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INTRODUCTION

let V be a reflexive Banach space and /4(u),j3{u)
two real valued C1 functionals on V . For ¢ a real
constant, set MC = {H €\’:/i{u) =c} . Under certain technical
conditions the variational theory of Liusternik-Schnirelman
provides a natural generalisation of the Courant-Weinstein
mini-max principle establishing the existence of an infinite
number of distinct eigenpairs (kk,uk) , ukg;MC , Ake R , of

the Euler-Lagrange equations associated to the pair 94(u)48(uD:
A(uk) = AkB(uk) (see [06], [9])

In two papers [7], [8] Chiappinelli discussed the question of
the determination of the properties of the asymptotic

distribution of eigenvalues: v(t) =#{k : A, <t} . In the

k
problems discussed in [7], [8], (;4,/3) were chosen to be
functionals related in V =H;(Q) to the pailr of operators
(-su,u+f(u)) and (Lu+f(x,u),u) respectively, where f(u)
satisfied a certain growth condition and f(x,u) was taken
to be sublinear and odd in u with L a second order linear
selfadjoint elliptic operator. Nevertheless lacunae were left
and in the present paper we consider various variational
problems in which we assume that V 1s a closed subspace of
the real Sobolev space H™ () , 9 a Sobolev domain in RM
énd H?(Q)CZV » 2m2m . Let /4O(u) and /3O(u) be the
quadratic functionals associated with the self-adjoint linear
differential operators in divergence form AO,BO of orders

2m = 2m +2m' and 2m' respectively, m_ >0 , m' >0

o s >0 , whose

coefficients are HB8lder continuous of order s , 0 <s <1

b4



uniformly on Q . Then more specifically we consider pairs of

non-linear functionals (j4(u),/3(u)) taken in the form:
(A @ + £, 2B (W) +hw))

where f(u) and h(u) are nonquadratic functionals

satisfying certain technical conditions (f(u) satisfies
essentially the conditions (S) of [6] and f,h are C1 even
potentials and h'(u) 1is compact in V* | the normed conjugate
of V , on bounded closed subsets of V)

We set vo(t) =ﬁ1k :uk_it : A ul =ukBu§}

o k
o "c/ZmO Ul-s/s+1)/2mo
It 1s known that v (t) = gét +0(t ) as t oo
where & =]0| , the Lebesgue measure of , and g 1is a
geometric constant. Let Jo =§¥%(§?%-+mo(2m-»n))"1 <n/2 , Zm>n.

In case £=0 and h satisfies conditions H3, the corollary
to Theorem 1, states that for 2m>n , then setting

v(t) =#{k : » <t} , we have

n/ZmO (n —S/s+1)/2mo
\)(t) =gdt +O(t ) as Tt s if Joiji%
and
n/2m n/ZmO - g
v(t) = gdt +0(t ) as t=-® | in case 0 <] <jO ,
, _m-j n 1 hile 5 _ ,
where o =1-73 7n > >0 . While in case 2m=n , we have

merely that v(t)=x vo(t) as t-+e at level Mc . With the
same conditions on h but with f(u) satisfying more general
g%owth and coercivity conditions, we establish in Theorem 2.
that for ¢ sufficiently large v(t) xvo(t) as t-o+o at
level MC . Theorem 1 uses nonintegral interpolation estimates
and Theorem 2 these togetherwith the use of a radial odd

homomorphism from MC to the level set ZC = {u :/4O(u) 2 2¢ck.



We also give a result for the Von Karman equations describing
plate bucking,taking advantace of the special form of the pairs,

where h =0 and f(u) 1is positive and compact on bounded

closed subsets in V::Hg(Q) . Theorem 2' states that in this

case v(t) = g6t +0(t 2 -85+ 12y by pewm gt level M_
Here it should be noted that f(u) 1is not a polynomial type
expression in the derivatives of u as it effectively involves
pseudo-differential operators.

The first author (VBM) acknowledges the support of
the Ministero della Publica Instruzione (Italy) and the second
(MT) the support of ICTP (Trieste) and the CNPg (Brazil) while

visiting Trieste and Lecce.

1. Preliminaries

Let @ be an open bounded region in R" with a
sufficiently regular boundary (see [10] and the references
given there). We denote the norm on the standard Sobolev spaces
HO Py by | ],

5P
we denote Ht’Z(Q) by HI(Q) ; Hg(Q) denotes the completion

, the LP-norms by |li}p and more briefly

of C:(Q) in the norm ||

£, 2°
For two functions ¢ and ¥ defined on a common

domain D of some R" we write ¢(y)~ ¥v(y) and ¢(y) =y (y)

to mean respectively that for ye&D and y -+ we have

00y) = ¥ +0(1)) and 0<a; ¥ ca <o,
We assume the following hypotheses
Hla Let V be a closed subspace of Hm(Q) such that

m
HO(Q)C_V



We consider two formally symmetric strongly elliptic operators
in divergence form Ao’Bo of order 2m:=2mO +2m' and 2Zm'
respectively, m >0 , m'" >0 such that their associated

o i : - ‘ L
bilinear forms y4 o and /30 satisfy the following conditions

with positive constants Cor b Y

O’
ae A ww s vl 2 e lul) uev
o’ 2 = 70 m,2 d
2
Hic Kﬁo(u,u) > bo,hJHm',Z , uecV
H1d The coefficients of A, and BO are uniformly
HB8lder continuous of order s , 0<s<1 , on 0

