $m_{12}(x,y) = m_{13}(T^{-1}(x),y)$ . Let

$$l = \int_{C} m(x, y, z) \ln \frac{m(x, y, z)}{m_{12}(x, y)} \eta(dz) \eta(dy) dx.$$

By hypothesis,  $l < +\infty$ . Notice that, for  $\psi \in \mathcal{W}$ ,

$$\ln \frac{\Pi \psi}{\psi}(x,y,z) = \ln \int_{\mathbb{R}} \psi(T(x),z,u) \eta(du) - \ln \psi(x,y,z), \quad \forall \, (x,y,z) \in S.$$

So, if we show that, for all  $\psi \in W$ ,

(2.3) 
$$\int_{[0,1)} \iint_{\mathbb{R}} \left[ \ln \int_{\mathbb{R}} \psi(T(x), z, u) \, \eta(du) \right] m_{13}(x, z) \, \eta(dz) \, dx - \int_{S} m(x, y, z) \ln \psi(x, y, z) \, \eta(dz) \, \eta(dy) \, dx \ge -l$$

then  $I(\nu) \leq l$ ,  $I(\cdot)$  being the functional in (1.17).

Recall that the marginal density of  $\pi_1\nu$  is  $m_1(x)\equiv 1$ , for all  $x\in [0,1)$ , so that, for each  $x\in [0,1)$ , m(x,y,z) is a probability density (with respect to  $\eta\times\eta$ ) of some measure  $\mu_x$  on  $\mathcal{B}(\mathbb{R}^2)$ . For each  $x\in [0,1)$ , let us define  $A_x=\{(y,z)\in\mathbb{R}^2:m(x,y,z)>0\}$ . Clearly  $\mu_x(A_x)=1$ . Let  $B_x=\{y\in\mathbb{R}:m_{12}(x,y)>0\}$ . Since the first marginal  $\mu_x^{(1)}$  of  $\mu_x$  has density  $m_{12}(x,y)$  with respect to  $\eta$ ,  $\mu_x^{(1)}(B_x)=1$  which means that

$$1 = \int\limits_{R} m_{12}(x,y) \eta(dy) = \int\limits_{R} \left[ \int\limits_{\mathbb{R}} m(x,y,z) \eta(dz) \right] \, \eta(dy).$$

Hence,  $\mu_x(B_x \times \mathbb{R}) = 1$  and we may identify  $A_x$  with  $B_x \times \mathbb{R}$ , in terms of integration.

Then,

$$\begin{split} I &\equiv \int_{S} m(x,y,z) \ln \psi(x,y,z) \, \eta(dz) \, \eta(dy) \, dx = \int_{[0,1)} \iint_{A_{x}} [\ln \psi(x,y,z)] m(x,y,z) \, \eta(dy) \, \eta(dz) \, dx = \\ &= \int_{[0,1)} \iint_{A_{x}} \ln \left[ \frac{\psi(x,y,z)}{m(x,y,z)} m_{12}(x,y) \right] \frac{m(x,y,z)}{m_{12}(x,y)} \, \eta(dz) m_{12}(x,y) \, \eta(dy) \, dx + \\ &+ \int_{[0,1)} \iint_{A_{x}} \ln \left[ \frac{m(x,y,z)}{m_{12}(x,y)} \right] m(x,y,z) \, \eta(dz) \, \eta(dy) \, dx. \end{split}$$

But, for each  $(x,y) \in [0,1) \times \mathbb{R}$  with  $m_{12}(x,y) > 0$ ,  $\frac{m(x,y,z)}{m_{12}(x,y)}$  is a density with respect to  $\eta$  for some probability measure on  $\mathcal{B}(\mathbb{R})$ . Using Jensen's inequality in the first integral on the right hand side of the last equality (this is possible if one substitutes  $A_x$  by  $B_x \times \mathbb{R}$ ), we obtain

$$I \leq \int\limits_{[0,1)} \int\limits_{\mathbb{R}} \ln \left[ \int\limits_{\mathbb{R}} \psi(x,y,z) \, \eta(dz) \right] m_{12}(x,y) \, \eta(dy) \, dx + l.$$

Since  $\pi_{12}\nu=\pi_{13}\nu T^{-1}$  and  $\lambda=\lambda T^{-1}$ , we may write

$$\begin{split} I & \leq \int\limits_{[0,1)} \int\limits_{\mathbb{R}} \ln \left[ \int\limits_{\mathbb{R}} \psi(x,y,z) \eta(dz) \right] m_{13}(T^{-1}(x),y) \, \eta(dy) \, dT^{-1}(x) + l = \\ & = \int\limits_{[0,1)} \int\limits_{\mathbb{R}} \ln \left[ \int\limits_{\mathbb{R}} \psi(T(v),y,z) \eta(dz) \right] m_{13}(v,y) \, \eta(dy) \, dv + l \end{split}$$

and we get (2.3).

Now suppose that  $I(\nu) < +\infty$ . Let  $I(\nu) = l$  for  $\nu \in \mathcal{M}_1(S)$ . Then,

(2.4) 
$$\int_{[0,1)} \iint_{\mathbb{R}} \left[ \ln \int_{\mathbb{R}} \psi(T(x), z, u) \eta(du) \right] \pi_{13} \nu(d(x, z)) -$$

$$- \int_{S} \ln \psi(x, y, z) \nu(d(x, y, z)) \ge -l, \quad \forall \, \psi \in \mathcal{W}.$$

From Lusin's theorem (see Rudin, 1974), (2.4) also holds for all nonnegative measurable functions on S, bounded away from zero and infinity. We denote this set by  $\mathcal{W}^*$ .

Let  $\psi \in \mathcal{W}^*$  be defined by  $\psi(x, y, z) = \psi_1(x)\psi_2(y)\psi_3(z)$ , where  $\psi_1$  is any continuous function with  $\psi_1(x) > 0$ ,  $\forall x \in [0, 1)$ ,  $\psi_2 \equiv 1$ , and

$$\psi_3(z) = \begin{cases} k, & z \in A \\ 1, & z \in A^c, \end{cases}$$

where k > 1 and  $A \in \mathcal{B}(\mathbb{R})$ . For such  $\psi$ , (2.4) implies that

$$(2.5) \ \pi_3\nu(A) \ln k \le l + \ln \left[k\,\eta(A) + \eta(A^c)\right] + \int\limits_{[0,1)} \ln \psi_1(T(x))\,\pi_1\nu(dx) - \int\limits_{[0,1)} \ln \psi_1(x)\,\pi_1\nu(dx).$$

Suppose that  $\pi_1 \nu \neq \lambda$ . From Lemma 2.1, we know that for all M > 0, there exists a positive continuous function  $\psi_1$  on [0,1) such that

$$\int_{[0,1)} \ln \frac{\psi_1(T(x))}{\psi_1(x)} \, \pi_1 \nu(dx) < -M.$$

So, we may choose M,  $\psi_1$ , and k in such a way that (2.5) implies that

$$\pi_3 \nu(A) \ln k < l + \ln [k \eta(A) + \eta(A^c)] - M < 0$$

which is a contradiction, if M is large enough. Therefore,  $\pi_1\nu = \lambda$ .

