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Abstract. Here we will analyze the mixed spectrum model

P
Zy = ZAjcos(wjt+¢j)+et =X;+e:, for teZ,
i=1

where p is not necessarily known and, for each j € {1,2,--- ,p}, 4; is an unknown constant,
wj is an unknown frequency with value in (—m, ] and the phase ¢; is a random variable
uniformly distributed in (—m, 7] independent of each other and of the noise component. We
assume that the noise component is Gaussian white noise such that e; ~ N(0,02). Observe
that the process {Z;},cz is not Gaussian. Here we present a recursive method of updating
parameters for estimating the frequencies wj, 1 < j < p. The cosines of the frequencies are
obtained as attracting fixed points of a certain map.

1. Introduction

Consider the mixed spectrum model P aramo e
P
Zi=) Ajcos(wjt+¢j)+e =X +e, for teT, (1.1)
i=1

wlhere the set T 1s cither Z or R depending on the time parameter being discrete or contin-
uous, p is not necessarily known and, for each j € {1,2,--- ,p}, 4; is an unknown constant,
wj 1s an unknown frequency with value in (—7, 7] and the phase ¢; is a random variable
uniformly distributed in (—m, 7] independent of each other and of the noise component.
We assume here, for simplicity, that the noise component is Gaussian white noise such
that ¢ ~ NM(0,02). The assumption of white noise is not really needed, but it simplifics
the exposition. In fact, any continuous spectrum noise will do just as well.

We present a method inspired by the He and Kedem (HK) Algorithm (see He and Kedem
(1989)) that allows one to obtain, from an iterative procedure, with high order of accuracy,
the estimated values of w;, 1 < 7 < p. The method is based on Higher Order Correlation



(HOC) analysis (see Kedem (1990)). The HOC analysis is a faster way to estimate the
frequencies wj, 1 < j < p, than the traditional periodogram analysis since the “fast Fourier
transform” algorithm requires O(N log, N) computational complexity while in the former
we can achieve order of magnitude O(N).

We use successive applications of the complez filter (see Definition (3.2)) to obtain all
frequencies of the model (1.1) when T = Z (see Section 4 of this paper).

Let {Zi(a, M)} ier be the stochastic process filtered by the complez filter (sce Definition
(3.2)),where o € (=1,1) and M € N — {0}. Given an initial valuc aq € (-1, 1), the first-
order autocorrelation of the complex-filtered process {Z(a, M) }ier is, by definition,

(a )_ R{E[Zt(QO’M)Zt+1(a0>M)]}
P1 0, ) = Eth(ao,M),2 )

where here and elsewhere, a bar denotes complex conjugate and R{z} the real part of z.

We should write p;(ag, M) to also show the dependence on M (we use this notation
in Sections 3 and 4) but, in order to simplify the notation in this section, we write only
p1(ag). Suppose M is fixed. With a; = p;(ag) € (—1,1) as the updated filter parameter
we calculate again the first autocorrelation of the complex-filtered process and we obtain

e, B2 (a ) = R{E[Zt(al’M)Zt+1(011,]w)]}
2 = p1(ar) = E]Zt(al,JW)]z .

In an analogous way, we define a3 = p;(az) € (—1, 1) from ay, to update the procedure.
In general, define

a1 = pieg), for keN.

We consider here the iterative procedure of applying p; successively to the variable a. The
main point in this paper is to derive useful information on the process (1.1) from the value
@y, when £ is large, and «g is chosen at random in (-1,1). Notice that in Section 4 we
update just the variable o and not the parameter M. This is the reason why we consider
here « as a variable and M a parameter.

Our goal is to show in Section 4 that this iterative procedure of updating the complez
filter parameter will converge to a value close to the cosine of some frequency. Now if M
15 large enough the possible values where the iterative procedure converges will give us all
frequencies of the model. Taking a large number of different initial values, we are able to
locate all frequencies.

Another way is to take just one initial value @, consider the iterates pf(agq, M) for k
large then filter out the value ay through a bandpass filter. This value ar will be close to
the cos(wy, ), for some Iy € {1,2,- - ,P}. Now one applies the same above procedure to the
resulting tinle series. Considering again ag at random, we estimate another value cos(wy, ),
for Iy € {1,2,--- ,p} — {{y}, through the updating procedure described above. In this way

we obtain, successively, all frequencies wy, for j € {1,2,--- ,p}.
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There is very important information about the iterative updated parameter procedure
that can be obtained by analyzing the intersection of the graphs of the function p; with
the diagonal line. This will be explored and explained in Section 3.

We applied the method to a simulated model with p =2, 4; = Ay =0, =1.0, w1 = 0.7
and wy = 2.2 (cos(w;) = 0.7684, cos(wy) = —0.5885) and we find the strong consistent
estimates O; = 0.7044 and &, = 2.1965. We simulate a time series with N = 3000
observations and we considered M = 15. For an initial value as ag = cos(0.4) we obtained
g = 0.7620 = c0s(0.7044) and for ey = cos(1.6) we obtained oy = 0.5857 = cos(2.1965).
Thercfore, the estimated frequencies when p = 2 are w; = 0.7044 and ©, = 2.1965.

In order to use the data of a time series of length N to obtain information about py,
we need the sample autocovariance and variance to be consistent estimators. The strong
consistency property of the estimators is proved in the Appendix of this paper.

2. General Definitions

For this section we shall give some definitions necessary for the whole understanding of
the paper.

Definition 2.1: A Borel set C C [—1,1] is said to have full measure in [-1,1] if and only if

w(C) = u([~1,1)

where p is the Lebesgue measure in [-1,1].

Observe that p(C¢) = 0.
If a property is true in a set of full measure we will say that this property is true almost
surely (a.s.).

Suppose we have an updating scheme

ary1 = p1(ax), for k€N, (2.1)

applied to the process (1.1). We consider the following definition.

Definition 2.2: An updating scheme for the stochastic process (1.1) is globally convergent
if there exist a set C of full measure in [-1,1] and [ € {1,2, -+, p} such that for any «¢ € C,

lim ay = cos(w;)
k—oo

where wy is a frequency of the process (1.1).



