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ABSTRACT 

We present an estimation procedure anel analyze spectral properties of chaotic stochas
tic processes as 

where T is a deterministic map, </> is a given function anel f.t is the noise process. 
The examples considered in this pa.per generalize the cla.ssica.l harmonic model 

Zt = Acos(wo t + 1/J) + f.t, for tE Z. 

We also consieler large deviation properties of the estimateel parameters. 

1. I NTRODUCTION 

Consider the stationary process 

Zt = Acos(wo t + 1/J) + f.t, for tE Z, (1.1) 

where A > O anel w0 E ( -1r, 1r] are constants, {Çt}tez is a Gaussian white noise with 
mean zero anel variance O' i anel 1/J is a uniformly clistributecl random va.riable in ( - 1r, 1r J 
inclepenelent of the noise process. 

The process in (1.1) is the classica.l harmonic moclel (see Bloomfielcl (1976)) for time 
series a.nalysis . Several clifferent procedures to estimate the frequency w0 are known. The 
spectral clistribution function of the model (1.1) is 
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1 1 
dFz(À) = -

2
(8w0 + 8-w0 ) + - , for À E [- 7r,7r]. 

27r 

Consider the map T: (-7r,7r)-+ (-1r,1r) given by T(x) = w0 + x (mocl 21r) anel its 
iterates 

Tt =To To··· o T 

t times 

which satisfy Tt(x) = w0 t + x (mocl 27r). vVe remincl the reaeler that for any given number 
c, the value c (mocl 27r) is the value d where c= 27l'n + d, O:::; d < 27r anel n E Z. 

The process (1.1) can be rewritten as 

(1.2) 

where 1p is a uniformly elistributecl ranclom variable in ( -7!', 7r]. 
Our purpose is to analyze stochastic processes of the type (1.2) where the transfor

mation T is a general bijecti v e map from a set J( c R (o r, more generally, J( c R n) to 
itself. 

In a more general setting, given any function 4> : J( -+ R, consicler the stochastic 
process 

(1.3) 

where x has a clistribution P absolutely continuous with respect to the Lebesgue measure. 
Formal definitions will be given in the next section. 

The map T will define a dyna.mical system with chaotic behavior in the examples 
considereel here. V\Te will use techniques from Ergoelic Theory (see Cornfelel et al. (1982) 
anel Walters (1981)) anel Large Deviations (see Dembo anel Zeitouni (1993)) anel Ellis 
(1989)) in orcler to a.nalyze the process (1.3). Vve call the moelels such as (1.3) of chaotic 
stochastic processes. A f ter the general defini tions anel properties o f such processes in 
Sections 2 anel 3, we present Example 1 anel Example 2, respectively, in Sections 4 anel 5. 

The stochastic process (1.1) is a particular case of Example 1 that will be analyzed 
in Section 4. 

\life are able to present an estimation procedure to find the parameters ( they play the 
role of the frequency w0 in model (1.1)) a.nd also to exhibit explicitly the spectral clensity 
function of Example 2 anel all the Fourier coefficients of the spectral distribution function 
of Example 1. A remarkable fact in Example 1 is the appearance of a strong peak of the 
spectral distribution function in the value corresponding to the rotation number of the 
map T. The rotation number of a bijective map T is an important invariant previously 
analyzed in Dynamical System (see Devaney (1989)) anel it seems to play also an important 
role in the spectral analysis properties of certain chaotic time series. 

It is well known in the theory of time series analysis that different moclels require 
different estimation proceelures. \life do not know a general procedure that works for all 
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models of the type (1.3). We propose to use here the sample autocovariance functions at 
low order to estimate the parameters, but each particular model will require a different 
approach to estimate the involved parameters. 

vVe also carry out a complete analysis of the deviations of the mean estimated values 
in the case with no noise. In fact, Example 1 and Example 2 (in the case where (Je = O) 
satisfy a Large Deviation principie as will be shown in the sequei. 

The large deviation principie for the case (J~ =/= O will be presented in a forthcoming 
paper. 

The large deviations properties of the model ( see Sections 4 and 5) will assure that 
the estimation procedure is, in some sense, robust. 

We believ:e that the general t echniques presented in Sections 2 and 3 can also be ap
plied to a wide range of different examples of the type (1.3). 

Rem ark : In the literature, different definitions of chaotic systems may be found. Accord
ing to Devaney (1989), for instance, the transformation T(x) = w0 +xis not chaotic since 
it does not satisfy the sensitive dependency on the initial condition property. However, the 
temporal evolution Tt(x) of such map, for any x E (-7r,1r], is very erratic and, for abuse 
of the notation, we also ca.ll such systems by chaotic. 

As usual, we call {</>(Tt(x))}tEZ the signal process and {ÇdtEZ the noise process. T he 
value (J~ determines the strength of the noise. For a given fixed signal </>(Tt(x)), as larger 
the value (J~ is, stronger is the noise with respect to the signal. The signal to noise ratio 
is defined by 

SNR = 20lo ( std. sig~al). 
glO std. n01se (1.4) 

Negative values of the signal to noise ratio mean a stronger noise component than the 
signal. In the same way as it happens for other kind of time series models, in the present 
situation, if the noise is much stronger than the signal, that is, if the signal to noise ratio 
is strongly negative, the estimation procedure works badly. 

We present in the end of Sections 4 and 5, a table showing simulations that confirm 
the good performance of the method for estimation purposes when the signal to noise ratio 
has reasonable values. 

We would like to point out a basic clifference between model (1.3) considered here and 
the previous work of Tong (1990) and others. In Tong (1990), the model is 

(1.5) 

w here </> and X t are deterministic and Ç 1 is the no i se. In this case, for </>( x) = x, for 
instance, t he infiuence of the noise propagates when time goes on in the following way 

T (T(x) + 6) + 6· (1.6) 

In the present situation, the noise propagation is like 
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T(T(x)) + 6- (1.7) 

The situations in (1.6) anel (1.7) are quite different anel we are not sure that the results 
presenteei here can be applied to processes as in (1.5). When there is no noise, that is , 
when u~ = O, then the e>..'J)ressions (1.6) and (1.7) define, of course, the same process. In 
this case, the model analyzed here can also be considered a model satisfying the hypothesis 
of Tong (1990). 

We refer the reader to Takens (1994), Kostelich and Yorke (1990), Ding et al. (1993) 
and Tong ( 19~0 ) for general properties of time series with chaotic behavior. 

2. STATIONARY STOCHASTIC PROCESSES 

The general setting of chaotic time series we want to a.nalyze is the following. Consider 
J( a compact subset of R n with a given Borel u-algebra F, an inver tible continuous 
transformation T: ]( ~ K , an invariant probability P on J( (that is, P (T - 1 (A)) = P(A), 
for any set A E F) and tjJ : J( ~ R a continuous function. We will analyze the stationary 
stochastic process { Zt} tEZ given by 

Zt = Xt + f.t = (t/J o T)(Xt-I) + f.t, fortE Z. (2.1) 

T he natural measure on J(Z is the product measure on J( Z and it is invariant for the 
stationary process {XdtEZ or {Zt}tEZ· The process {et}tEZ is considered to be a Gáussian 
white noise process (see Brockwell and Davis (1987)) independent of { ( rf>oT)(Xt) }tEZ, with 
zero mean and variance ur One observes that in the model (2.1) the random variables Zt 
anel zt+l are generally not inclependent. 