Now take  $\psi(x, y, z) = \psi_1(x)\psi_2(y)\psi_3(z)$  with

$$\psi_1(x)\psi_2(y) = \begin{cases} k, & (x,y) \in A_1 \times A_2 \\ 1, & (x,y) \notin A_1 \times A_2, \end{cases}$$

where  $A_1 \in \mathcal{B}([0,1)), A_2 \in \mathcal{B}(\mathbb{R})$ , and  $\psi_3 \equiv 1$ . Notice that

$$\psi_1(T(x))\psi_2(y) = k \Leftrightarrow (x,y) \in T^{-1}(A_1) \times A_2.$$

Hence (2.4) implies that, for k > 1,

$$\pi_{12}\nu(A_1 \times A_2) - \pi_{13}\nu(T^{-1}(A_1) \times A_2) \le \frac{l}{\ln k}.$$

By making  $k \to \infty$ , we get

$$\pi_{12}\nu(A_1 \times A_2) \le \pi_{13}\nu T^{-1}(A_1 \times A_2),$$

from what follows the equality of measures  $\pi_{12}\nu$  and  $\pi_{13}\nu T^{-1}$ , if one takes the complement of the set.

To show that  $\nu \ll \lambda \times \eta \times \eta$  first we show that  $\pi_{13}\nu T^{-1} \ll \lambda \times \eta$ . Choose  $\psi \in \mathcal{W}^*$  such that  $\psi(x,y,z) = \psi_1(x,z)\psi_2(y)$ ,  $\psi_2 \equiv 1$ , and for  $A \in \mathcal{B}([0,1) \times \mathbb{R})$ ,

$$\psi_1(x, z) = \begin{cases} k, & (x, z) \in A, \\ 1, & (x, z) \in A^c. \end{cases}$$

By Jensen's inequality and (2.4) we get

$$\ln \int_{[0,1)} \int_{\mathbb{R}} \psi_1(T(x),u) \eta(du) dx - \int_{[0,1)} \int_{\mathbb{R}} \ln \psi_1(x,z) \pi_{13} \nu(d(x,z)) \ge -l.$$

Since  $\lambda = \lambda T^{-1}$ , the last inequality implies that

$$\pi_{13}\nu(A) \ln k \le l + \ln [(k-1)(\lambda \times \eta)(A) + 1].$$

If  $(\lambda \times \eta)(A) = 0$  we have

$$\pi_{13}\nu(A) \le \frac{l}{\ln k} \to 0$$
, when  $k \to +\infty$ .

Hence,  $\pi_{13}\nu \ll \lambda \times \eta$ . Consequently,  $\pi_{13}\nu T^{-1} \ll \lambda \times \eta$  since

$$\pi_{13}\nu T^{-1}(A\times B) = \pi_{13}\nu(T^{-1}(A)\times B)$$

and we conclude that

$$\frac{d\pi_{13}\nu}{d\lambda \times \eta}(x,y) = m_{13}(x,y) \Leftrightarrow \frac{d\pi_{13}\nu T^{-1}}{d\lambda \times \eta}(x,y) = m_{13}(T^{-1}(x),y).$$

Using this fact and that T is  $\lambda$ -preserving, (2.4) may be written as

(2.6) 
$$\int_{[0,1)} \int_{\mathbb{R}} \left[ \ln \int_{\mathbb{R}} \psi(x,z,u) \eta(du) \right] \pi_{13} \nu T^{-1}(d(x,z)) - \int_{S} \ln \psi(x,y,z) \nu(d(x,y,z)) \ge -l.$$

Finally, for having  $\nu \ll \lambda \times \eta \times \eta$  it suffices that  $\nu \ll \pi_{13}\nu T^{-1} \times \eta$ . To prove this last statement, choose  $\psi \in W^*$  as

$$\psi(x, y, z) = \begin{cases} k, & (x, y, z) \in A \\ 1, & (x, y, z) \in A^c, \end{cases}$$

where  $A \in \mathcal{B}(S)$ . Jensen's inequality and (2.6) imply that

$$\nu(A) \le \frac{l}{\ln k} + \frac{1}{\ln k} \ln \left\{ k \left[ \pi_{13} \nu T^{-1} \times \eta \right] (A) + \left[ \pi_{13} \nu T^{-1} \times \eta \right] (A^c) \right\}$$

from what we conclude, by taking  $k \to +\infty$ , that  $\nu \ll \pi_{13}\nu T^{-1} \times \eta$ .

It remains to show that (2.1) holds. By defining

$$u_n(x,y,z) = \left(\frac{m(x,y,z)}{m_{12}(x,y)} \vee \frac{1}{n}\right) \wedge n \equiv (a(x,y,z) \vee \frac{1}{n}) \wedge n, \quad n \geq 1$$

and following the same arguments as in the proof of Lemma 2.1 in Donsker and Varadhan (1975a), we get (2.1). In what follows we outline the main steps.

From the Dominated Convergence theorem,

(2.7) 
$$\lim_{n \to \infty} \int_{S} |u_n(x, y, z)m_{12}(x, y) - m(x, y, z)| (\lambda \times \eta \times \eta)(d(x, y, z)) = 0.$$

But  $I(\nu) = l < +\infty$  implies that (2.6) holds for all  $\psi \in \mathcal{W}$  and then from Lusin's theorem it also holds for  $\psi \in \mathcal{W}^*$ . Hence, for  $\psi = u_n$  and using Jensen's inequality, we get from (2.6),

(2.8) 
$$\int_{S} \ln u_n(x, y, z) \nu(d(x, y, z)) \le \ln \int_{S} u_n(x, y, z) m_{12}(x, y) \eta(dy) \eta(dz) dx + l;$$

for obtaining the above inequality we also used the fact that  $\pi_{13}\nu T^{-1} = \pi_{12}\nu$ . Since m(x,y,z) is a probability density with respect to  $\lambda \times \eta \times \eta$ , it follows from (2.7) and (2.8) that

(2.9) 
$$\overline{\lim}_{n\to\infty} \int_{S} \ln u_n(x, y, z) \nu(d(x, y, z)) \le l.$$