The above limit expression may depend on ag € C.

In the case p = 1, the iterative procedure of updating the alpha filter parameter (see
definition in He and Kedem (1989)) is globally convergent. However, this is not true for p
= 2. Thercfore, the relevant question is: how do we estimate all frequencies of the process
(1.1) when p > 2?7 The alpha filter is not convenient for our purpose. In Section 4 we
show that using the complex filter, and considering ay, with large k, we can have as good
approximations for the frequencies as we want, by increasing M.

Suppose the updating scheme (2.1) depends on an extra parameter M € N — {0}, that
is, p1(a, M) is the first-order autocorrelation of the filtered process {Zy(a, M)}ier. Then,
we consider the following definition.

Definition 2.3: An updating scheme of the form (2.1) is said to be approzimately globally
convergent if for each fixed M € N — {0} there exists a set Cps of full measure in [-1,1]
such that for any ag € C)s there exists the limit

. *
lim a = a)y,.
k—o0

The 1terative updated procedure is considered with respect to the filter with parameter M
and the value of o}, can depend on ay. We shall require in this definition that there exist
p of these possible values o}, and for each one of them there exists I € {1,2,---,p} such
that

A}Enw ajs = cos(wp).

In simple terms, if we take an initial condition «g at random and iterate the function p;
k times, if k is large, then pf(ag) = ap = p1(ak—1) will be very close to the cosine of a
frequency by taking M large.

The main purpose of the next section is to define a useful parametric filter famnily and
show in Section 4 how to estimate the frequencies w;, 1 < j < p, of the process (1.1).

This work is part of the Ph.D. dissertation of the first author under the guidance of the
sccond at the University of Maryland, College Park, 1991.

In a forthcoming paper we will present a method to estimate the amplitudes and the
noise variance in the system (1.1).

3. Complex Filter

In this section we will consider a parametric family of filters. Consider the stochastic
process {Z¢}er as in (1.1).



Definition 3.1: A parametric family Lg of linear time invariant filters is defined as the
set of filters

{Le(") ; 6 €O},

where O is the parameter space, with impulse response function {h,(0)}52_, and transfer
function H()\;8) obtained from the Fourier Transform of the hn(8), that is,

H(X60)= > exp(=inA)hn(6).
n=—co
For this to happen we consider the following matching condition

(o]

Y [ha(6) < o0

n=-—oo

and that
/ |H (A 9)]2 dFz(\) < oo,
Tl

where T' = (—m,w] or R depending on the process being considered with discrete or
continuous time parameter set T.
Let us denote {Z,(6)}:eT the filtered process defined by the convolution

zt(e);ce(zjt: Y ha(8)Zi—n = (ho * Z);

n=—oo

where * denotes convolution.
We shall consider a particular parametric family of linear filters where, from now on,

T = Z. Denote §(a) = cos™!(a).

Definition 3.2: The complez filter applied to the process {Z,},cz is defined by the
transformation

Zi(a,M)=(1+e%DB)MZ, for teZ, -1<a<l and —7<6(a)<m,

where M 1s a positive integer and B is the shift operator BZ, = Z;_,. We think of §(«) as
the “center of the filter”.
Clearly,



M

M\

Zi(a, M) = E (n >619(0)”Zt_n, for t€eZ, —m<f(a)<7m and M€ N—-{0} (3.1)
n=0 ’

and the impulse response function is

M

gfla)n for 0<n<M
h(n; a, M) = n - .

0, otherwise

The transfer function is

H(X o, M) =(1+W@O=2NWM 0 <7

and the corresponding square gain function is

[H(A;0(), M)|> = 4M cos*M <)\——*29(a_)~> , for —m< A 0<7m and —1<a<1. (3.2)

If M is large then (see He and Kedem (1989))

I cosQM(t@) cos(A) dA

= (3.3)
f_w cos”’%#) d)

a = cos(f(a)) =

As we mention before, we will consider only large values of M. Therefore, we can change

/ costM (ﬂ) cos(A)dA by a/ cos?M <w> dA.

I fact, already with M = 20 the approximation is excellent. See F igure 1 for the graph of

f_ﬂw cos”J(’\—;Q) cos(A) dA

3.4
f_TrW coszf"f(%)d/\ (3.4)

as a function of the variable 6 for several values of M (M = 2, 11, 20) to appreciate the
closeness of this quotient to cos(6).

Let {Z,} e a time series of length N 4+ M obtained from the process (1.1), when T = Z,
and {Zy(«, M)} be the complex-filtered time series version.

Our analysis is based on iterations of the first order autocorrelation function of the fil-
tered time series, that is, on iterations of the quotient between the autocovariance function
of the filtered time series at lag 1 and its variance, where E(Z)=0,forallt e Z.
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The first-order autocorrelation of the complex- filtered process {Zi(a, M)} ez, where Z,
1s the process (1.1), is given by

. R{E[Zt(a,M)Zt 1((1,]\/.[)]} .
S AT 7y

P42 _ . 3
2 T’[cos”’ ZiTAS) +2€(a)) + COSQM(L QO(Q) )] cos(w;) + f

s coszM(’\—_g(i)) cos(A) dA
P2 )
y, %L[cos”’(—b +26(a)) + cos?M(
j=

Z—O(a _{_ f

cos2M(2=0(a)y gy

(3.5)
or, from (3.3)

/)1((\’, A/[) =

OSZM(-/—\%(G—Z)d/\] ot

7 [cos? M (S52) o cos2M(US2E)] 4 2 [T cos2M (A=) g
j=i

(3.6)

From (3.6) p1(a, M) is a weighted average of cos(w;) and a, a crucial observation that
helps in recovering all the w;. Define by BJM(a), for 0 < j < p, the following weights

A2 w; +80(ax o
BJM(‘Q) _ = [0082 ( 1+2( ))+C082M( j— ( ))]

P
3 5 leos?M (248 4 cose (=)

8 b
—Lf cosZM %)d/\

for y € {1,2,--- ,p} and

_;_f_ zM A— ‘9(<Y )d/\
B (a)=

P 12 -
12 [TI[COSZZW(%) + cos?M (¢ 29(&)
=1

A=6(c
j st T(0)

) d/\

Thercfore, pi(a, M) is a weighted average of cos(w;) and «, that is

p1(e, M) = Z ij(a) cos(w;) + aBéw(a)



where the weights B]M (a), 0 < 7 < p, are nonnegative, sum up to one and depend on «
and M. .