We shall denote the above system by (I(, T, P, t/J, F , uV. Following the terminology 
in Tong (1990) we may call the system (2.1), when ui =O, the skeleton of the system. 

For the following definitions we shall not consider the noise process {f.dtEZ in the 
model (2.1) and we shall denote the system by (K, T, P). We say that two systems 
(K1 , T1 , PI) and (I(z, Tz, Pz) (where, for the moment, we do not consider any continuous 
function tjJ) are eqtLivalent in the Ergodic Theory sense if there exists a map v : K 1 ~ K 2 

invertible (that is, there exists u : K 2 ~ K1 such that vou= id, P 1-almost everywhere 
anel u o v = id, Pz-almost everywhere) such that 

(i) v*(Pz) = P 1 , where v*(P2 )(A) = Pz(v- 1(A)), for any setA E F. 

(i i) Tz o v = v o T1, P1 - almost everywhere . 
(2.2) 

One observes that v plays the role of a change of variables. v\Then v satisfies property 
(2.2) we say that v is a conj?Lgacy between the systems (/(1, Tt, Pt) and (K2, T2, P2 ). 
We refer the reader to Walters (1981) for precise definitions anel general results about 
equivalence in Ergodic Theory. It is a simple consequence of (ii) in (2.2) that 

Ti o v = v o T{, for any tE Z. 
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Given a certain measurable function <P : J( -+ R the autocovariance function at lag h 
(see Brockwell and Davis (1987)) of the process {Xt}tEZ as in (2.1) is given by 

The autocovariance function Rxx(h) in (2.3) measures the covariance between two values 
of the process {Xt}tEZ separated by lag h. The autocorrelation function at lag h of the 
process {Xt}tEZ (see Brockwell and Davis (1987)) is given by 

P (h)= Rxx(h) for h E N, 
x Rxx(O)' 

(2.4) 

where Rxx(O) = E[(Xt- E(Xt))Z] = Var(Xt) is the variance of the process. 

Proposition 2.1: lf (K1, T1, Pt) and (K2, T2, P2) are equivalent as in (2.2} then) for any 
<P) the autocovariance functions at lag h of the processes Xt = <P o v o Tl and yt = <P o Ti 
are the same) that is) 

Rx x(h) = Rvv(h), for any h E Z . 

Proof: In fact, given a continuous function <P: K2 -+ R and for any h E Z then 

Rvv(h) = f <P(x)<P(T4t(x))dP2(x)- [; <P(x)dP2(x)]2 = 

=f <fJ(v(y))<fJ(T;(v(y)))dPI (Y)- [j (<fJov)(y)dP1(y)] 2 = 

= f <P( v(y))<P( v(T1h (y )))dP1 (y) - [f ( <P o v )(y )dP1 (y )] 2 = 

= j (<P o v)(y)(<P o v)(T1h(y))dPI(Y)- [j(<P o v)(y)dP1(y)] 2 = 

= Rxx(h). 

The second above equality follows from the fact that v*(P2 ) = P 1 is equivalent to 

for any continuous function cp . 
From the Herglotz's theorem (see Brockwell and Da.vis (1987)) a function px(h) is 

non-negative definite if and only if 

px(h) = 1: ei>..hdFx(>.), for any h E Z, (2.5) 
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where Fx(·) is a right-continuous, non-decreasing, bounded function on [-1r, 1r] with 
Fx ( -1r) = O. The function Fx ( ·) is called the spectral dístribution ftmction of { Xt}tEZ 
and if 

Fx(>.) = 1: fx(w )dw, for - 1r:::; À:::; 1r, (2.6) 

then fx(·) is called the .spectral density fnnction of the process {Xt}tEZ· When 

00 

L iPx(h) i < oo, 
h=-oo 

then px(h) = J::'lr eih>. fx(>.) d>., for h E Z, where fx(·) is given by 

(2.7) 

Remark: From Proposition 2.1 we conclude that the spectral distribution functions 
(see (2.5)) of both stochastic processes, Xt = (4>ov)(Tl) and yt = 4>(Ti), are t he 
same. In conclusion, if we are able to analyze the spectrum properties of the system 
(K1 , T1 , P1 , 4>) then we are also able to analyze the spectrum properties of any equivalent 
system (K2, T2, P2,4> o v). 

Example: When the compact subset f( is equal to [-1r, 1r], the transformation Tis given 
by T(x) = w 0 + x (mod 21r), with w 0 E (0, 1r), and 4>(x) = cos(x) (this is the model (1.1)), 
the spectral distribution function of the process {Xt}tEZ = {( 4> o T )(Xt-dhEz as in (2.1) 
is not a function but a generalized spectral di.stribntion /Imction exists and it is given by 

(2.8) 

where Ów0 is the Dirac delta function concentrated at wo. 

Remark: Expanding maps (see Lopes (1994) for the definition) always have an exponen
tial decay of autocorrelations, for any 4> Holder continuous function ( see P arry and Pollicott 
(1990)). Therefore, in this case, the spectral density function always exists and the spec
trum is of continuous type. The function T of Example 2 in Section 5 is an expanding 
map. 
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3. THE ESTIMATION OF THE PARAMETERS 

We shall consider </> as a fixed known continuous function, P is also fixed and T is 
a unknown transformation indexed by the parameters ( a 1, a 2, · · · , ll'k ). One of our main 
purposes in this paper isto estimate the map T, or equivalently, to estimate the parameters 
( a 1 , 11'2, · · · , ll'k) from a time series { Zt} ~1 of size N derived from the stationary stochastic 
process {Zt}tez given by (2.1). vVe also would like to estimate the noise parameter a-r 

In the exam ple gi ven before w here T( x) = wo + x ( mod 21r) anel </>( x) = cos( x), one 
wants to estimate the frequency w0 . 

3.1. Birkhoff's Ergodic Theorem 

In the sequei we assume that the system (J(, T, P) is ergodic (that is, if r-1 (A) = A 
then P(A) =O or P(A) = 1, for any A E :F). The Birkhoff's ergodic theorem claims that 
if P is ergodic and if </> : J( --+ R is P- integrable then for any y P-almost everywhere 

1 N . f 
lim N L </>(Tl(y)) = </>(x)dP(x). 

N->oo 
j=l 

(3.1) 

In simple words, the Birkhoff's ergodic theorem says that spatial mean is equal to temporal 
mean. 

Our main tool to estima te the parameters ( a 1, a2, · · · , ll'k) is the ergo di c theorem. 
Each particular system ( K, T, P, </>,:F, o-i) will require a particular method for esti

mating the parameters (a1,a2,· ·· ,ak)· It is natural to try to estimate these parameters 
from the sample autocovariance function at lag h based on the time series { Zt}~1 , for 
small values of h. There exist two reasons for possibly small cleviations of the estimates 
(&1,&2, ... ,&k) from the parameters (a1,a2, ... ,ak)· 

(1) There exists a noise process {Çt}tEZ in our system. This generates a smalluncertainty 
in the estimation. 

