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ABSTRACT

Here we analyze the mixed spectrum stationary process

P
Zi = Ajcos(wit+¢;) +er, teEZ,

i=1
where p is not necessarily known, Ay,---, 4, are unknown constants, wy, - - - ,Wp are un-
known frequencies with values in (—x, 7], {&;}+ez is white noise with mean 0 and variance
o2 and ¢q,--- are random variables uniformly distributed in (—=, 7], independent of
€ bl »¥p y bl I

each other and of the noise process {€;}+cz. The assumption of white noise is not really
needed, but it simplifies the exposition. In fact, any continuous spectrum noise will do
just as well. We estimate the amplitudes A, 1 < j < p, and the variance o2 of the noise
component based on HOC (higher order correlations) sequences p;(6x) from a parametric
family of linear filters (a™-filters).

We also present an updating iterative procedure of a certain mapping p; that gives rise to
a periodic orbit of period 2 (Slutsky filter).



1. Introduction

In general, when a filter is applied to a time series, it changes the series mode of
oscillation. Thus, when a bank of filters is applied to the same series, we obtain a sequence
or family of oscillation patterns. The resulting family of zero-crossing counts is referred to
as higher order crossings or simply HOC. The corresponding first order autocorrelations
are referred to as higher order correlations, or simply HOC again. Because the first order
autocorrelation and the expected zero-crossing rate of a real valued stationary Gaussian
time series are essentially equivalent (see Kedem (1986)), the practice of using the same
acronym is quite tolerable. Here we will just consider higher order correlations. The
process we will analyze is not Gaussian.

In this paper we show how to construct a convergent sequence of HOC (higher order
correlations) to estimate all parameters in the following model

P
Zy =ZA]‘COS(U)J't+¢j)+€t =X;+¢&, for teZ, (1)
Jj=1
where p is not necessarily known and, for each j € {1,2,--- ,p}, 4 j 1s an unknown constant,

wj is an unknown frequency with value in (—7, 7] and the phase ¢ j 1s a random variable
uniformly distributed in (—, 7] independent of each other and of the noise component. We
assume that the noise process is Gaussian and white for simplicity of the exposition, that
is, ¢ ~ N(0, 02), however for any stationary and ergodic process with continuous spectral
density function fc()) the results follow similarly. Observe that the process {Z;}:cz is not
Gaussian.

In Lopes and Kedem (1991) we show how to estimate the frequencies wj, 1 < j < p,
of the model (1). Here we will show how to estimate the amplitudes 4;, 1 < j < p, and
the variance o2 of the noise process.

The gist of the idea is to employ HOC sequences in the fine tuning of parametric
filters. This is done iteratively as follows. A time series is filtered by a parametric filter,
and the resulting first order autocorrelation is immediately used in adjusting the filter
parameter. The adjusted filter is then applied again, giving rise to a new first order
autocorrelation, and the procedure is repeated. By choosing the filters appropriately, the
scheme gives convergent sequences of higher order correlations, or equivalently, convergent
sequences of higher order crossings, depending on what one chooses to observe, correlations
OT Z€T0-CT088INg Counts.

The HOC method is a faster way to estimate the frequencies than the traditional
method of the periodogram analysis based on “Fast Fourier Transform”.

The estimation of a finite number of frequencies of signals buried in random noise,
as the model (1) with mixed spectrum is an old and very important problem related
to different fields as seismology, radar, sonar, radioastronomy and it has received many
research work in several areas as communication, signal processing and statistics.

In Section 2 we give an outline of the main properties of Lopes and Kedem (1991)
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and in Section 3 we present a new result: a filter that with an updating procedure gives
rise to periodic orbits of period 2. In Section 4 we present the main result of this paper,
namely, a method to estimate the amplitudes A;, 1 < j < p, and the variance ¢2 of the
noise component. We remark here that Section 3 is independent of Section 4.