By the Monotone Convergence theorem

$$\int_{S} (\ln u_n)^- d\nu \, \mathop{\uparrow}_{n \to \infty} \int_{S} (\ln a)^- d\nu = \int_{S} a \, (\ln a)^- \, d(\pi_{12}\nu) \, d\eta < +\infty$$

and then (2.9) implies that

$$\overline{\lim_{n\to\infty}} \int_{S} (\ln u_n)^+ d\nu \le l + \int_{S} a (\ln a)^- d(\pi_{12}\nu) d\eta < +\infty.$$

Hence

$$\int\limits_{\mathcal{S}}|\ln a|d\nu<+\infty$$

which is (2.1). Moreover,

$$\int\limits_{S} m(x,y,z) \ln \frac{m(x,y,z)}{m_{12}(x,y)} (\lambda \times \eta \times \eta) (d(x,y,z)) \leq l = I(\nu).$$

From the whole proof we also conclude that, if  $I(\nu) < +\infty$  then

$$I(\nu) = \int_S m(x, y, z) \ln \frac{m(x, y, z)}{m_{12}(x, y)} (\lambda \times \eta \times \eta) (d(x, y, z))$$

so we have (2.2); besides, (1.17) and (2.2) are equal.

For proving the lower bound (1.15) in Theorem 1.1 we shall consider a new Markov process with transition function  $\Pi'$  absolutely continuous with respect to  $\Pi$ .

Let us introduce the set

$$\mathcal{M}_2 = \{ \nu \in \mathcal{M}_0 : \frac{d\nu}{d\lambda \times \eta \times \eta}(x,y,z) \equiv m(x,y,z) \text{ and }$$
 
$$\exists \, c,d \text{ such that } 0 < c \leq m(x,y,z) \leq d < +\infty, \, \forall (x,y,z) \in S \}.$$

Let  $\nu$  be in  $\mathcal{M}_2$  with density m(x,y,z). Define

(2.10) 
$$\Pi'((x,y,z),d(x_1,y_1,z_1)) = \frac{m(x_1,y_1,z_1)}{m_{12}(x_1,y_1)}\Pi((x,y,z),d(x_1,y_1,z_1)),$$

with  $\Pi$  as in (1.7).

**Lemma 2.3.** Under the above conditions,  $\nu$  is the only invariant measure for  $\Pi'$ .

**Proof:** Clearly  $I(\nu) < +\infty$  which implies, from Lemma 2.2, that  $\nu \in \mathcal{M}_0$ . It is not difficult to show that

$$\int_{S} \Pi'((x, y, z), A_1 \times A_2 \times A_3) \nu(d(x, y, z)) = \nu(A_1 \times A_2 \times A_3),$$

for any measurable rectangle  $A_1 \times A_2 \times A_3$ .

Lemma 2.4. Let G be an open subset of  $M_1(S)$ . Then

$$\inf_{\nu \in G} I(\nu) = \inf_{\nu \in G \cap \mathcal{M}_2} I(\nu).$$

**Proof:** This lemma can be proved as Lemma 2.9 in Donsker and Varadhan (1975a) so we omit it.

Lemmas (2.2)-(2.4) allow one to prove the lower bound (1.15) of Theorem 1.1 by using the same arguments as in Donsker and Varadhan (1975a). In what follows, we outline the main steps of the proof.

#### Proof of the Lower Bound

Let  $\nu \in \mathcal{M}_2$  and, for simplifying the notation,

$$W(x, y, z) \equiv \ln \frac{m(x, y, z)}{m_{12}(x, y)} = \ln a(x, y, z), \quad (x, y, z) \in S,$$

where m is the density of  $\nu$  with respect to  $\lambda \times \eta \times \eta$ . Then  $I(\nu) = \int_S W d\nu$ .

Let  $S(\nu;\varepsilon)$  be the sphere with center  $\nu$  of radius  $\varepsilon > 0$ , in the weak topology on  $\mathcal{M}_1(S)$ . Define  $E_{n,\nu,\varepsilon} = \{w : L_n(w,\cdot) \in S(\nu;\varepsilon)\}$ . One may show that

$$Q_{n,v}[S(\nu;\varepsilon)] = \int_{E_{n,v,\varepsilon}} \prod_{j=0}^{n-1} \frac{m_{12}(x_j, y_j)}{m(x_j, y_j, z_j)} dP'_{v},$$

where  $\mathbb{P}'_v$  is the probability measure in  $\Omega = S^N$  induced by the transition function  $\Pi'(v, du)$  defined in (2.10).

For each  $\varepsilon' > 0$ , define

$$F_{n,\nu,\varepsilon'} = \left\{ w : \left| \frac{W(V_0)(w) + \dots + W(V_{n-1})(w)}{n} - \int_S W \, d\nu \right| < \varepsilon' \right\}.$$

Then

$$Q_{n,v}[S(\nu;\varepsilon)] \ge \exp\{-n[I(\nu)+\varepsilon']\} IP'_v[E_{n,\nu,\varepsilon} \cap F_{n,\nu,\varepsilon'}].$$

By Lemma 2.3,  $\nu$  is the unique invariant measure for  $\Pi'$ . From the ergodic theorem (see Doob, 1953),

$$L_n(w,\cdot) \Rightarrow \nu$$
,  $IP'_v - \text{a.s.}, \forall v \in S$ ,

so that,  $\forall \varepsilon > 0$ ,  $\forall \varepsilon' > 0$ ,

$$\lim_{n \to +\infty} \mathbb{P}'_v[E_{n,\nu,\varepsilon}] = 1 \quad \text{and} \quad \lim_{n \to +\infty} \mathbb{P}'_v[F_{n,\nu,\varepsilon'}] = 1.$$

Hence,

$$\underline{\lim_{n \to +\infty}} \frac{1}{n} \ln Q_{n,\nu} [S(\nu; \varepsilon)] \ge -I(\nu), \quad \nu \in \mathcal{M}_2.$$

Now, let G be an open subset of  $\mathcal{M}_1(S)$  and take  $\nu \in G \cap \mathcal{M}_2$ . Since G is an open set, there exists  $\varepsilon > 0$  such that  $S(\nu; \varepsilon) \subset G$ . By using the last inequality and Lemma 2.4 we get (1.15).

#### 3. Level-2 Large Deviations: Upper Bound

Following the same ideas as in Donsker and Varadhan (1975a), one can prove the upper bound in (1.16) of Theorem 1.1 for compact sets. Since  $\mathcal{M}_1(S)$  is not a compact set, the inequality for closed sets does not follow as a consequence.