(2) The estimation is basecl on a finite amount of observations. The value 

1 N . f rv L </>(T1(y)) is not equal to </>(x)dP(x) 
1 . 

)=1 

but it is very close for sufficiently large JV. This also generates a small perturbation on 
the estimated values (&1 ,&2,··· ,&k) (sec Section 3.2). 

In Lopes (1993) anel Lopes anel Kedem (1994) the estimation of a certain well known 
exa.mple of system ( K, T, P, </>,:F, o-i) is presenteei. In these works, the compact subset is 
given by I<= [0,1], the transformation Tis such that T(x) = Tw0 (x) = wo +x, </>(x) = 
cos(27rx ), where w 0 E (0, 1) is the parameter to be estimated. T he spectral distribution 
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function of such system is very well known. It is a Dirac delta function on wo (see (2.8)). 
Furthermore, in these works the case with p (p 2:: 1) frequencies is analyzed. 

Our purpose in this paper is to develop methods to analyze other kind of time series 
(see Examples 1 and 2) in terms of estimation and spectral analysis. 

3.2. Large Deviations 

The deviations from ( &1, &2, · · · , &k) to ( a 1, a2, · · · , ak) in the case where cri = O, 
that is, when the model (2.1) has only the signal process, is the content of the Theory of 
Large Deviations as presented in the book by Ellis (1989). The most important property 
for the large deviation estimates to be robust is the exponential convergence property 
(see Definition 3.1 below). This property means that the deviation rate is exponentially 
decreasing. This is true for Example 2 treated in Section 5 since, in that case, the map T 
is expanding (see Lopes (1994) for the definition anel general properties). The Example 1, 
presented in Section 4, does not fit in the context of Lopes (1994) since the map Tis not 
an expanding one. It is also true that Example 1 has exponentially decreasing deviation 
rate anel this will be proved in Section 4.2. The case cr~ =I= O requires a clifferent analysis 

anel it will be the subject of a forthcoming paper. In this section we consider crl = O. 
We shall consicler now a general dynamical system ( K, T, P) anel a continuous function 

f : ]( ---+ R. We assume that P is an ergodic probability measure. 
In general, it may exist points y such that the equality (3.1) does not hold. Given 

€ > O, consider the set 

Qn(€) = {y E K; ln-1 t f(Ti(y)) - j f(x)dP(x)l > €}. 
j=l 

From the expression (3.1) it follows that, for any € > O, 

lim P(Qn(€)) =O. 
·n-(X) 

(3.2) 

If the convergence in (3.2) is very slow, even for large n, we have a certain reasonable large 
chance of choosing a bad y such that the mean 

is distant from J f(x)dP(x) by more than €. This would be a very bad situation for the 
estimation purposes presented in Section 4.1. 

Defl.nition 3.1: The system (K, T, P, f) has the exponential convergence property if for 
any € > O, exists M > O such that, for a.ny n > O, 
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This property provides a fast decreasing of the probability of choosing a bad y . 
For the estimation procedure in Section 4.1 to work properly one should prove that, 

for any f, the system (K, T, P, f) satisfies Definition 3.1, where T = Tcr,{3 (see definition in 
expression ( 4. 7) ). First, we shall prove that this property is true when the transformation 
Tis given by T(x) = wo +x and then we shall derive, by contraction principie (see Theorem 
3.2), the exponential convergence property for (K, Ta,p, P, f). This will be the subject of 
Section 4.2. 

Remark: When one needs to estimate 

N-1 

E(ZtZt+I) = j ~(x)~(T(x))dP(x) = J~oo ~ L ZtZt+l 
1=1 

one should consider large deviations properties for the function f( x) = ~( x )~(T( x)) (in 
the notation of this section). 

Definition 3.2: For each n E N and tE R, consider the function 

and the limit 

c(t) = lim 2.log cn(t). 
n-oon 

When such limit exists, for all t, we call c(t) the free energy of f. 
Note that, in Definition 3.2, c(O) = O. 

Definition 3.3: Given the free energy c(t), t E R, of f we define I(z), the Legendre 
transform of c(t), by 

I(z) = sup{t z- c(t)}. 
tER 

We call I( z) the deviation /tmction o f f. 

Remark: When c(t) is differentiable and convex, the deviation function of f is 

I(z) =to z- c(to), where c'(t0 ) = z. 

Example: If c(t) is linear with inclination a, then I(z) = oo, for z =/=a and I(a) =O. 

T heorem 3.1: If c(t), the free energy of f, is dífferentíable on t, then 
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lim ~logP(Qn(E)) =- inf I(z). 
n---+00 n iz-f f(x)d'P(x)i>E 

According to Theorem 3.1, one concludes that if I(z) is such that I(z) = O {::::=} z = 
f f( x )dP( x ), otherwise is greater than zero, then the system (I<, T, P, f) has the exponen
tial convergence property. In particular, any system wi th a linear free energy (as presenteei 
in the above example) has the exponential convergence property. Systems which have a 
linear free energy present the best possible convergence rate. 

We shall prove in Section 4.2 that for the transformation T given by T( x) = w0 + x 
and for any continuous function f, the free energy is linear. 

Given a continuous function f, the deviation function I1 of f can be obtained in the 
following way (see Ellis (1989)) 

n 

I1(z) = -lim lim ~ logP{x E K; ~~(f o Ti)(x) E [z- E, z +E]}. (3.4) 
E---+0 n---+00 n n L......t 

j=l 

Now we shall explain the contraction principie for two equivalent systems. Given 
(K1, T1, P1) and (K2, T2, P2), suppose that v is a change of coordinates between two sys
tems in the sense of (2.2). Given a function f : 1<2 ---+ R one considers its deviation 
function I f associated to Tz. Consider the ranclom variable f o v defined on J{ 1 . We shall 
obtain similar properties for the deviation function I f o v (r) associated to T1 • 

Theorem 3.2 (Contraction Principie for Equivalent Systems): Let f : K 2 ---+ R 
be a function anel lei v be a conjugacy between the systems (I< 1 , T1 , P 1 ) anel ( J( 2 , T2 , P2 ). 

Then Itov = It· 

Proof: Given z E R, n E N and € > O, then 

1 n . 

P1 {x E K1; -LU o v)(Tf(x)) E [z- E,z + €]} = 
n. 

J=l 

1 n 

= P1 {x E K1; -LU o TJ)(v(x)) E [z - E,z +E]}= 
n . 

J=l 

where A= {x E K1; n-1 ~J=l (f o TJ)(v(x)) E [z- E,z + €]}. Since 

then, one has 
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1 n . 
P1{ x E K1; - L)fov)T{(x) E [z - é,z+é]} = 

n . 
J=l 

n 

= P2(v(A)) = P2{x E K2; .!_ L Cf o T1)(x) E [z- é, z +é}}. 
n. 

J=l 

The result follows from expression (3.4) after taking n-1 log anel limits on n anel é in the 
above equalities. 

Now we shall state the contraction principie (see Orey (1986) anel Varadhan (1988)) 
in a more genéral form. 

Suppose g is a deterministic function g : R-+ R. Suppose also that c is the solution 
of the equation g(c) = b, where bis obtainecl as 

b = f(y)dP(y) = lim - "'U o T 1 )(x), f 
1 n . 

n-oo n ~ 
j=l 

for P -alm?st every point x E K. Small deviations of the mean n-1 "I:,'j=1(f o Ti)(x) = bn 
will produce small deviations in the implicit value ên obtained by solving the equation 
g(ên)- bn = O. 