We applied the method to a simulated model with p = 2, 4; = 4, = 1.0, 0. = 0.3,
wy = 0.7 and wp = 2.2. We previously find (see Lopes and Kedem (1991)) the strong
consistent estimates @w; = 0.7044 and &2 = 2.1965. We simulate a time series with N =
3000 observations. Using these informations we apply the method presented in Section 4
and we find the estimates 4; = 0.9783, A, = 0.9525 and &, = 0.3976.

The content of this paper is part of the Ph.D. dissertation at the University of Mary-
land of the author under the guidance of Benjamin Kedem.

2. Complex Filter and Fixed Points

Let {Z:},t = 0,£1,42,---, be a zero-mean stationary process, and let {L4(-)}sco,
be a parametric family of time invariant linear filters, where 8 is a finite dimensional
parameter in the parameter space ©. Denote by {Z:(6)}:cz the filtered process,

Z4(0) = Lo(Z)y.

Then {p1(6)}sco, defined by

R{E[Z:(0)Z:++1(9)]}

pl(e) = E]Zt(9)|2

is a HOC family defined from a parametrized first order autocorrelation. Here and else-
where, a bar denotes complex conjugate and R{z} the real part of .

He e Kedem (1989), using the alpha filter (see Definition 4.1 with n = 1), present
an iterative method for the case p = 1 (that is, only one frequency in the model (1))
obtaining the frequency of the discrete spectrum part of the process {Z;}scz. However,
with the alpha filter one can not obtain the frequencies through the iterative procedure
when p > 2. To present an iterative procedure that works well when p > 2, it is necessary
to use a different filter. We show in Lopes and Kedem (1991) that the complez filter (see
Definition 2.1) is the filter which enables one to find, through an iterative method, the
frequencies w;, 1 < j < p, when p > 2. Note that we also can find the value of p.

Now we will present a brief outline of this method in order the reader can understand
how the estimates @;, 1 < j < p, are found. These considerations are the main motivation
for what will be developed in Sections 3 and 4.

Consider the stochastic process {Z;}+cz as in (1).



Definition 2.1: The complez filter applied to the process {Z;}:cz is defined by the
transformation

Z(a,M)=1+e¥B)MZ, forteZ, —-1<a<l and —7< 0(a) <,

where M is a positive integer and B is the shift operator BZ; = Z;_;. We think of 0(a) as
the “center of the filter” and define it by 6(a) = cos™(a).
For the properties of the complez filter see Lopes (1991) and Lopes and Kedem (1991).
Let {Z:}*M be a time series of length N + M obtained from the process (1) and
Zi(a, M) be the correspondent complex-filtered time series version. We consider M fixed

and large (typically, M = 30) and consider the first order autocorrelation function given
by

R{E[Z4(ct, M) Z 31 (ar, M)]} 2)
E|Zt(a’M)|2

pi(a) = pi(e, M) =

as a function of the variable a. The function p;(«) is a mapping onto [—1, 1].
From an initial value aq, chosen at random in (—1,1), define the recursion

ak+1 = pi(ar) = p(ac), parak € N. (3)

One calls axy1 = p¥(ap) the kt* -iterate of ayp.

In Figures 1 and 2 we present, for M = 15, the graph of p;(a) and p$(a) as functions
of the variable a. We also plot the diagonal line: the fixed points are located in the
intersection of the graph of p; and the diagonal line.

Observe that the graph of p3(a) (Figure 2) shows that, for any aq, the iterated value
p3(ap) is always very close to the fixed points and these for there turn are very close to
the values cos(w;) and cos(ws) to be estimated.

Definition 2.2: The updating scheme of the form (3) is said to be approzimately globally
convergent if for each fixed M € N — {0} there exists a set Cps of full measure in [-1,1]
such that for any ag € Cs there exists the limit

im ar = ajy. (4)

k—o0

The values o}, are fixed points of the mapping py, that is, p1(a},) = o,

The iterative updated procedure is considered with respect to the filter with parameter
M and the value of o}, can depend on ag. We shall require in this definition that there
exist p of these possible values a}, and for each one of them there exists [ € {1,2,--- ,p}
such that



lim aj; = cos(wy). (5)

M —o0

The following result guarantees that the estimation of the frequencies of the process
(1) is obtained through the fixed points of the mapping p;(e) in (2). When M is large (for
instance, M = 30), from (4) and (5), the attracting fixed points of p;(«) are very close to
the values cos(w;), 1 <j <p.

