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Abstract

Mine planning is dependent on the natural lithologic features and on the defini-
tion of their limits. The geological model is constantly updated during the life of the 
mine, based on all the information collected so far, plus the knowledge developed from 
the exploration stage up to the mine closure. As the mine progresses, the amount of 
available data increases, as well as the experience of the geological modeller and mine 
planner who deliver the short, medium, and long-term plans. This classical approach 
can benefit from the automation of the geological mapping on the mining faces and 
outcrops, improving the speed of repetitious work and avoiding exposure to intrinsic 
dangers like mining equipment, falling rocks, high wall proximity, among others. The 
use of photogrammetry to keep up with surface mining activities boarded in UAVs is a 
reality and the automated lithological classification using machine learning techniques 
is a low-cost evolution that might present accuracies above 90% of the contact zones 
and lithologies based on the automated dense point cloud classification when com-
pared to the manual (or reality) classified model.

Keywords: machine learning; photogrammetry; UAV; lithological classification.

Using UAV for automatic 
lithological classification 
of open pit mining front http://dx.doi.org/10.1590/0370-44672018720122

1. Introduction

Mining
Mineração

The information acquired during 
the open pit development is essential 
to reduce uncertainty and adapt mod-
els through reconciliation between 
planning and execution. As the mine 
progresses, new data is collected and 
consequently, mineral resource and 
ore reserve calculations increase in ac-
curacy to provide orientation for short, 
medium and long terms mine planning. 
Traditionally, geological mapping of 
the exposed mining faces is performed 
by mapping the visual lithological and 
structural characteristics in the field. 
This task might expose the professional 

to high wall proximity, weather condi-
tions, dust, combustion gases, moving 
equipment and falling rocks. Besides 
this, productivity is affected as the 
individual needs to share space with 
production equipment and might not be 
able to observe the whole bench slope 
due to high wall height.

The mine’s geological mapping can 
improve through the automation of the 
characteristic detection among litholo-
gies or exposed materials. With visual 
differentiation of those characteristics, 
the automation can be performed on 
open pit imagery acquired by unmanned 

aerial vehicles (UAV).
Point clouds are used in industry 

to detect geotechnical attributes, for 
instance, as presented by Ferrero et al. 
(2009), Roncella & Forlani (2005), Gigli 
& Casagli (2011), Lato & Vöge (2012), 
Maerz et al. (2013) and Riquelme et al. 
(2014). All the mentioned authors use 
point clouds from light detection and 
ranging (LiDAR). Walton et al. (2016) 
present application of automation 
methods through pattern detection al-
gorithms for lithological classification, 
using LiDAR point clouds. With the 
progressive sophistication and minia-



18

Using UAV for automatic lithological classification of open pit mining front 

REM, Int. Eng. J., Special Supplement 1, Ouro Preto, 72(1), 17-23, jan. mar. | 2019

2. Material and methods

Photogrammetry
Photogrammetry superposes images 

by camera displacement, which multiplies 
the amount of correspondent points among 
photos. This effect allows the reconstruc-
tion of high-fidelity 3-D models of objects 

or terrain. Dandois (2015) shows that the 
parameters for image superposition, flight 
altitude and weather conditions are of great 
impact on the results.

Leite (2014) shows that from the 

Equation 1, it is possible to calculate rela-
tive distances in a pair of images. The fact 
that the camera position is registered with 
the image makes the calculation more accu-
rate than just a relationship among points. 

D =
x x

( 1 + tan α) ( 1 + tan β )
+ (1)

Where D is the orthogonal distance between 
the flight line and the common detected 
point on the ground; X is the segment be-
tween two camera positions; α is the angle 
between the flight line and the segment 
between the first camera position and the 
ground point; and β is the angle between the 
flight line and the segment between the sec-
ond camera position and the ground point.

The register of the positions is made 

by a large number of points identified in 
each superposed portions of a pair of im-
ages (FOSTER & HALBSTEIN, 2014). 
With hundreds of images, the number of 
superposed points is considerably high, 
which would make it impossible to process 
a whole model a few years ago, due to the 
computational requirements.

Nowadays, there are already several 
commercial software packages available, 

such as Mic Mac®, Context Capture® and 
Agisoft’s PhotoScan®. After some tests, the 
last one was selected to process the images 
and create the point clouds. PhotoScan 
presents intuitive interface and workflow 
and higher processing performance when 
compared with the other packages. The 
aircraft used was a DJI’s Phantom 4 Pro®, 
it has a 20Mpx camera, three-axis gimbal 
and complete telemetry built in.

Machine learning
Machine learning (ML) techniques 

were used to classify the materials that 
were visually different in the model. 
To classify, the supervised learning 
algorithms are indicated, which means 
that the input data are flagged with the 
expected final solution for the remain-
ing data. Those answers are considered 
correct and used to train the model. 
In supervised learning, some data are 
reserved to measure the accuracy of 
the predicted categories. The ML algo-

rithms are widely used for several mod-
elling and classification methodologies.