Denote by I the deviation function for j, that is, the deviation function associated to 
b. We may ask for properties of the deviation function i associated to c, that is, 

-lim lim ~ logP{ên E [z- é,z +é]} = i(z). 
E-+0 n-oo n 

Assuming that the function g is bijective, the contraction principie (see Orey (1986) and 
Varadhan (1988)) claims that 

l(z ) = I(r). 

where g(z) =r. 
Let us consider now the generalization of the above considerations to a system of 

equations. When one considers a system 9I(a,f3) = k1 = f fi(x)dP(x) and 92(a,f3) = 
k2 = f h(x )dP(x ), where 91,92 : R 2 -+ R , the analogous property is true (see Orey 
(1986)). Therefore, the exponential convergence property of Ift and I 12 implies that â 
and fi have corresponding deviation functions la and 1{3 with the exponential convergence 
property, that is, given é > O, there exists M > O such that, for all n > O, 

n 

P{xEK; 1&-al>é, IP-/31>€, where 9t(&,,â)=~ Lh(Ti(x))=k1 
n . 

] =l 

anel 92(&,/3) = ~ th(Ti(x)) = k2} ~ e-Mn. 
n . 

] = l 
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In conclusion, if lt1 and Ih have the exponential convergence property a.nd & and /3 can 

be obtained by solving the equations 91 ( & , /3) = k1 anel 92 ( & , /3) = k2, then one can use 
the contraction principie to conclucle that & anel /3 satisfy the exponential convergence 
property. 

4. EXAMPLE 1 

Consieler the two parameters mapping family {Ta,b : [0, 1] ~ [O, 1]; a, b E R} where 
Ta,b is given by 

{ 

1-a 
a+-b-x, 

Ta,b( x) = a . 
--b(x - b), 
1-

if 0 $X< b 
( 4.1) 

if b $ X $ 1, 

with a anel b constants. Let a be the derivative of T on [O, b) and {3 its derivative on [b, 1 ]. 
Then, 

1-a 
a= T'(x) = -b-' if O ~ x < b and /3 = T'(x) = _a_, if b ~ x ~ 1. 

1-b 
(4.2) 

The ergodic properties of the family {Ta,b : [0, 1] ~ [0, 1]; a, b E R } are analyzed in 
Coelho et al. (1994). 

In Example 1 we want to analyze the estimation of the parameters a and b anel the 
spectral analysis of the process {Xt}tez defined in ( 4.3) below. 

Notice that when b = 1-a, the transformation Ta,b ofExample 1 is T(x) = a+x (mod 
1), which corresponds to the model (1.1) ana.lyzed by Lopes and Kedem (1994). Therefore, 
the presented analysis of Example 1 is a generalization of that work when p = 1, that is, 
the case with only one frequency. 

First we examine the system with no noise. The case with noise can be analyzed in a 
simple way afterwarels . 

4.1. Estimation 

By using the notation introcluced in Section 2, for a given transformation Ta,b anel 
<P( x) = x one considers the signal process { Xt} tEZ given by 

Xt = Ta,b(Xt-• ), for t E Z. (4.3) 

To estimate the unknown constants a anel b is the same as to estimate a anel {3, since 
one has the following iclentities 

1-a 
a=--

b 
anel /3 = _ a_ Ç=::} a= {3(a- 1) 

1 - b a - {3 

12 

and 
1-{3 

b= --{3. 
a-

( 4.4) 



Therefore, for the sake of simplicity in our analysis we shall estimate the parameters a 
and {J. 

The invariant measure Pa,/3 = P (see Coelho et al. (1994)) for the process {Xt}tEZ, 
in terms o f a and {J, is given by the densi ty 

where 

1 1 
Cf'a,f3(x) = cp(x) =- -~13;;----c x + c;(1- x) 

1 1 
~ (a - {J)x + (3' 

c = -
1 

log ({J) = -
1 

log ({3) . 
{J-a a ft _ 1 a 

O' 

(4.5) 

( 4.6) 

For a setA C [0, 1) x [O, 1), with Lebesgue measure equal to 1, for ali (a,/3) E A, the map 
Ta,/3 is ergodic for Pa,/3 = P. We will assume (a,{J) E A in the sequei. 

In other words, in this case P given by 

P(A) =i cp(x)dx, for all A E F, 

where now :F is the Borel a -algebra in [O, 1), defines an invariant ergodic probability mea
sure for T. 

From the expressions (4.1) anel (4.4) the transformation Ta,/3 is given by 

{ 

f3(a-1) 
{J + ax, 

Tcx,p(x) = (a= 1 _ {J) 
{J X {J , a-

. 1-{J 
tfO ~ x < - -{J 

a-

. 1- {J 
1f --{J ~ X ~ 1. 

a-

(4.7) 

The list of integrais below are useful to understand the estimation and the spectral analysis 
that we shall present in the sequei. 

1. 

2. 

3. 

4. 
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Some of these integrais are obtain after long calculations. 
For estimation purposes, in the case where <P( x) = x, one needs the integrais 2. and 

4. in the expression ( 4.8). Suppose we are able to estimate from a time series (that is , by 
the ergodic theorem), respectiveiy, the integrais 2. and 4. by k1 and k2. That is , 

1 N ~ 
N L Zt = kl ~ E(Zt)· 

t=l 

N-1 
1 "'"' ~ N D ZtZt+I = k2 ~ E(ZtZt+d· 

t=l 

Then, the estimates of a and /3 are obtained as the solutions of the following equations 

11 1 1 
xcp(x)dx = k1 <==::} gl(a,/3) = l (cr) - -cr- = k1 

o og 7J 7J - 1 

{1 ( /3 )2 1+a/3-~ lo xT(x)cp(x)dx = k2 <==::} g2(a,/3) = a_ /3 + 2(a _ /3)log(~) = k2. 
(4.9) 

From the second equivalence in ( 4.9) above one can see that 

( 
/3 )2 ~+a -4 ( /3 )2 -- + - k2 <==::} --

a - /3 2 ( cr//) log( ~) - a - /3 
2 --:----..,.----+ 

( ~ - 1) log( ~) 
.!.+a 

+ (3 = k2. 
2 ( ~ - 1) log( ~) 

( 4.10) 

If we consider a = l:::../3, then the first two terms and also the denominator of the third 
term in the last equality in (4.10) depend only on 1:1. Hence, from (4.10) one has 

The estimates of the parameters a and /3, given by ( 4.9), are alternatively given as 
the solutions of the two equations below. 

