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“Technology is a useful servant but a dangerous master.”

— CHRISTIAN LOUS LANGE
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ABSTRACT

In recent years, Distributed Denial-of-Service (DDoS) attacks have escalated both in fre-

quency and traffic volume, with outbreaks reaching rates up to the order of terabits per

second and compromising the availability of supposedly highly resilient infrastructure

(e.g., DNS and cloud-based web hosting). The reality is that existing detection solutions

resort to a combination of mechanisms, such as packet sampling and transmission of gath-

ered data to external software, which makes it very difficult (if at all possible) to reach

a good compromise for accuracy (higher is better), resource usage footprint, and latency

(lower is better). Data plane programmability has emerged as a promising approach to

help meeting these requirements as forwarding devices can be configured to execute al-

gorithms and examine traffic at line rate. In this thesis, we explore P4 primitives to design

a fine-grained, low-footprint, and low-latency traffic inspection mechanism for real-time

DDoS attack detection. Our proposal – the first to be fully in-network – contributes to

shed light on the challenges to implement sophisticated security logic on forwarding de-

vices given that, to operate at high throughput, the inspection (and overall processing) of

packets is subject to a small time budget (dozens of nanoseconds) and limited memory

space (in the order of megabytes). We evaluate the proposed mechanism using packet

traces from CAIDA. The results show that it can detect DDoS attacks entirely within the

data plane with high accuracy (98.2%) and low latency (≈250ms) while keeping device

resource usage low (dozens of kilobytes in SRAM per 1Gbps link and a few hundred

TCAM entries).

Keywords: Network Security. Programmable Data Planes. DDoS Attacks.



Delegando a Detecção de Ataques Distribuídos de Negação de Serviço a Planos de

Dados Programáveis

RESUMO

Nos últimos anos, ataques distribuídos de negação de serviço vêm crescendo tanto em

frequência quanto em volume de tráfego com surtos atingindo taxas da ordem de terabits

por segundo e compremetendo a disponibilidade de infraestruturas supostamente resili-

entes (e.g., DNS e hospedagem Web na nuvem). Na prática, as soluções de detecção

existentes valem-se de uma combinação de mecanismos, como amostragem de pacotes e

transmissão dos dados coletados a um software externo, que dificulta a obtenção de uma

boa relaçao entre acurácia (maior é melhor), consumo de recursos e latência (menor é

melhor). Planos de dados programáveis emergem como uma abordagem promissora para

ajudar a cumprir esses requisitos, visto que dispositivos comutadores de pacotes podem

ser configurados para executar algoritmos e examinar o tráfego em velocidade de linha.

Neste trabalho, exploramos primitivas em P4 a fim de projetar um mecanismo de ins-

peção de tráfego com baixa granularidade, baixo consumo de recursos e baixa latência

para a detecção de ataques distribuídos de negação de serviço em tempo real. A nossa

proposta – a primeira a ser completamente implementada em plano de dados – contribui

para lançar luz sobre os desafios da implementação de lógica de segurança sofisticada

nesse contexto, dado que, para operar a altas taxas de transferência, a inspeção (e o pro-

cessamento em geral) de pacotes está sujeita a um orçamento de tempo reduzido (dezenas

de nanossegundos) e um espaço de memória limitado (da ordem de dezenas de megaby-

tes). Nós avaliamos o mecanismo proposto usando capturas de pacotes da CAIDA. Os

resultados mostram a detecção de ataques exclusivamente a partir do plano de dados com

alta acurácia (98,2%) e baixa latência (≈250ms) mantendo o consumo de recursos redu-

zido (dezenas de kilobytes de SRAM por link de 1Gbps e poucas centenas de entradas

TCAM).

Palavras-chave: Segurança de Redes. Planos de Dados Programáveis. Ataques Distri-

buídos de Negação de Serviço.
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1 INTRODUCTION

Despite consistent efforts towards effective detection and mitigation mechanisms,

Distributed Denial-of-Service (DDoS) attacks remain among the top networking security

concerns as outbreaks escalate both in frequency and traffic volume (ALCOY et al., 2018).

Reports of recent attacks targeting Dyn (HILTON, 2016) and GitHub (KOTTLER, 2018)

reveal peak rates of up to the order of terabits per second compromising the availability

of (supposedly) scalable and resilient infrastructure. Given this trend, we should expect

events like these to get even worse in the future (ALCOY et al., 2018).

Existing defensive mechanisms typically rely on standardized monitoring primi-

tives such as packet sampling - e.g., sFlow (PHAAL; PANCHEN; MCKEE, 2001)) - and

flow-based accounting - e.g., NetFlow (CLAISE, 2004), OpenFlow (The Open Network-

ing Foundation, 2015). However, these primitives present significant overhead regarding

packet processing and resource utilization to provide fine-grained traffic visibility. While

packet sampling conveys information from a reduced set of packets to keep a reason-

able load in terms of CPU processing and network management traffic (PHAAL, 2009),

flow-based accounting is limited to coarsely aggregated volume metrics due to elevated

memory footprint (MOSHREF; YU; GOVINDAN, 2013). Resulting from these limita-

tions, we advocate that the existing tooling for monitoring falls short in either accuracy or

resource usage when it comes to DDoS attack detection. Furthermore, these approaches

are subject to a long control loop, resulting in non-negligible detection latency.

As a promising alternative to these issues, the emerging concept of data plane

programmability offers flexibility to readily implement novel in-switch packet process-

ing algorithms (BOSSHART et al., 2014). These algorithms assume a packet stream as

input and are modeled as a pipeline of elementary primitives, memory accesses, and ta-

ble lookups. Human operators are thus able to define monitoring functions and delegate

them to forwarding devices across the whole network. This still relatively unexplored

concept has the potential of enabling all packets of a stream to be examined with reduced

processing/communication overheads and achieving low-latency anomaly detection. Yet,

to operate at line rate on high-speed links, this processing is constrained to a small time

budget (dozens of nanoseconds) and a limited memory space (e.g., ≈50MB SRAM and

≈5MB TCAM) (BOSSHART et al., 2013).

Meeting the aforementioned constraints is a difficult challenge that limits the scope

of the existing data plane monitoring solutions. For example, Sonata (GUPTA et al., 2016)
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and Marple (NARAYANA et al., 2017) take advantage of data plane programmability to

configure adaptive filters which determine packet streams to be forwarded to and exam-

ined by the control plane. This approach still implies a trade-off between communication

overhead and detection latency, which is driven by the rate of data collection. StateSec

(REBECCHI et al., 2019), in turn, is a DDoS attack detection mechanism fully imple-

mented on Software-Defined Networking (SDN)/OpenFlow-based forwarding devices. It

extends the match/action table structure and semantics to keep track of harmful packet

exchange patterns. Nevertheless, it does not take into account the requirement of scaling

to run at line rate on high-throughput hardware packet processors.

In this thesis, we give a consistent step towards in-network, programmable net-

work security. We explore a promising data plane programming technology, namely P4

(BOSSHART et al., 2014), to design a mechanism to perform low-latency, fine-grained

traffic inspection for real-time DDoS attack detection (LAPOLLI, 2019b). In contrast to

existing solutions in the context of SDN, the proposed mechanism is fully implementable

on forwarding devices. It comprises a processing pipeline to estimate the entropies of both

source and destination IP addresses of incoming packets. The entropy measurements are

used to both characterize the traffic and calculate anomaly detection thresholds (as func-

tions of a parameterizable sensitivity coefficient). In order to meet the strict time and

memory constraints of forwarding devices, we approximate the frequencies of distinct

IP addresses through specially tailored count sketches (CHARIKAR; CHEN; FARACH-

COLTON, 2002). Further, compute-intensive arithmetic functions are solved with the

aid of a memory-optimized longest-prefix match (LPM) lookup table. Based on realistic

datasets of legitimate traffic and DDoS attacks, we assess the entropy estimation error and

evaluate the detection performance in terms of accuracy and resource consumption. We

also compare the effectiveness and efficiency (i.e., latency) of the proposed mechanism

with those of the “de facto” approaches.

The primary research contributions of this thesis are threefold. First, we stress data

plane programmability primitives (in this work, of P4) – known for their limited function-

ality – to design a reasonably sophisticated in-network DDoS attack detection mechanism.

Second, we demonstrate, through an extensive evaluation, the performance benefits that

security mechanisms can reap from a data plane-based design. Third, we discuss chal-

lenges and present insights associated with the development of security mechanisms in

the data plane that can be valuable for new research initiatives in the area.

The remainder of this work is structured as follows. We first provide a background
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on SDN, P4 and anomaly-based DDoS attack detection, and discuss related work (Chap-

ter 2). Then, we specify the attack scenario and threat model, introduce the detection

strategy and describe the design of the proposed mechanism (Chapter 3). Further, we de-

tail our implementation as a proof of concept in terms of data-plane operation feasibility

(Chapter 4). Next, we present the evaluation methodology and results, discussing relevant

findings (Chapter 5). Finally, we point out the major lessons learned in the design process

and outline plans for future work (Chapter 6).
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2 BACKGROUND AND RELATED WORK

In this chapter, we portray the research context surrounding our DDoS attack de-

tection mechanism and discuss related work. We first introduce the motivations and the

fundamental concepts of SDN/OpenFlow (Section 2.1). Next, we overview how the P4

language abstracts data plane devices and enables programmable protocol-independent

packet processing (Section 2.2). Then, we review anomaly-based strategies for DDoS at-

tack detection regarding traffic feature extraction and inspection approaches (Section 2.3).

Finally, we discuss prominent related work (Secion 2.4).

2.1 Software-Defined Networking (SDN)

Network operators traditionally implement control policies through the individual

configuration of packet forwarding devices offering a preset collection of standardized

protocols and vendor-specific features. As networks grow with numerous distinct devices,

decomposing high-level network-wide intents into low-level distributed settings becomes

increasingly complex. Further, the typically lengthy process of protocol standardization

hampers timely innovation, whereas proprietary solutions preclude vendor interoperabil-

ity. Since operators cannot directly explore internal device structures (e.g., forwarding

tables, flow-state data storage) to implement their algorithms, this network management

model is highly dependent on vendor support. This scenario has lead to an intrinsic diffi-

culty in changing networking control designs, characterizing what is known as “network

ossification" (FEAMSTER; REXFORD; ZEGURA, 2014).

Prominent research efforts towards overcoming such innovation barriers date back

to the 1990s. Back then, active networking advocated for the exposition of forwarding

device resources (e.g., processing, storage) in the form of a network Application Pro-

gramming Interface (API), through which network operators or end-users could conceive

novel approaches for packet processing (TENNENHOUSE; WETHERALL, 2007). De-

spite considerable research effort in this direction, there have not been enough compelling

applications to motivate the use of this technology. More recently, the hassle of managing

increasing traffic volume and network sizes pushed for the embracement of the Software-

Defined Networking (SDN) paradigm (FEAMSTER; REXFORD; ZEGURA, 2014).

SDN proposes a clear separation of concerns regarding network control and oper-

ation, which is given by three distinct planes as described below (KREUTZ et al., 2015).
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• The data plane refers to the interconnection infrastructure composed by hardware-

or software-based devices endowed with elementary forwarding operations. These

operations are performed over incoming packets according to remotely preset rules

through what is called the southbound interface.

• The control plane is where a logically centralized software, called Network Op-

erating System (NOS) or controller, handles the installation of forwarding rules

and monitors the status of data plane devices and links to consolidate a global net-

work view. The main purpose is to abstract the complexity of managing low-level

details regarding the distributed forwarding devices providing operators with a sim-

pler API, i.e, the northbound interface.