With the ML state-of-the-art solu-
tions, it is possible to separate and clas-
sify image patterns with no significant 
difficulty. However, mining activities 
have to consider the three dimensions 
and the surface or solid regular reading 
becomes an issue, as samples cannot be 
directly read in accumulated views. In 
order to read with the same support, the 
samples must be distributed as regular 

tiles over the whole surface of the point 
cloud mining front surface. Hence, 
regular grid nodes are projected on the 
three dimensions onto the surface. This 
creates a sparser and pseudo regular 
point cloud, where each point represents 
the centroid of the samples, as well as 
normal orientation for the sampling 
tile. The point’s color estimate is done 
by interpolating the color components 
and then assigned to the center of  
the sample.

3. Methodology

Data acquisition 
The flight mission was executed 

over a quarry and was planned upfront 
to cover the area of interest, mission time, 
flight altitude, longitudinal and lateral 
overlapping, number of ground control 
points (GCPs), weather conditions and 

legal use of the airspace.  As shown in 
Figure 1-a, the model has been created 
as a point cloud with geodesic accuracy. 
A portion of the resulting point cloud is 
manually classified to be used as training 
and test dataset for the ML algorithms. 

Figure 1-b shows the classified portions 
as: diorite (in pink), granite (blue), soil 
(brown) and vegetation (green). In grey, 
represented are all the remaining points 
that will be automatically classified with 
the proposed methodology.

turization of UAVs and the portable 
sensors, several application areas are 
benefiting from cost reduction, acces-
sibility and automation of procedures 
already established in the industry (CO-
LOMINA & MOLINA, 2014; DORN 
et al. 2016).

There are several industrial applica-
tions that benefit from the development 
and improvement of the aircrafts, such 
as presented by Nonami (2007), Oué-
draogo (2014), Javernick et al. (2014), 
Nishar et al. (2016). In the mining in-

dustry, Salvini et al. (2016), Hugenholtz 
et al. (2013), Silva et al. (2016), Peroni 
(2016) and Westoby (2012) also use 
make use of UAVs. Topographic survey-
ing techniques, for instance, are already 
available and the solutions apply for 
several uses with similar accuracy and 
more definition when compared with 
traditional methods (BERETTA et al., 
2017, 2018).

The automatic lithotype detection 
is performed by algorithms that use the 
geological characteristics as training 

data. Models in 2-D already have acces-
sible alternatives for features detection. 
However, considering the 3-D space, 
typical in mining activities, the sampling 
selection can be an obstacle for the direct 
use of the algorithms available for pattern 
recognition. Some studies already use 
machine learning techniques in the mining 
industry, such as mineral differentiation 
(DALM et al., 2017), metallurgical clas-
sification (EHRENFELD et al., 2017) and 
granulometric characterization (BAM-
FORD et al., 2017).
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Figure 1
Point cloud representing the 

mining area after topographic 
reconstitution using photogrammetry.

The level of detail increases with 
the number of points in the cloud, but 
the computational requirements increase 
with the squared planar distance among 

points, which creates restrictions for 
the processing time and complexity of 
the output files. Closer camera takes to 
the object and/or lower altitudes flight 

missions are necessary to create higher 
resolution models. The photogrammet-
ric point cloud for this model contains 
2,797,386 points.

Data processing
To classify the lithotypes, a su-

pervised learning approach has been 
adopted. This methodology uses an input 
dataset and the respective correct ex-
pected output used for comparisons. The 
materials were classified in four groups, 
according the designation used in this 
case study, namely diorite, granite, soil 
and vegetation.

The input dataset comprises the 
point cloud from the photogrammetry, 

as mentioned before. Each point carries 
the colour information as captured by 
the UAV camera, with red, green and blue 
(RGB) channels. As isolated points can be 
misclassified by the algorithm, another 
sparser cloud has been created and the 
new points will receive averages of the 
three channels.

For that, a 10x10 matrix has been 
positioned on the sample centroid and 
spatially oriented to fit the surface created 

by the original dense cloud. Using nearest 
neighbour interpolation, each cell in this 
matrix receives the average colours of the 
original points surrounding it. Thus, three 
matrices are created for each point of the 
sparser sample cloud, one for each colour 
channel. This results in 300 colour infor-
mation to be transformed into vectors, as 
presented in Figure 2. The shades of grey 
for the cells represent the colour intensity 
for the channel. 

Figure 2
Configuration of the input 

data as used for the ML model training.
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As these averages also reflect the size 
of the search volume around the sample, 
the matrices were tested with different 
size factors. If the matrices are too large, 
the overlapping will affect the definition 
and consequently the model accuracy. In 

addition, large matrices would consider 
distant information to compose the aver-
age colour, affecting the accuracy again. If 
the matrices are too small, the neighbour-
hood behaviour could not be captured. 
To find the optimal sample size, a specific 

parameter related to the distances between 
points in the cloud was tested against the 
accuracy of the model for each algorithm. 
This parameter will be referred to as the 
sample matrix size factor and the number 
of cells in the matrix is always 10x10.