1 1 
log( ~) - ~ - 1 = k1 

1 p +a= k3. (4.11) 
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For numerical analysis reasons, given fe1, we shall find first the value !:::. = ~ in the equation 

91(a,f3) = fe1 of (4.9). For this purpose, one can use Newton's method in 91(!:::.) E R, for 
!:::. E R. After that, we find the value of k3 = k3(!:::.), that depends only on !:::. = ~ (and 
also on k2 ) . Hence, we solve the equations 

(4.12) 

in a and f3 (this will require to find the roots of a polynomial of degree 2). Therefore, one 
can have the estimates (&, {3), or equivalently, the estimates (â, b), by getting the solutions 
of equations in ( 4.11) , w here 

1 
N 

1 
N-1 

fel = N L Zt ~ E(Zt) and fe2 = N L ZtZt+t ~ E(ZtZt+I) 
t=l t=l 

with {Zt}f:1 a time series derived from the process {Zt}tEZ· After we find & and {3, 
the value O"~ can be easily estimated from the integral 3. in ( 4.8) and from the value 

N- 1 '2:~ 1 Zf ~ E(Zl) obtained from a time series derived from the process {ZdtEZ· 

Remark: Notice that from the expression ( 4.12) onc obtain two pairs of solutions. One 
pair is the value (a, {3). The other pair is ( &, /J) such that 

The stationary processes as in (1.3) generated, respectively, by Ta,{J and T&,i3 have the same 
spectral distribution. This indeterminacy is analogous to the one observed in the harmonic 
model (1.1) where wo and -wo determine the same spectral measure ~( Ów0 + 8-wo ). 

One can ask about the deviations of the time series estimates fe1 and k2 to the values 
k1 and k2. The large deviations of k1 and k2 are determined, respectively, by deviation 
functions h and J2 (see Definition 3.3) of the kind 

Ii(z) =O for z = ki and Ii(z) = oo for z =f. ki, i E {1,2}. 

This will be shown in Section 4.2. The parameters a and {3 are obtained from 91 (a, {3) = k1 

and g2 ( a, {3) = k3 by solving the two equations in ( 4.11 ). The deviation functions of a and 
f3 can be obtained by means of a contraction principie (see the end of Section 3.2). Thus, 
the considered system has the exponential convergence property for the large deviation 
rate. The above results are presented in Section 4.2. 

The conclusion is that, for any </>, with very high probability the mean value of the 
time series, N-1 I:~=l </>(Ti(y)), will be very close to J </>(x)dP(x). 

15 



In the simulations, where the sample size is N = 5, 000 whenever a~ is equal to zero 
anel N = 2, 000 otherwise, we obtaineel the following table. 

Table 1: Parameters o f Example 1 a nd their r espective estimates. 

a (3 aç snr a ~ aç 

0.63049 3.31683 0.000 00 0.63383 3.26947 0.00031 
0.99566 1.03169 0.100 9.208 1.00230 0.98326 0.10487 
1.21035 0.44972 0.100 9.138 1.21481 0.44430 0.08482 
1.21035 0.44972 0.295 -0.258 1.21481 0.44298 0.08601 
1.19998 0.80002 0.000 00 1.19983 0.79988 0.00000 
2.32675 0.19141 0.100 8.796 2.40095 0.19690 0.09674 
2.32675 0.19141 0.430 -3.874 6.47962 0.03473 0.30758 

In the simulation proceelure we founel the solution 1::1 of 91 ( 1::1) = fe1 very easily by 
using the software Mathematica (see Wolfram (1991)). Notice that the function 

1 1 
91 ( 1::1) = log( 1::1) 1::1 - 1 

is bijective anel, therefore, the solution of 91 ( 1::1) = fe1 is unique. In Table 1 above, the 
values of â and fJ were obtained up to the indeterminacy mentioned in the last remark. 

4.2. Large Deviations 

In this section we shall analyze the large eleviations associatecl to the mean 

1 N . 
lim i\f "'"'U o Tl)(x) 

N-+oo h ~ 
j=l 

where f is a continuous function on [O, 1] anel T = Ta,/3 is the map elefineel by (4.7). 
In Coelho et al. (1994) is shown that the function 

y log ( (a-~y+/3) 
v(y)= 1 cp(x)dx= log(l) 

is a change of coordinates in the sense of (2.2) between the systems ({0, 1], Ta,f3, dx) and 
({0, 1], Tw0 , dx ), where Tw0 ( x) = wo + x with wo = ~~~~ J). The value wo is called the 

rotation number of Ta,/3 (see Devaney (1989) for definitions). We shall analyze first the 
large eleviation properties of Tw0 (x) = wo + x anel then, after t.hat, we shall derive by a 
contraction principie argument (see Theorem 3.2) the exponential decreasing property for 
the system ([O, 1],Ta,f3,dx) by using the change of coordinates v. 
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Considera rotation T(x) = w0 + x, where w0 is an irrational number. It is well known 
that, in this case, the Lebesgue measure dx is ergodic for T (see Devaney (1989)) where 
P(A) is the length of A, for any interval A. \Ve shall analyze first the deviation properties 
for the transformation T(x) = w 0 + x anda continuous function f: [O, 1] ~ R. 

We shall present now severa! results for a continuous function f : [-1, 1] ~ R such 
that f(-1) = f(l). These results can be applied to the case when f(x) = Acos(x) 
considered by Lopes and Kedem (1994). 

The result is also true for any continuous function f, by using an approximation 
argument in L 1 ( dx ). 

Proposition 4.1 : For any y E SI = [O, 1L 

1 N . f lim N ~ f(T1 (y)) = f( z)dz . 
N-+oo 

j=l 

Proof: From the ergodic theorem, for almost every X E sl) the above limit is true since 
wo is irrational and the Lebesgue measure clx is ergodic for T. 

As f( -1) = f(1) and f is continuous, it is also uniformly continuous. Thus, given 
€ >O there exists S >O such that if lx- y j < S then lf(x) - f(y)l <E, for all x,y E [0, 1]. 

Fixa certain Y E SI. By the ergodic theorem, there exists x E (y- S, y + S) such that 

1 N . f 
lim NLf(T1 (x))= f(z)clz. 

N-oo 
j=I 

It is easy to see that 

ITi(x)- Ti(y)l = lx- Yl < 8, for ali j E N. 

Therefore, 

N N 

IN-I~ f(Ti(x))- N- 1 ~ f(Ti(y))l <E, for all N E N. 
j =l j=l 

As limN_.ooN-I :Lf=1 f(Ti( x)) = J f(z)clz and by using a limit sup and limit inf argu
ment and by talcing e ~ O, then 

So, the proposition holds. 

Corollary 4.2: For any open interval [a, b] and any x E SI 
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1 N . 

lim N " I[a,bJ(T1(x)) = b - a, 
N-oo ~ 

j=I 

where I[a,bJ is the indicator function of the interval [a, b]. 

The corollary is an easy consequence of a step function approximation by continuous 
functions in LI norm. 

P r oposition 4 .3: Given € > O, there exists M > O s1tch that, for all x E S 1 and all 
N>M, 

Proof: Fix y E (0, 1). Given f > O, let ó >O be such that 

€ 
lx- Yl < ó => lf(x)- f(y)l < -. 

4 

From corollary 4.2, for any x E SI there exists m(x) E N such that Tm(x)(x) E (y-ó, y+ó). 

C la im : There exists .!vil >o such that m(x) < Ml, for all X E sl. 