We set /4O(u)==/4o(u,u) and ,Bo(u)::/go(u,u)
As remarked earlier we consider pairs of nonlinear even
functionals /1(u)=:% ¢io(u)-+f(U) : j@(u)::% /3O(U) +h(u) ,
ueV . In Theorem 1 we deal with the degenerate case f =0
while in the case of the von Karman equations h(u) =0
Both these cases may be placed within the context of the theory as
formulated in Theorem 6.6.11 of [4], where by Propositions 5.2, 6.4
and Theorem 7 of [6] we may take both,/4 and /3 to be C].

1

H2 (a) ,4‘(u) is a C odd gradient operator with‘/Q'(O)=O

and for any u#0 , /4‘(su).u 1s a strictly increasing
function of the positive real variable s ;
(b) The functional /4~(u) 1s coercive;
(c) When u *u weakly in V and /4‘(un) converges
s£rong1y in V* then f{(un)-+/4(u) and un-§+u in V
The last hypothesis stated there is replaced by the following

in section 2, 3 and 4.1 taken together with Hlc,d.

H3a Let H(x,£) be a funtion defined on @ ><R1

measurable in x and C1 in & on R]

3

, for each fixed



x outsidc of a nullset in @
1

M

(b) BEH(X,-€)==-8€H(X,€) ; X€9Q , E€R

(c) 3, H(x,E)E >0 ; xe 9, EeRr!

.
’

1

H

(@) |3Hex,e)] < clgl?, 1<q n(n-2j)") xeq , £€R

where 0<j<n/2

Then we define h(u) by h(u) = .%}Mx,utx})dx , UeEV
These hypotheses lead to
H2(d) (1) h{(u) 1is well defined, bounded on bounded subsets

and of class C] on V

(2) h'(u) 1is compact on each bounded closed subset of
V;

A
(3) h(u) = S h'(su)uds 1s even and positive.
0

Note that these properties given 1n HZd follow as in the
Appendix to Section 1 of [5]. HZ(d) gives the last hypothesis
of Theorem 6.6.11 of [4].

In the case f£:=0 , HZ2 is trivially satisfied, while for the
von Karman equations all the necessary verifications are given
in section 4.2 to establish (iv) of Theorem 6.6.11 [4].

We consider the eigenvalue problem
a(u,v) = ab(u,v) , for all veV , (1.1)

where a(u,w) = (A'(uW,v) and bu,v) = (A"'@,v)
Let Mc ={ueV: /4 (u) =ct}

The Liusternik-Schnirelman max-min theory states
that there exist an infinite number of distinct elements of
uy e Mo such that (1.1) is satisfied with a corresponding
AkeiR . More specifically let Sk=={KCZMC: K symmetric

compact and cat K>k} . Each eigenvalue pair (Ak,uk) is
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associated with a critical level <y determined by

Cy = sup inf ﬁg(u) (1.2) |
VéZSk uevVvcHMm
g
such that j&(uk) =Cy s (1.3)
1 (Brluduy) (1.4)
and A = :
k (/4 (uk)-uk)

(see [6], [4] Chapter 6 [9]).

We expect that under reasonable conditions

o1 Bl
>\k1 ~‘-2—‘C—k~ = C ]Ck o (1.5)

Note that in case f£=0 , h=0 , a quadratic pair, MC 1s the

simpler level set ZC ={Ll€\/:~é/4b(u) =C}

Let us recall that the eigenvalues Ai of the linear problem

o) ,0p ..0 .
Aouk = AkBOUk are given by
-1 .
A; = (2¢) ,Sup 1qf /3O(u) (1.6)
h.ésk 1J€I\CZC

(see Lemma A 6,7A of [4]).
It follows that our principal task is to show that the right
hand sides of (1.5) and (1.6) are asymptotic as k-»o .

It is useful to recall that the class Sk 1s
preserved under radial odd homeomorphisms T of submanifolds
of V invariant under the involution w:u--u . This follows
frdm Lemma 1.2d of [6].

Although we maintain the same hypotheses as h(u) in Section
4.1 the preceding formulation is not adequate to deal with the

move general nonlinear functionals introduced in 4.1. However,

in this case we note that the technical hypotheses on f(u) are



those of Theorem 10 [6] while it is Tteadily seen that under
conditions H3 the underlying abstract elements of the theory
given in Theorem 8 [6] may be established and the results of
Theorem 10 [6] taken over without modification, namely those
listed in equations (1.2) to (1.4).