Theorem 2.1: Consider the stochastic process {Z:}icz as in (1) where the additive noise
is white and independent of the process {Xi}iez. Let {Le(Z)i}oco = {Zi(a, M)}(a,m)co,
where § = (a, M) € (=1,1) Xx N = O, be a family of complez filters. Consider the iterative
updating scheme (8). Then, the family {L4(Z):}oco 13 approzimately globally convergent.

The property of strong consistency of the estimators is obtained through the following
result (Lopes (1991)).

Theorem 2.2: Consider the stochastic process {Z;:}icz as in (1) where the additive noise
is white and independent of the process {X}icz. Then, the process {Z:}icz is stationary
and ergodic whenever, for all j € {1,2,--- ,p}, the values 2%% are irrational and rationally
independent.

The condition of being irrational and rationally independent is general (with proba-
bility one) in the set of all possible frequencies.

The above theorem also assures the strong consistency property of the estimates to
be used in Section 4.

In Lopes and Kedem (1991) we show that one can estimate the cosine of the frequencies
wj, 1 < j < p, in the following way: consider a value g € (—1,1) at random, apply the
iterative updating procedure with M = 30 fixed and obtain the values

ag, o1 =pi(ao), az=pi(a1), -+, ary1 = pi(or).

From expression (4) the value ax with & large (for instance, k = 20) is close to an attracting
fixed point a},. Since M is large, from expression (5) we know that o}, is close to a certain
cos(wiy ), 1 <y < p. In this way we find an approximated value for one of the frequencies of
the discrete spectrum part. After that, with a bandpass filter, one filters out this value ay,
that is approximately cos(w, ), and applies the same above procedure to the resulting time
series. Considering another aqg at random, one estimates, through the updating iterative
procedure (3), another value cos(wy, ), 1 <13 < pand l; # ly. In this way and successively,
one obtains all frequencies w;, 1 < j < p.

After one finds the last frequency w,, the mapping p; will not move anymore the
initial value ay, that is, p1(aq) = ayg, for all ag € (—1,1). In this way one knows that the
procedure is finished and one found the value of p.
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A different procedure is the one obtained from decreasing the bandwidth (that is, by
increasing M) at each iteration of axy1 = p1(ak, M), until one gets the convergence

lim ax = cos(wy),
k—oco

where the initial value o € (—1,1) is in a small neighborhood of the cos(w; ) with no other
cos(wj), for j # 1. For this procedure, see Kedem and Lopes (1991).

With any one of these procedures one obtains all frequencies w;, 1 < j < p, of the
discrete spectrum part of the process {Z;}:cz defined by (1).

In Section 4 we will show how to estimate the amplitudes 4;, 1 < j < p, and the
variance o2 of the noise process. Before that we will consider the important question:
Is it possible to find a family of filters that produces an updating scheme with attractor
points that are not fixed ones? The answer is yes, the Slutsky filter. With this filter we
locate a periodic orbit with period 2 that gives us directly the maximal and the minimal
frequencies in a particular case of model (1).

Our purpose in the example below is to show the rich variety of possible kinds of
dynamics of the mapping p; one can observe applying different filters.

3. Slutsky Filter: Periodic Points of Period 2

In this section we will analyze the action of the Slutsky Filter (see Definition 3.1)
instead of the complez filter as we consider in the previous section.

We want to analyze the model as in (1). Assume that the frequencies wj, 1 < j < p,
can be written in an increasing order

0<w <wz <+ < wp.

Our interest now is to find, respectively, the lowest and largest frequencies w; and Wp.