We will prove the claim later. Suppose the claim is true. Then, 

N m(x) N 

IN-1 L f(Ti(x))- f f(z)dzl ~ IN-I L f(Ti(x)) + N-I L f(Ti(x)) -
i =l j=l j=m(x)+l 

N -f f(z)dzl ~ N-I MIJ( + pv-I L f(Ti(x)) - j f(z)dzl, (4.13) 
j =m(x)+l 

where J( = sup{jj(x)l; x E SI}. As ITm(x)(x)- Yl < ó then, 

N N N+m(x) 

L f(Ti(x))- N-I Lf(Ti(y))l ~ IN- 1 L .f(Ti(x))-
j=m(x)+l j=l j = m(x)+l 

N+m(x) N N+m(x) 

-N- 1 L .f(Ti(x))- N-1 L .f(Ti(y))l ~ IN-1 L .f(Ti(x))-
j=N j = l j=m(x)+l 

... 
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N N 

-N-1 L J(Ti (y))l + N-1 M1 f(= IN-1 L J(Ti (Tm(x)(x )))-
j=l j=l 

N 

-N-1 L f(Ti(y))l + N-:1 Mlf( ~ ~ + N-l MlJ{· 
j=l 

( 4.14) 

From expressions ( 4.13) and ( 4.14) one has 

N N 

IN-1 L,J(Ti(x))- j f(z)dzl :5: N-1 M1K + I(N-1 L f(Ti(x))-
j = I · j=m(x)+l 

-N-1 t f(Ti(y))) + (N-1 t f(Ti(y))- f f(z)dz) I s; 2N-' M,J( + 

N 

+ .:_ + IN-1 Lf(Ti(y))- f!(z)dz j. 
4 . 

J=l 

( 4.15) 

Since 

given f > O, there exists M2 > O such that, for all N > M2, one has 

N 

IN-1 ?:= f(Ti(y))- f f(z)dzl < ~· 
J=l 

Consider now M E N such that 

Then, for any N > M, 2 ~I< <f. Therefore, from (4.15) and for any x E S1 , we have 

N 

IN- 1 ?:= f(Ti (x )) - f f(z)dzj < e. 
]=1 

And the proposition holds. 
Now we shall prove the Claim. For each x E S1 , let m(x) be such that fm(x) E 

(y- 8, y + 8). There exists a small neighborhood A(x) of x such that for any z E A(x ), 
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fm(x)(z) E (y - 8, y + 8) . It is easy to see that UxESt A(x) = S1. As S1 is a compact 
set, there exist X], o o o ,Xk such that A(xl) u A(x2) u o o ou A(xk) ~ s]. Denote by Ml the 
suprem um 

Then, for all x E S 1 , there exists M 1 > m( x) such that 

fm(x)(x) E (y- 8,y + 8). 

And the Claim is proved. 

Remark: We shall consider the function f( x) = xT( x) to estimate large deviations of t he 
autocovariance at lag 1 of the process {Xt}tEZ = {T(Xt-I)}tEZ· 

Now we show that the free energy c(t) is linear. 

Theorem 4.4: The free energy c(t) is linear and, therefore, the deviation ftmction I 
satisfies I (z) === oo for z f f f(x)dP(x), otherwise it is zero. 

Proof: One needs to show that 

c(t) = t f f(x)dP(x). 

One observes that 

Jn-1 log f /L7= 1 J(Ti(x))dP(x) -t f f( x)dP(x) J = Jn- 1 log( f( et "L7=J(Ti(x)) _ 

_ ent f f(x)dP(x))dP(x )) J = Jn-l log [f ent( n-
1 "L7=1 f(Ti( x)) - f f( x)d'P( x) ) dP(x) ]I· 

From Proposition 4.3, given € > o, there exists Jvf > o such that, for any X E sl and all 
n>M, 

Therefore, for all n > M , 

Jn-1 t f(Ti(x))- f f (x)dP (x)J < €. 

j = l 
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ln-1 log f etL:;=, J(Ti(x))dP(x) - t f f(x)dP(x)l::; ln- 1 log 

[f ent(n-1 2:7=1 f(Ti(x))-f f(x)dP(x))dP(x)] I::; ln-llog f ent(±t)dP(x)l = 

= n-1 loge±mt = ±€t. 

As t is fixed, by taking e -+ O one concludes that c( t) = t f f( x )dP( x). 

Since for T( x) = w0 + x and for any continuous function f the deviation function I f 
has the exponential convergence property and since v(y) = foy <pa,p( x )dx defines an equiv
alence between the systems (K,T,dx) and (K,Ta,p,<pa,p) then, from Theorem 3.2, one 
concludes that, for a given continuous function g, the deviation function I 9 (associated to 
the system (K,Ta,f3,<pa,f3,g) has also the exponential convergence property. This follows 
from the fact that vis a continuous function and by considering, in Theorem 3.2, g =f o v, 
with f= g o v-1 . 

4.3. Spectral Analysis 

For a given T = Ta,/J and the corresponding invariant density <p = <pa,/J we consider 
the signal process {Xt}tez ={(</>o Ta,f3)(Xt-d}tEZ· . 

From the expressions (4.5) and (4.6) one observes that the density function <pa,p(x) 
depends only on the quotient !J. = ~· Consider now the transformation Th, for any h E Z, 
where T = Ta,/3 is given by the expression (4.7). From Coelho et al. (1994) it is known 
that 

with ah = Th(O) and b11 = T-h(O). From Coelho et al. (1994) it is also known that 

for any h E N, 

and hence 

<pcxh,/Jh = <pcx,p, for any h E N. 

The conclusion is that, for any continuous function </> and h E N , 

E(XtXt+h) =f </>(x)</>(Th(x))<p(x)dx =f </>(x)</>(Tah,ph(x))<pa,f3(x)dx = 

= j <f>(x)<f>(Tah,f3h(x))<pah,/Jh(x)dx. (4.16) 
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As we know f 4>(x )4>(Ta,p(x ))<t'a,p(x )dx (see integral4. in ( 4.8)), for any a anel (J, one can 
calculate f 4>(x)4>(Ta 11 ,p11 (x))<pa 11 ,(311 (x)dx, for any h E N. 

Notice that E(XtXt+~t) = E(XtXt-h), for all h E N. 
Therefore, we are able to obtain the exact values of Rxx(h), for all h E Z, from the 

positive anel negative orbit of zero by T (since ah and fJh depend only on ah anel bh)· 
We now consider 4>(x) = x. It is known that, for fixed a and (J, there exists ~ such 

that ah = ~fJh, for all h E Z. From integral 4. in (4.8), a simple calculation shows that 
there exist c1 ( ~) anel c2 ( ~) such that 

As ah anel J, wander arouncl the interval (0,1], then the above integral does not 
converge to zero as h -+ oo. Therefore, the spectral density function is not a function, 
but there exists a spectral distribution function also called a generalized spectral density 
function. 

First one observes that the process {Xt}tEZ = {Ta,p(Xt-l)}tEZ has mathematical 
expectation given by the integral 2. in expression ( 4.8), that is, 

E(Xt) ~ ( ) - --S,, 
log ~ a- P 

for all tEZ. 

We want to derive the spectra.l distribution function of the process { Zt}tEZ· We first con
sider the autocorrelation px(h) at lag h of the process {Xt}tEZ = {Ta,.a(Xt- dhEZ anel 
then use the Herglotz's theorem (see (2.5)) for the process {XdtEZ· 

Remark: T he Fourier coefficients of the spectral distribution function in the case where 
T(x) = w0 + x are given by px(h) = cos(hwo) = cos(Th (O)), for h E Z, that is, they are 
determined by the iterates T 11 of zero. The next theorem claims a similar property for the 
transformation Ta ,,8 and 4>( x) = x. 