• The management plane consists in the set of applications exploring the northbound

interface to control the network operation. The independence of forwarding device

implementations at this level encourages complementary innovation efforts: while

device vendors can focus on designing efficient hardware for packet processing,

network operators are free to promptly test and deploy custom control algorithms

from a higher abstraction level.

The OpenFlow protocol, initially proposed to enable innovation in campus net-

works (MCKEOWN et al., 2008), has driven the decoupling of the control plane from

the data plane. OpenFlow specifies a southbound interface for the controller to establish

secure communication channels to manage the forwarding device rules and receive status

updates (The Open Networking Foundation, 2015). These rules designate actions (e.g.,

forward, flood, drop) to packet flows determined from patterns of header field values (e.g.,

Ethernet/IP addresses, TCP/UDP ports). The status includes information from link layer

discovery and counters of packet and bytes associated to flow table entries (supporting a

global network view at the control plane).

The possibility of flexibly programming and disseminating new packet forwarding

rules have been motivating the emergence of several open-source controllers – e.g., Open-

Daylight (The OpenDaylight Foundation, 2019), ONOS (The Open Networking Founda-

tion, 2018) – and applications in a wide range of topics, including traffic engineering,

network virtualization, and network security (XIA et al., 2015). Within the industry, in

general, OpenFlow implementation has only required software updates for its backward

compatibility with the existing switching hardware. On the other hand, this characteristic

has also limited OpenFlow to the support of standard protocols and predetermined packet
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processing functions. The inability to effectively customize the data plane behavior ham-

pers new designs for forwarding protocols and traffic measurement. These limitations

have led to the emergence of novel technologies to enable data plane programmability,

notably, P4 (BOSSHART et al., 2014).

2.2 P4: Programming Protocol-independent Packet Processors

P4 is a protocol-independent domain-specific language for describing packet pro-

cessing within data plane devices. Figure 2.1 depicts the difference between the Open-

Flow and the P4 control scheme. While OpenFlow abstracts device-specific interfaces

built upon a fixed instruction set implementation, P4 is a mean for operators to program

data plane instructions which become accessible through an auto-generated API. Thus,

P4 enables a full top-down network management approach where it is possible to define

packet processing primitives and explore them to develop control applications.

P4 includes sub-languages for expressing header parsers and match-action pro-

cessing pipelines. Device vendors are expected to specify the architectural arrangement of

such processing units and expose target-specific functionality (The P4 Language Consor-

tium, 2017). Figure 2.2 illustrates a generic packet processing architecture and excerpts

of P4 code. The headers of the incoming packet packet_in are input to the parser

which decodes the bitstream into user-defined data types (see headers.p4). This data,

along with ingress metadata (port, timestamp), is available to the match-action pipelines.

Figure 2.1: Comparison between (a) the OpenFlow and (b) the P4 control scheme.

OpenFlow Controller

Fixed
Instruction Set

Device-Specific
Interface

OpenFlow Agent

OpenFlow
Forwarding Device

App App App

P4 Runtime Controller

P4 Runtime Agent

Auto-Generated API

Programmable
Instruction Set

P4
Forwarding Device

P4 Compiler

P4 Program App App App

(a) (b)

Source: the authors (2019).
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Figure 2.2: Generic Packet Processing Architecture and P4 Sample Code
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header ethernet_t {
  bit<48> src_addr;
  bit<48> dst_addr;
  bit<16> ether_type;
}
...

headers.p4

parser ParserImpl(...) {
  state start {
    packet.extract(hdr.ethernet);
    transition select(hdr.ethernet.ether_type) {
      0x0800: parse_ipv4;
      default: accept;
    }
  }

  state parse_ipv4 {
    ...
  }
}

parser.p4
control EgressImpl(...) {
  action set_ether_src_addr(bit<48> src_addr) {
    hdr.ethernet.src_addr = src_addr;
  }

  table ether_src_addr {
    key = {
      standard_metadata.egress_port: exact;
    }
    actions = {
      set_ether_src_addr;
    }
  }

  apply {
    if (hdr.ethernet.isValid()) {
      ether_src_addr.apply();
    }
  }
}

egress.p4

Source: the authors (2019).

These pipelines consist in a user-defined table chaining which may alter header fields

and propagate custom metadata (see egress.p4). The ingress pipeline is responsible

for specifying the packet egress ports. An intermediate non-programmable block repli-

cates packets in case of multicast or broadcast, and handles both queuing and scheduling.

Next, the egress pipeline is executed independently on every packet replica. Finally, the

deparser serializes updated headers for the output packet packet_out.

User-defined headers are ordered sets of P4 built-in base type fields including sin-

gle bits, fixed- or variable-width bit-strings, and fixed-width signed integers (see head-

ers.p4). The parser is modeled as a state machine which sequentially reads the packet

bitstream to extract headers (see parser.p4). This processing unit is the only that may

contain loops, as long as some header is extracted at each cycle. This restriction keeps the

computational complexity linear to the headers size inhibiting packet processing pipeline

stalls (The P4 Language Consortium, 2017).

The match-action pipelines include tables with arbitrary keys for matching packet

header fields and metadata (see egress.p4). Actions may alter this data using primi-
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tives such as elementary arithmetic (addition, subtraction, and multiplication) and bitwise

operators (not, and, or, xor). Special-purpose metadata fields define the desired forward-

ing behavior. The table chaining control flow results from a sequential algorithm provided

with conditional operators.

In addition to the P4 language core, device vendors may expose additional func-

tionality to data plane programmers through extern objects and functions. Examples of

such extensions include counters and meters associated with table entries, and registers to

persist data across packet processing. These specific features are key elements to enable

traffic measurements within the data plane. Registers, in particular, can help to decouple

traffic statistics from the forwarding rules and consequently improve memory manage-

ment.

Data plane programmability as proposed by P4 does not only enable quick inno-

vation – since operators are able to readily implement custom forwarding logic – but also

supports the collection of network information at the packet level. This possibility creates

new design opportunities for network diagnosis (KIM et al., 2016) and measurements

(GUPTA et al., 2016; NARAYANA et al., 2017). Upon the same technological foun-

dation, we propose to perform fully in-network real-time anomaly-based DDoS attack

detection.

2.3 Anomaly-Based DDoS Attack Detection

Anomaly-based Network Intrusion Detection Systems (NIDSs) model the legit-

imate traffic behavior to identify outliers which possibly represent a malicious activity.

They are opposed to signature-based NIDSs that inspect the traffic for priorly known at-

tack patterns. The anomaly-based approach, though typically more prone to issue false

alarms, may detect unknown attacking strategies (GARCÍA-TEODORO et al., 2009). The

inspection process to that end involves extracting meaningful traffic features and distin-

guishing deviations representing deceitful intents. In this section, we present a general

view regarding these challenges and summarize relevant work over a comparison table

(Table 2.1).

Volume metrics are basic building blocks for traffic feature extraction. They com-

prise any sort of counting (e.g., packets, bits, bytes, header field values) in terms of an

aggregation criterion (e.g., flows, interfaces, destination, time interval, etc.). Given that

exact measurements over high traffic volumes implies substantial memory utilization, se-
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Table 2.1: Comparison of Anomaly-Based DDoS Attack Detection Mechanisms

Reference Traffic Features Detection Method

MULTOPS
(GIL; POLETTO, 2001)

Ratio of the packet rates
to/from aggregations of IP
addresses.

Static Threshold

(LAKHINA; CROVELLA;
DIOT, 2005)

Entropy of IP addresses and
transport-layer ports.

k-means Clustering

(ÖKE; LOUKAS, 2007) Bitrate (entropy, Hurst
parameter) and round-trip
time.

Random Neural Network

(MA; CHEN, 2014) Entropy of IP addresses Static Threshold to the
Lyapunov Exponent

(XU; LIU, 2016) Flow volume and flow rate
asymmetry.

Self-Organizing Map

StateSec
(REBECCHI et al., 2019)

Entropy of IP addresses and
transport-layer ports

Dynamic threshold as a
function of the mean and the
standard deviation.

(HOQUE; KASHYAP;
BHATTACHARYYA,
2017)

Correlation of entropy and
variation index of source IP
addresses, and packet rate.

Dynamic threshold as a
function of the correlation
mean and range.

Source: the authors (2019).

curity mechanisms often resort to coarser aggregation criteria (GIL; POLETTO, 2001;

XU; LIU, 2016) or probabilistic approximations with reduced footprint (e.g, sketches)

(YU; JOSE; MIAO, 2013; LIU et al., 2016; YANG et al., 2018). Without further pro-

cessing, these measurements may reveal aggressive volumetric DDoS attack, but they are

hardly distinguishable from legitimate events such as flash crowds.

The statistical analysis of the volume metrics in terms of ratios, correlation, and

entropy contributes to discriminate the malicious behavior and adds sensitivity to seman-

tic attacks. Ratios, as the relation of packets with different directions in a flow, reveal

asymmetric resource allocation between communicating hosts (GIL; POLETTO, 2001;

XU; LIU, 2016). Correlation measures indicate the degree of similarity between a normal

traffic profile and the one being inspected (HOQUE; KASHYAP; BHATTACHARYYA,

2017). Entropy, on the other hand, characterizes the uncertainty of random variables

helping to detect changes in the distribution patterns of packet header fields (LAKHINA;

CROVELLA; DIOT, 2005; ÖKE; LOUKAS, 2007; MA; CHEN, 2014; REBECCHI et

al., 2019; HOQUE; KASHYAP; BHATTACHARYYA, 2017).
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The analysis of such traffic features for DDoS attack detection is typically modeled

as a decision or a classification problem. A common approach in this sense is to define

thresholds from the combination of averages and indices of dispersion (REBECCHI et al.,

2019). In this case, updating the traffic characterization reference is essential to take into

consideration the dynamics of legitimate traffic, but it can make the detection mechanism

vulnerable to manipulation by the attacker. Another relevant detection method is the

use of machine learning algorithms (e.g., k-means clustering (LAKHINA; CROVELLA;

DIOT, 2005), Random Neural Network (ÖKE; LOUKAS, 2007), Self-Organizing Map

(XU; LIU, 2016)). Regardless of the effectiveness of techniques of this sort, they usually

imply increased computational effort representing a challenge for the inspection at high

traffic rates.

2.4 Related Work

Despite the consistent efforts on selecting and processing traffic features to detect

DDoS attacks, real-time security solutions are limited by the monitoring functionality cur-

rently implemented on most forwarding devices, in which accuracy necessarily translates

into high overheads (MOSHREF; YU; GOVINDAN, 2013). It is in this context that pro-

grammable data plane-based approaches emerge as promising alternatives, being subject

of consistent research work concerning, for example, scalable in-network packet process-

ing models and fine-grained traffic measurement capability. Next, we review some of the

most prominent investigations in the area.

Based on SDN/OpenFlow, Xu and Liu (XU; LIU, 2016) propose methods to de-

tect DDoS attacks and identify their sources and victims. On top of the control plane, a

software application classifies flows regarding their volume and rate asymmetry through

an unsupervised learning algorithm. This traffic data is collected from the counters asso-

ciated to flow table entries (in forwarding devices). Since the number of entries is limited,

their aggregation granularity is adaptively changed to enable zooming into abnormal traf-

fic patterns. This process is iterative and highly dependent on the management plane,

introducing non-negligible latency (in the order of several seconds) to the detection of an

ongoing attack.

To offload monitoring functions to the data plane, StateSec (REBECCHI et al.,

2019) is a DDoS attack detection mechanism based on in-switch processing capabilities.