If we apply the Slutsky filter to a time series {Z;}X; of length N in a particular
example of the process (1) and we apply the updating procedure given by the mapping p;
then its sucessive iterations will allow one to find w; and wy, that is, the lowest and the
highest frequencies of the model (1). We will explain later how this property is achieved.

We point out that the case considered in this section is an example of what can happen
when one applies filters to a time series. It is not a general method for finding the maximal
and minimal frequencies.

Now we state some definitions and address some properties of periodic points.

Definition 3.1: The Slutsky filter applied to the process {Z;}:cz is defined as the time
invariant linear transformation



Z4(8,k) = [(1—eB)"(1+e“B)")*Z,, for t€Z, —r<0<m, andm,nkeN (6)

where B is the shift operator BZ; = Z;_;.
The transfer function is given by

Hi(X;0) = [(1 = e O=)m(1 4 -0\ k for —r <A<,

and the corresponding squared gain function is given by

[Hik(X; 8))2 = 2¥(m+m)[(1 — cos(8 — A\))™(1 + cos(§ —))"|¥, for —m<A<7. (7)

Define the mapping p;:(—1,1) — (—1,1) such that

R{E[Zi(aa k)Zt+1(a7 k)]}

pl(a7 k) = EIZt(a, k)lz b

for k € N fixed, (8)

where a = cos(f) € (—1,1), with 6 € (—=,n].

Definition 3.1 appears in He and Kedem (1989), page 364. Some of the properties
of the Slutsky filter are derived in that paper. The novelty here is that we consider
m =n = 1, k = 10 and then we analyze the iterative procedure of updating the filter
parameter through the transformation p; as in the complez filter. Here we will consider

s large, that is, high iterates pj(a, k) and we want to derive substantial information from
them. We will consider the case m = n = 1, that is, the transformation

Lew() =1 - e*B)1L+ B, (9)

Our purpose here is to show that in a particular example if k¥ = 10 then the iterative
procedure of updating the parameter 6 = cos™!(a) in the Slutsky filter (m = n = 1) will
locate the lowest and the highest frequencies.

We will consider the stochastic process given by (1) with p =4, A; =20, 4; = A3 =
0.1, Ay = 1.0, cos(w;) = 0.2, cos(wz) = 0.4, cos(ws) = 0.6, cos(wy) = 0.8 and o, = 0.01.
We will take m =n =1 and k£ = 10 in the definition of the Slustky filter.

Now we will introduce some definitions about periodic orbits.

Definition 3.2: A point a* € [—1,1] is a periodic point of period 2 for a function
f:[-1,1] — [-1,1] if

fla*)=a™ and f(a™)=a"
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In other terms, f2(a*) = a*, that is a* is a fixed point for f2. Note that in this case
a* = f(a*) is also a periodic point of period 2. We say that {a*,a**} constitutes a
periodic orbit of period 2 for f. More generally, for each value a (not necessarily periodic)
the set {a, f(a), f2(a), -+, f*(a), - } is called the orbit of . We say that « is a periodic
point if its orbit is finite.

We have analogous definitions and properties as in the case of fixed points.

Definition 3.3: The set {a*,a**} is an atiracting periodic orbit of period 2 if
[(f2 (™) < 1.
It also follows that

(F* (™)) < 1.

If {a*,a**} is an attracting periodic orbit of period 2, then there exists a neighborhood
V of a* such that for any o € V we have that

lim f%*(a) = o*.

For a € V it also holds that

lim f2**1(a) = o**.
§—00

There also exists a neighborhood V of a** such that the analogous property for V is also
true, that is, for any a € V

lim f**(a) =a* and lim f2**(a) = o*.
8§— 00 88— 00

If almost every any point in (-1,1) is attracted by iterations of f to a* or a**, we say
that the attracting periodic orbit {a*,a**} is a global attractor. In other terms, if we can
find an open set U such that A =[—1,1] — U has Lebesgue measure zero on [-1,1] and for
all « € A the sequence {f°(a)}sen has limit points only in the set {a*,a**}, then we say
that {a*,a**} is a global attractor. Let us explain more carefully what we would obtain
as the orbit of the point aq when it is chosen at random. Suppose, for simplification of
the argument, that 0.3 and 0.5 constitutes an attracting global periodic orbit of period 2
for f, that is, f(0.3) = 0.5, f(0.5) = 0.3 and |(f2)'(0.3)] < 1. If we take an initial value
o, typically we would have, for some large value s > 0 that