Given any « € (=1,1), pi(a, M) will be in the convex hull (the intersection of all convex
sets that contain the p+1 points) of a and cos(w;), for j € {1,2,---,p}.

Notice that the weight B{’(a), associated to the noise component o, multiplies the
variable a. The other weights BJM(a), 1 <5 < p, are associated to the signal component.
Then, for a; = py(ag, M), ay = p?(ag, M) is a convex combination of cos(wj), 1 <5 <p,
and «; and so on. In this way, one can see the influence of the weights B JM (a). For instance,
- if one BM («) is much larger than BM(a) and the others B]M(a), 1<j<pandj#I then
there is a strong tendency of converging, by iteration of p; (o, M), to a fixed point close
to cos(w;). Notice the important point that the weights B]M(a), 0 <3 < p, depend on
a. The reason for considering M large is that for values of a close to cos(w;) the relative
value of BM(«a) is larger than the others BJM(oz), for j € {1,2,---,p} — {{}. Therefore, the
weighted average above has more tendency of converging, through the recursive process,
to an attracting fixed point very close to cos(w;) when the value of « is close to cos(wy).
For cach j € {1,2,---,p}, BJM(a) depends on a multiplicative factor A?. These factors
have, of course, influence on the relative weights BJM(a), 1<7<p.

We think of p;(o, M) as a function of a with parameter M.

Remark 3.1: One can see from the graph of p;(a) = p;(a, M) as in expression (3.6)
(see Figure 2) that this mapping is structural stable (Devaney (1989)). Therefore, the
properties related to the iterations of the mapping as in (3.6) can be extended to the ap-
proximated mapping as in expression (3.5). This is a common procedure in the theory of _
iterations of mappings and it justifies the use of expression (3.6) instead of (3.5).

Remark 3.2: Observe that p;(a, M) in expression (3.5) is defined by mathematical ex-
pectations. When we consider a time series of finite length N + M, we are assumning that
the sample autocorrelation of size N is close to the expression (3.5), that is, g (a, M) is
a consistent estimate for p;(a, M). The sample autocorrelation of size N when using the
complex filter is given by

%R{NEI[Z]-(&,M) — Z(a, D21 (e M) — Z(a 3D)))
prla, M) = J;j
% L125(e, M)~ Z(a, M))Z;(a, M) - Z(a, M)

where here the inner bar denotes the mean average value. In order to have p(a, M) as a
cousistent estimator for p;(a, M) it suffices to show that the sample autocovariance and
sample variance are, respectively, consistent estimators for R{E[Z(co,M)Z 41 (v, M)]}
and E|Z (o, M)|?. In the Appendix we derive these properties from the Ergodic Theorem.

The following claim is not difficult to show but rather technical and we will not prove it

here.



Claim: For cach fized M € N — {0}, p1(a, M), as in expression (5.5), as a function of
the variable «, 1s @ map from [-1,1] to [-1,1].

We use the standard notation for iterations of mappings

pile) = pilpr(a)] = p1opi(e)

and, in general,

p¥(a) = prlpf ()]

Denote by p¥(«) the k2 iterate of the mapping p1 at the value . We refer Devaney (1989)
for the properties of iterations of mappings that we use here.

We look for a method for finding the frequencies by iterating the mapping p;(a, M), for
o € (=1,1). Our reasoning is based on the geometric properties of the graph of p;(a, M)
and its derivative at the fixed points, for M large but fixed.

Definition 3.3: Let f be a smooth mapping from an interval into itself. A fized point for
the function f is a value o* such that f(a*) = a*.

Definition 3.4: A value o* is called an attracting fized point of a.Amapping f(x)if a* is a
fixed point and |f'(a*)| < 1. It is called a repelling fized point if o* is a fixed point and
|f'(e)] > 1.

A graphic way to locate a fixed point of a mapping f is to look at the intersection of its -
graph with the diagonal line. In the figures presented here we always plot the graph of the
function and the diagonal line. This makes easier to visualize the fixed points. We denote

ap = flag), az= f(a1)= fz(ao)

and, 1 general,

ar = flog_1) = f¥(ao).

The sct {ag, flao), f2(ag),. .., f¥(ap),. ..} is called the orbit of the point .

Property of Attractor Points: An attracting fized point o* has the property that nearby
points « on both sides of a* are attracted to a* by iterations of f, that is,

lim f¥a)=a" for a near o
k—oo



Note that this is a local property and it does not mean necessarily that a* is a global
attractor point, that is, almost every point aq € (—1,1) will converge to a*.

Property of Repelling Points: 4 repelling fized point a* has the property that nearby
points «, different from o*, on both sides of a* are repelled from o* by iterations of f.

In practice, repelling points are not observable but attractor fixed points can be detected
by high iterations of the mapping to an initial value ag chosen at random.

We know that in the case where p = 1, by using the alpha filter, we can determine the
. unique frequency wy. This is not true when p = 2.

The main point here is to show that for the complez filter the cosines of the frequencics
w; are arbitrarily close to the attracting fixed points of the mapping pi when M is large.

4. Fixed Bandwidth ol

Our interest is to estimate the frequencies w;. With this purpose in mind we shall
consider the parameter M as being large but fixed. The frequencies w; are obtained by
increasing the iterations of the mapping p1(ao, M) with M fixed.

He and Kedem (1989) discuss the complex filter when there is no noise, that is when
0. =0, if we take an ag € (—1,1) then

lim p;(ag, M) = cos(w;)

M—oco
where w; is the closest frequency. to cos™!(ay), that is,

lag — cos(wy)| < |awg — cos(w;)|, for 1<j<p, j#L

In this case, there is no need to iterate the mapping p;(a, M).
The main result in this section is Theorem 4.1 that claims, in the presence of noise
(0. # 0), if we consider an ag € (—1,1) chosen at random and iterate pi(ag, M) then

klim p¥ (oo, M)

will exist and it will be close to cos(wy), where w; is such that

|og — cos(wi)] < ag — cos(wj)], for 1< <p, J#L

Here we consider M large but fixed.