S
We introduced the vector space R M whose elements

(m)

are {,(m) ={ga: ia| im} . Let F(x,¢§ ) be the function

defined on the trivial jet bundle 57.><Rsm-*R1 , which defines
an operator. on functions on & , assigning to each wu another
function v on & with v(x):F(x,g(m) (Wx)) , xefl , where
E(m) (u) (x) = (%*u(x) , lal <m} . Define the nonlinear functional

Fin e §f?(x,£(m) (u) (x))dx
¢

We consider even functionals
Aw =2 A )« £ , uev

Associated with the functional 4 (u) 1is the Euler-Lagrange

operator A(u):AOu+ z (—1)lalDaF (x,g(m)(u)(x)) where

a|<m o
Fg is the partial derivative of the function F with respect
a
to go . Such functionals are well defined under hypotheses

given in the Appendix to Section 1 of [5].

We refer to such hypotheses as being the "usual hypotheses"
and observe that under these hypotheses the followlng properties
}}old (see [5] or [6]).

P1 f(u) 1is well defined, bounded on bounded subsets and of

class C1 on V . For each u,veV

Fu,v) = T (F (., ™ ), p%)
laf<m  ©

is well defined and f'(u).v=f(u,v) for all u,ve Vv



[¢e}

P2 f'(u) satisfies condition (S) of Section 6, Definition

6.1 of [6], and 1s bounded on bounded subsets.

\ 2
P3 f (u).u.zcilhjﬂm,z ~czthHm,2 , for all ué€y
P4 There exist a continuous positive function W}(x) » X€R,
| H _ '
such that géé?)'uiv1i“ullm,2)HuHm,Z - C)1(HuHm,2]

Note that the eigenvalue problem (1.1) is equivalent to

B(u,v) =a(u,v) + b2 yb(u,v) = v+ b2 Ib(u,v) (1.7)

P

for all veV , and so causes a shift in the eigenvalues
A +b;1y . As characteristically there exists a sequence of
eigenvalues An-+w this will not make a difference to the
asymptotic properties of An as n-e

Note that Hlb,c and P3 imply that
- |2
a(u,u) > (CO+C])HU“m’2 - CzllUHm,Z (1.8)

From (1.7), (1.8) it follows without loss of generality we
may assume that v =20
2
T - . 7. =
Lot 160" {fu:uel ,]luHm’Z = 60}
From (1.8) 1t follows that there exists a k>0 such that

for o>k ,

(c_+c,)

(AT ,w) > J—Z——— Sy (1.9)

Then as in [5], setting u=r71v , IWVH; , =k

T4, v (c_+c)
A ) -A(V) _ -(1/" (S\Sf)svds > o2 1 log £ 4 T >

We conclude that

(e +c,) 6y
A (w) R 1Og(—R—) - max ]A(V) |>O , (1.10)a

12
Hviim’zzk



(o]

taking 60 sufficiently large. 4 %

Note that (1.10)a implies that /4(u)-+oo with

|[u||m’2-+oo - Also note that the hypotheses H2d imply the

existence of a constant Cy >0 such that
A €4 2
W s Fllully 2+ ogdiully ) = odlull, @10

Hence, if /4(u) =C » o 1t follows from (1.10)b that
u +« . Therefore for ¢ sufficiently large u > k
My g m,22

so that (1.10)a is satisfied and we obtain the bound

lull, , < kKexp [2(c+c) e max  [A]) (1.10)c

2
HVHm’z': <

LléMC , ¢ sufficiently large.

The following property holds

P5 Under the hypotheses H1, H3 and the "usual" hypotheses on
f , for c sufficiently large, B (u) >0 for ue¢M_ , and

given d>0 , there exists d, >0 such that for all uE M,

1
with  [3(u) >d then B'(u).u>d >0

Now (1.10)c holds so that ]hJHm’z_iconst 3 ue;MC » also by
HZd it follows from the Appendix to section 1 of [5] that
3'(u) is compact on closed bounded subsets of V . Suppose
then there exists a sequence u, € MC s Uy b u , such that both
/B(UD)_id. and (/g‘(un).un)-+0 . Then we conclude that
/3}(u).u:=0 by compactness and weak convergence and by

positivity /3O(u) =0 so that [|ul| =0 which implies
mo,2

2

f3(u) =0 , while the potential formula implies that |
lim /3(un)==/3(u)jid a contradiction.
The last property is proved in Lemma 3 and may be announced as

follows:



Po For ¢ sufficiently largec each ray {from the origih hits

MC in exactly one point.

2. A technical lemma

LLet us recall the Sobolev embedding
B (@) L1 (@) , for 2<1 <2n(n-2j)7"

valid for all 0 <j <% {(see [12] section 4.6.1).