StateSec is based on an OpenFlow extension in which flow tables can be used to specify
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finite-state machines for packet processing (BIANCHI et al., 2014). The detection is

performed through entropy analysis of both source/destination IP addresses and transport-

layer ports. These metrics along with their mean and standard deviation are supposed to be

calculated within the data plane. However, the mechanism requires a flow table entry for

every distinct observed IP/port 4-tuple value, which implies unbounded table utilization.

Furthermore, it does not elaborate on how to measure entropy while meeting the time

budget to operate on high-throughput forwarding devices.

Advancing from more traditional SDN/OpenFlow-based measurement approaches

to ones in which accounting is fully delegated to the data plane, OpenSketch (YU; JOSE;

MIAO, 2013), UnivMon (LIU et al., 2016), and Elastic sketch (YANG et al., 2018) pro-

vide flexible hash table-based designs that enable network operators to implement a wide

range of measurement tasks in the data plane. The forwarding devices are responsible for

maintaining sets of hash tables (named sketches) with summarized up-to-date traffic coun-

ters. The control plane periodically collects this data for further processing. As a result,

these solutions achieve high generality and accuracy in traffic measurement. However,

they are subject to a trade-off between the data polling rate (which is directly related to

anomaly detection latency) and network overhead due to additional management traffic.

In an attempt to offload additional monitoring logic to the data plane, Sonata

(GUPTA et al., 2016) allows operators to define packet stream filtering queries. These

queries are executed on programmable forwarding devices so that only the traffic of in-

terest is sent to external stream processors. Packet headers are abstracted as tuples of

field values, which – in addition to be filtered – can be sampled in the data plane. Based

on these abstractions, network operators can optimize packet sampling to detect priorly

known anomalous traffic patterns, but potentially missing novel attack strategies. Follow-

ing a similar concept, Marple (NARAYANA et al., 2017) is a language for expressing

monitoring queries that are compiled to target programmable forwarding devices. It en-

ables in-network execution of functions over aggregation of packets backed by a new key-

value store primitive. Despite providing forwading devices with the ability to measure

traffic features, the inspection of such metrics is still delegated to external servers.These

solutions significantly contribute to deploying generic traffic measurement tasks dynam-

ically. Differently, our work assumes a reduced scope (DDoS attack anomaly detection),

in which we seek to offload (as well) this inspection to forwarding devices.

Hoque et al. (HOQUE; KASHYAP; BHATTACHARYYA, 2017) propose an hy-

brid real-time DDoS attack detection mechanism implemented within a FGPA (Field-
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Programmable Gate Array) in cooperation with software modules. The mechanism con-

sists in (i) a software pre-processor, which performs feature extraction over 1 s-long ob-

servation windows; (ii) an FPGA, responsible for the detection decision based on the

computation of a novel correlation metric; and (iii) a software named security manager,

which analyzes the traffic historical data to generate a normal profile and dynamically

define a detection threshold. The design goal is to trigger DDoS attack alarms from the

victim’s end, not taking into consideration the possibility of network resource saturation

prior to this point. Beyond that, the authors do not demonstrate the feasibility of the

pre-processor to operate in real-time, despite it being in the mechanism’s critical path.

Table 2.2 summarizes the above discussion in terms of the feature extraction and

the inspection characteristics. OpenFlow presents an intrinsic limitation in memory man-

agement when it comes to fine-grained traffic measurement as the accounting criteria are

coupled to the packet forwarding rules. While StateSec does not approach this issue, Xu

and Liu compensate that with at the cost of a long control loop to dynamically change the

aggregation criteria. OpenSketch, UnivMon, Elastic sketch, Sonata, and Marple are com-

Table 2.2: Related Work Summary

Feature Extraction Inspection

Reference Technology Granularity Memory Throughput Location Ctrl. Loop

(XU; LIU, 2016) OpenFlow Dynamic Low High Mgmt. Plane Long

StateSec
(REBECCHI et al.,
2019)

OpenFlow
+ Extension

Fine High NA Data Plane Short

OpenSketch (YU;
JOSE; MIAO, 2013)

Own
Proposal

Fine Low High Mgmt. Plane Medium

UnivMon (LIU et al.,
2016)

P4 Fine Low High Mgmt. Plane Medium

Elastic sketch (YANG
et al., 2018)

P4 et al. Fine Low High Mgmt. Plane Medium

Sonata (GUPTA et
al., 2016)

Software
Switch

Coarse Low Medium Mgmt. Plane Medium

Marple (NARAYANA
et al., 2017)

P4 Fine Low High Mgmt. Plane Medium

(HOQUE;
BHATTACHARYYA;
KALITA, 2015)

Software
Module

Fine (if
feasible)

NA NA Out-of-Band
FPGA

Medium

This Work P4 Fine Low High Data Plane Short

Source: the authors (2019).
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pelling solutions which explore the data plane to enable accurate and low-footprint fea-

ture extraction, but they do not include low-latency in-network inspection of such data. In

contrast, Hoque et al. explore programmable hardware to perform low-latency inspection,

but they count on software modules for feature extraction which (although not evaluated)

likely represent a performance bottleneck.

The area of in-network security management is flourishing, with the potential to

allow operators to devise novel attack detection mechanisms within much shorter design

and deployment cycles. The aforementioned proposals represent consistent steps towards

devising mechanisms to be executed in the data plane, but (i) resort to considerable com-

munication with external controllers (delaying the detection of attacks and leading to

a high network utilization) and (ii) use coarse-grained measurements to cope with the

massive amount of data traversing high-speed links (degrading accuracy). Our proposed

mechanism goes a consistent step further to enable DDoS attack detection entirely within

the data plane. Our design explores data plane programmability functionality to its limit

and achieves accuracy, low intrusiveness, and timeliness, as we describe next.
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3 IN-NETWORK DDOS ATTACK DETECTION DESIGN

In this chapter, we introduce the proposed in-network DDoS attack detection

mechanism. We first describe both the attack scenario and the threat model (Section 3.1).

Next, we overview the foundations of the anomaly detection strategy (Section 3.2). Then,

we detail the packet processing pipeline devised to run at line rate on programmable for-

warding devices (Section 3.3).

3.1 Attack Scenario and Threat Model

The term distributed denial-of-service comprises a multitude of attack strategies to

degrade or disrupt external facing services. In this work, we assume an attacker capable

of coordinating globally distributed hosts to send illegitimate service requests to a single

victim. These requests may either saturate the victim’s network with high traffic volume

or exploit a specific protocol semantic vulnerability to consume the computing resources

of the target server. The attacker uses spoofed IP addresses to hinder the characterization

and detection of the attack packets. Further, we assume that forwarding devices are not

compromised.

Figure 3.1 illustrates this attack scenario within an hypothetical Autonomous Sys-

tem (AS) interconnection architecture. The spread of attacking hosts among independent

Figure 3.1: DDoS Attack Scenario: the red arrows indicate the malicious traffic flow, the
explicit forwarding devices are the candidates to host the proposed detection mechanism.

IXP

Tier 2 Tier 2

Tier 2

Tier 3

Tier 3
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Tier 1

Tier 1

Tier 3

Source: the authors (2019).
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administrative domains imposes challenges to source-based detection mechanisms, be-

cause it is hard to coordinate security efforts across administrative borders. At the other

extremity of the attack, i.e., the victim’s infrastructure, the malicious traffic is aggregated

and prominent for detection, but it may have already saturated both in-path and local

resources.

Thus, our proposed mechanism is expected to be deployed at the ASs closest to

the victim as they benefit from a privileged traffic view and high-throughput links to

timely uncover and deter even voluminous outbreaks without exhausting their resources.

Our mechanism should run on nodes peering with other ASs to detect attacks and enable

mitigation before reaching lower-capacity links. At this location, typical software-based

IDSs will hardly comply with the high traffic throughput. Dedicated appliances may

suit this scenario, but they represent significant capital expenditure for a comprehensive

network defense. P4 allows us to flexibly deploy and customize our mechanism using

programmable hardware to keep up with high packet rates.

3.2 Detection Strategy Foundations

Given that the strict time and memory budgets for high-rate in-network packet

processing translate to limited programming primitives, it is paramount to resort to a sim-

ple, yet powerful detection strategy. We assume DDoS attacks characterized by a large

number of hosts (or spoofed sources) converging traffic to one or few victims (HOQUE;

BHATTACHARYYA; KALITA, 2015). So, the source and destination IP addresses dis-

tributions tend to deviate from the legitimate pattern in the presence of malicious activ-

ity. On top of this observation, we design our mechanism based on the calculation of

the Shannon entropy (SHANNON, 1948), which is recognized as a reliable method to

identify such deviations accurately (LAKHINA; CROVELLA; DIOT, 2005; BHUYAN;

BHATTACHARYYA; KALITA, 2015).

ConsideringX the set of IP addresses within a total ofm packets, and f0, f1, ..., fN

the frequencies of each distinct address, the entropy of X is given by:

H(X) = log2(m)− 1

m

N∑
x=0

fx log2(fx), (3.1)

where the summation S =
∑N

x=0 fx log2(fx) is the entropy norm. Note that the entropy
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norm has a negative relation to the entropy itself. The minimum entropy H = 0 occurs

when all addresses are the same such that S = m log2(m). Dispersed distributions result

in higher entropy values reaching the maximum H = log2(m) when all addresses are

distinct, i.e., S = 0.

In the course of a DDoS attack, we expect the entropy of source IP addresses to

increase as the malicious packets introduce new values to the distribution. Conversely,

we expect the entropy of destination IP addresses to decrease with the victim becoming

more frequent as a destination. This effect is only observable when the number of packets

m encompasses an adequate, robust representation of the current distributions. One must

keep in mind that increasing m comes at the cost of higher attack detection latency, as

more packets must be received for each measurement. On the other hand, when calcu-

lating the entropy over few packets, malicious traffic-related changes to the distributions

may be indistinguishable from short-term fluctuations of legitimate traffic.

To address the mentioned trade-off, we propose setting dynamic thresholds to the

entropies of the source and the destination IP addresses considering a preset value of m.

We flag the observations in which any of these m packets are malicious, aiming to dis-

tinguish them in future work. In the following section, we present the packet processing

pipeline devised to implement this approach.

3.3 Packet Processing Pipeline

We build the detection mechanism on top of the P4 behavioral model reference

implementation (BMv2) (The P4 Language Consortium, 2019a), which has a constrained

set of processing primitives reflecting the limitations of the current programmable hard-

ware devices. In this section, we describe how we overcome these restrictions to perform

real-time DDoS attack detection.

Figure 3.2 depicts the top-level scheme of our proposed mechanism. The entropies

of IP addresses are estimated for consecutive partitions of the incoming packet stream,

named observation windows (Subsection 3.3.1). At the end of each observation window,

the traffic characterization units read the calculated entropy values to generate a legitimate

traffic model (Subsection 3.3.2). In turn, the anomaly detection unit calculates detection

thresholds as functions of this model issuing an attack alarm when they are exceeded by

the last entropy estimates (Subsection 3.3.3).

Our mechanism only issues alarms at the end of observation windows (i.e., every
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Figure 3.2: DDoS Attack Detection Top-Level Scheme
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Source: the authors (2019).

m packets) as it is when it obtains the entropy estimates. Instead, the use of a sliding

window could grant lower detection latency as we would be able to verify attacks at

every packet. However, this approach would require significant memory space for storing

the last m IP address pairs. In the upcoming subsections, we describe how we achieve

reduced memory footprint using disjoint windows. Note that, as per our threat model,

the attacker cannot predict the order in which the malicious packets will arrive at the

monitoring device related to the overall traffic. Thus, he cannot intentionally distribute

the attack packets among windows to bypass the detection.