#### Proof of the Upper Bound

Let  $\psi \in \mathcal{W}$ ,  $u = \Pi \psi$ , and  $e^{-W} = \psi/u$ . Notice that  $W = \ln \Pi \psi - \ln \psi$  is bounded and continuous. From the Markov property it follows that

$$\mathbb{E}_{v} \left\{ \exp\{-[W(V_0) + \dots + W(V_{n-1})]\} u(V_{n-1}) \right\} = \psi(v), \quad \forall v \in S, \quad n \ge 1,$$

where  $V_n = (X_n, \xi_n, \xi_{n+1})$  as before. Then

$$\mathbb{E}_v \left\{ \exp\{-[W(V_0) + \dots + W(V_{n-1})]\} \le M, \right.$$

for some constant M > 0. This inequality may be written as

$$I\!\!E^{Q_{n,v}}\left\{\exp\left\{-n\int_S W\,d\mu\right\}\right\} \le M$$

where  $\mu \in \mathcal{M}_1(S)$  is the integration variable.

First, take  $F \subset M_1(S)$  as being any measurable set. From the above inequality we get

$$Q_{n,v}(F) \leq M \sup_{\mu \in F} \int_{S} \ln \left( \frac{\Pi \psi}{\psi} \right) \, d\mu, \ \, \forall \, \psi \in \mathcal{W},$$

and then

$$\overline{\lim_{n \to +\infty}} \frac{1}{n} \ln Q_{n,v}(F) \le \inf_{\psi \in \mathcal{W}} \sup_{\mu \in F} \int_{S} \ln \left( \frac{\Pi \psi}{\psi} \right) d\mu.$$

Secondly, for any  $F \subset \bigcup_{i=1}^k F_i$ , for  $F_i$  measurable sets,

$$\overline{\lim_{n \to +\infty}} \frac{1}{n} \ln Q_{n,v}(F) \le \inf_{\substack{F_1, \cdots, F_k \\ F \subset \bigcup_{i=1}^k F_i}} \sup_{1 \le i \le k} \inf_{\psi \in \mathcal{W}} \sup_{\mu \in F_i} \int_S \ln \left(\frac{\Pi \psi}{\psi}\right) \, d\mu.$$

Now, if F is a compact set it can be shown (see Donsker and Varadhan, 1975b) that the expression on the right hand side of the above inequality is equal to

$$\sup_{\mu \in F} \inf_{\psi \in \mathcal{W}} \int_{S} \ln \left( \frac{\Pi \psi}{\psi} \right) d\mu = -\inf_{\mu \in F} I(\mu).$$

Up to now, (1.16) holds for compact sets F. Therefore,  $\{Q_{n,v}(\cdot): n \geq 1\}$  satisfies a weak LDP with rate function  $I(\cdot)$  given in (1.17). But Lemma 3.1, to be proved below, tells us that this family of measures is exponentially tight, so (1.16) holds for closed sets F as well (see Lemma 1.2.18 in Dembo and Zeitouni, 1993).

Relying on Lemma 1.2.18 in Dembo and Zeitouni (1993), since the lower bound in (1.15) holds for all open sets and the family of measures  $\{Q_{n,v}(\cdot): n \geq 1\}$  is exponentially tight, then  $I(\cdot)$  in (2.2) is a good rate function, that is, the level sets  $\{\nu: I(\nu) \leq s\}$  are compact in the weak topology. Moreover, this property is carried out to the rate function  $I_Z(\cdot)$  for the process  $M_n$  in (1.2).

**Lemma 3.1.** The family of measures  $\{Q_{n,(x,y,z)}(\cdot): n \geq 1\}$  is exponentially tight.

**Proof:** We shall prove that  $\forall L \geq 1$ , there exists a compact set  $C_L \subset [0,1) \times \mathbb{R}^2$  such that

$$\overline{\lim_{n\to\infty}} \frac{1}{n} \ln Q_{n,(x,y,z)}(C_L^c) \le -L.$$

For each  $\psi \in W$  and t > 0 define the functional

$$\Psi_{t\psi}(\nu) = \exp\left[nt\int_{S} \psi d\nu\right], \quad \nu \in \mathcal{M}_1(S).$$

Then

$$\Psi_{t\psi}(L_n(w,\cdot)) = \exp\left[t\sum_{j=0}^{n-1} \psi(V_j(w))\right],\,$$

where  $(V_n)_{n\geq 0}$  is the random process in (1.6) and  $L_n(w,\cdot)$  is defined in (1.10). Besides,

$$(3.1) \quad \mathbb{E}^{Q_{n,(x,y,z)}} \Psi_{t\psi}(\cdot) = \int_{\mathcal{M}_1(S)} \exp \left[ nt \int_S \psi d\nu \right] Q_{n,(x,y,z)}(d\nu) = \mathbb{E}_{(x,y,z)} \exp \left[ t \sum_{j=0}^{n-1} \psi(V_j) \right],$$

where  $\mathbb{E}^{Q_{n,(x,y,z)}}$  is the expectation corresponding to the measure  $Q_{n,(x,y,z)}$ .

For each  $\delta > 0$ , define

$$A_{\delta} = \left\{ \nu \in \mathcal{M}_1(S) : \int_{S} \psi d\nu \ge \delta \right\}.$$

Using (3.1), we get

(3.2) 
$$Q_{n,(x,y,z)}(A_{\delta}) \le \exp\{-nt\delta\} \mathbb{E}_{(x,y,z)} \exp\left[t \sum_{j=0}^{n-1} \psi(V_j)\right].$$

Choose  $\{K_m\}$  as a sequence of compact subsets of  $I\!\!R$  for which  $\eta(K_m^c) \to 0$  as  $m \to +\infty$ . Define  $\tilde{K}_m = [0,1) \times K_m^2$ ,  $m \ge 1$ . Clearly  $\tilde{K}_m$  is a compact subset of S and

$$\begin{split} \tilde{K}_{m}^{c} &= [0,1) \times (K_{m}^{2})^{c} = [0,1) \times \{(K_{m}^{c})^{2} \cup (K_{m}^{c} \times K_{m}) \cup (K_{m} \times K_{m}^{c})\} \\ &\equiv [0,1) \times (B_{m}^{1} \cup B_{m}^{2} \cup B_{m}^{3}). \end{split}$$

Let us introduce the functions  $\psi_m = \mathcal{X}_{\tilde{K}_m^c}$ ,  $m \ge 1$ , and the sets

$$A^m_\delta = \left\{ \nu : \int\limits_S \psi_m d\nu \geq \delta \right\} = \{ \nu : \nu(\tilde{K}^c_m) \geq \delta \}.$$

Then, by using (3.2),

$$Q_{n,(x,y,z)}(A_{\delta}^{m}) \leq \sum_{i=1}^{3} Q_{n,(x,y,z)}(\{\nu : \nu([0,1) \times B_{m}^{i}) \geq \delta/3\}) \leq$$

$$\leq \exp\{-nt\delta/3\} \sum_{i=1}^{3} \mathbb{E} \exp\left\{t \sum_{j=0}^{n-1} \mathcal{X}_{B_{m}^{i}}(\xi_{j}, \xi_{j+1})\right\} \equiv \exp\{-nt\delta/3\} \sum_{i=1}^{3} I_{i},$$

where  $I\!\!E$  is the expectation corresponding to the independent and identically distributed random process  $\xi_n$ ,  $\xi_0 = y$  and  $\xi_1 = z$  with probability one.