In the subsequent analysis, for definiteness, we set
1 =2q = 2n(n-23)""

Further recall the interpolation 1nequality in the HS(Q)

Sobolev spaces:
m-j J

“m m
Hullj,zf_C(Q)HUHZ HuHm,z . (2.2)
This 1s a so called multiplicative inequality familiar from
interpolation theory (see [12] Remark 6 Section 2.4.2). For a
proof we refer to [12] (Theorem 1 Section 4.3.1; Theorem 1
Section 2.4.2 and formula (v) of that theorem). Note that the

Wt’p(Q) spaces defined in [12] coincide with Ht’p(Q) in case

p=2
n m-j
m n-2j ’

0<j<Z

We set 6 = >

Then we have the following lemma.

Lemma 1

Under hypotheses Hi, H3 and properties P1 to P4 there

exists a constant K(Q,c) such that
|

hw < k2,0 [lull,;*° , wem_ (2.3)a

and

ht(w.u < K(2,0) [Jul] ;7% uem (2.3)b

¢ b



if ¢ is taken sufficiently large.

By hypotheses and the formula for potential operators

we have h'(tu).us= SlJ(X)Hé(X,TU(X))dX_iCTq é%[u(x)IQ+1dx )
o,

C 1
h(u) < I+ % ]u(x)|q+ dx

From Schwartz's 1nequality it follows that

h(u) < const]h)Hgliu\IZ (2.4)

Then using (2.1) and (2.2) we have

SR
lolly < Null; , < ce@llull,® il

and from (2.4) 1$q(m-‘) ai
m
2

nw ¢ constllull, I,
Then (1.10)c yields the upper bound, if ¢ 1s taken sufficiently

large,

h(w < Kz, flull}*%

similar estimates give (2.3)D.

Note that in case f£ =0 the value of ¢ 1s unrestricted.
Recall that in case 2m>n , u can be modified on a set of
measure zero so that uc;CO(ﬁ) and one has the well known

interpolation inequality (see Lemma 13.2Z of [1]):

n n

Jufl, 7

lue | < v llullZ™ v (2.5)

This leads to an estimate of the form

(q+1) (1 - 52)
h(u) < const][u|]2 2




—
o

n
. m -
n_m-j , 2m-n n 2 ] n

_ 1 y
"h-Z3 m zm T n-23 Tm  ° (Hn 23)(;- Zm

However, as 1

we see that in (2.3)a and (2.3)b we have attained an higher
power of {hJHZ which 1s desirable in the asymptotic analysis
as we shall subsequently. Also any fixed value of q > 1 may be

attained by choosing j suitably.

5. The distribution of eigenvalues: £=0 , 2m>n

In the subsequent analysis we ¢ =|Q| , the Lebesgue
measure of Q

We recall a basic result which may be derived
following the line of arguments given in [10] and [11].
Although the latter paper deals with much more general bilinear
(matrix) pairs and accordingly does not give explicit expressions
for the second term in the asymptotic formula for the
distribution function, it is evident that the estimates for
scalar bilinear pairs as considered here may be obtained as in

[9]. Using (1.9), (1.3) and (1.4) it follows that

Zm 2m Zm

o) S
+
n S+1

/n) :
) (3.1)

O_

Ct

We now establish a fundamental lemma.

: .m-3 n 1 i §

We set G"n—Zj T >0 1if Zm >n
Lemma 2

Under hypotheses H1, H2 and with f=0 , we have

Zmo T
o - —2 (1+0)

C,tact+0(t ) as tow ’

Proot:

- : 1 p -
By hypothesis —Z—ﬁonu) i /5(11) ’ uéMC =Ll. , SO that

it follows immediately’ that



S < - (3.2)

For an upper bound we note that from Lemma 1 and

H1c we have

sup inf () < sup inf (/3,u))

KgStue}\CMC KéStueKcMC

where ¢(x) is the continuous positive increasing function
(1+8) 1+6
& K(®,c) x 2

+ b
O

¢ (x) =

o >

Then by an observation of Chiappinelll in [7] Section 3 we

have

sup inf (B, <ol sup inf B ()] . (3.4)
KéStueKCMC K€StueKCMC

It follows that from (3.1), (3.2) and (3.4)

2mO
-——=(1+8)/2
cg < C. < ci + O(t n )
Zm_
- —2 {1+0)
o n
= C o+ O(t ) as Tt e (3.5)

Theorem 1

Suppose that f£=0 , Zm>n , and hypotheses H1 and

H2 are satisfied. 2m
o}
-1 0 -y 10
Then At =c:ct + O(t ) as t->e« at level
M
e
Proof:

4+ e ( 1 1 —
Recall that from (1.3), (1.4) and L/4 (ug).ud=2c
we have

oo, = g ), - Alu)lcT



h‘(ut).ut —h(ut))c”1

] -

Sct V\t = (

Then by incqualities (2.3)a,b we have

W, <3 <k, fju I3
1+6 1+60
3 -1, T2 7
—— \7) 1
<5 ¢ K(R,eb (go(dt) ,
using Hlc,
1+6
< C1(Sz,c)/§(ut) 4 , by ﬂo(u)j 5(11) ;
1+0
- ¢, (0,0)(c,) °
= ¢, .
Zmo
—_E_'(1+G)
5 CZ(Q,C)t , using Lemma 2Z . (3.6)
From (3.5) and (3.60) we have
2m
o)
Ny W
-1 -1.0 ; n < Y
At = C Lt + O(t ) as t
Corollary
2ms 2ms 1
T T (2m = - i >
Set 1a —5+1(5+1 +m_(2m n)) in case Zm>n
(a) If Jo 2 <n/2 , then s
_n_ s+
ZmO Zmo
v(t) = got + O(t ) as toe at level M.
(b) If 0<j<j, , then
n n_ _
Zmo 2m
v(t) = gdt + O(t ] as t=e gt level MC