3.3.1 Entropy Estimation

As the P4 behavioral model does not support the binary logarithm function, we

assume a fixed value (yet parameterizable) for the observation window size m so that

the first term in Equation 3.1 becomes a constant. Consequently, the real-time entropy

estimation processing is reduced to the calculation of the second term, which is a function

of the frequencies of each distinct observed address.

Next, we detail the approximation of these frequencies from the packet stream

while meeting processing constraints. Then, we elaborate on the computation of the en-

tropy norm without resorting to an offline processing stage. Finally, we show how to

obtain the entropy estimate. Figure 3.3 illustrates the processing pipeline in its entirety.

Frequency Approximation

We base the approximation of address frequencies on a count sketch data struc-

ture (CHARIKAR; CHEN; FARACH-COLTON, 2002), which uses sub-linear space to

represent a frequency table of events in a data stream. It requires the computation of
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Figure 3.3: Entropy Estimation Pipeline
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hash functions and a two-dimensional array of counters to obtain unbiased probabilistic

frequency approximations.

Let X be the set of all possible IP address values and C be a matrix of counters

with depth d and width w (i.e., C ∈ Zd×w), where Ci,j indicates the counter at row i and

column j (see Figure 3.3). We define two sets of independent hash functions {h1, ..., hd}

and {g1, ..., gd}, where each pair (hi, gi) is associated with a sketch row i ∈ {1, ..., d}. All

hash functions have as input an IP address x ∈ X . Hash function hi maps IP addresses

to columns in row i (i.e., hi : X 7→ {1, ..., w}). Hash function gi decides, for each IP

address, if the counter Ci,hi(x) should be incremented or decremented (i.e., gi : X 7→

{−1, 1}). The count sketch algorithm defines two operations:

Update(C, x):
for i = 1, ..., d :

Ci,hi(x) ← Ci,hi(x) + gi(x)

Estimate(C, x):
return median(g1(x)C1,h1(x), ..., gd(x)Cd,hd(x))

Update(C, x) updates all depth levels of the sketch C to count the occurrence of

x. Estimate(C, x) returns an estimate of the frequency count of x, which we denote as

f̂x (see Figure 3.3). The mechanism uses the set of hash functions gi to deal with the event

of hi colliding for multiple distinct IP addresses. In that event, it is expected that some

of the addresses will increase the counter value and others will decrease it, making the
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counter assume a clearly inconsistent value. When compared with the other counters of

the same address stored on all depth levels, counters with collisions become outliers. The

sketch avoids getting tainted by such outliers by using the median (instead of the mean,

which is very sensitive to outliers) of the values stored in all depth levels as the frequency

estimate.

In P4, this data structure can be implemented using registers, which persist general

purpose data across packets. IP address hashing is possible through the definition of

custom hash functions. We use functions of the type (aix+bi) mod p, where ai and bi are

co-prime coefficients, and p is a prime number. These functions have been successfully

used before in programmable data planes (SIVARAMAN et al., 2017).

Obtaining independent consecutive entropy estimates would require to reset all

sketch counters at the transition of observation windows. To avoid such a bursty pro-

cessing overhead, we associate an additional register to each sketch counter to store the

identifier of the observation window in which it was last updated (WID). We employ

an observation window counter to generate these identifiers. Hence, whenever a counter

is read, its value is only taken into account if the associated register holds the current

window identifier; otherwise, it is presumed zero and updated accordingly.

Finally, we take the median value comparing the results of each sketch row. Note

that the sketch depth is equal to the number of inputs to the median operator. Thus, such

parameter is intrinsically related to the processing complexity of this step. In Chapter 5,

we show that the use of few sketch rows does not impact the entropy estimation error

significantly if we compensate with a greater sketch width.

Entropy Norm Estimation

Right after an IP address is read, and its current frequency on the observation

window is retrieved, we compute its respective term in the summation composing S. We

use this result to update the entropy norm estimate Ŝ (stored in a register). As IP addresses

are expected to appear numerous times in a single observation window, we update Ŝ by

incrementing the difference between the newly computed term and its previous value (if

f̂x > 1), as follows:

Ŝ ← Ŝ + f̂x log2(f̂x)︸ ︷︷ ︸
newly computed term

− (f̂x − 1) log2(f̂x − 1)︸ ︷︷ ︸
previous term value

. (3.2)

Since the P4 behavioral model does not support floating-point numbers, we rep-
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resent Ŝ in a fixed-point format to allow fractional precision. The required arithmetic

operations can be derived from integers.

As an important building block for implementing Equation 3.2 in the data plane,

we must compute the binary logarithm, which is not as straightforward. To overcome this

challenge, we build an LPM lookup table with pre-calculated values for: f̂x log2(f̂x) −

(f̂x − 1) log2(f̂x − 1). Unlike a typical lookup table requiring an entry for each domain

value, longest-prefix matching allows the aggregation of domain values to a single entry.

This data structure is typically supported in a forwarding device by a Ternary Content-

Addressable Memory (TCAM). Thus, we replace real-time compute-intensive operations

with efficient TCAM table lookups.

Our pre-computed function is plotted in Figure 3.4. The dashed lines illustrate

the aggregation of the domain values [147 456, 155 647] to a single entry with the result

set to y = 18.65214. In this case, the maximum approximation error is ≈0.04 when

fx = 147 456. In general, the magnitude of the error depends on the function curve

within the aggregation interval. One should wisely populate the table to meet an adequate

trade-off between table entry count and error. In Algorithm 1, we describe our procedure

to this end where f is any monotonic function defined within an integer domain. For

demonstration, we assume this domain to contain 32-bit integers.

Throughout processing, every incoming packet x triggers Update(C, x) and f̂x ←

Estimate(C, x). Then, the values of f̂x are used as keys to obtain the increment to

the entropy norm (Equation 3.2). Finally, by the end of each observation window, we

calculate the entropy estimates from Ŝ as we describe next.

Figure 3.4: LPM lookup table pre-computed function: the dashed lines illustrate how fx
values can be aggregated to a single table entry with reduced approximation error.

Source: the authors (2019).
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Algorithm 1 LPM Lookup Table Population
1: procedure POPULATE(table, f, domain,max_error)
2: x← domain.start
3: while x ≤ domain.end do
4: for key.prefix_len← 1 to 31 do
5: key.base← x ∧ ¬(0xffffffff� key.prefix_len)
6: if key.base ≥ x then
7: last← key.base+ 232−key.prefix_len − 1
8: if |f(key.base)− f(last)| ≤ max_error then
9: table[key] = (f(key.base) + f(last))/2

10: x = last+ 1
11: break
12: if key.prefix_len = 31 then
13: key.base← x
14: key.prefix_len← 32
15: table[key]← f(x)
16: x← x+ 1
17: break

Entropy Measurement

In the interest of reducing the processing requirements, we constrain the observa-

tion window size to a fixed power of two so that log2(m) results in an integer constant and

S/m can be implemented as a simple arithmetic shift. Therefore, the entropy estimate is

given by:

Ĥ ← log2(m)− (Ŝ � log2(m)), (3.3)

where� denotes an arithmetic shift. We store log2(m) within a register so the network

operator can change m at runtime.

3.3.2 Traffic Characterization

Anomaly-based intrusion detection has the advantage of dealing with attacks of

unknown anatomy and different strengths, but usually requires a bootstrapping, training

phase with legitimate traffic. In our proposed mechanism, we also build a model of the

legitimate traffic, through the processing of successive entropy estimates.

The entropy time series of the source and the destination IP addresses are summa-

rized independently in terms of an index of central tendency and an index of dispersion.

Since the address distributions are legitimately subject to changes throughout time, the

proposed mechanism updates this model in real-time. The entropy measurements identi-
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fied as malicious by the anomaly detection unit are discarded from the characterization.

Index of Central Tendency

We represent the central tendency of the recent entropy estimates by their Expo-

nentially Weighted Moving Average (EWMA) (ROBERTS, 1959), as follows:

Mn ← αĤn + (1− α)Mn−1 with M1 = Ĥ1, (3.4)

where α ∈ (0, 1) is known as the smoothing coefficient and n is an index representing

the observation window. This metric allows parameterizable filtering of short-term fluc-

tuations while giving prominence to the most recent values. In our P4-based design, we

make use of a fixed-point representation for the smoothing coefficient. Again, we use a

register so the operator may change it at runtime.

Index of Dispersion

Likewise, we measure the dispersion of entropy values through an Exponentially

Weighted Moving Mean Difference (EWMMD), as follows:

Dn ← α|Mn − Ĥn|+ (1− α)Dn−1 with D1 = 0. (3.5)

This index denotes the typical spread of entropy measurements relative to the EWMA,

being a fundamental feature to the definition of anomaly detection thresholds.

3.3.3 Anomaly Detection

The anomaly detection is performed according to the following conditions:

source IP addresses: Ĥn > Mn−1 + kDn−1 (3.6)

destination IP addresses: Ĥn < Mn−1 − kDn−1 (3.7)

A DDoS attack alarm is triggered whenever any of these two conditions hold. k is a

configurable parameter proposed as a sensitivity coefficient, which scales the detection

thresholds. Since it is multiplied by the index of dispersion, this effect is proportional to

the traffic characteristics. Increasing k results in more rigorous detection conditions, i.e.,
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higher assertiveness. “Stealthier” attacks may go unnoticed, nevertheless. A lower value

for k, in turn, may expand anomaly detection coverage with the cost of escalating false

alarms. It is up to the network operators to determine and adaptively change a value for k

to reach an adequate balance between true-positive and false-positive rates.
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4 IMPLEMENTATION

In this chapter, we describe our implementation for the proposed DDoS attack

detection mechanism. The main goals are to (i) verify data-plane execution feasibility

conforming to the P4 language primitives and (ii) enable a thorough evaluation consid-

ering different parameterization and attack conditions. We approach (i) with ddosd-p4

(LAPOLLI, 2019b), a proof-of-concept P4 program based on a simple target behavioral

model (Section 4.1). Regarding goal (ii), we propose ddosd-cpp (LAPOLLI, 2019a), a

suite of tools developed in C++ for emulating the mechanism packet processing units

with adequate performance for evaluation (Section 4.2). The latter was necessary since

performance has not been a design goal of our P4 target. We verify the logical equivalence

of these implementations from both a syntactic and a functional analysis (Section 4.3).

Figure 4.1 illustrates the execution flow of our P4 and C++ approaches. We replay

a pcap file workload to the P4 target running our detection mechanism. Our data plane

program annotates the values of internal variables within packets, forwarding them to a

specific network interface so we may dump them into a new pcap file. In turn, our C++

implementation reads the input file using libpcap (The Tcpdump Group, 2019) and emu-

lates our detection mechanism units – entropy estimation (ee), traffic characterization and

anomaly detection (tcad) – to generate an execution report text file. We use a conversion

tool (ercnv) to translate the P4 pcap file output to the same format as the C++ report.

These reports serve to functionally validate the equivalence of both implementations and

to assess the detection mechanism performance as we explain further in Section 4.3.

Figure 4.1: P4 and C++ Implementation Execution Flow
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Source: the authors (2019).
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4.1 Proof-of-Concept P4 Program

ddosd-p4 is the description of our detection mechanism to run on the simple_switch

target from BMv2, i.e., the P4 behavioral model software reference implementation (The

P4 Language Consortium, 2019a). With this choice, we intend to encourage the adap-

tation to other devices, which becomes straightforward as this target only contains basic

processing functionality.