One can see that

$$I_{1} = \int_{\mathbb{R}^{n-1}} \exp \left\{ t \sum_{j=0}^{n-1} \mathcal{X}_{B_{m}^{1}}(z_{j}, z_{j+1}) \right\} \eta(dz_{n}) \cdots \eta(dz_{2}),$$

where  $z_0 = y$  and  $z_1 = z$ . Since

$$\sum_{i=0}^{n-1} \mathcal{X}_{B_m^1}(z_j, z_{j+1}) \le \sum_{i=0}^{n-1} \mathcal{X}_{K_m^c}(z_{j+1})$$

we get, for any  $0 < \varepsilon < 1$  and for m large enough such that  $z \in K_m$ ,

$$I_1 \leq \left(\int_{\mathbb{R}} \exp\{t\mathcal{X}_{K_m^c}(v)\} \, \eta(dv)\right)^{n-1} \leq \left[e^t \eta(\{v: \mathcal{X}_{K_m^c}(v) \geq \varepsilon\}) + e^{t\varepsilon} \eta(\{v: \mathcal{X}_{K_m^c}(v) < \varepsilon\})\right]^{n-1}.$$

Now, for each t > 0 we choose m so large that

$$e^t \eta(\{v : \mathcal{X}_{K_m^c}(v) \ge \varepsilon\}) < 1.$$

This is possible because  $\mathcal{X}_{K_m^{\varepsilon}}(\cdot)$  converges to zero as m goes to infinity in  $\eta$ -measure. Besides,  $0 < \varepsilon < 1$  being arbitrary, we choose  $\varepsilon$  so small that  $e^{t\varepsilon} < 2$ . Hence, for m large enough and depending on t,  $I_1 \leq 3^n$ .

Similarly, there exists m sufficiently large and depending on t such that  $I_2 \leq 3^n$  and  $I_3 \leq 3^n$ . Therefore,  $\forall t > 0$ ,  $\exists m \equiv m_t > 0$  such that  $I_1 + I_2 + I_3 \leq 9^n$  which implies by (3.3) that

$$Q_{n,(x,y,z)}(A_{\delta}^{m_t}) \le \exp\{-nt\delta/3\}9^n.$$

Let  $L \geq 1$ . For  $l \geq L$ , take  $\delta = 1/l$  and  $t = 3 \, l \, (l + \ln 9 + 1)$ . Then, by writing  $m_t \equiv m_l$ 

$$(3.4) Q_{n,(x,y,z)}(A_{1/l}^{m_l}) \le e^{-n(1+l)}, \forall n \ge 1, \forall l \ge L.$$

Let

$$C_L = \bigcap_{l>L} \left\{ \nu : \nu(\tilde{K}_{m_l}) \ge 1 - \frac{1}{l} \right\} \subseteq \mathcal{M}_1(S).$$

This set is relatively compact. By Prohorov's theorem (see Appendix of Dembo and Zeitouni, 1993, page 319),  $C_L$  is compact in  $\mathcal{M}_1(S)$ . Since

$$C^c_L = \bigcup_{l \geq L} \{\nu: l \, \nu(\tilde{K}^c_{m_l}) > 1\}$$

we get, from (3.4),

$$Q_{n,(x,y,z)}(C_L^c) \le e^{-nL}, \quad \forall L \ge 1.$$

#### 4. Level-1 Large Deviations

The rate function that governs large deviations for the means

$$M_n = \frac{1}{n} \sum_{j=0}^{n-1} Z_j Z_{j+1}, \quad n = 1, 2, \cdots$$

introduced in (1.2) is obtained by using the level-2 large deviations for  $\{V_n\}_{n\geq 0}$  in (1.6).

Since  $Z_j = \Phi(X_j) + \xi_j$ , we have

$$Z_i Z_{i+1} = [\Phi(X_i) + \xi_i][\Phi(T(X_i)) + \xi_{i+1}].$$

If  $g: S \to IR$  is defined by

$$g(x, y, z) = [\Phi(x) + y][\Phi(T(x)) + z]$$

and taking into account (1.21) the ergodic theorem implies that

$$\lim_{n \to +\infty} M_n = \int_S g(v) (\lambda \times \eta \times \eta)(dv) =$$

$$= \int_{[0,1)} \Phi(x) \Phi(T(x)) dx + \int_{[0,1)} \int_{\mathbb{R}} \Phi(x) z \eta(dz) dx +$$

$$+ \int_{[0,1)} \int_{\mathbb{R}} \Phi(T(x)) y \eta(dy) dx + \int_{\mathbb{R}} \int_{\mathbb{R}} yz \eta(dy) \eta(dz),$$

$$IP_{\lambda \times \eta \times \eta} - \text{a.s. and } IP_{x,y,z} - \text{a.s.}, \quad \forall (x, y, z) \in S.$$

In particular, if  $\xi_n$  has zero mean, then

$$\lim_{n \to +\infty} M_n = \int_{[0,1)} \Phi(u) \Phi(T(u)) \, du, \quad I\!\!P_{(x,y,z)} - \text{ a.s., } \quad \forall (x,y,z) \in S.$$

In §2 and §3 of this paper we established a full LDP for the family of distributions  $Q_{n,(x,y,z)}(\cdot)$  of  $L_n(w,\cdot)$ . Taking into account (1.21) and using the Contraction Principle (see Ellis, 1985), the entropy function for  $\{M_n\}_{n\geq 1}$  is given by

$$(4.1) I_Z(r) = \inf_{\langle \nu, g \rangle = r} I(\nu) = \inf \left\{ I(\nu) : \nu \in \mathcal{M}_1(S), \int_S g(v) \nu(dv) = r \right\},$$

where  $I(\cdot)$  is the level-2 entropy function for the process  $\{V_n\}_{n\geq 0}$ . Clearly  $I_Z(r)=0$  if and only if  $r=\int_S g(v)\,(\lambda\times\eta\times\eta)(dv)$  because  $I(\nu)=0$  if and only if  $\nu=\lambda\times\eta\times\eta$ . If  $\xi_n$  has zero mean then  $I_Z(r)=0$  if and only if  $r=\int_{[0,1)}\Phi(u)\Phi(T(u))\,du$ .