(¢) In case 2m=n , then

v(t) = t © as t-ow at leve]l M

Proof

First notc that since mO(Zm-n) >0 , in case 2m>mn,

) n
then 1 _ <=
“o 2



We deal with cases (a) and (b).

By (3.1) and Theorem 1 we have

2m 2m
———O - —
}\;1 = (g "t T 4 0(E)+0(E) as tee . (3.7)
( g Bl
-(2m_ + ~)/n - — (1+0)
where E, =t o s+l and E, =t f

It follows that E1 or EZ will be dominant in second order
asymptotics depending as to whether

S
S+ 1 2

Al

2m_ o
0

or as to whether

\
mO(Zm-n)j 5

S+1 d

leading to the inequalities

N

m(n - 23)

)
Al v
(W

In case jo_ij <n/2 , (a) holds and, in case, 0 <j <jo (b) holds.

Finally, 1f Zm=n , from (3.1) and Theorem 1 we see

that 2m

AL "F Ot giving result (c)

9

4.1 Estimates in the general case Zm>n

An important element in the theory of Liusternik-
Schnirelman as given in [6] (Theorem 10 and 8) is the property
previously indicated,P6 . The following lemma establishes P6
in'this case, the last property necessary to apply the theory

of [6].

Lemma 3

9]

Under conditions which guarantee properties P1, P2,

P3, P4 (the "usual™ hypotheses) together with Hib and d each

UFRGS -
SISTEMA DE BIBLIO
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ray from the origin hits MC in exactly onc point if ¢ is

taken to be sufficiently large.

Proof
Let ueSMC . If this property does not hold then
there exists a positive t #0,1 =<such that ue?MC . Consider

first the possibility that 0<t<1 . Then we have

1
% tZAO(u) .t So(f'(stu).u)ds -c

. 2
so that setting o'=1-t" and st=1 , we observe that

vi-o’
%(1..05/40(u) + JO(f'(Tu)iu)dT = C

Subtracting this from 4 (u) =c , we sec that

1
L 0?4 () =+ j. £'(tu).tu dt = 0
2 o) T TUu

Using prop—'rty P3, we conclude that

2 2
£r(tu).1u > c,1 l“le,Z - CZTIthm,Z

and, hence, that

: s
02 e llulld o) ceprliuliZ - egllull, par
v1-o’
Moreover, for ¢ sufficiently large [h}”m 5, >2k>0 from

(1.70)b and we conclude that

271
1 T .
0 2 e lullyy + ey llully 5] s - 910l
orT
C
1 g 2
0 > 5 o(c_+c )IluH
- 2 0 1 m, 2 . JTo
However, from (1.10)b, we have seen that fh}”m ; T ® as  cow,

11£h% . If follows that for ¢ sufficiently large to guarantee



Zc2
(CO+C1) (1+/1T-0"

Hu||m,2 > , the precceding inequality yields

a contradiction, ruling out the possibility that 0 <t <1

The hypotheses that t>1 may be dealt with similarly,

setting o’:tz -1 , with an argument which leads to the

inequality

(c +C1)

(]

(&
], , < —2

2 < 1 & STeE

+VvV1+0

once again leading to contradiction for ¢ sufficiently
large.

As an immediate consequence of Lemma 3 it follows
1
f(u))'7

that T{u) = (1 - .

u 1is an odd, radial, one-one onto

map of Mc to ZC , when ¢ is sufficiently large. We set

1
T(u) = (]_‘f(u)) BN /75/4,O(u)

u€E M
C C

b

In fact, a simple modification of the argument given
in Proposition 6.4 of [6] serves to show that T(u) is a
homemomorphism (in fact, a diffeomorphism of the Finsler
manifolds involved). In order to see this, renorm V by the
equlvalent norm thm =(2c)"1/4o(u) . This equivalence follows
from H1b, with v =0 as we always suppose together with
/4o(u)_§c4[}uHé’2 , which follows from Hid. Then L. becomes
the unit ball in norm H[ H] and one may apply the result

cited above.