Figure 4.2 depicts the top-level scheme of our P4 implementation, serving as a

reference for the following subsections. Next, we guide through the most relevant ex-

cerpts of our code starting by headers definition and parsing (Subsection 4.1.1), and then

addressing both the ingress and the egress match-action pipelines (Subsection 4.1.2). For

a comprehensive view of our program, one may refer to our publicly available repository

(LAPOLLI, 2019b).

Figure 4.2: ddosd-p4 Top-Level Scheme

packet_in Headers/Metadata Bus

Entropy Estimation

Figures 4.5 through 4.10

Table 4.1

Trafffic Charact. and

Anomaly Detection

Figure 4.11

Headers Parser

Figure 4.4
Table 4.2

to egress pipeline

Ingress Match-Action Pipeline

Source: the authors (2019).

4.1.1 Headers Definition and Parsing

We take a minimalist approach regarding standard protocols, supporting only Eth-

ernet/IPv4 packets as it is required by our workload (described further in Chapter 5).

Yet, extending our program in this respect is an uncomplicated task for being a funda-

mental design goal of P4. We explore this language feature to define a custom header

type ddosd_t (Figure 4.3), in which we annotate the values of the detection mechanism

variables at runtime to compose the execution report of Figure 4.1. Note that we only

implement such header for evaluation purposes as it is not a requirement of our detection

mechanism.



36

Figure 4.3: Custom Header Type Definition

1 // EtherType 0x6605
2 header ddosd_t {
3 bit<32> packet_num;
4 bit<32> src_entropy;
5 bit<32> src_ewma;
6 bit<32> src_ewmmd;
7 bit<32> dst_entropy;
8 bit<32> dst_ewma;
9 bit<32> dst_ewmmd;

10 bit<8> alarm;
11 bit<16> ether_type;
12 }

Source: the authors (2019).

We use an EtherType of 0x6605 to identify our custom data structure and place it

after the Ethernet header. The packet_num field indicates the packet sequence number

within its observation window. The succeeding fields represent the output of the entropy

estimation (src_entropy, dst_entropy), the traffic characterization (src_ewma,

dst_ewma, src_ewmmd, dst_ewmmd), and the anomaly detection (alarm) units.

The ether_type field serves to identify the subsequent protocol header type.

Figure 4.4 summarizes our header parser with a finite-state machine diagram. We

assume all incoming packets to begin with the Ethernet header, which we extract in the

start state. We proceed by checking the value of the EtherType field to extract the

ddosd_t and the IPv4 headers (if any). Our workload packets follow the start →

parse_ipv4 → accept path, while the packets carrying information from our de-

tection mechanism variables follow start → parse_ddosd → parse_ipv4 →

accept.

Figure 4.4: Header Parser Finite-State Machine Diagram

start

parse
ddosd

parse
ipv4

accept

EtherType = 0x6605

EtherType = 0x0800

EtherType = 0x0800

Source: the authors (2019).
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4.1.2 Match-Action Pipelines

After extracting the packet headers to structured data types, our ingress match-

action pipeline is responsible for determining the egress ports, and performing entropy

estimation, traffic characterization, and anomaly detection. In turn, the egress pipeline

inserts our custom header type to enable an execution report. We set up an LPM IPv4

routing table for packet forwarding. Next, we present our implementation approach con-

cerning the detection mechanism, i.e., the entropy estimation, the traffic characterization,

and the anomaly detection units.

Entropy Estimation

Figure 4.5 depicts an overview of our entropy estimation unit implementation,

building upon our proposal as presented in Subsection 3.3.1. We annotate references to

the code excerpts we explain next. Further, we specify the key variables involved in each

processing step.

Table 4.1 summarizes the registers we use to compute the entropy estimates. Their

values persist across packet processing, and we may manipulate them both from the

data plane program and through the southbound interface; so we use them for holding

the mechanism parameters and its stateful variables. We must declare these registers

at compile-time which, in our case, precludes the possibility of adaptively changing the

count sketch dimensions. Still, such change is possible by reprogramming the P4 target.

Figure 4.5: Entropy Estimation Implementation Top-Level Scheme
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Source: the authors (2019).
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Table 4.1: Entropy Estimation P4 Registers Summary

Name Type Description

log2_m 1× bit<5> log2(m) parameter allowing the operator to set the
observation window size m constrained to a power of
two. A bit width of 5 is sufficient to hold the logarithm
of up to 232, which is the maximum possible value for
the sketch counters (see src_csi, dst_csi below).

pkt_counter 1× bit<32> Packet counter to identify the end of the observation
windows.

ow_counter 1× bit<32> Observation window counter to assist on resetting the
count sketches.

src_csi,
dst_csi

w× int<32> Counters of the source and destination sketch rows
i = 1, 2, ..., d.

src_csi_ow,
dst_csi_ow

w× bit<8> Observation window annotation (WID) of the source
and destination sketch rows i = 1, 2, ..., d.

src_S, dst_S 1× bit<32> Source and destination entropy norms represented
with 28 integer bits and 4 fractional bits.

Source: the authors (2019).

In order to implement the count sketch, we extend both the simple_switch tar-

get1 and the P4 language reference compiler2 (The P4 Language Consortium, 2019b) to

support the hash functions hi and gi for i = 1, 2, ..., d. Then, in our P4 program, we

encapsulate hashing into actions as shown in Figure 4.6. The cs_hash action imple-

ments hi functions while cs_ghash implements gi. Lines 2–5 and 9–12 represent calls

to our target device hashing operating unit. Since this unit is unable to generate negative

numbers, we use a simple transformation to the results from HashAlgorithm.gi, i.e.

f(x) = 2x− 1, so we obtain {−1, 1} from {0, 1} in lines 15–18.

For each incoming IP packet, we update the sketch counters and obtain the ad-

dresses frequency estimate from every sketch row. We demonstrate this process in Fig-

ure 4.7. In lines 3–4, we read the WID annotation (stored in src_csi_ow) and then

compare it to the current observation window identifier in line 7. If they do not match,

we consider the counter value to be outdated and reset it (lines 8–9); otherwise, we read

its value (line 11). Next, in lines 13–14, we calculate the new counter value and update

it within its register. Finally, we calculate our row estimate in line 16. Note that, in line

7, we only take the least significant byte of the observation window counter (read into

1Extension available at <https://github.com/aclapolli/behavioral-model>
2Extension available at <https://github.com/aclapolli/p4c>

https://github.com/aclapolli/behavioral-model
https://github.com/aclapolli/p4c
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Figure 4.6: P4 Actions for Count Sketch Hashing

1 action cs_hash(in bit<32> ipv4_addr, out bit<32> h1, out bit<32> h2
↪→ , out bit<32> h3, out bit<32> h4) {

2 hash(h1, HashAlgorithm.h1, 32w0, {ipv4_addr}, 32w0xffffffff);
3 hash(h2, HashAlgorithm.h2, 32w0, {ipv4_addr}, 32w0xffffffff);
4 hash(h3, HashAlgorithm.h3, 32w0, {ipv4_addr}, 32w0xffffffff);
5 hash(h4, HashAlgorithm.h4, 32w0, {ipv4_addr}, 32w0xffffffff);
6 }
7
8 action cs_ghash(in bit<32> ipv4_addr, out int<32> g1, out int<32>

↪→ g2, out int<32> g3, out int<32> g4) {
9 hash(g1, HashAlgorithm.g1, 32w0, {ipv4_addr}, 32w0xffffffff);

10 hash(g2, HashAlgorithm.g2, 32w0, {ipv4_addr}, 32w0xffffffff);
11 hash(g3, HashAlgorithm.g3, 32w0, {ipv4_addr}, 32w0xffffffff);
12 hash(g4, HashAlgorithm.g4, 32w0, {ipv4_addr}, 32w0xffffffff);
13
14 // As the g hashes outputs either 0 or 1, we must map 0 to -1.
15 g1 = 2*g1 - 1;
16 g2 = 2*g2 - 1;
17 g3 = 2*g3 - 1;
18 g4 = 2*g4 - 1;
19 }

Source: the authors (2019).

Figure 4.7: Count Sketch Row Frequency Estimation

1 // Row 1 Estimation
2
3 bit<8> src_cs1_ow_aux;
4 src_cs1_ow.read(src_cs1_ow_aux, src_h1);
5
6 int<32> src_c1;
7 if (src_cs1_ow_aux != current_ow[7:0]) {
8 src_c1 = 0;
9 src_cs1_ow.write(src_h1, current_ow[7:0]);

10 } else {
11 src_cs1.read(src_c1, src_h1);
12 }
13 src_c1 = src_c1 + src_g1;
14 src_cs1.write(src_h1, src_c1);
15
16 src_c1 = src_g1*src_c1;

Source: the authors (2019).

current_ow) to identify a window within the sketch. This approach allows us to re-

duce the memory space required by the count sketch annotation while maintaining our

ability to identify outdated counters with sufficient accuracy.

Having the IP address frequency estimate from every count sketch row, we cal-

culate their median, which we define as an action hardcoding the conditions for every

possible combination of elements composing the output (see Figure 4.8). Given an even

number of sketch rows d (in our case, d = 4), we must check for
(
d
2

)
conditions. Thus, it
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Figure 4.8: P4 Action for Median Calculation

1 action median(in int<32> x1, in int<32> x2, in int<32> x3, in int
↪→ <32> x4, out int<32> y) {

2 // This is why we should minimize the sketch depth: the median
↪→ operator is hardcoded.

3 if (...)
4 y = (x3 + x4) >> 1;
5 else if (...)
6 y = (x2 + x4) >> 1;
7 else if (...)
8 y = (x2 + x3) >> 1;
9 ...

10 }

Source: the authors (2019).

is crucial set a low sketch depth so that this operation is feasible within the data plane.

We use the median operator for updating the entropy norm as shown in Figure 4.9.

We set its result into a metadata field, i.e., meta.ip_count (line 2), which serves

as a key to the LPM lookup table. This table issues into meta.entropy_term the

value which we must accumulate to the entropy norm (line 6). We read the last entropy

norm values into src_S_aux and update it accordingly (see lines 11–14). We omit this

process for the destination address for being analogous. Note that our target device re-

quires that we use different tables (src_entropy_term and dst_entropy_term)

for each address direction as it does not support multiple lookups for the same packet.

Since we populate these tables with the exact same entries, their memory space may be

shared depending on the device implementation.

Figure 4.9: Entropy Norm Update

1 // Count Sketch Source IP Frequency Estimate
2 median(src_c1, src_c2, src_c3, src_c4, meta.ip_count);
3
4 // LPM Table Lookup
5 if (meta.ip_count > 0)
6 src_entropy_term.apply();
7 else
8 meta.entropy_term = 0;
9

10 // Source Entropy Norm Update
11 bit<32> src_S_aux;
12 src_S.read(src_S_aux, 0);
13 src_S_aux = src_S_aux + meta.entropy_term;
14 src_S.write(0, src_S_aux);

Source: the authors (2019).
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Figure 4.10 illustrates the last step for entropy estimation. Again, we omit the

process for the destination addresses. In lines 2–5, we read the binary logarithm of the

observation window size into log2_m and, from this value, we calculate m. While it

is not the end of the window, we simply update the packet counter (line 8). Otherwise,

we increment the observation window counter (lines 10–11), calculate the entropy con-

sidering the fixed point representation (line 13), and reset the variables for the entropy

estimation of the next window (lines 18–20).