#### 5. Some Remarks

Remark 5.1: Large deviations for the empirical pair measures

$$\frac{1}{n} \sum_{j=0}^{n-1} \delta_{(\xi_j, \xi_{j+1})}(\cdot)$$

may be studied similarly to what was done in §2 and §3. One can prove that its entropy function is given by

$$I^{(2)}(\nu) = \begin{cases} \iint_{\mathbb{R}^2} \ln \frac{m(x,y)}{m_1(x)} \nu(d(x,y)), & \text{if } \nu \in \mathcal{M} \\ +\infty, & \text{otherwise,} \end{cases}$$

where

$$\mathcal{M} = \{ \nu \in \mathcal{M}_1(\mathbb{R}^2) : \pi_1 \nu = \pi_2 \nu, \quad \nu \ll \eta \times \eta, \iint_{\mathbb{R}^2} \left| \ln \frac{m(x,y)}{m_1(x)} \right| \nu(d(x,y)) < +\infty \},$$

with  $m(x,y) \equiv \frac{d\nu}{d\eta \times \eta}(x,y)$  and  $m_1(x) \equiv \int_{\mathbb{R}} m(x,y) \, \eta(dy)$ .

**Remark 5.2:** Let  $Y_n = (X_n, \xi_n)$ ,  $n \ge 0$ , and consider the empirical measures

$$\frac{1}{n}\sum_{i=0}^{n-1}\delta_{Y_n}(\cdot).$$

Large deviations for the family of distributions of the above empirical measures is governed by the entropy function

$$I^{(2)}(\nu) = \begin{cases} \iint\limits_{[0,1)\times\mathbb{R}} \ln m(x,y) \, \nu(d(x,y)), & \text{if } \nu \in \mathcal{M} \\ +\infty, & \text{otherwise,} \end{cases}$$

where

$$\begin{split} \mathcal{M} = & \{ \nu \in \mathcal{M}_1([0,1) \times I\!\!R) : \, \pi_1 \nu = \lambda, \quad \nu \ll \lambda \times \eta, \\ & m(x,y) = \frac{d\nu}{d\lambda \times \eta}(x,y), \, \iint\limits_{[0,1) \times I\!\!R} |\ln m(x,y)| \nu(d(x,y)) < +\infty \}. \end{split}$$

This result may be obtained similarly to §2 and §3 of this paper.

Remark 5.3: One can generalize level-2 large deviations by considering the empirical pair measures corresponding to  $Y_n = (X_n, \xi_n)$ ,  $n \ge 0$ . Let

(5.1) 
$$L_n(w,\cdot) = \frac{1}{n} \sum_{j=0}^{n-1} \delta_{(Y_j(w),Y_{j+1}(w))}(\cdot) = \frac{1}{n} \sum_{j=0}^{n-1} \delta_{(X_j(w),X_{j+1}(w),\xi_j(w),\xi_{j+1}(w))}(\cdot).$$

Clearly, for each  $w \in S^N$ ,  $L_n(w, \cdot) \in \mathcal{M}_1(S)$ , where  $S = [0, 1)^2 \times \mathbb{R}^2$ .

The ergodic theorem implies that

$$L_n(w,\cdot) \Rightarrow \bar{\lambda} \times \eta \times \eta, \quad \mathbb{P}_{(x,y,z,t)} - \text{a.s.}, \quad \forall (x,y,z,t) \in S,$$

where  $\tilde{\lambda}$  is a measure on  $\mathcal{B}([0,1)^2)$  defined by

$$\bar{\lambda}(A_1 \times A_2) = \lambda(A_1 \cap T^{-1}(A_2)), \quad \forall A_1, A_2 \in \mathcal{B}([0, 1)).$$

For each  $\nu \in \mathcal{M}_1(S)$ , we define the measure  $\nu T^{-1} \in \mathcal{M}_1(S)$  by

$$\nu T^{-1}(A \times B \times C \times D) = \nu (T^{-1}(A) \times T^{-1}(B) \times C \times D),$$

for any measurable rectangle.

Let us define

$$\mathcal{M}_0 = \{ \nu \in \mathcal{M}_1(S) : \pi_{12}\nu = \bar{\lambda}, \quad \nu \ll \bar{\lambda} \times \eta \times \eta, \quad \pi_{123}\nu = \pi_{124}\nu T^{-1} \}.$$

If  $\nu \in \mathcal{M}_0$ , let m(x,y,z,t) be the density of  $\nu$  with respect to  $\bar{\lambda} \times \eta \times \eta$ ,  $m_{123}(x,y,z)$  be the marginal density of  $\pi_{123}\nu$  with respect to  $\bar{\lambda} \times \eta$  and  $m_{124}(x,y,t)$  be the marginal density of  $\pi_{124}\nu$  with respect to  $\bar{\lambda} \times \eta$ . The definition of  $\pi_{124}\nu T^{-1}$  tells us that

$$\frac{d\pi_{124}\nu T^{-1}}{d\bar{\lambda}\times\eta}(x,y,z)=m_{124}(T^{-1}(x),T^{-1}(y),z),\quad (x,y,z)\in[0,1)^2\times\mathbb{R}.$$

Moreover, from the condition  $\pi_{123}\nu = \pi_{124}\nu T^{-1}$ , we have

$$m_{123}(x, y, z) = m_{124}(T^{-1}(x), T^{-1}(y), z), \quad (x, y, z) \in [0, 1)^2 \times \mathbb{R}.$$

One can prove, as in §2 and §3 of this paper, that the level-2 large deviations for  $L_n(w,\cdot)$  in (5.1) is governed by the entropy function

$$I^{(2)}(\nu) = \begin{cases} \int \ln \frac{m}{m_{123}} d\nu, & \text{if } \nu \in \mathcal{M}_0 \text{ and } \int_S |\ln \frac{m}{m_{123}}| d\nu < +\infty \\ +\infty, & \text{otherwise.} \end{cases}$$

Remark 5.4: Returning to the process  $\{V_n\}_{n\geq 0}$  in (1.6), let us define

$$\Lambda(\psi) = \overline{\lim_{n \to +\infty}} \frac{1}{n} \ln \left( \sup_{v \in S} I\!\!E_v \exp \left\{ \sum_{j=0}^{n-1} \psi(V_j) \right\} \right),$$

where  $\mathbb{E}_v$  is the expectation corresponding to the measure  $\mathbb{P}_v$  on  $(S^N, \sigma(\mathcal{C}))$ , introduced in (1.8). Let  $B(S : \mathbb{R})$  be the set of bounded measurable real functions.

Let

$$\Lambda^*(\nu) = \sup \left\{ \int_S \psi \, d\nu - \Lambda(\psi) : \psi \in B(S : \mathbb{R}) \right\}.$$

By Lemma 4.1.36 in Deuschel and Stroock (1989),  $\Lambda^*(\nu) = I(\nu)$ ,  $\nu \in \mathcal{M}_1(S)$ , where  $I(\nu)$  is defined in (1.17).