Theoremmg

Assume that the hypotheses H1,H2 hold together with

the usual hypotheses on £ that 2m>n and that ¢ 1is taken

sufficiefit1y large as in Lemma 3. Then we have




Under the conditions we have assumed all the

conclusions of Theorem 10 of [6] are applicable. It follows

that
€. = sup inf [ —f(u))ﬂ (T(u))/z +
VES uevVcM © ©
t c
i
v 1
c o -E8L T ray - £@)7 £y
£ BUP inf (fiﬂigllﬁl- J’ (h' (s7 (W) .7 (w))ds)

Ve St T(We (V) ZC

| A
n
&
e

inf (E%QQ-+J(h%swiwdﬁ
Ves, uevVcr

t
= sup inf A (uw) = Et ,
Ve St ueg VcC ZC
by the invariance of the class St under the odd radial
homeomorphism 7T (u)
However, Lemma 2 may be applied to Et and we obtain
- - -+ ©0
c, 2 CtU +0(1)) as t . (4.1)

For an inequality 1in the reverse direction observe that

" C.= sup inf BWw)
\'ESt’ VGVCEC

= sup inf [T (u)z B—g-(k—])—

1
& J (h'(st(u).t(u)ds] ,
Ves, ueveM, 0

using the invariance of St under the odd radial homeomorphism

~=1
T

3
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< sup inf [(ZC)/4 (u)_1 Z§%£El
T VeSS, ueveM, g

a1 _ GES

20) * A ) ? ot
5 T Kee,o) [Jull ;771
using Lemma 1, so that
140

Et:iconst sup inf [ih}H;?z B3 () +1“JH%E3+136(UJ 2 1,

VE St ue VcMC

using H1b, Hlc and @O(u)_i B (u)

By (1.10)b, lﬂle , >k for ¢ sufficiently large and hence

we have

| A

| A

using (4.1).

From

Recall that by

-
N

t

By (1.9) we have for lh}Hm,Z >k

(A’

1+6
const sup inf {ﬁ(u)-+ B (u) 2 }
Ve s ue VCM
t o
1+6
const(ct +(Ct) 2 )
1+6
2

O(1)c2 + O((ci) ) , as tore

(4.1) and (4.2) we conclude that

(1.4)

i (3 (u) cu)
N T,q‘(utj-ut) ’

uté Mc

(c_ +cC.)
1 2
ST R i Ly YL

(4.2)

(4.3)

(4.4)

and since by 1.10b, lhl“m Z_ik for ¢ sufficiently large

(A"

(c_+c,)
(ugdougd 2 _"0_2‘_1_ k?

(4.5)
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Also from (1.10)b we have
(A'du) < ¢‘(Hut[lm,2) : (4.6)
We conclude from (1.10)c and (4.6) that

(/4' th).ut) < 9 (k exp 2(co+c1)’1[c-+ mi? |/4(v)|) . (4.
e

~J

)

(4.5) and (4.7) imply that there exlst positive constants A
and A, such that

1

ACpTud.u) < < A(A"(udu) (4.8)

As in Theorem 1 one shows that

cMF(B ) u) - Bl = W,

1+6

0tc,) * ) . (4.9)

satisfies ]Wt]

Remembering Cp = /3 “HJ , by (1.3), and using (4.3), (4.8) and

(4.9) we have established that K£1 ~ ci as t->o at level

MC , for ¢ sufficiently large and the theorem is established.

4.2 The von Karman equations for buckled plates

In this special case the result given in Theorem 2
may be considerably refined.

It is convenient to introduce the notation

[f,g1=(f, 8 -f 8 + (£ g, -£f .g)

yy=X Xy=y X XX=y Xy=x"y

The von Karman equations for deformations produced in a two
dimensional elastic plate of shape o c R subject to
compressive forces of magnitude A on its boundary 302 may

be written (see [4] section 1.1, 2.5c, 6.Z2b) in the form
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Au = A[®,u] + [u,d¢] in & (4-10)
AZ¢ = -[u,u] (4.11)
u=u_=u_=0
T on 3%
q’):¢xz¢y=0

In (4.10), (4.11) ¢ + A represents the Airy stress function
and u 1s the vertical deflection of the plate from its

undeformed state.

G}
(H'a) We assume that the matrix % _axy®
s 0 92®
Xy Y
is HBlder continuous of order s , 0<s<1 , and strictly

positive definite on Q . The usual Gérding estimate (see [1]

Theorem 7.6) implies that defining

1

B0 = (1e,W,%) for all w en’(a)

we have

,6 o ( W)

| v

eyliwlly 5 - ol

with some positive constants o and c

More strongly we assume that

(H'b) Bo(w)zcjsllwlﬁ’z , WeHl (@

with some positive constant Co
For completeness and as some of our results are
formulated in a slightly more precise form than in [4] [2].
derive a number of basic properties of the von Karman equations.
Let us introduce the bilinear form /4o(u,v) = (Au,Av)
for all u,vq;Hé(Q) . This bilinear form 1s continuous and
the associated quadratic functional ,4O(u) 1s positive on

.
H (@)



Accordingly, we may define a linear bounded selfadjoint
operator U :Hg(Q)->Hg(Q) via the theorem of Lax-Milgram

(see [1] Theorem 8.11) such that

2
/4O(Uu,v) = (U’V)Z,Z for all u,vegHO(Q)