f?(a0) =0.357, f*t'(ap) =0.524, F+?(ap) =0.308, f**+3(ap) = 0.510,
o (a0) = 0.3001, F°*3(ap) =0.502 and so on.
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In our situation the mapping f will be p; and o* and a** are points very close,
respectively, to cos(wy) and cos(wy).

The Slutsky filter has an extra parameter k (as the complez filter has a parameter
M). For each k, p1(a, k) will denote the first-order autocorrelation function of the Slutsky
filtered stochastic process {Z¢(0, k)}:cT, where a = cos(f). The figures obtained in the
simulations show that p;(«, k) has a global attracting periodic orbit of period 2 (see Figure
3 for the graph of pi(a, k)). For each k € N, denote {a},a}*} this orbit of period 2.

How to locate o and aj*? Let oy € (—1,1) be chosen at random and consider the
orbit of ag given as

Pf(ao,k)a pi-H(aO’k)a pi+2(a0’k)) pi+3(a0,k),---.

Notice that the iterations are in the variable o while k& = 10 is fixed. If s is large
enough then one will notice that

pi(aovk), pi+2(a0’k)’ pi+4(0l(),k),...

will be approximately the same number. It is also true that

P (o k), piFP(a0sk), p§F5 (a0, k),

will be approximately the same number but different from the previous one. These two
numbers that we obtain will be approximately aj and a}*. This is the iterative procedure
for finding o} and aj*.

The above fact can be easily seen from the figures we obtain by plotting the graph of
the mapping pi1(-, k) and its iterates. Notice that in Figure 3 (with the graph of p;(a, k))
a large interval of points in the middle of the interval (—1,1) are mapped by p;(-, %) to a
value very close to the cosine of the highest frequency wy. Another set of points, in the
two external parts of this interval, are mapped by p;(-,%) to a value close to the cosine
of the lowest frequency w;. Figures 3 through 5 are all related to the same model with
p = 4 frequencies and k£ = 10. In this case, 0.2 and 0.8 are in an attracting orbit of period
2 and any initial value ag, will be attracted to 0.2 and 0.4 by iterations of p;. Therefore,
{0.2,0.4} is a global attractor.

Note that there exists a fixed point for the mapping p; between cos(w;) and cos(wy),
but it is a repelling (not attracting) fixed point and will not be detected by iterations of
P1-

In Figure 3(b) we show the same graph of Figure 3(a), but we add the horizontal
dotted lines corresponding to cos(w;), 1 <5 < 4.

Figure 4 shows the graph of p?(-,10) from the Slutsky filter. The intersection of the
diagonal line and the graph determine the fixed points of the mapping p2. These two
points (very close to cos(w;) and cos(wys)) constitute an orbit of period 2 for p;.

Finally, in Figure 5 we show the graph of pi(-, k). Note that any point aq, after four
(4) iterations, will be very close to either cos(w;) or cos(wy).
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Now we give here the expression of p;(a, k).

Lemma 3.1: Let {Z:(6,k)}ier be the Slutsky filtered stochastic process obtained from
the application of the transformation (2.4) to the process {Z:}icr. Then, the first-order
autocorrelation function of a stochastic process {Z:(0,k)}ier is given by

LA 1 o2 pm .
pr(a, k) = ;’:1 —ZL[sm2k(0 — wj) + sin®*(8 + w;)] cos(w;) + 2= [T cos(A)sin?*(8 — ) dA
2y Fein® (6 — w;) + sin® 28 +w;)] + Z [T _sin (6 — A)d

(10)
where § = cos™!(a).