Figure 4.10: Entropy Estimation Final Step

1 // Observation Window Size
2 bit<32> m;
3 bit<5> log2_m_aux;
4 log2_m.read(log2_m_aux, 0);
5 m = 32w1 << log2_m_aux;
6
7 if (meta.pkt_num != m) {
8 pkt_counter.write(0, meta.pkt_num);
9 } else { // End of Observation Window

10 current_ow = current_ow + 1;
11 ow_counter.write(0, current_ow);
12
13 meta.src_entropy = ((bit<32>)log2_m_aux << 4) - (src_S_aux >>

↪→ log2_m_aux);
14
15 ... // Traffic Characterization and Anomaly Detection
16
17 // Reset
18 pkt_counter.write(0, 0);
19 src_S.write(0, 0);
20 }

Source: the authors (2019).

Traffic Characterization and Anomaly Detection

At the end of each observation window, once we calculate the entropy estimates,

we perform traffic characterization and anomaly detection as indicated in line 15 of Fig-

ure 4.10. Table 4.2 describes the P4 registers used for that purpose. We use 18 fractional

bits for the traffic characterization indices. This representation is necessary as the expo-

nentially weighted moving operators depend on the summation of many low-magnitude

numbers, so we must minimize error accumulation.

We take into account three conditions for performing traffic characterization

and anomaly detection. One is checking for the first observation window reading

ow_counter to set up the characterization indices. The second is identifying the train-

ing phase with respect to training_len to suppress the anomaly detection alarm.
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Table 4.2: Traffic Characterization and Anomaly Detection P4 Registers Summary

Name Type Description

training_len 1× bit<32> Number of observation windows which consist the
training phase.

src_ewma,
dst_ewma

1× bit<32> Source and destination EWMA represented with 14
integer bits and 18 fractional bits.

src_ewmmd,
dst_ewmmd

1× bit<32> Source and destination EWMMD represented with 14
integer bits and 18 fractional bits.

alpha 1× bit<8> Smoothing coefficient represented with 8 fractional bits.

k 1× bit<8> Sensitivity coefficient represented with 5 integer bits
and 3 fractional bits.

Source: the authors (2019).

Third, it is to only update the characterization with entropy values that do not exceed the

detection thresholds as we only want to model the legitimate traffic.

Figure 4.11 depicts the P4 code excerpt for traffic characterization and anomaly

detection. In lines 1–4, we read the last characterization index values. If we are at the first

observation window, we initialize the entropy EWMA and EWMMD (lines 7–10). Other-

wise, if we are past the training phase, we calculate the detection thresholds (lines 17–24),

and verify if the current entropy estimate exceeds them to issue an alarm (lines 26-27).

We only update the characterization indices in absence of alarm (line 30). We read the

smoothing coefficient (lines 31–32), and update the indices of central tendency (lines 34–

36) and dispersion (lines 38–45).

4.2 C++ Emulation Tools

Since BMv2 does not provide adequate performance for a thorough evaluation

of our detection mechanism, we developed tools in C++ to emulate its processing units,

i.e., ee (Subsection 4.2.1) for entropy estimation, and tcad (Subsection 4.2.2) for traffic

characterization and anomaly detection. The separation into two stand-alone tools allows

to first evaluate the entropy estimation, and then to independently assess the effects of

different parameter levels in further processing. In the following subsections, we overview

the implementation of each emulation tool. The full source code is publicly available for

those interested in an in-depth analysis (LAPOLLI, 2019a).
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Figure 4.11: Traffic Characterization and Anomaly Detection

1 src_ewma.read(meta.src_ewma, 0);
2 src_ewmmd.read(meta.src_ewmmd, 0);
3 dst_ewma.read(meta.dst_ewma, 0);
4 dst_ewmmd.read(meta.dst_ewmmd, 0);
5
6 if (current_ow == 1) {
7 meta.src_ewma = meta.src_entropy << 14;
8 meta.src_ewmmd = 0;
9 meta.dst_ewma = meta.dst_entropy << 14;

10 meta.dst_ewmmd = 0;
11 } else {
12 meta.alarm = 0;
13
14 bit<32> training_len_aux;
15 training_len.read(training_len_aux, 0);
16 if (current_ow > training_len_aux) {
17 bit<8> k_aux;
18 k.read(k_aux, 0);
19
20 bit<32> src_thresh;
21 src_thresh = meta.src_ewma + ((bit<32>)k_aux*meta.src_ewmmd

↪→ >> 3);
22
23 bit<32> dst_thresh;
24 dst_thresh = meta.dst_ewma - ((bit<32>)k_aux*meta.dst_ewmmd

↪→ >> 3);
25
26 if ((meta.src_entropy << 14) > src_thresh || (meta.

↪→ dst_entropy << 14) < dst_thresh)
27 meta.alarm = 1;
28 }
29
30 if (meta.alarm == 0) {
31 bit<8> alpha_aux;
32 alpha.read(alpha_aux, 0);
33
34 meta.src_ewma =
35 (((bit<32>)alpha_aux*meta.src_entropy) << 6) +
36 (((32w256 - (bit<32>)alpha_aux)*meta.src_ewma) >> 8);
37
38 bit<32> abs_diff;
39 if ((meta.src_entropy << 14) >= meta.src_ewma)
40 abs_diff = (meta.src_entropy << 14) - meta.src_ewma;
41 else
42 abs_diff = meta.src_ewma - (meta.src_entropy << 14);
43 meta.src_ewmmd =
44 (((bit<32>)alpha_aux*abs_diff) >> 8) +
45 (((32w256 - (bit<32>)alpha_aux)*meta.src_ewmmd) >> 8);
46
47 ...
48 }
49 }

Source: the authors (2019).
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4.2.1 Entropy Estimation through ee

We designed the ee tool to emulate several independent entropy estimation units

set with different sketch dimensions. In addition, for each sketch configuration, ee may

perform a parameterizable number of repetitions using different random coefficients for

the hashing functions. As output, beyond the entropy estimates for every observation

window, the tool issues their timestamp (in view of the packet capture metadata), and

optionally the exact entropy values to serve as a baseline to assess the estimation error.

In order to model this tool, we followed an object-oriented design composed of

four main classes. The PcapReader class is responsible for parsing the workload pcap

file extracting the sequence of source and destination IP addresses. The ExtendedCount-

Sketch class abstracts the sketch operations Update and Estimate as presented in

Subsection 3.3.1. The LpmLookupTable class represents the lookup table issuing

the values to increment the entropy norm for the given address frequencies. Finally,

the EntropyEstimator top-level class orchestrates ExtendedCountSketch and

LpmLookupTable objects to compute entropy estimates according to user-defined pa-

rameters.

Unlike our P4 implementation, ee does not inject the values of its variables into

the packet header; it writes them in plain-text to the standard output stream. Therefore,

when reading the workload pcap file, we only implement the extraction of IP addresses on

Figure 4.12: pcap file Reader C++ Class Structure

1 struct PcapPacket {
2 ...
3 };
4
5 class PcapReader {
6 public:
7 PcapReader(const std::string& pcap_filename);
8
9 ...

10
11 int nextPacket(PcapPacket& pcap_packet);
12 uint32_t srcIpv4(const PcapPacket& pcap_packet) const;
13 uint32_t dstIpv4(const PcapPacket& pcap_packet) const;
14
15 private:
16 ...
17 };

Source: the authors (2019).
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top of libpcap. We encapsulate such processing within the PcapReader class as shown

in Figure 4.12. This class processes the pcap file given in its constructor (line 7). The

nextPacket method (line 11) serves to retrieve packets from the traffic stream. The

srcIpv4 and dstIpv4 methods (lines 12–13) act as a header parser extracting the IP

addresses from the given packet.

Once the addresses are read from the workload traffic, the ExtendedCount-

Sketch class plays a fundamental role estimating their frequency. We depict rele-

vant code excerpts of its implementation in Figure 4.13. We provide two constructors

for building an object of this class (lines 1 and 4), both taking the sketch depth and

Figure 4.13: Extended Count Sketch C++ Code Excerpts

1 ExtendedCountSketch::ExtendedCountSketch(uint32_t depth, uint32_t
↪→ width)

2 ...
3
4 ExtendedCountSketch::ExtendedCountSketch(uint32_t depth, uint32_t

↪→ width, const HashingCoefficients& h_coefficients, const
↪→ HashingCoefficients& g_coefficients)

5 ...
6
7 int32_t ExtendedCountSketch::update(uint32_t key) {
8 std::vector<int32_t> counts;
9 for (uint32_t i = 0; i < mDepth; ++i) {

10 const uint32_t h = hash(i, key);
11 const int32_t g = ghash(i, key);
12
13 if (mStates[i][h] != mCurrentState) {
14 mCounters[i][h] = g;
15 mStates[i][h] = mCurrentState;
16 } else {
17 mCounters[i][h] += g;
18 }
19
20 counts.push_back(g*mCounters[i][h]);
21 }
22
23 // Median
24 sort(counts.begin(), counts.end());
25 const size_t size = counts.size();
26 if (size % 2 == 0)
27 return (counts[size/2 - 1] + counts[size/2])/2;
28 else
29 return counts[size/2];
30 }
31
32 void ExtendedCountSketch::reset() {
33 ++mCurrentState;
34 }

Source: the authors (2019).
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width as parameters. When using the first constructor, we auto-generate random co-

efficients for the hashing functions, while the second allows their assignment from the

HashingCoefficient input variables. The latter approach allows us to enforce the

same parameters as used in the P4 implementation. Within the update method, in lines

8–21, we change the sketch to count the insertion of a given key (i.e., an IP address).

Note that, in lines 13–15, we deal with the event of setting the counter for the first time

in the current window. In lines 23–29, we calculate the median to return the current fre-

quency estimate of this key. The reset method (lines 32–34) increments the current

observation window so we may further identify outdated counter values.

Another element for the entropy estimation is the LpmLookupTable class, il-

lustrated in Figure 4.14. The constructor (lines 1–2) populates the table from a function

with a 32-bit unsigned integer domain f, the maximum domain value max, and the max-

imum approximation error allowed max_error; it follows the Algorithm 1 from Sub-

section 3.3.1. The get method (lines 5–17) looks for the longest-prefix key matching the

input parameter x.

The ExtendedCountSketch and the LpmLookupTable classes compose

the EntropyEstimator class as shown in Figure 4.15. The f method (lines 1–9)

is the function which we map to the LPM lookup table. The update method uses

sketch objects to obtain the frequency estimates of incoming IP addresses (line 12), and

Figure 4.14: LPM Lookup Table C++ Code Excerpts

1 template<typename T>
2 LpmLookupTable<T>::LpmLookupTable(std::function<T(uint32_t)> f,

↪→ uint32_t max, T max_error)
3 ...
4
5 template<typename T>
6 T LpmLookupTable<T>::get(uint32_t x) const {
7 for (int8_t prefix_len = 32; prefix_len >= 0; --prefix_len) {
8 LpmLookupKey key;
9 key.base = prefix_len == 32? x : x & ~(0xffffffff >>

↪→ prefix_len);
10 key.prefix_len = static_cast<uint8_t>(prefix_len);
11 if (mLookupTable.find(key) != mLookupTable.end()) {
12 return mLookupTable.at(key);
13 }
14 }
15
16 throw std::runtime_error(...);
17 }

Source: the authors (2019).
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Figure 4.15: Entropy Estimator C++ Code Excerpts

1 uint32_t EntropyEstimator::f(uint32_t x) {
2 if (x < 2)
3 return 0;
4 return static_cast<uint32_t>(
5 round(pow(2, 4)*(
6 x*log2(static_cast<double>(x)) -
7 (x - 1)*log2(static_cast<double>(x - 1))
8 )));
9 }

10
11 void EntropyEstimator::update(uint32_t src_ipv4, uint32_t dst_ipv4)

↪→ {
12 const int32_t src_fx = mSrcSketch.update(src_ipv4);
13 if (src_fx > 0)
14 mSrcS += mLookupTable.get(static_cast<uint32_t>(src_fx));
15
16 ...
17 }
18
19 void EntropyEstimator::reset() {
20 mSrcSketch.reset();
21 mSrcS = 0;
22 ...
23 }
24
25 uint32_t EntropyEstimator::srcEntropy() const {
26 return (mLog2M << 4) - (mSrcS >> mLog2M);
27 }

Source: the authors (2019).

then increment the entropy norms with their respective term taken from the lookup ta-

ble (lines 13–14). The reset method (lines 19–23) clears the sketches and the entropy

norms preparing for the entropy estimation of the next observation window. Finally, the

srcEntropy method (lines 25–27) illustrates the final step for entropy calculation.