Theorem 4.5 : T he spectral distribttiion fnnction of the process 

is given by 

00 

1 " i>.h 1 dFz(Ã) =- L e- px(h) + -, 
2n 2n 

h=-oo 

for À E (-n, n) ( 4.17) 

where px(h) is gíven by ~~~(~ {see the expression {2.4)) with 
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1 + a,Jh 1 
Rx x(h) = 2(ah- .B~t) log( ~) 

[log( :;: ) ] 
2 

and 

a+f3 1 
Rxx(O) = 2(a - ,B) log(~) 

[1og( ~)r 

where a and f3 are given by the expression (4.2) and 

Pro o f: Frorn the expression ( 4.16) and integrais 4. and 3. in ( 4.8) we have 

and 

1 + ahf3h 
Rxx(h) = 2( a )1 (crh) ah - !Jh og 7fh 

a+.B 
Rxx(O) = 2(a- ,B)log(~) 

1 

1 

( 4.18) 

(4.19) 

where Xt = Ta,p(Xt-1), which give the expressions (4.18) and (4.19). By adding the noise 
process {Çt}tEZ, independent of {Xt}tEZ, we obtain the expression (4.17). 

Now we consider ~(x) = cos(27rx). One wants to calculate the spectral distribution of 
the process 

Zt = Xt + f,t = cos(27rTcr,p(Xt-d) + f,t, for t E Z. 

For this purpose we need the following integral: 

where 

E(X,Xt+l) = 1' cos(21rx) cos(21rT(x ))'!'( x )dx = 
1 
( ) x k ( 4.20) 

o 2log ~ 

k = cos(2d,B)[ci(d(a + 1)) + ci(da(,B + 1)) - ci(d,B(a + 1))- ci(d(,B + 1))]+ 
+ sin(2d,B)(si(d(a + 1)) + si(da(,B + 1))- si(d,B(a + 1))- si(d(/3 + 1))]+ 
+ ci(d(a- 1)) + ci(da(,B- 1))- ci(d(,B- 1))- ci(df3(a- 1)), 
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with d = (.},:{3, ci( x) is the cosine integral and si( x) is the sine integral ( see Gradshteyn 
and Ryzhik (1965), page 928). The integral ( 4.20) comes after a long calculation. 

In order to calculate the spectral distribution function, one should obtain the Fourier 
coefficients of such distribution by substituting in ( 4.20) the values of a and {3 by ah and 
f3h (see expression ( 4.16)). 

Theorem 4 .6: The spectral distribtttion ftmction of the process 

Zt = T~,p(-) + f.t = cos(21r Ta,p(Xt-d) + f.t, fortE Z, 

is given by 

dFz(À) = 2~ f e-i>.h px(h) + 2~, for>. E (-1r, 1r], 
h=-oo 

( 4.21) 

where px(h) is given by ~~~~~j (see the expression {2.4)) with 

1 1 
Rxx(h) = 2 log(~) x k~t- (log(~)j2 x lh 

where 

k~t = cos(2d~tf3h)[ci(d~t(ah + 1)) + ci(dhah(f3h + 1))- ci(d~tf3~t(ah + 1))- ci(d~t(f3h + 1))] 
+ sin(2dhf3~t)[si(d~t(ah + 1)) + si(dha~t(f3h + 1))- si(d~tf3~t(ah + 1))- si (d~t(f3h + 1))] 
+ ci(d~t(ah - 1)) + ci(d~tah(f3h -1))- ci(d~t(f3h- 1))- ci(dhf3h(ah- 1)), 

and 

with 

ah = Th(O) and bh = T-h(O). The variance Var(Xt) is given by 

Rx x(O) = 210~( ~) { cos(2df3)[ci(2da) - ci(2d/3)] + sin(2df3)[si(2da) - si(2df3)]} + ~-
1 

[log( ~ ))2 x l, 
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where 

l = { cos(d.B)[ci(da) - ci(d.B)] + sin(d.B)[si(da)- si(d.B)]}2 

with 

d- .3:!!._ 
-a- .B' 

1-a 
a=--

b 
and 

a 
.B = -b. 1 -

In Figure 1 we plot the graph of the Fourier series 2
1
rr 2::~':_ 100 e-i>..hpx(h) when 

a = 2.41809 and .B = 0.22052. Therefore, we are considering here a.n approximation of the 
generalized spectral density function fx(>-.) up to an order of 100. 

Figure 1: T he generalized spectral density function fx(>-.) for Example 1 as in 
( 4.21) w hen u~ =O, a= 2.41809 and .B = 0.22052. 

IQ 

-2 

-4 

Rem ark: The rotation number of Ta,/3 is 

81 
= log(a) 

log( ~) 

and the rotation number of T&,iJ = T;,1 is 

fh = log(.B) . 
log( ~) 
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One observes that B1 + fJ2 = 1. We denote by ( the smallest value between B1 anel ()2 • 

Therefore, ( ~ 0.5. V\Te call ( the rotatíon mtmber of the stochastic process. 
It is extremely interesting the fact that, for any a anel {3, the spectral measure is 

not a Dirac delta function concentrated on the rotation number of Tcr,fJ (we checked the 
coefficients px(h)) but it has a very strong peak on the value 27r( where ( is the rotation 
number of the process. In other words, the spectral distribution is very close to 

where ()1 ~ 0.5 ~ B2 were de:fined above. 
In conclusion if one applies the Fourier transform to the data it will appear a strong 

peak in the rotation number. 
This property requires, in the future, a deeper analysis in order to understand the 

spectral distribution function given by ( 4.21 ). Notice in Figure 1 the strong peak in the 
value 27r ( = 2.31671, where ( is the rotation number of the process when a= 2.41809 anel 
(3 = 0.22052 ( corresponding to the values a = 0.1423 anel b = 0.354 7). 

We remind the reader that if a = 1 - b then the rotation number of Tcr,fJ is equal 
to a anel, in fact, in this case, the spectral distribution function is a Dirac delta function 
!(ó1ra + Ó-11'a), when </>(x) = cos(27rx). 

Notice that for Tcr,,a(x) = a+ x (mod 1), the inverse map T;',1 = T&,iJ is such that 
T& p(x) =x - a (mod 1). In this case, ( = 7rlal. 

) . 

5. EXAMPLE 2 

Sakai anel Tokumaru (1980) introduce the following moclel of chaotic time series. For 
a given constant a E (0, 1) consicler the transformation Ta :(O, 1] -+[O, 1] given by 

Ta (X) = { 1 _ } ' 

1- a' 

if O~ x <a 
(5.1) 

if a~ x ~ 1. 

The Lebesgue measure dx is invariant anel ergodic for the transformation Ta ( see Li anel 
Yorke (1975)). In the notation of Section 2, P(A) is the length of A, for any interval A. 