Proof:

We use the Slutsky filter as in expression (9) and we apply the squared gain function
given by (7) with m = n =1 to the first order autocorrelation p;(a, k) given by the ex-
pression (8). The result follows after few calculations.

|

An heuristic explanation for the existence of the periodic orbit of period 2 is the
following. First note that the Slutsky filter is, in some sense, the opposite of the complez
filter. From the expression of p;(a, M) in the complex filter one can see that there exists a
tendency of an initial value ag to converge to the closest frequency (see expression (4.3) in
Theorem 4.1 of Lopes and Kedem (1991)). This is due to the weighted average condition

and the terms
A2 - .
71 [cost (—2&) + cos?* (%Lﬁ)] cos(wj).

That is, cos?* (0;2“’—> is relatively larger than cos?* (32), I # j, when k is large and
¢ ~ w;. Now we have the opposite situation because in the expression (10) we have terms
of the kind
Aj . .
7] [sm2k(9 — w;) +sin?*(6 + w;)] cos(w;).

In this way, when § = w; the above term is small and not large. In fact, the above
expression is large for 6§ more distant of w;. Therefore, we have a tendency, by applying
the mapping p;, to oscilate from the largest w4 to the smallest w; and vice-versa.

Remark 3.1: Note that for different values of 4;, 1 < j <4, and k the Slutsky filter will
not produce the above mentioned phenomenon.
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Conclusion: When p = 4, A; = 20, A2 = A3 = 0.1, 44 = 1.0, cos(w;) = 0.2,
cos(wy) = 0.4, cos(ws) = 0.6, cos(ws) = 0.8, 0. = 0.01 and k = 10 the updating pro-
cedure generates an attracting periodic orbit of period 2.

4. Estimating the Amplitudes and the Noise Variance Using the a™-Filter

Now we will introduce the following generalization of the alpha filter (see He and
Kedem (1989).

Definition 4.1: The a™- filter is defined as the transformation

Zi(a,n) =Z¢+a"Zi_q1(a,n), —l<a<landneN-{0}. (11)

It has transfer function given by

1
H(\a,n) = T angx? ~7< ALZm
and squared gain function given by
|H(\; @, n))? = (1 — 2a™cos(A) + ™)™, —r< A< 7. (12)

Proposition 4.1: For n € N—{0} and o € (—1,1) the first-order autocorrelation p1 ()
for the a™- filtered process (1) 1s given by

p (a) _ E[Zt(a’n)zﬂ'l(a?n)]
1,n -
E[Z}(a,n)]
A? cos(wj;) a”
_2L 1—2an COS(&JJj)+a2" + 0'3 1—q2n

S,
s

|

(13)

N

A; 1 1
i + o2
2 1—2a™ cos(wj)+a?n €1—q2n

e

<
Il
—

where the noise process {€¢}iez 15 assumed to be Gaussian and white with e ~ N(0,02).

Proof:
Observe that

11



T T

E[Zt(oz,n)Zt+1(a,n)]:/ cos(/\)|H(/\;a,n)|2dFX(/\)+/ cos(A)|H(\; @, n)|2dF.(N)

—7 -7

Az

LN V)

[cos(w;)|H (wj; @, n)[* + cos(—w;) | H (~wj; a,n) ]

»|

™

cos(A)|H(\; a,n)[2dA

™

2
cos(w])|H(wJ,a n)|* + g_w/ cos(\)|H(X; a,n)|?dA

—_

+
M- S
P
3

vl

<
I
(=

and

E[Z}(a,n)] = /_ |H(\; @, n)|2dFx()) +/’f |H(\; a,n)|2dFe())