10



In a real situation we do not know a prior: where the frequencies are. In any casc,
using the method described here, if one iterates p;(a) = p1 (e, M) starting from any initial
value &g (a.s. with respect to the Lebesgue measure on [-1,1]) then p¥(aq, M) converges
to a fixed point. Denote this fixed point by a},. Now, as M goes to infinity, the sequence
{@3s} m>0 will converge to cos(wj) (no iterations are used here when M — o0), where w
is the closest frequency to cos™ (ag). In this way if we consider a sufficient large number
of initial values chosen at random in the interval (-1,1) and iterate each one of them by
p1(a, M), we shall find very good approximations to all frequencies (if M is large enough).
Therefore, we are also able to estimate the number of frequencies.

An alternative way to locate all frequencies is the following: for an initial value «y,
consider the iterated function p¥(aq, M) for k large. In this way we will locate one fre-
quency. Now we apply a very narrow bandpass filter to isolate this located frequency and
we obtain a new time series with p — 1 frequencies. The next step is to apply the same
iterative procedure as above and then to locate another frequency. Now filter out this
located frequency. Therefore, by using the same procedure again and again we locate all
frequencies.

We show in Theorem 4.1 below that the method is approzimately globally convergent,
that is, there is no way that the iteration of p;(a, M), beginning at an initial value «
almost surely, will converge to something else that is not the cosine of an approximated
frequency (if M is large enough). Before the proof of this theorem we show several pictures
that will help to understand, in an intuitive way, why the method is approzimately globally
convergent.

A good indication of the above fact can be observed in the graph of p;(a, M) in [-1,1]
in Figures 2 and 3. These figures show, for the complex filter with M = 15 (in the case
when p = 2) with 4; = Ay = 0. = 1.0, w; = 0.7 and wy = 2.2 (cos(w;) = 0.7684 and
cos(wy) = —0.5885) the graph of, respectively, p;(a, M) and p$(a, M). We also plot the
graph of the constant functions cos(w; ) and cos(wz) in order to see how precise the method
1s when M is large. In all figures the graphs of the constant functions cos(wy) and cos(ws)
are plotted by dotted lines.

Figures 4 and 5 show (in the case when p = 3) the graph of, respectively, p;(a, M)
and p}°(a, M) for the complex filter with M = 40, 4; = A; = A3 = 0. = 1.0 and
frequencies w; = 0.5, wy = 1.7 and w3 = 2.4 (cos(w;) = 0.8775, cos(wz) = —0.1288 and
cos(wz) = —0.7373). From the graph of p;(a, M) in Figures 2 and 4 one can sec that the
only attracting fixed points are very close to the cosine of the true frequencies. There exist
other fixed points but they are repelling ones. From the considerations made just after
the Definition 3.4 for repelling fixed points, we know that they will not attract iterations
of an initial value ag by p1(a, M) (a.s.).

Note that there exist other fixed points for the mapping p; different from cos(w;), j €
{1,2,---,p}, but they are all repelling fixed points.

Remark 4.1: In a compact set, the number of zeros of a real analytic function f(x) - x
is finite (see Rudin (1987)). Then, the set of fixed points and, more specifically, the sct of
repelling fixed points is finite. Therefore, it has Lebesgue measure zero. The set Cyy in
Definition 2.1 is the interval [-1,1] without the repelling fixed points of p;(a, M).

11



If we increase M the attracting fixed points «j, will be closer and closer to the true
frequencies w;. This can be seen in Figure 6 where we consider the graph of p;(a, M) (in
the case when p = 2) in an interval very close to the cosine of the frequency w; = 0.7,
where cos(w;) = 0.7684. Notice that by increasing M, the fixed point o}, will be as close
as one wants to cos(w; ). The intersection of the diagonal line and the graph of p;(«, M)
show where the fixed point is located. Figure 7 shows the same situation when we look at
the graph of p;(a, M) in a small interval very close to the cosine of the other frequency
wy = 2.2, where cos(wy) = —0.5885.

~ Remark 4.2: We would like to mention here that one must not confuse M and k. First,
we fix M and consider an aq chosen at random, and then we consider pf(ag, M) for a large
k. The sequence {p§(ag, M)}r>1 converges to a fixed point very close to the cosine of onc
of the frequencies. We consider p¥(ag, M), for a certain large M, as a good approximation
for the cosine of the frequency to be detected. This is a different approach from the one
in Kedem and Lopes (1991), where one shrinks the bandwidth (by increasing M) at each
iteration of oy = p1(ak, Mk).

The method presented above is reminiscent of Newton’s Method for locating the roots
of a polynomial equation. If the initial value is very close to a certain root, the iterative
procedure of Newton’s Method will converge to this root. If the initial value is close to
another root then the iterative procedure will converge to that other root.

We now give a rigorous proof of why this method works well. The important point here
is the weighted average property of p1(a, M) (see (3.7)).

Theorem 4.1: The family of complez filters 1s approzimately globally convergend.

Proof:

First we give the proof of the following claim.

Claim 1: The relative masses of the weights BJM(a) (see ezpression (8.7)) are in such
way that if the initial value aq 18 closer to cos(w;) than the other cos(w;), 1 <7 <p,J # 1.
then

. BY(a)
e L
M—oo B (ao)

Proof of Claim 1:
Since cos(§ ) is monotone decreasing in (0, ), then

=0, for 0<j<p and j#Ll (4.1)

W] = 6(0(0)

w]' + 9(&0)
5 ) et

>
2

cos( cos(

)l, for 1<j<p and j#I (4.2)

where §(ag) = cos™!(ag) because 8(ay) is closer to w; than w;, for j # [
Notice that for a fixed M, each BJM(ao), 1 <7 < p,isrelated to

oM (wj +2¢9(ao)> 4 cos?M (‘”J_‘@) _ (4.3)

<
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Obscrve that the values in (4.2) are raised to the power 2M in the expression (4.3). There-
fore, if M i1s large then the quotient '

B}(a)

, , for 1<j7<p and j#I,
B(a)

will be close to zero if aq is close to cos(w;) since large values of M amplify the difference
~ between the weights when one is close to the cosine of one frequency. For each 7 €
{1,2,---,p}, the influence of the multiplicative term (4.3) is of higher order than the
multiplicative term A? when M is large. In this case, the successive iteration of p;(«ag, M)
(the weighted average applied to an initial value ag) will have a strong bias in the dircction
of cos(w;) (the closest one to ag). For j = 0, the above claim follows from the fact that

i A—6
lin / cos?M (—(—@) gx = 0.
M — oo — 2
This is the end of the proof of Claim 1.