The ee tool takes a JSON configuration file to parameterize the EntropyEsti-

mator objects. It reads the input pcap file using an instance of the PcapReader class

keeping a packet counter to identify the end of the observation windows and reset the esti-

mators. At that instant, it outputs space-delimited values of the current packet timestamp

and the entropy estimates.

4.2.2 Traffic Characterization and Anomaly Detection through tcad

The tcad tool reads the output of the entropy estimation to perform traffic charac-

terization and anomaly detection. It computes and appends to the each entropy estimate
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pair (source and destination) the traffic characterization indices and the alarm status.

The TrafficCharacterizer class depicted in Figure 4.16 is the main build-

ing block of the tcad tool. Its constructor only takes the smoothing coefficient alpha

(lines 1–2). The update method processes the incoming source and destination entropy

estimates (lines 4–23). In lines 6–10, if it is the first update call, we initialize the charac-

terization indices. Otherwise, we calculate the new values for the EWMA and EWMMD

in lines 12–21. Similarly to our P4 implementation, we only operate with integer number

arithmetic and bit shifting.

Figure 4.16: Traffic Characterizer C++ Code Excerpts

1 TrafficCharacterizer::TrafficCharacterizer(uint8_t alpha)
2 : mAlpha(alpha), mSetup(false) { }
3
4 void TrafficCharacterizer::update(uint32_t src_entropy, uint32_t

↪→ dst_entropy) {
5 if (!mSetup) {
6 mSrcEwma = src_entropy << 14;
7 mSrcEwmmd = 0;
8 mDstEwma = dst_entropy << 14;
9 mDstEwmmd = 0;

10 mSetup = true;
11 } else {
12 mSrcEwma = ((mAlpha*src_entropy) << 6) +
13 (((256 - mAlpha)*mSrcEwma) >> 8);
14
15 uint32_t abs_diff = mSrcEwma > (src_entropy << 14)?
16 mSrcEwma - (src_entropy << 14) :
17 (src_entropy << 14) - mSrcEwma;
18 mSrcEwmmd = ((mAlpha*abs_diff) >> 8) +
19 (((256 - mAlpha)*mSrcEwmmd) >> 8);
20
21 ...
22 }
23 }

Source: the authors (2019).

Further, we perform anomaly detection within the main function block. We show

this process in Figure 4.17. In lines 1–4, we calculate the detection thresholds from

the characterization indices and the sensitivity coefficient k. In line 6, we check if the

current entropy estimates exceeds these thresholds and define the alarm status. Finally,

we proceed with the update of the traffic characterization only if an alarm has not been

issued (lines 7–8).
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Figure 4.17: Anomaly Detection C++ Code

1 const uint32_t src_thresh = characterizer->srcEwma() +
2 ((k*characterizer->srcEwmmd()) >> 3);
3 const uint32_t dst_thresh = characterizer->dstEwma() -
4 ((k*characterizer->dstEwmmd()) >> 3);
5
6 const bool alarm = ow_counter > training_length && ((src_entropy <<

↪→ 14) > src_thresh || (dst_entropy << 14) < dst_thresh);
7 if (!alarm)
8 characterizer->update(src_entropy, dst_entropy);

Source: the authors (2019).

4.3 P4 and C++ Implementation Equivalence Analysis

We approach the equivalence analysis of our P4 and C++ implementations in a

twofold manner. The first is a syntactic validation from the comparison of our descriptions

in each language in terms of their control flow, number representation, and arithmetical

operations. The second is a functional validation from the inspection of variable values at

runtime.

We enforce the syntactical equivalence of our implementations by design. As

evidence of this claim, we may contrast the code excerpts in Section 4.1 and Section 4.2.

Note the number representation mapping, in which, for instance, bit<32> translates to

uint32_t whereas int<32> maps to int32_t. Further, observe the equivalence of

conditional executions and the absence of floating point arithmetic within our C++ code.

Even beyond this validation during design, we provide a method for checking the

equivalence post-compilation. We set our P4 program to clone the last packet of each

observation window, insert the custom header type ddosd_t, and forward it to a specific

network interface. We dump these packets to a pcap file so we may compare the execution

information with our emulation results. We use the ercnv tool to extract the information

from the packet capture and write it to a text file using the same format as the tcad output.

We implement our custom header type parsing within the PcapReader class.

We define a C struct ddosd_t composed by unsigned integers (uint8_t, uint16_t,

uint32_t) representing the header fields presented in Figure 4.3. Figure 4.18 illustrates

the extraction process. We check for the EtherType 0x6605 within the L2 header (lines 2–

3), extract the header bytes (line 4), and convert the fields encoding to the host byte order

(line 5).

We write the values of our custom header fields to the standard output, which we
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redirect to a text file. Then, we verify the equality of variable values throughout their

P4 and C++ implementation execution by comparing their textual report files byte by

byte. In such a way, we ensure the conformity of our C++ emulation to our P4 program

regarding their runtime state so we may proceed with a reliable evaluation of our detection

mechanism.

Figure 4.18: ddosd_t Header Parsing

1 uint32_t PcapReader::ddosdSrcEntropy(const PcapPacket& pcap_packet)
↪→ const {

2 if (l2EtherType(pcap_packet) != ETHERTYPE_DDOSD)
3 throw std::runtime_error(...);
4 const struct ddosd_t* ddosd_header = reinterpret_cast<const

↪→ struct ddosd_t*>(pcap_packet.data + l2HeaderLength());
5 return ntohl(ddosd_header->src_entropy);
6 }

Source: the authors (2019).
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5 EVALUATION

As far as we are aware of, this work is the first to explore data plane programmabil-

ity, more specifically P4, to devise a sophisticated anomaly detection mechanism. Given

the limited primitive set made available by P4 and the consequent simplifications that

were mandatory in our design, it is paramount to assess the accuracy, resource utilization

and timeliness of our proposed mechanism, comparing it with state-of-the-art approaches.

In this section, we evaluate it aiming to answer the following three research questions:

• RQ1: How accurate is the entropy estimation processing pipeline as a function of

resource utilization footprint?

• RQ2: Assuming decent entropy estimation (RQ1), how accurate is the DDoS attack

detection mechanism under different tuning parameters and attack strengths?

• RQ3: How does our mechanism compare to existing monitoring approaches re-

garding detection accuracy and latency?

First, in Section 5.1, we describe the experimental setup and the evaluation methodology.

Then, in each of the remaining sections, we discuss one of the questions above.

5.1 Experimental Setup and Evaluation Methodology

Given the novelty of P4 and the still scarce availability of equipment implementing

it, we evaluate the proposed DDoS attack detection mechanism using a software-based P4

infrastructure. This setup does not limit our assessment, as both accuracy and resource

utilization are expected to be equivalent regardless of the P4 target.

We use as legitimate traffic packet traces from the CAIDA Anonymized Internet

Traces 2016 (CAIDA, 2016) dataset, recorded from high-speed Internet backbone links.

To represent DDoS attacks, we take packets from the CAIDA DDoS Attack 2007 dataset

(CAIDA, 2007), consisting of an attempt to consume the computing resources of a target

server and to congest the network links connecting this server to the Internet. Despite

not recent, this dataset was carefully built to only include attack-related traces and, for

this reason, is consistently employed in high-impact publications in the area of network

security. Furthermore, this choice is consistent with the scenario we introduced earlier in

Subsection 3.1.
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We set the observation window size m to 218, representing approximately 250ms

for the given workload average packet rate. We partition the workload into a training and

a detection phase with respectively 250 and 500 observation windows. The training phase

consists of only legitimate traffic serving the purpose of setting up the characterization

model. For the detection phase, we take the subsequent legitimate traffic and superimpose

it with attack packets from the 126th to the 375th observation window. We perform such

superimposition at different malicious-to-legitimate packets proportions (3%, 3.5%, ...,

6%), generating a total of 7 workloads.

Figure 5.1 depicts the packet rate for the workload with the malicious traf-

fic representing 5% of the overall traffic volume. The legitimate traffic ranges from

952 kpps (≈1.43GB/s) to 1.12Mpps (≈1.68GB/s) while the attack approaches 59 kpps

(≈88.5MB/s). Such malicious-to-legitimate traffic proportion may either represent low-

rate semantic DDoS attacks, the first stages of a volumetric attack, or a fraction of the

malicious traffic passing through a link.

Figure 5.1: Workload packet rate with the malicious traffic representing 5% of the overall
traffic volume.

Training Phase Detection Phase

Source: the authors (2019).

Table 5.1 summarizes the system factor levels set throughout the experiments. We

select varying ranges for data structure size and sensitivity coefficient to allow a broad

assessment of the proposed mechanism. We execute 15 repetitions for each configuration

with random hashing coefficients and present the results using a 95% confidence level.

In Section 5.2, we examine the relative error of the entropy estimates for different count

sketch depth and width values. Next, in Section 5.3, we investigate the detection True-

Positive Rate (TPR), False-Positive Rate (FPR), and accuracy with respect to the sensi-
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Table 5.1: System Factor Levels

Levels Used in Each Subsection

System Factors 5.2 5.3 5.4

Hashing Coefficients (ai, bi) random co-prime pairs

Count Sketch Depth (d) {4, 8, 16} 4 4

Count Sketch Width (w) {64, 368, 672, 976, 1280} 1280

Sensitivity Coefficient (k) NA {0, 0.5, 1, ..., 8} 4

Source: the authors (2019).

tivity coefficient, the memory footprint, and the different proportions of malicious traffic

volume. Finally, in Section 5.4, we compare our mechanism with approaches based on

packet sampling regarding detection accuracy and latency.

5.2 Entropy Estimation Error

Instead of focusing on the calculation of exact entropy values, we propose an esti-

mation processing pipeline that minimizes memory space and processing time. However,

the loss of accuracy in this process has the potential to undermine the detection perfor-

mance by hiding anomalous traffic patterns. On that account, we assess the relative error

of the estimates as a function of the count sketch dimensions, which represent the domi-

nant influential factors to correctness (RQ1).

We allocate a 32-bit register for each sketch counter and an 8-bit register for its

associated observation window identifier. We store Ŝ and Ĥ in 32-bit registers consider-

ing a fixed-point representation having 4 fractional bits. We build the LPM lookup table

ensuring a maximum error of 2−4 for each entry, resulting in a total of 245 TCAM entries.

Figure 5.2 presents the relative estimation error for the count sketch depth and

width levels listed in Table 5.1 (first column). The sketch width is directly related to the

probability of hashing collisions on each row. Along the horizontal axis, it is possible to

observe how this parameter affects the estimation error. The errors reduce as we increase

the width, but this reduction attenuates for larger widths and stabilizes close to 1%. Note

that this error also results from the approximations present in the pre-computed LPM

lookup table entries.