-

2 9 T
> 2 e+ H s+ 22 [ 1HO @ m)Ed)

p
=1
p

2

=1

L

no| %,

2 o
| H(wjs ) + / [H(X; o, n)[2dA
™ ™

S,

where |H(X; a,n)|? is given by (12).
From Gradshteyn and Ryzhik (1980), we have

/ cos(\)|H(X; a,n)|?d) = 27r

— A2n
—r «a

= an2—7r = a"/ |H(\; a,n)2dA

1 —qa?n

where |H(A; a,n)|? is given by (12). Therefore, the expression (13) holds.
E

In the case p = 1 we have only one fixed point for the mapping p;. This fixed point
is cos(w;) and, in this case, the problem of finding the only one frequency is solved by
using the alpha filter (see He and Kedem (1989)). An interesting result related with this
situation is the following.
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Proposition 4.2: Suppose a* = cos(wy) 18 the fized point for p;. Then,

_ Varles(a*))

pll(a*) - V(lT‘[Zt(OZ*)]. (14)

Proof:
Let

_ Var[e(a)]
= vz

Then it is known ( see expression (2.16) of Kedem and Yakowitz (1990) ) that for any
a € (—1,1), we have

p1(a) = @™ + C(a)(a — a¥).

Hence, since a* = p1(a*)

pll(a*): lim‘ pl(a)_pl*(a )
a—a a—«a
_ g Ple) =
a—a* o —a*

o + C(a)(a — ") — a”

= lim
_ owy _ Varled(a®)]
=) = vz ey

From Proposition 4.2, when the alpha filter is used we calculate p] at a* = cos(w;)
and we obtain

Observe that |p}(a*)| < 1.

Now we return to the general case p > 1.

We need to make some considerations before analyzing the linear system associated
with the fixed points of p1 n(a). Notice that E[Z?(a,1)] for the value a = 0 is given by

13



P A2
E[Z;(0, )] =) 5 +o2 =

j=1

(see the denominator of expression (13) when n = 1, that is, the case of the alpha filter).
We can estimate E[Z2(a,1)] at @ = 0 by

A . e
=% Z[zj(o, 1) — Z(0, D)2 (15)

Here we are using no filter, just the original series since @ = 0. The bar in (15) denotes
the mean average value. In the linear system (18) below we will need the condition

4 A2
35+

J=1

O\M

= (16)

The equation (16) will be the first one of the linear system (18).

In this section we suppose that we already know how to find all the frequencies &,
1 <7 < p, using the approach of Section 2 (see also Kedem and Lopes (1991) and Lopes
and Kedem (1991)). The equation of the fixed points of p1 »() is given by (see expression

(13))

2 n
J

?
Aj cos(wj) s Q@
pLn(0) = & = JA: 2 1—2amcos(wj) + a2® Te1 —q2n

AZ 1 |
B +otp
= 2 1—-2am"cos(wj)+a?® 1 — a2
SN W . ) bt T YT ST
- 2 "1 —2amcos(w;) + a2 —a2n’
We consider the above expression for n € {2,3,--- ,p+ 1}. In order to use for each

n a different notation, the fixed points of p; »(a) will be denoted by aX. So, the equation
of the fixed points is given by p1 n(a}) = af. Therefore, we consider the following linear

14



2 2

system of p+1 equations and p+1 unknowns (A42,--- | A3, 02) given by

P A2-
j 2
S o
=1 2
P 2 *
Zé.!_( cos(wj)_a; )+U2(a22_a;):0
=21- 2a3? cos(wj) + a3t 41— ast
p 2 *
Zﬁ( cos(wj)—a3 )+02(a;3_a§)=0
21— 2033 cos(wj) + a3® 1 —ajb
P A2 *(p+1) *
S () (G2 o ()
(p+1) *2(p+1) € 2(p+1) /T
=1 21— Qa;_fl cos(w;j) + ap+f 1-— a;+f
Notice that the system is linear in A2,--- ,Af,,ag. Since we have p+1 variables
Ay, ,Ap, 0. that we want to estimate, if we are able to find the constant b and also
a5, ,ap, 05y fixed points, respectively, of p12(a), p1,3(), -+, p1,p+1(a) then we are
able to solve the linear system and, therefore, to obtain the estimated values A,,--- , 4,, 6.

The value b is obtained from (15).