Now we want to prove that for any small interval I = (a,,a;) € (—1,1) containing

cos(wy), for some [ € {1,2,-- -, p}, there exists My large enough such that, for all M > My,
there exists aj; € I satisfying

pr(aiy, M) = ey,

that is, p;(«, M) has a fixed point o}, € I.
Let o, and «;, be any two values in (-1,1) such that there exists [ € {1,2,--- ,p} where

a, < cos(wy) < ay

and
lovg — cos(wy)], |ap — cos(wy)| < 1r<nu<1 {lag — cos(w;j)|, |ap — cos(wj)|}
<i<p

371
such that

cos (MP‘)) >

.+ 6
= COS<M>!, for 1<7<p and j #I,

2

with 6(a) = cos™! ().

We will show that for M large enough
o < pr(ag, M) < cos(w;) < pi(ay, M) < .

13



Since py(a, M) is the convex combination (3.7) and the weights B]M(a), J€{0,1,---,p},
su up to oue for any « € (=1,1), we have

p
pr(a, M) = Z BJM(a) cos(w;) + a B (a)

P
= BM(a) cos(wi) + Z BJM(a) cos(w;) + a B (a)

j=1
J#l
p P
=(1—BY(a) - ZB]M(Q)) cos(wy) + a B (a) + Z BJM(a) cos(w;)
7 =
P 4
= cos(w;) + BY (a)(a — cos(w;)) — cos(wy) Z B]M(a) + Z B]M(a) cos(wj)-
= = (4.4)
j j

As wy is the frequency closest to the cosine of the initial value ap with cos(wy) < ay then
for any fixed j € {1,2,---,p}, J # [, it holds (4.1), that is,

BM
lim sup M =0, for j#L

M—oco Bl (ap)

This fact was shown in Claim 1.
Henee, from (4.1), taking limit sup in both sides of expression (4.4), for & = «p, we have

. p1(wp, M) _ cos(wy) + B(‘)M(ab)[a'b — cos(wy)]
limsup —5———- = hmsup i
M—oo Bl (ab) M —co Bl (ab)

However, 0 < B¥(ay) < 1 (one notices here the strict inequality) and «; — cos(w;) > 0.
Hence,

: , M ) 1(ap — .
lim sup pl(;;b ) < limsup cos(wi) + 1 (e — cos(wy)) = lim sup

(€9
M—co B (ay) M—oo BM(ay) M—oo BM(ap)

The weights BJM(a), for j € {0,1, -+ ,p}, sum up to one for any « € (—1,1). Hence, from
(4.1) onc has

lim BY(a)=0, for j#1[, and MliirtoB,M(a):l.

M—o0

14



Therefore, since

: . P1 (CY{,,M)
lim sup py (ay, M) = limsup ==~
Al—»oop pl( ’ ) M—co BIM(O(I,)

there exists M € N — {0} such that

pl(ab,M) < @p.

Note the strict inequality.

By similar argument, we will show that cos(wr) < p1(ay, M). Again, from equality (4.4),
we have

prlas, M) cos(wi) | BM(ap)(as — cos(wy))

BIM(Ozb) N BlM(ab) BM(OZI,)
BM(ab) BJM(ab) ‘
— cos(wy) Z BM(a Z BIM(CYb) cos(wj).
J#l J'?f}

Since 0 < By'(ay) < 1 and ap — cos(w;) > 0, from expression (4.1) we have

cos(wy)

M
= lim sup —(ﬂ < limsu M = limsup py (v, M).

cos(wy) = = < _
g oo BM(ay) Moo BM(q,) M—oo BM(ay) M—o5

Thercfore, there exists M € N — {0} such that

cos(wi) < pi(ay, M).

We conclude that

cos(wr) < pi(ap, M) < a,.

Similarly, since w; is the frequency closest to the cosine of the initial value Q,, ONC can
show that

15



ag < p1(aq, M) < cos(wy).

Recall that I = (ag, ) C (—=1,1). We have shown that p;(I, M) C I. Therefore, by
Brouwer Fixed Point Theorem (see Proposition 2.11 in Devaney (1989)), there exists a rcal
value o, € (—=1,1) such that

p1(ay,M)=aj and aj, € 1.

Now we want to show that the fixed point o}, is unique and attracting.

The mapping p; (-, M) is defined on the variable 8(«) € (—7, 7), for any o € (—1,1). The
extension of the mapping p; (-, M) to a neighborhood V of (—1,1) in the Complex Plane
1s now considered. This extension will be necessary for using a strong form of Schwarz
Lemma (sce Hervé (1963)) and it will be made clear later. Let us consider the complex
analytic mapping

pi(-,M):V = C
such that @ — p;(a, M) is given by
P
pr(a, M) = B}(a)cos(w;) + a By ()
j=1

for o € V C C, where the weights B ]M(a), for 0 < 5 < p, are defined by the expressions
given before (3.7).
Let a function f be defined by

fi(—m,m) = C

such that t — f(¢) = cos(w;) + re'* with » € R, 7 > 0.

We want to show that any circle of center cos(w;) and small radius r is contracted by the
transformation py(-, M), if M is large enough. That is, we want to show that, for a fixed
small value 7, there exists M € N — {0} such that

p1(a, M) — cos(w;)

< 15
a — cos(w)
uniformly for all o of the form f(t) = cos(w;) + re't, t € (—=m, 7). Observe that
o — cos(wi)| = |f(t) = cos(wi)| = [re'| = r.