We now consider the stochastic process 

(5.2) 

where <f>(x) = x. 
The autocovariance function at lag h of the process {XdtEZ in (5.2) (see Sakai anel 

Tokumaru (1980)) is given by 

11 1 
Rxx(h) = xTh(x)dx - [E(Xt)]2 = 9 (2a -1)1

\ 
o L 

for h> O, (5.3) 
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where E(Xt ) = ~ anel Rx x(O) = Var(Xt) = 1
1
2 · 

One can use the above integral to estimate a from the system (K, T , P, 4>, F , O'V where 
4>(x) = x. This will be clone in Section 5.1. After that, we shall analyze the spectral prop
erties of the process in (5.2). 

5.1. Estimation 

Let us consider now the case with noise. vVe want to estimate the parameters a E (0, 1) 
anel O'~. From the ergo di c theorem, one observes that 

since { Xt} tE Z anel { Çt} tEZ are independent processes anel since 

if h= o 
if h # o. 

(5.4) 

for all t E Z. The last equality in expression (5.4) comes from (5.3) when h = 1 anel from 
the fact that E(Xt) = ~· From the ergoelic theorem anel the indepenelence, one has 

N N N 1 

1. N-1 L z2 1. N-1 L x2 1. N -1 L ~2 1 2 d 2 1 2 (5.5) 1m t = tm t + tm .,,, = x x+ O'ç = -
3

+0'ç · 
N - oo N-oo N-+oo o 

t=l t=J t=l 

Therefore, by using a time series { Zt} ~1 of size N eleriveel from the stochastic process 
{Zt}tEZ given by (5.2), the estimators â anel ô-z of a anel O'i can be obtaineel implicitly 
from expressions (5.4) anel (5.5) anel, thus, are given by 

â = 6 (N-1 ~ ZtZt+I) - 1 ~ 611 

xTa(x)dx- 1 
t=l o 

N 1 
~2 1 ~ 2 1 1 2 1 
O'ç = N- 6 zt - 3 ~ X dx- 3' 

t = l o 

In the simulations, where the sample size is N = 5, 000 whenever O'~ is equal to zero 
anel N = 2, 000 otherwise, we obtained the following table. 
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Table 2: Parameters of Example 2 and their respective estimates. 

a aç 3nr a aç 

0.273001011 0.100 9.208 0.27249 0.11406 
0.273001011 0.295 -0.188 0.25564 0.29990 
0.273001011 3.000 -20.334 2.33035 3.08462 
0.273001011 0.000 00 0.27551 0.01262 
0.400010101 0.100 9.208 0.38870 0.08430 
0.400010101 0.000 00 0.39978 0.00852 
0.400010101 0.000 00 0.40707 0.02615 
0.500010111 0.000 00 0.49147 0.01856 
0.783000101 0.000 00 0.77875 0.06136 

5.2. Large Deviations 

The map T is an expanding one and the function </>( x) = x is Holder continuous, 
therefore, from the differentiability of the free energy (see Lopes (1994)), the exponential 
convergence property is true. The conclusion is that, with very high probability the samples 

2 . 

autocovariances at lags 1 andO, N-1 2:~~1 Z,Zt+l- (N-1 2:~1 Zt) and N-1 2:~1 Z'f-

(N-1 2:~1 Zt) 
2

, estimate with high accuracy, respectively, the autocovariance of lag 1 

and the variance of the process. 
Finally, by the contraction principie (see the end of Section 3.2) the estimates â and 

â~ also satisfy the exponential convergence property. 

5.3. Spectral Analysis 

The main obstacle to proceed in the spectral analysis of Example 2 is that the map Ta 
is not inver tible. Therefore, the autocovariance function Rxx(h) of the process {Xt}tez, 
given by expression (5.2), for negative lag h does not have a precise meaning. For the 
estimation of the parameters there is no problem, since we just need the positive lag h. In 
fact, h= O and h= 1 were enough. 

We propose to analyze the natural extension F of Ta, instead of Ta itself. 
The natural extension is a canonical way of embedding a non-invertible dynamical 

system in an invertible one. We refer the reader to Pollicott (1986) and Adler (1991) for 
general considerations about the natural extension map. 

In Example 2, the natural extension of Ta is the map F: [0, 1) x [O, 1) -+ [0, 1) x [O, 1] 
such that 

F(x,y) = (T(x),G(x,y)), for any (x,y) E (0,1) x [0,1), 
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where 

{ 
ya, 

G(x,y) = ( ) 
a - 1 y + 1, 

if O~ x <a 

if a :::; x :::; 1. 

The map F is invertible and it is easy to see that the Lebesgue measure dxdy is invariant 
and ergodic for F . 

As a particular example, we mention that the Baker map is the natural extension of 
the tent map (with inclination 2). 

Therefore, we shall consider the dynamical system (K, F, P) where ]( = (0, 1] x [0, 1] 
and P is the Lebesgue measure dxdy on [O, 1] x [0, 1]. Instead of <P(x) = x, one can consider 
<!J(x,y) = TI(x,y) = x for any (x,y) E (0,1] x (0,1] as a random variable. In the setting 
o f Section 2, we shall analyze in this section the system (](,F, p, TI , :F, an. N OW, i f h ~ o 
then 

and we obtain, from the expression (5.3), Rxx(h) for positive h when Xt = l1 o Ft. As 
the map F is invertible, it makes sense to estimate, for h >O, the integral 

11 11 

II(x, y)IT(F- h(x, y))dxdy. 

Denote by Inv the function such that Inv(x,y) = (y,x) . From an easy calculation 
one can derive that F-1 = Inv o F o Inv. Then, p-h = I nv o ph o Inv. Now, from a 
change of variables, one obtain the following 

After these results one can obtain the spectral density function associated to the 
stochastic process {Xt}tEZ· The last term in the above equalities has already been calcu
lated (see (5.3)). 

Theorem 5.1: The spectral density fun ction of the stocha.stic process 

Zt = X t + ft = (II o F)(Xt-d + Çt, for t E Z, 

is given by 

fz(>..) _ 2a(1 - a) + ~ 
- 1r(1- 2(2a- 1) cos(>..) + (2a - 1)2] 271'' 

for).. E (- 1r, 1r]. (5.6) 
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Proof: Since Rxx(h) is given by the expression (5.3) and goes to zero exponentially when 
h---+ +oo, the spectral density function (see (2.7)) does exist and it is given by 

fx(>.) = ~ ~ e-i>..hpx(h) = ~ ~ e-i.>.h(2a - 1)11tl = 
2~ ~ 2~ ~ 

h=-oo h=-oo 

= 2~ [I)(2a- 1)e-i>.)h + t ((2a- 1)ei>.)-hl -
h~O h=-oo 

1 [ 1 (2a - 1 )e i>. l 
= 2~ 1- (2a - 1)e-i>. + 1- (2a- 1)ei>- = 

2a(1 -a) 
= ~[1 - 2(2a- 1) cos(>.) + (2a- 1)2 ]' 

for all >.E [-~, ~], since l(2a- 1)e± i>. I < 1 when a E (0, 1). The spectral density function 
of the process { ZdtEZ follows from this. 

The spectrum of the signal process {Xt}tez is continuous and its graph is shown in 
Figure 2 (a), (b) and (c). Notice that if ais small t hen there exists a peak on ~ and if a 
is large the peak is on zero. 
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Figure 2: The spectral density function fx(>..) for Example 2 as in (5.6) when 
a~= O and 

(a) a= 0.15240; (b) a = 0.36570; (c) a = 0.93459. 
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