Remark 4.1: The reason to use the condition (16) is to avoid a system with the trivial

solution A; = Ay = --- = A, = 0. = 0. We do not use the equation for the fixed point
of the a-filter (that is, n = 1) because the resulting equation of the fixed point does not
depend on Aj,--- ,A,,0. in the case where 4; = Ay =--- = A,.

Now we analyze the map p; n(«) for each n € {1,2,--- ,p+ 1}. Let us consider, for
simplicity, p1,2(a). In Figure 6 we plot a graph of p;2(a). When we iterate p; 2 at an
initial value ag, p§,(ao) converges to some attracting fixed point (a.s.). Therefore, we
consider p§ ,(aq) a good approximation of one of the fixed points of.

In an analogous way, when p € N and n € {2,3,--- ,p+ 1} we have a finite number
of fixed points for each map p; »(a). This follows from the fact that the set of fixed points
a* is the solution of a polynomial equation (see (17)). In the same way we take an initial
value aq at random in (-1,1) and we can consider p} ,(ao) as a good approximation for
one of the fixed points a}. Now we plug the p+1 solutions &}, = pin(ao), 2<n<p+1

in the system (18) and we get

15



J=1
2 ~ ~ % ~ % ~ %
Zﬁ( COS(wj)—a2 )+0_2(a22—a2):0
e 2 *1—243% cos(@;) + a3t £t 1-—a3t
P A2 ~ ~ % ~ %3 ~ %
Z_J_( cos(@;j) — 63 )+02(a3 —0‘3)___0
= 2 *1— 2433 cos(@;) + 638 St 1-—as
~ ~ ~ *( +1) 2 %k
EP:A_?( COS(LU]') — a;+1 ) a 0_2(an1 B aP+1) =0 (19)
~x(p+1) - ~x2(p+1) € ~x2(p+1) /T
= 21— 260,01 cos(@;) + Gyt — a7yt
where @;, 1 < j < p, was calculated as in Section 2.
Now we apply a numerical method to obtain the solution Ay, -- -, Ap, 6 of the linear

system. In this way, we obtain all the relevant information of the model (1).

In the simulated model mentioned in the introduction, where p = 2, A; = A, = 1.0,
ce = 0.3, w; = 0.7 and wy = 2.2, with N = 3000, we applied the above method and we
obtained the strong consistent estimates b = 1.0901, 4% = 0.1005 and &3 = 0.0919. By
solving the linear system (19) and using the values previuosly obtained in Lopes and Kedem
(1991) &; = 0.7044 and &, = 2.1965 we get A; = 0.9783, A, = 0.9525 and &, = 0.3976.

The strong consistency property of the estimates we used here can be derived from
Theorem 2.2 in Section 2.

Conclusion: Using the updating procedure (HOC) associated to the complez filter and
the a™-filter one is able to estimate all the relevant parameters in model (1).

16
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Figure 1: Fixed pcints in p1(a) = pi(a,15) from the complex filter for P=2 A =4, =
e = 1.0, w; = 0.7 and w; = 2.2 (cos(w; ) = 0.7684 and cos(wz) = —0.5885).
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Figure 2: Fixed points in pi(a)

= pi(a, 15) from the complex filter for P=2 A =4, =
T = 10, w) = 0.7 a.nd 555

= 2.2 (cos(w}) = 0.7684 and cos(wz) = —0.5885).
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Figure 3: Graph of p)(-,10) from Slutsky filter for p = 4 and the diagonal line. The
dotted lines are the constant functions cos(wj), 1 <j < 4.

.97

Figure 4: Graph of pi(-, 10) from Slutsky filter for p =4 and the diagonal line. The two

fixed points of p3 constitute a periodic orbit of period 2 for p1. The dotted lines are the
constant functions cos(w;), 1 < j <4,

1.57
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Figure 5: Graph of p1(-,10) from Slutsky filter for p = 4 and the diagonal line. The
dotted lines are the constant functions cos(w;), 1 < j < 4.
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Figure 6: Fixed points in p1,2(a) from a2-filter and the diagonal line.
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