16



Claim 2:

BM(«
lim sup —lﬁu =0 for j#1 and any a €V close enough to wy. (4.5)
M—oo | B ()

Proof of Claim 2:
The proof of this claim is similar to the case when the mapping p;(-, M) was considercd
* defined only in the interval (-1,1). Then, we suppose Claim 2 is proved.

Since Z?:o B}”(a) = 1, from the above claim one has
lim |BM(a)|=0, forall j#1I, and lim |BM(a)|=1
M—oo' 7 ’ ’ M—oo

for all @ € (=1,1). Considering the analytic function p;(-, M) at o = cos(w;) + re*, for
t € (—m, ), and applying Claim 2 we get

limsups_,o |p1(a, M) — cos(wy)|
limsup,,_, ., |BM(a)]

limsup |p1(a, M) — cos(w;)| =

M —oo0

) p1(a, M) — cos(wy)
= limsu

B (a)(a — cos(wy)) — cos(w;) J][')=1 B]M(O‘) + Z?zl BJM(Q) cos(w;)

= llmsup hal 71
/\'l——Aor} B (a)
M
. (a)] : - 7
< limsup ——=|a — cos(w;)| + 0 < lim sup ————|re*'| = 7.
M—oco |BM(c)] M—oo B} ()]

Therefore, there exists M € N — {0} such that

|p1(a, M) — cos(wy)| < 7 = |a — cos(wi)],

for all o of the form f(t) = cos(w;) + re*, for t € (=, 7). Note the strict incquality.

We conclude that the circle with center in cos(w;) and small radius » > 0 is contracted
by p1(-, M).

Denote by U the ball of center cos(w;) and radius r in C. Since an analytic mapping is
an open mapping, the set U is mapped by p;(-, M) inside U.

17



Now we recall a strong version of Schwarz Lemma (see Hervé (196‘3), page 83).

Theorem: Supposc U s a simply connected open subset of C not equal to C itself. Suppose
F:U — U s complez analytic and the closure of F(U) 1s contained in U. Then F has a
fized point zg € U and

o |F'(20)| <1 and F™(2) — 2o, forall z€U.

Therefore, there exists a unique fixed point for pi(-, M) in the set U = B(cos(w;),r) in
C and this fixed point is an attractor for the set U. We have shown before the existence
of a real fixed point a},. From the above we conclude that a}, is the unique attracting
fixed point in U. Then, this point a}, attracts all the real values in a small neighborhood

of cos(wy).
|

Remark 4.3: The expressions (3.5) and (3.6) are very close if M is large. This follows
from (3.3). In Figures 8 and 9 we plot the graph of (3.5) and (3.6) for p = 2, M = 20
where w) = 0.7, wp = 2.2, A} = A3 = 0. = 1.0. One can see that, if M is large then the
graph given by the expressions (3.5) and (3.6) are almost the same. Theorem 4.1 shows,
among other things, that the mapping given by the expression (3.6) is structural stable
and, therefore, our reasoning using (3.6) instead of (3.5) is justifiable.

Conclusion:

First consider, for simplification of the argument, the case p = 2. We consider a large
number of equally spaced initial values g (for instance, 10) in (-1,1). For each ag we take
(e, M) as a good approximation for the cosine of the frequencies. Some of these values
will be very close to cos(w;) and some of them will be close to cos(wy). If M is large, the
values obtained by the above procedure will be so close to cos(w;) or cos(wy) as one wants.
We will choose among these ten values p%(ag, M) two of them that are distant apart. We
will denote these two values @; and @, the estimated frequencies. In general, M = 20 is
good enough when p = 2 and w; and wy are distant apart. Two examples are provided in
Table 4.1 and Table 4.2.

In the general case, when we have p > 3 frequencies, we will consider a large nunber of
equally spaced initial values ag € (—1,1) and with the same iterative procedurc we will
get approximated values of w;, 1 <7 < p, when M is large. We will choose p among these
values pi(ag, M) that arc distant apart and we will denote wj, 1 < j < p, the estimated
frequencies.

Remark 4.4: A problem that can appear in the method is when two frequencies are close.
In some cases, we will need to take M = 200 requiring more computational time due to the
calculations of the binomial coefficients (see expression (3.1)). The method still works but
the convergence can be very slow for some initial values ag. Other filters, with narrower
band like AR(2), for instance, will do better.

18



It is convenient in the numerical implementation of the method to compute the binomial
cocfRcients (sce expression (3.1)) in the beginning of the code and store them in order to
decrease the computational complexity (remember that M is fixed) .
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Appendix: Ergodicity of the Stochastic Process

Let (§2, 7,P) be the probability space where Q is the sample space, F is the o-algebra
of Borel sets and P is a probability function on Q. Counsider T a transformation defined
from € to itself, so that T is measurable and also measurably invertible.

Definition 1: We say that P is an invariant measure for T or T is measure-preserving if
. P(T7'(A)) = P(A), for any Borel set 4 € F.

Definition 2: We say that P is ergodic for T, if for any Borel set A such that T71(A4) = A4,
we have that P(A) =0 or P(4) = 1.

A very important result is the Birkhoff Ergodic Theorem (see Skorokhod (1989)). We
next state this theorem. '

Birkhoff Ergodic Theorem: Suppose V is an integrable random variable on Q, P is a
probability invariant measure on Q and T is a measurable transformation on €. Let g
be the smallest o-algebra of sets in F with respect to which all random variables W with
W(T"(w)) = W(w) for P-almost all w and for ¢ > 0 are measurable. Then,

N-1
1
lim

Jin < ) V(T'(w) = E(V/G)w) P_ as.

t=0

When P is ergodic (that is, G is trivial) then E(V/G) reduces to E(V) = constant and
the above result essentially says that for the typical trajectory with respect to P, time
average of V converge to spatial average of V.