Remark 5.5: The results for random means  $\{M_n\}_{n\geq 1}$  in (1.2) may be extended to

(5.2) 
$$M_n \equiv \frac{1}{n} \sum_{j=0}^{n-k} Z_j Z_{j+k}, \quad n \ge k, \quad k \ge 1.$$

When  $\{Z_n\}_{n\geq 0}$  has zero mean they are called the autocovariances of order k of the process  $Z_n$ .

The level-1 LDP for the random means (5.2) follows from the level-1 LDP for the corresponding autocovariances of order 1, in (1.2). To see this, let us consider first the case k = 2. One can verify that the process  $\{M_n\}_{n\geq 2}$  in (5.2) has the same distribution as the process

$$a_n^{(1)} M_n^{(1)} + a_n^{(2)} M_n^{(2)}, \quad n \ge 1,$$

where

$$M_n^{(1)} \equiv \frac{1}{n} \sum_{j=0}^{n-1} Y_j Y_{j+1}$$
 and  $M_n^{(2)} \equiv \frac{1}{n} \sum_{j=0}^{n-1} W_j W_{j+1}$ ,

 $\{Y_n\}_{n\geq 0}$  and  $\{W_n\}_{n\geq 0}$  are independent random sequences with the same distribution as the process  $\{Z_n\}_{n\geq 0}$  given by (1.2), with  $T^2$  instead of T, since  $T^2$  is a uniquely ergodic transformation, where T is given by (1.1). The sequences  $\{a_n^{(1)}\}_{n\geq 1}$  and  $\{a_n^{(2)}\}_{n\geq 1}$  are real sequences converging to  $\frac{1}{2}$  as n goes to infinity.

Since  $\{a_n^{(1)}\}_{n\geq 1}$  and  $\{a_n^{(2)}\}_{n\geq 1}$  are deterministic sequences their entropy function is

$$\tilde{I}(r) = \begin{cases} 0, & \text{if } r = \frac{1}{2} \\ +\infty, & \text{if } r \neq \frac{1}{2}. \end{cases}$$

The level-1 entropy functions for  $M_n^{(1)}$  and  $M_n^{(2)}$  are equal and coincide with  $I_Z(r)$  in (4.1).

Relying on the independence of the sequences  $a_n^{(1)}$ ,  $a_n^{(2)}$ ,  $M_n^{(1)}$ ,  $M_n^{(2)}$  and using the Contraction Principle (see Dembo and Zeitouni, 1993), we obtain the level-1 entropy function for  $a_n^{(1)} M_n^{(1)}$  (which is the same for  $a_n^{(2)} M_n^{(2)}$ ):

$$I^{(1)}(u) = \inf_{s \in \mathbb{R}} \left\{ \bar{I}(1/2) + I_Z(s) : \frac{s}{2} = u \right\} = I_Z(2u), \quad u \in \mathbb{R}.$$

Hence, the level-1 entropy function for  $a_n^{(1)} M_n^{(1)} + a_n^{(2)} M_n^{(2)}$  is given by

$$\begin{split} I_Z^{(2)}(t) &= \inf_{u,v \in \mathbb{R}} \{I^{(1)}(u) + I^{(1)}(v) : u + v = t\} = \\ &= \inf_{u,v \in \mathbb{R}} \{I_Z(2u) + I_Z(2v) : v = t - u\} = \\ &= \inf_{u \in \mathbb{R}} \{I_Z(2u) + I_Z(2(t - u))\}, \quad \text{for } t \in \mathbb{R}. \end{split}$$

Similarly, for each  $k \geq 1$ , the level-1 entropy function for  $\{M_n\}_{n \geq k}$  in (5.2) is

$$I_Z^{(k)}(t) = \inf_{u_1,\cdots,u_k} \left\{ \sum_{i=1}^k I_Z(ku_i) : \sum_{i=1}^k u_i = t \right\}, \quad \text{for } t \in I\!\!R.$$

#### References

- P. Billingsley, Probability and Measure (John Wiley, 3rd. edn., New York, 1995).
- Z. Coelho, A. Lopes and L.F.C. Rocha, Absolutely Continuous Invariant Measures for a Class of Affine Interval Exchange Maps, Proceedings of the American Mathematical Society 123 (1994) 3533-3542.
- A. Dembo and O. Zeitouni, Large Deviations Techniques (Jones and Bartlett, Boston, 1993).
- J-D. Deuschel and D.W. Stroock, Large Deviations (Academic Press, Boston, 1989).
- M.D. Donsker and S.R.S. Varadhan, Asymptotic Evaluation of Certain Markov Process Expectations for Large Time, I, Communications on Pure and Applied Mathematics 28 (1975a) 1-47.
- M.D. Donsker and S.R.S. Varadhan, Asymptotic Evaluation of Certain Wiener Integrals for Large Time, in: A.M. Arthurs, ed., Functional Integration and its Applications. Proc. of the International Conference (Clarendon Press, Oxford, 1975b) pp. 15-33.
- J.L. Doob, Stochastic Processes (John Wiley, New York, 1953).
- R. Durrett, Probability: Theory and Examples (Duxbury Press, 2nd. edn., Boston, 1996).
- R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, New York, 1985).
- A. Lopes and S. Lopes, Parametric Estimation and Spectral Analysis of Piecewise Linear Maps of the Interval, preprint (1995).
- A. Lopes and S. Lopes, Unique Ergodicity, Large Deviations and Parametric Estimation, submitted (1996).
- A. Lopes and L.F.C. Rocha, Invariant Measure for the Gauss Map Associated with Interval Exchange Maps, Indiana University Mathematics Journal 43 (1994) 1399-1438.
- W. Rudin, Real and Complex Analysis (McGraw Hill, 2nd. edn., New York, 1974).