Since by the Poincare lemma the norm induced by /4o(u) on

-1

Hé(Q) is equivalent to || HZ , the inverse U of U

exists and is bounded. For all u,v,wé:Hé(Q) , we set

| _
wy)uX +(uXwa uxywx)wy)dx

Q90 = (oo -

Integration by parts shows that Q(u,v,y) 1s a symmetric
function of its variables. We use the notion of negative
norm || H_S on Hé(Q) -due to P.Lax (see [13], III.10
Theorem 1). Note that f¢ Hg(Q)* thus by Riesz's theorem

exists a erzHg(Q) such that
TJf,V)2 , = (£,v) since (f,v) 1is a continuous

functional on Hg(Q) . It follows that the weak solution of
. 2 ®
the equations /4O(u,v)::(f,v) . fe:H;(Q) and all vegHé(Q)

is given by u::U_TeraHi(Q) . Now we have
(fu,ul],v) = -Q(u,u,v) for all u,ve?Hg(Q) ;
integrating by parts and, hence,

l([U,U),V) | ! |Q(U,U:V) l f_conStHqu’z lluH1,4HVH],4’
by HBlder's inequality,
2
= ConStHqu’zllVHZ,z
by Sobolev's inequality, for all Vé;Hg(Q) 5 HVI|2 , < 1. Hence,

| tu,ulll_, < constllulls ,
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Note that equations (4.10) and (4.11) may be reformulated in
the form:

/AO(U,V) = A ﬁ%(u,v) - [[u,U~1J[u,u]],v) , for all

20 -
véHO(u),

1

¢ = -U "Jlu,ul . (4.12)

That the formulation given in (4.12) is, in fact, well defined
is a consequence of the following lemma. Part (a) of the
lemma refines the estimate given above. For ueEHé(Q) , we

set C(u) = [u,U”'J[u,u]] and f(u):%(C(u),u).

Lemma 4
— 7 7
-1 ,
(a) || u J[u,u][lz,2 < const [“JH2’2|lu|]2’2 for all
20y
U€HO(:~) : 7 1 !
(b) f(w) < const [ullZ , Jlufj? , forall ueH (@) ;
(c) f(u) > 0 for all uc€H.(®)
Proof

3
.__,2
Recall that Hg(Q)C.HZ (2) taken together with the

Sobolev and interpolation estimates (see the references in

Section 2) yield:
1 1
2 2
][u[[h4 < const 1|U|L§ < const||u|]1’2!h1H2,z
2)

(4.13)

Then we have for u,y & Hé(Q) s

(U'1J[u,UJ,wJZ , = (Jlu,ul,v'), 5, with ! =U'1w ,

([u,ul,v")

-(QCu,u,y') , by integration by parts.

1}

It follows by HBlder's inequality and (4.13) that
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A

g
i(U J[U,U]),‘P)Z’Zl ConStHUHZ,Znulh’4H‘P'”1,4
3 1

constlull] Jilulld ,llv

I A

iz,
3 1
conse[lullZ ,llulld S llvll, ,

| A

| A
-t

2
for all yE€H_(Q) , Hwi[z’z

We conclude that

5 1

1

o™ stu,utll, , < comseilull} L llull?

Now set ¢==U-1J[u,u]
Then f(u)::%([u,@],u_1u) = - %—Q(u,¢, U_1U)

It follows that

f(u)

| A

-1
C0n5t1|ullz,zﬂ¢\|1,4|iU UH1’4

| A

2
COI’lStIIU[IZ’le(Ll“,Ll >

by Sobolev's inequality,

7 1
< constlthg’ZIIUH§,2

by part(a).

Finally, note that

£(u)= - 7 Q8w =06, [0 —u u) s G —u u))

by symmetry and integration by parts,

= 700, [u,u])

= —(U_1J[u,u],[U,U])

([u,ul,Uu” " Ju,ul)

(Jlu,ul,U ' J[u,ul)
i

U™ 2atu,ul I3 1,20, for all e HZ (0)

2,2

wrorvws

£ CAS
<const[|ul] 2,2 el 1,4 vl 1,4 g:;torécaes?%gﬁge MATEMATIF

|



iCOnStHu'lz’zllq’“z’zl!wnz,z

5/2
iconst”uﬂzfzﬂuhlfgﬂwuz,g
for a1l yeug(® , |1vlly p <1, inplies that cweim”

with negative norm HC(U)H_z_jconStlhﬂlg/gHUH}/g

2

Also | (C(u) -C(u),v)] <]Qw,0¢,u) | -QM,e,u )|+
+ 1Qlu,0,9) -Qu L6, ],

as above, by symmetry, so that,

| A

CODSt(HWHZ’ZHMI 1 ’4[]U - Un“ 1’4“' “Unllz,zlld)“¢’n||1’4”¢’]|1’4)

I A

const{fully ,llu-ul, ,+ supllug Il lie-efly J3ilvll,

for ali |[y]|, , <1
It follows that

IIC(UJ-C(UH)II_Z < CODSt(]'u-—unH1,4 e - ¢n”2,2) ~0

as n-« , by (4.14) and the fact that Hg(Q) 1s compactly
embedded in H' *(@)

Finally since f(u) =2(C(u),u) and Cu) % Cuw in
¥u oin HA(Q) , it is immediate that £(u )£ (u).