In terms of stochastic processes, we arc considering in the above sctting the stationary
process X(w) = V(T'(w)), w € Q and t € Z. This is the standard way to trausfer results
from transformations with invariant measures to stationary processes (we refer to Lamperti
(1977), chapter 5 for further details). Basically, one has to consider on the space QN the
product measure generated by P on ) and the above defined stochastic process X,. We
remark here that P will be a product measure in the case of independent and identical
distributed coordinates. '

Remark 1: Suppose that JV(w)P(dw) = 0. Then, in this case, if the probability is
ergodic, the autocovariance at lag k

/V(w)V(Tk(w)) P(dw)
can be obtained as the almost-sure limit of the mean

20



N-1
: 1 t itk
]\}un I tio V(T*(w)V(T" " (w)), for k> 0.

In this way, we can say that the sample autocovariance (the case k=1) and variance (the
case k=0) are cousistent estimators.

In our case we will need to consider 2 = (-, 7] and for any w € 2, we have

T(w)=w+w; (mod 27),

where w) 1s a fixed number in the interval (—, 7]. Now P will be the normalized Lebesguc
measure on (—m, 7], and this probability P is clearly invariant for T.

It is well known (see Cornfeld, Fomin and Sinai (1984), page 64) that when S 18 Al
nrational number, then P is ergodic for T.

Remark 2: The Ergodic Theorem in the case when 3= 1s irrational, is true in a stronger
form than the one provided by Birkhoff Ergodic Theorem. In fact, if V is continuous,
the statement about time averages is true, not only P- almost surely, but in fact for all
w € (=, 7]. The analogous statement for numbers w;, such that 5L is rational is falsc.

Now let us concentrate on the specific case we want to understand here. We will denote
elements in our space by ¢, in order to have a coherent notation with the one we used _
previously. We will need here to consider the random variable V(w) = V(¢) = 4 cos(¢).
Notice that

/V(w) Pldw) = A/cos(¢) P(d¢) = 0.

Therefore, the assumption of Remark 1 is satisfied.

Note that for any n € N and ¢ € (—m, 7], we have that T"(¢) = ¢ + nw, (mod 27).
If £ is irrational then we can apply the Ergodic Theorem for the random variable
V(¢)V(T*(¢)), because P is ergodic (see Remark 1). In this way, we have a consistent

estimator for the autocovariance.

Therefore, from the Ergodic Theorem it follows that

P

—1 N-1
VIT'(@DV(TH(6)) = lim A Y cos(wn t + ) cos(uws (¢ + k) + 6)

0 t=0

A® /(:os(qf)) cos(wy k + ¢) P(dg) = A? /cos(qﬁ) cos(T*(¢)) P(dé), for k > 0.

1
Ihm —
N—oo N
1
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Therefore, for any ¢ € (—w, ], we have that the sample means of the autocovariance
give an almost sure consistent estimator for the autocovariance of the process {X }iez-
The analogous statement for the variance is also true.

Recall that we first consider the stochastic process

X(¢) =V(T(¢)) = V(¢ +twy) = Acos(w t + ¢).

Now we will add Gaussian white noise process €, to X;.
Therefore, we want to analyze autocovariance and variance for the process Z, given by

Zt = Xt +é& = V(Tt()) + €4.

For the autocovariance we have to consider the following sum
Z($)Zi41(9) = Xe($)Xe41(8) + Xu(6) €141 + Xega () €c + €t €et.

In the case we want to take samples for the autocovariance the above equality is given as
follows

N-1

Z4($)Zus1(¢ Z V(T (¢))V (T (9))

=0 =0

+— Z V(T(4)) €t +— Z V(T™(9)) e

; N=
=+ N ;51«“«[-{-1-

2| =

The sample means corresponding to the first term on the right hand side of the above
equality were analyzed by previous considerations using the Ergodic Theorem (that mcans,
when we have only the process X4).

The sample means corresponding to the second and third terms on the right hand side
of the above equality converge to zero since from the uncorrelatedness of the variables &

and X; = V(T(¢)) we have

hm—ZV grrr = 0, for k2>0.
N—oo N ¢) e

Finally, the sample mecans in the fourth term converge to zero, from the hypothesis
of uncorrelatedness of the variables €, in the definition of white Gaussian noise. More
precisely,

o
o



1
lim N tz EtE+k = 0.

N —oo

Therefore, we conclude that for the process

Z,=Acos(wi t+ @) + &4,

where ZL is irrational and {€;}:cz is Gaussian white noise, the sample autocovariance is
an almost sure consistent estimator for the autocovariance of the process {Z;}icz. We
mention here that, for simplicity, the noise component is assumed to be Gaussian whitc
noise but the reasoning holds more generally for any ergodic colored noisc.

Wlhen one wants the variance, one just has to consider the case k=0 in the above
considerations.

Therefore, we conclude that for the process

Zy = Acos(wi t+ @) + &4,

where 1 is irrational and {€; };¢z is Gaussian white noise, the sample variance is an almost

sure consistent estimator for the variance of the process {Z;}:ez.

Then, we can also take the sample variance to estimate the variance of the process {Z;},ez.
Thercfore, pi(a) is an almost sure consistent estimator for p;(«) as mentioned in Remark
3.2 of Section 3.

It follows that the sample means of the variance and autocovariance converge, respec-
tively, to

and
Af
E[Z[Z(.*_l] = ‘7 C()S(wl).

Now we will briefly explain how to extend the above results to the process
P
Zt = Z A] COS(w]‘ t+ ¢]) + &4
i=1
where Aj, wj, ¢; and the ¢, were previously defined (see expression (1.1)).

In this casc we consider Q as the p-torus (—m,7)?, and let the transformation T e
defined as
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T(¢1,da, > ¢p) = (w1 + ¢1 (mod 27),ws + @2 (mod 27), -+ ,wp + ¢, (mod 27))

for any p-uple w = (¢1, 02, , dp).
The measure P, in this case, will be the normalized product measure on the torus when

we consider the Lebesgue measure in the interval (—m, 7).

We refer to Cornfeld, Fomin and Sinai (1984), page 64, for a careful analysis of the above
. mentioned situation.