## Publicações do Instituto de Matemática da UFRGS Cadernos de Matemática e Estatística

#### Série A: Trabalho de Pesquisa

- Marcos Sebastiani Artecona Transformation des Singularités -MAR/89
- 2. Jaime Bruck Ripol1 On a Theorem of R. Langevin about Curvature and Complex Singularities - MAR/89
- 3. Eduardo Cisneros, Miguel Ferrero e Maria Inés Gonzales Prime Ideals of Skew Polynomial Rings and Skew Laurent Polynomial Rings - ABR/89
- 4. Oclide José Dotto E-Dilations JUN/89
- 5. Jaime Bruck Ripoll A Characterization of Helicoids JUN/89
- 6. Mark Thompson e V. B. Moscatelli Asymptotic Distribution of Liusternik-Schnirelman Eigenvalues for Elliptic Nonlinear Operators - JUL/89
- 7. Mark Thompson The Formula of Weyl for Regions with a Self-Similar Fractal Boundary - JUL/89
- 8. Jaime Bruck Ripoll A Note on Compact Surfaces with Non Zero Constant Mean Curvature - OUT/89
- 9. Jaime Bruck Ripoll Compact €-Convex Hypersurfaces NOV/89
- 10. Jandyra Maria G. Fachel Coeficientes de Correlação Tipo-Contigência - JAN/90
- Jandyra Maria G. Fachel The Probality of Ocurrence of Heywood Cases - JAN/90

- 12. Jandyra Maria G. Fachel Heywood Cases in Unrestricted Factor Analysis JAN/90
- 13. Julio Cesar R. Claeyssen e Tereza Tsukazan de Ruiz -Dynamical Solutions of Linear Matrix Diferential Equations -JAN/90
- 14. Maria T. Albanese Behaviour of de Likelihood in Latent Analysis of Binary Data - ABR/91
- 15. Maria T. Albanese Measuremente of the Latent Trait Analysis of Binary Data - ABR/91
- 16. Maria T. Albanese Adequacy of the Asymptotic Variance-Covariance Matrix Using Bootstrap Jackknife Techniques in Latent Trait Analysis of Binary Data - ABR/91
- 17. Maria T. Albanese Latent Variable Models for Binary Response - ABR/91
- 18. Mark Thompson Kinematic Dynamo in Random Flows DEZ/90
- 19. Jaime Bruck Ripoll e Marcos Sebastiani Artecona- The Generalized Map and Applications AGO/91
- 20. Jaime Bruck Ripoll, Suzana Fornari e Katia Frensel -Hypersurfaces with Constant Mean Curvature in the Complex Hyperbolic Space - AGO/91
- 21. Suzana Fornari e Jaime Bruck Ripoll Stability of Compact Hypersurfaces with Constant Mean Curvature - JAN/92
- 22. Marcos Sebastiani Artecona Une Généralisation de L'Invariant de Malgrange - FEV/92
- 23. Cornelis Kraaikamp e Artur Lopes The Theta Group and the Continued Fraction with Even Partial Quotients - MAR/92

- 24. Silvia Lopes Amplitude Estimation in Multiple Frequency
  Spectrum MAR/92
- 25. Silvia Lopes e Benjamin Kedem Sinusoidal Frequency Modulated Spectrum Analysis - MAR/92
- 26. Silvia Lopes e Benjamin Kedem Iteration of Mappings and Fixed Spectrum Analysis - MAR/92
- 27. Miguel Ferrero, Eduardo Cisneros e Maria Ines Gonzales Ore Extensions and Jacobson Rings - MAI/92
- 28. Sara C. Carmona An Asymptotic Problem for a Reaction-Diffusion Component JUL/92
- 29. Luiz Fernando Carvalho da Rocha Unique Ergodicity of Interval Exchange Maps JUL/92
- 30. Sara C. Carmona Wave Front Propagation for a Cauchy Problem With a Fast Component - OUT/92
- 31. Marcos Sebastiani Artecona e Iván Pan Pérez Intersections Transverses dans l'Espace Projectif - OUT/92
- 32. Miguel Ferrero Closed Bimodules over Prime Rings: Closed Submodules and Applications to Rings Extensions DEZ/92
- 33. Dinara W. X. Fernandez Método da Máxima Verossimilhança Restrita para Estimação de Componentes de Variância — SET/93
- 34. Martin Knott e M. Teresa Albanese Polymiss: A Computer Program for Fitting a One- or Two-Factor Logit-Probit Latent Variable Model to Polynomous Data when Observations may be Missing - OUT/93
- 35. Peter Struss e Waldir L. Roque Foundations and Applications of Qualitative Reasoning and Model-Based-Diagnosis - OUT/93

- 36. Edmund R. Puczylowski On Koethe's Problem OUT/93
- 37. Luis G. Mendes e Marcos A. A. Sebastiani Artecona Sur la Densité des Systèmes de Pfaff sans Solution Algébrique - JAN/94
- 38. Artur O. Lopes e Luiz F. C. da Rocha Invariant Measures for Gauss Maps Associated with Interval Exchange Maps -MAR/94
- 39. Artur O. Lopes e Roberto Markarian Open Billiards:
  Cantor Sets, Invariant and Conditionally Invariant
  Probabilities AGO/94
- 40. Pierre Collet, Antonio Galves e Artur O. Lopes Maximum Likelihood and Minimum Entropy Identification of Grammars -AGO/94
- 41. Ondina F. Leal e Jandyra M. G. Fachel Antropologia do Corpo e Pesquisa sobre Sexualidade: Dados Qualitativos e Tratamento Estatístico, uma Proposta Metodológica DEZ/94
- 42. Artur O. Lopes e Sílvia R. C. Lopes Parametric Estimation and Spectral Analysis of Chaotic Time Series NOV/95
- 43. Artur O. Lopes, Rafael R. Souza e Sílvia R. C. Lopes On the Spectral Density of a Class of Chaotic Time Series DEZ/95
- 44. Marcelo Bergmann e Sílvia R. C. Lopes Instantaneous Frequency Detection by the Contraction Mapping Method FEV/96
- 45. Artur O. Lopes, Rafael R. Souza e Silvia R. C. Lopes -Spectral Analysis of Chaotic Transformations - MAR/96
- 46. Artur O. Lopes, Rafael R. Souza e Silvia R. C. Lopes Spectral analysis of Expanding One-dimensional Chaotic
  Transformation ABR/96

47. Sara Ianda C. Carmona, Carlos Landim, Artur O. Lopes, Silvia R. C. Lopes - A Level-1 Large Deviation Principle for the Autocovariances of Uniquely Ergodic Transformations with Additive Noise - FEV/97

# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA NÚCLEO DE ATIVIDADES EXTRACURRICULARES

Os Cadernos de Matemática e Estatística publicam as seguintes séries:

Série A: Trabalho de Pesquisa

Série B: Trabalho de Apoio Didático

Série C: Colóquio de Matemática SBM/UFRGS

Série D: Trabalho de Graduação

Série F: Trabalho de Divulgação

Série G: Textos para Discussão

Toda correspondência com solicitação de números publicados e demais informações deverá ser enviada para:

NAEC - NÚCLEO DE ATIVIDADES EXTRACURRICULARES INSTITUTO DE MATEMÁTICA - UFRGS AV. BENTO GONÇALVES, 9500 - PRÉDIO 43111 CEP 91509 - 900 AGRONOMIA - POA/RS

> FONE: 316 6197 FAX: 339 15 12