The increment of the sketch depth reduces the probability of getting the estimate
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Figure 5.2: Relative error of the entropy estimation as a function of the count sketch width
and depth.

5120
entries

5888
entries

Source: the authors (2019).

from a counter that has been affected by collisions. We observe this effect examining

the different error values for a single sketch width. However, increasing the sketch depth

implies (i) processing more hash functions for each IP address and (ii) increasing the

complexity of the median operation. The annotations of Figure 5.2, indicating the total

number of sketch entries (5 888 and 5 120) in two specific configurations (d = 16 and

d = 4, respectively), reveal that, for comparably sized sketches, the use of more hashes

(rows) does not result in significantly better estimates. Thus, we choose to set d = 4 in

the subsequent experiments.

5.3 DDoS Attack Detection Performance

The proposed mechanism allows network operators to adjust the trade-off between

the TPR and the FPR using the sensitivity coefficient k. To answer RQ2, we first take

these metrics into account to tune this parameter (Subsection 5.3.1). Then, we investi-

gate the detection accuracy regarding malicious traffic volume and memory utilization

(Subsection 5.3.2).

5.3.1 Sensitivity Coefficient Effect

Figure 5.3 presents the true-positive and false-negative detection rates in terms of

the sensitivity coefficient. We consider a true positive whenever the mechanism triggers
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the alarm for an observation window containing malicious packets; conversely, a false

positive occurs if the alarm is set for a window with no malicious packets. The results are

for the sketch dimensions d = 4, w = 1280, and the smoothing coefficient α = 20 · 2−8.

The proportion of the malicious traffic to the overall traffic during the attack is 5%.

Lower sensitivity coefficient values tighten the detection thresholds resulting in

higher detection ratios at the cost of false positives. As we increase the coefficient, both

the TPR and the FPR decrease to the point where the detection is utterly insensitive. The

FPR starts to decrease from k = 0 and reaches less than 10% for k within [3.25, 4.75],

while the TPR is still close to 100%. This region (green hachure) represents the configu-

ration in which the detection thresholds are expected to be set, i.e., between the entropy

estimates of legitimate and malicious traffic. It characterizes the desired operating zone.

Given the dynamic nature of traffic in production networks, the value of k may need to be

adapted on a periodic basis. This will be addressed in future work.

Figure 5.3: Impact of the sensitivity coefficient k on the true-positive and false-negative
rates. The area in green highlights the desired operating zone.

Source: the authors (2019).

5.3.2 DDoS Attack Detection Accuracy

With the sensitivity coefficient k set to 3.5, we now consider the resulting attack

detection accuracy achieved with our proposed mechanism (see Figure 5.4). The anal-

ysis is carried out considering various attack proportions and count sketch widths (see

Table 5.1).
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Figure 5.4: DDoS Attack Detection Accuracy in terms of Memory Utilization for Differ-
ent Proportions of Malicious Traffic

Source: the authors (2019).

As malicious traffic becomes more aggressive, i.e., assumes a higher proportion

when compared to the legitimate traffic, the detection accuracy achieves increasingly

higher rates (exceeding 90%). This accuracy is profoundly influenced by the count sketch

width. Note that even lower magnitude attacks (3.5%) can be decently detected (with

rates higher than 80%) as one parameterizes the mechanism with larger w (greater than

976). However, one must recognize that for the cases of lower volume attacks, the anoma-

lous variation of entropy is attenuated and consequently harder to detect. This difficulty

is intrinsic to anomaly-based attack detection and is exacerbated when considering lower

count sketch widths, which result in less accurate entropy estimates.

If on the one hand, the use of larger sketches leads to higher attack detection accu-

racy, on the other, it implies a larger memory footprint. Considering 32 bits are allocated

for each sketch counter and 8 bits for its associated observation window identifier, the

cost for the source and destination IP addresses sketches is 38.125 kB when d = 4 and

w = 976. This value is the memory space required for monitoring a single 1Gbps link.

For higher traffic rates, we would need to increase the observation window size to get a

robust representation of the addresses distribution. Since the count sketch estimation error

is proportional to 1/
√
w and to the square root of the observation `2 norm (CHARIKAR;

CHEN; FARACH-COLTON, 2002), we would have to use proportionally larger sketches

to obtain an equivalent entropy estimation accuracy. Hence, considering a 24x10Gbps

programmable forwarding device (BOSSHART et al., 2013), we extrapolate our mecha-
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nism memory footprint to 9MB1, which represents 18% of the available SRAM.

5.4 Comparison with Packet Sampling

By collecting information from every packet, programmable forwarding devices

have the potential to detect very subtle traffic anomalies. In contrast, packet sampling

approaches provide information at a coarser granularity, thus being less sensitive to such

conditions. We investigate this difference by comparing our mechanism with an imple-

mentation of the same DDoS attack detection strategy fed by an sFlow collector (RQ3).

We evaluate the sFlow implementation with the sampling rate set to 1:1 000, as it

is the suggested for a 1Gbps link (PHAAL, 2009), and to 1:100 aiming to get even more

optimized results. In order to analyze our approach and the two sFlow-based scenarios

considering a comparable baseline, we set different values for m in each implementa-

tion seeking to represent approximately the same time duration. For instance, during the

time our proposed mechanism reads m packets, the sFlow collector outputs only about

m/1 000 or m/100 depending on the chosen sampling rate. Hence, we scale the m so that

all implementations consider the same time frame to trigger DDoS attack alarms.

Figure 5.5 depicts the DDoS attack detection accuracy for each approach consid-

ering different volume proportions for the malicious traffic. With the sampling rate at

1:1 000, the detection performance is severely degraded. At a 1:100 rate, the sFlow ap-

proach results are greatly improved, but our work still outperforms its accuracy in every

observed condition.

We also consider the detection latency by measuring the time between the times-

tamp of the first malicious packet and the timestamp of the last packet of the observation

window which set off the alarm. For the case of low-intensity attacks (≤4%), we observe

increased latency – in the order of seconds – to detect an attack when using packet sam-

pling. Our proposed mechanism for a similar condition requires a fraction of the time

(a few hundred miliseconds). The higher sensibility of our proposal may lead to earlier

triggering of mitigation actions, possibly preventing service outages.

1We assume the `2 norm to increase at the same proportion as the traffic rate.
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Figure 5.5: DDoS attack detection accuracy: comparison with packet sampling ap-
proaches.

Source: the authors (2019).
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6 CONCLUSION

This thesis sheds light on the potential of exploring programmable data planes for

network monitoring. We presented a real-time DDoS attack detection mechanism, imple-

mented in P4, to be executed entirely in the data plane. The evaluation results showed that

our mechanism could detect DDoS outbreaks quickly and accurately (Section 5.3), espe-

cially when compared with existing monitoring approaches (Section 5.4), while meeting

strict memory space and processing time budgets associated with in-network packet pro-

cessing (Section 5.2).

As a sign of the tangible impact of our research, this work was presented at the 16th

IFIP/IEEE International Symposium on Integrated Networks (LAPOLLI; MARQUES;

GASPARY, 2019) being granted the best student paper award. Those interested in further

investigating our mechanism and building complementary solutions may refer to our P4

and C++ implementation publicly available repositories (LAPOLLI, 2019b; LAPOLLI,

2019a). As an additional contribution, we share next several insights which we took from

our design and implementation process, expecting they are valuable for new developments

in the area (Section 6.1). Finally, we present our plans for future work (Section 6.2).

6.1 Design and Implementation Insights

The instruction set available in P4 is very restricted. For example, there is no sup-

port for iteration/recursion (except for header parsing), floating-point arithmetic, and non-

elementary mathematical functions. These language limitations are due to constraints in

the current programmable hardware and help to prevent stalls in the processing pipeline.

As a consequence, implementing sophisticated network functions (e.g., anomaly detec-

tion, load balancing) in P4 may be challenging. Next, we discuss the major lessons

learned in the process of designing the proposed mechanism.

Iterative procedures need to be carefully decomposed into small tractable steps

triggered by incoming packets. In our work, this observation came from two design chal-

lenges: (i) the summation of individual address frequencies for entropy estimation (Equa-

tion 3.1) and (ii) resetting the sketch counters between observation windows to avoid

using outdated values. Iterating over the entire sketch during the processing of a single

packet would violate line rate packet processing requirements. Our mechanism handles

the challenge (i) by calculating the entropy gradually; it only accesses entries relative to
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the addresses of each incoming packet. We deal with the challenge (ii) by augmenting

entries with observation window identifiers. We check this annotation to reset a counter

value only by the time it needs to be reused to support a calculation referring to a new

window.

Non-elementary mathematical functions may be approximated using LPM lookup

tables. Mathematical functions that build upon functions such as logarithm cannot be

directly implemented in current programmable devices. When trying to adapt one of

these functions to run at the data plane, it is important to analyze its image and argument

bounds. Our mechanism uses LPM lookup tables with pre-calculated values to approx-

imate the function for updating the entropy estimate (Equation 3.2). This function has

well-defined argument bounds (i.e., each frequency cannot be higher than the observation

window size) and a strict image set (Figure 3.4). Both of these properties enable having a

memory-efficient LPM table by compressing entries with close values without significant

loss in accuracy.

Floating-point support may not be essential to express numbers with a specific

precision within a confined known range. Traditional packet forwarding does not require

floating-point arithmetic. Thus, forwarding devices typically only provide instructions

over integers. As an upside, integer arithmetic can be applied to handle fractional num-

bers assuming a fixed-point representation. Throughout our work, we used a fixed-point

representation with a 24 scaling factor to express real numbers. These numbers in our

mechanism are the entropy norm, the entropy itself, the smoothing coefficient, and both

the indices of central tendency and of dispersion. Our experimentation showed that it is

sufficiently accurate to detect DDoS attacks.

The absence of dynamic memory allocation functionality in the data plane can

hamper mechanism self-tuning. The proposed mechanism has some parameters (i.e., m,

k, and α) whose values could be modified at runtime through register updates. Other

parameters (i.e., d and w) cannot be changed by the in-switch logic, demanding a new

P4 program to be deployed on the forwarding devices by an external controller. The

reason is that a P4 program cannot allocate dynamic memory. The implementation of

more complex self-tuning capability, therefore, requires the investigation of novel data

structures.
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6.2 Future Work

We organize our future work into three axis. The first one is to extend our evalua-

tion with a hardware P4 target and a more diverse workload set. Second, with the results

of this process, we intend to further explore P4 to improve our detection mechanism.

Third, we envisage approaching DDoS attack mitigation using the proposed detection

mechanism as a building block.

In this work, due to the unavailability of P4 equipment, we resorted to a software-

based infrastructure in which we cannot fully assess the implementation costs within high-

rate forwarding devices. By using a hardware P4 target, we aim to precisely measure the

overhead of our mechanism processing logic. In this new evaluation setup, we also plan

to consider other DDoS attacks traces to validate our detection strategy against distinct

malicious traffic patterns.

Our anomaly detection unit depends upon a sensitivity coefficient which we as-

sume to be parameterized by the network operator. Provided with the new evaluation

results, we expect to improve this processing unit with an artificial intelligence-based

approach towards self-tuning capability. Hence, we seek a detection strategy which au-

tonomously adapts to the traffic characteristics.

Finally, we identify an opportunity for performing DDoS attack mitigation from

the in-network statistics computed by our mechanism. The first step is to convert our

detection alarm to a continuous variable representing a degree of attack concern. Then, we

may disseminate this information throughout the network by annotating it within packets.

Thus, we are able to establish communication and coordination among attack sensors to

obtain a more extensive view of malicious sources.
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