First we want to analyze the signal component in {Z:}:ez, that is, we want to analyze
the process

P
Xy = E Ajcos(wjt+ ¢;), where A; are unknown constants.
=1

In the case when all % are irrational and rationally independent (that is, Z?zl sjzt =¢q
where s; and ¢ are integers, is possible only when s; = s = .-+ = s, = 0), for any
j € {1,2,---,p}, the above probability P in the torus is ergodic for the map T defined
above (see page 64 in Cornfeld, Fomin and Sinai), and results similar to the ones in Remark
1 can also be applied to the random variable

Vg1, 2, ,bp) = A1 cos(d1) + Az cos(¢2) + -+ + Ay cos(¢p).

Notice that we can assume, without loss of generality, that the frequencies are irrational -
and also rationally independent, because the set of such frequencies has probability one
among the possible values of frequencies.

Therefore, it follows that the samples of the autocovariance and variance are almost sure
consistent estimators also in the case when we have p irrational frequencies.

Now if we introduce an additive white noise to the above defined stochastic process
{X},ez, we will have the model that we called {Z;},cz with p frequencics and additive
noise component.

With the same reasoning as before, when p = 1, we can transfer results from {X}iez
to {Z,},ez. This means that we just have to use the fact that the noise is white and
Gaussian with mean zero and variance o2, and also that P is ergodic for T and V is
uniformly bounded. In this case we can also conclude that the empirical autocovariance
and variance are consistent estimators for the autocovariance and variance of the process
{Zi}iez.

We recall here that the sum of any two independent ergodic stochastic process is also
an ergodic process and any linear transformation of an ergodic stochastic process gives
rise to an crgodic process. So, if {X;(0)} and {e:(6)} are uncorrelated ergodic stochastic
process then so is the process {Z,(0)}. That is, the sample autocovariance and variance
are strougly consistent estimators.
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Figure 1: Graplh of the expression (3.3) as a function of § € [—, 7] with values M =
2,11,20. The dotted line is the function y = cos(8), for 6 € [—, ).
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Figure 2: Fixed points in p;(a, 15) from the cdmplex filter for p =2, A; = Ay = 0. = 1.0,
w; = 0.7 and wy = 2.2 (cos(w; ) = 0.7684, cos(w;) = —0.5885).
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Figure 3: Fixed points in p3(e, 15) from the complex filter for p = 2, Ay = dg = 7. = LU,
w; = 0.7 and wy = 2.2 (cos(w; ) = 0.7684, cos(w;) = —0.5885).
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Figure 4: Fixed points in p;(@,40) from the complex filter for p =3, A1 = Ay = A3 =
0. = 1.0, w; = 0.5, wy = 1.7 and w3 = 2.4 (cos(wy) = 0.8775, cos(wp) = —0.1288 and

('()S(t‘,@‘;;) = —07373)
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Figure 5: Fixed points in p3%(e,40) from the complex filter forp=3, A4 =A; = A3 =
o, = 1.0, w; = 0.5, wy = 1.7 and w3 = 2.4 (cos(wy) = 0.8775, cos(wy) = —0.1288 and

cos(wy) = —0.7373).
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Figure 6: p;(a, M) from the complex filter for-p = 2 in a neighborhood of the cosine of
the frequency wy = 0.7 (cos(wy) = 0.7684). The graph of the constant function y = cos(wy)
and the diagonal line are also plotted.

(a) M =8; (b) M =11; (¢c) M =15.
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Figure 7: p;(«a, M) from the complex filter for p = 2 in a neighborhood of the cosine of
the frequency wy = 2.2 (cos(wz) = —0.5885).
(a) M =8; (b) M =11; (¢) M = 15.
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Figure 8: p;(«,20) as in expression (8.8) forp=2,w; =0.7, w, =22, 4; = Ay = 0, =
1.0.
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Figure 9: p;(«,20) as in expression (3.6) for p=2,w; = 0.7, wy = 2.2, 4, = Ay =0, =
1.0.
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Table 4.1: Estimation of the frequency wj, j = 1,2, from the Complex Filter. p = 2,
wi =22, w; = 0.8, N = 3,000 and SNR = 201og,, (Ls—') dB. Number of iterations

std. noise
= 8.

Estimated Frequency | A; | A, o | SNR(AB) [ M 6o w;
1.0 1.0 1.0 0 151 0.5 [ 0.84721
1.0]1.0]1.0 0 20 | 0.5 | 0.83152

w) 1.0 1.0 | 1.0 0 25 0.5 | 0.82310
1.0(1.0 1.0 0 30 | 0.5 | 0.81827
1.0 (1.0 | 1.0 0 34 10.5]0.81557
1.0]1.0]1.0 0 15 | 1.9 [ 2.17073
1.0 1.0 1.0 0 20-1 1.9 | 2.18241
1.0]1.0 1.0 0 25 1.9 2.18823
wy 1.0 1.0 (1.0 0 30 | 1.9 | 2.19164
1.0(1.0 (1.0 0 34 [ 1.9 2.19337
20/1.0(1.0 4 15 ] 1.9 | 2.19260
2.011.0(0.5 10 15 1.9 [ 2.19786

Table 4.2: Estimation of the frequency wj, j = 1,2, from the Complex Filter. p = 2,
w1 =25, w; = 0.5, N = 3,000 and SNR = 20log, (Lﬁ—l) dB. Number of iterations

std. noise
= 8.
Estimated Frequency A | A | o, SNR(dB) | M | 6, w,
1.01.0]1.0 0 15 [ 0.3 0.56217
1.0/1.0] 1.0 0 20 [ 0.3 ] 0.53882
Wy 1.0]11.0(1.0 0 25| 0.3 ] 0.52659
1.0|1.0{1.0 0 30 | 0.3 ] 0.51954
1.011.0 1.0 0 34 | 0.3 [ 0.51587
10120 1.0 4 151 0.1 |0.51628
1.0]1.0]1.0 0 15 | 2.9 | 2.46535
1.0]1.0]1.0 0 20 | 2.9 ] 2.47876
1.0]1.0]1.0 0 25 | 2.9 | 2.48631
W 1.0/1.0 | 1.0 0 130 | 2.9 | 2.49077
1.0]1.0]1.0 0 34 | 2.9 | 2.49303
0.5]1.0]1.0 -2 15| 3.1 2.37030
20(1.01.0 4 15 | 2.8 | 2.49065
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