2 * .
HO(Q) if u

Observation

Conditions (i), (ii) and (iv) of Theoren 6.6.1[4] are
. . . W . 2
obviously satisfied. If u, ~u in HO(Q) and /4'(un) §/4'Lu)
: 2 * l )
in HO(Q) then /4(un).un > A'(u).u . However, by Lemma 5(a),
. S , i 2 * S X i 2 %
! = : A = 1
f.(un) f'(u) 1in HO(Q) so that oUn Ao(u) in nO(Q)

and, hence,/4(un)'+,4o(u) . This implies that

lim ][unl]g,z = l[u]lg’z . It follows that uy 3 u in Hg(Q)

n-—-r«

By the weak sequential continuity of f(u) s f(un)-+f(u) and
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we conclude that /4(unq +/4 (u) as n-o . It follows that
condition (iii) of Theorem 6.6.1{4] is satisfied.

It follows from (4.12) that we may formulate the
Liusternik-Schnirelman theory with respect to the pair of
functionals (/A(U),/BO(U)), where ,4(u)==%/4o(u)-+f(u) at
level M_ ={u A =c)

As before the map 1(u) =t(u)u 1is an odd radial

one-one onto map of Z_. into M. , where <t(u) = V2
) / 172
J1e (1420,
c
is the solution of the equation TZC + T4f(u) =c . In fact,
this map is the inverse of7T :u — SN I of MC-+ZC It
(u
1-=

follows that T 1s a homeomorphism since 7T 1is a homeomorphism

by the same argument as given 1in section 4.1.

Theorem 2'

For the von Karman equations for buckled plates under

the hypotheses H' the asymptotic distribution of eigenvalues

v(t) ii_given EZ

2 - 29 /2
v(t) =gét + O(t ) as t -+ at any level

First, ¢ = sup  inf (%ﬂo(u))
VéStUQVCZC

4f (u) ~
sup inf (1‘*/1+__E-_ /SO(TCU))
VG:St UGEVCiZC 2 2

| A
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£(u), Bow)
u) )

< sup inf (1 + >

— b w=%(u) 9
VeSt weVCMC

by the invariance of the class S_ under the hmmmmonﬁﬁsm T .

t
2 3,0

Hence, cg < sup inf (1 +K (c)lluH ——————J , (4.15)
VeES, weVCM 2
t ' c
using Lemma 4(b) and the estimate ||u”2 , Sconst /2 for
LICZC
Also, we have the inequality
1/2
- 4
T(u) 1 /1+(1+ f(u) /Y2 < K (e (4.16)
1/2
by lemma 4(b), and ][u”z , <const ¢ for uer
From (4.15) and (4.16) we conclude that
(W)
c < sup inf (1 +Kg(e)|lwlly z)f(z) )
Ve S cVc M *
t o
and by H'D
B (W
c‘t’ < sup inf (1 +K, () BO(W)1/4)+ (4.17)
vVes €EVCM
t c
e+ 00e M) as tee . (4.18)

On the other hard, an argument similar to that given in Theorem
2 shows that

Ct < ci as t o . (4.19)

From (4.18) and (4.19) we conclude that

5/4

c = c® . O((C ) ) as t -« at level MC . (4.20)

Finally, we observe that

=t o 2B, e €M (4.21
t (A'(ut)-ut) - (A'(ut).ut) » Ut c -21)
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it

One has (A'().u) = A ) «(€Cw).u)

and by Lemma 5a

7/2 1/2

[ (Cup)up)] LALLM

| A

const ||u ||

| A

const!lutH;{% ﬁ%(ut)1/4 , (4.22)

by the coercivity of /{o(u) , the positivity of f(u) and
utg:MC together with H'b.

From (4.20), (4.21) and (4.22) it follows that

-1 o o.1/4. -1 1/4
o= 2¢22e 00T L0CedH
-1 0 5/4
= C c o+ O((cg) / ) as t-oew (4.23)
: o -1 -1 o
Recalling that Xt = C ¢, we conclude from (4.23) that
S eV R 0((x§)‘5/4) as & we (4.24)

at level M_ . The conclusion of the theorem follows immediately

from (4.24) and (3.1) since

S

- (1 )
c? = c(ch)t“1 + 0(t Z(S+1)) as t oo
S P R,
and (xg)‘5/4 = 0(t 205+1)7y " 0cs <1, as tow

Observation

The assumption made in Theorem 6.7.16[4] where it is
?hown knmio s An-+m as mn-=+« 1s equivalent in our notation
to merely (Bou,u) >0 . However, this hypothesis 1s not
sufficient, even in the linear case, to obtain the asymptotic

distribution and a strong hypothesis such as H'b is essential.

Bifurcation type results are given in [2], [3].
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