Model training and choice
Classification models were used to 

identify the different lithotypes for a sam-
ple point cloud. The implementation of the 
ML algorithms has been made through 
the Sci-kit Learn library (PEDREGOSA 
et al., 2011). The algorithms used for the 
accuracy comparison were: 

• Support Vector Machine: This 
algorithm defines hyperplanes between 
different classes in training data. These 
hyperplanes aim to maximize the gap be-
tween the groups, considering the frontier 
points. Two kernels were used in the SVM: 
the linear kernel and the RBF kernel;

• K-Nearest Neighbour: It predicts a 
desired point using the values of the first 
K neighbours of the point in question.  
K = 6 was used in this work;

• Random Forest. It is one of the 

ensemble methods of Machine Learning. 
The Random Forest method creates a 
certain amount of decision trees (100 was 
used) and establishes the classification 
by the majority outcome of the trained 
decision trees. It is a method known to 
be robust to the effect of overfit which is 
observed for a single decision tree;

• Gradient Tree Boost. In this 
method a decision tree is trained and 
then a new decision tree is trained based 
on the weaknesses of the previous one. 
That procedure is repeated a number of 
times determined by the user (100 times 
in this work).

The training performances are 
presented as accurate, which represents 
the amount of points correctly predicted 
by model, considering the testing data. 

To separate the data in the training and 
test groups, the technique k-fold has been 
used with k=5. This means that one fifth 
of the manually classified dataset has been 
used to check the accuracy five times. The 
resulting accuracy is the average accuracy 
for each test group.

The algorithms ran in two scenar-
ios. The first scenario considers the four 
classes (diorite, granite, soil and vegeta-
tion). The second scenario is binary and 
considers only two classes: ore and waste, 
where ore comprises diorite and granite 
and waste groups soil and vegetation. It is 
expected that the binary scenario presents 
higher accuracy than the multiclass if, 
considering the same testing conditions. 
This is due to the reduction of the points 
near the borders.

4. Results and discussion

The resulting accuracy for the mul-
ticlass scenario is presented in Figure 3. 
These accuracy values are related to the 

manually selected training groups. The 
accuracy presented reflects the prediction 
capability of the model considering diorite, 

granite, soil and vegetation.

Figure 3
Accuracy curves 
for the different classification 
algorithms as the sample size increases.

The results show that all the algo-
rithms achieved more than 90% of ac-
curacy in their output models. The model 
that shows the highest accuracy is the 
Support Vector Machine with Radial Basis 
Function using the default parameters in 
the library, and a sample matrix size factor 
of 12. SVM-RBF is also the most consis-
tent algorithm with different sample sizes. 
SVM RBF is followed by SVM Linear, 

Gradient Boosting and Random Forest 
in accuracy; all of them with sample sizes 
around 7.

The k-NN model was the algorithm 
with the lowest accuracy among the tested 
ones, which corroborates Pestov (2012), 
who mentions that k-NN is not the best 
option to model points in a high-dimen-
sion space. In this case, a dimensionality 
reduction, such as Principal Component 

Analysis, could positively impact the k-NN 
results. Considering the mentioned litera-
ture, k-NN was used as an inappropriate 
model to observe the behaviour of its 
results compared with others algorithms.

All the models practically reached 
their maximum accuracy values around 
the sample size of seven. This means that 
from this point, there is a saturation of 
information obtained by the input matrix. 
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Figure 4 shows the resulting accuracies 
for the binary scenario, which reflects ore 
and waste only. Again, the most accurate 

algorithm was SVM-RBF, even though the 
accuracy gain was not significant when 
compared with the multiclass.

Figure 4
Accuracy curves 

for the different classification 
algorithms as the sample size increases. 
These results reflect the binary scenario.

SVM-RBF is followed by Ran-
dom Forest, with the accuracy stabi-
lized around the sample size of 5. As 
observed in the multiclass scenario, 
there is a reduction of accuracy be-
tween sample sizes of 10 and 15. This 

is due to the matrices overlapping and 
capture of information too far from 
the sample centre.

The model validation goes beyond 
the numerical results and was submitted 
to a visual inspection. Figure 5-a shows 

the SVM-RBF model with the sample 
size of 7 and Figure 5-b presents the 
level of confidence for the chosen model. 
As there are four classes, a complete 
blind shot would present a minimum 
of 25% confidence on the chosen class. 

Figure 5
a) Output predicted model 

with the highest accuracy for the 
multiclass scenario; and b) confidence 

level of the algorithm for the chosen class.

It is noticeable that the accuracy de-
teriorates in border zones between classes 

or in areas where the points have colour 
variation or shades.

5. Conclusion

Different usual machine learning 
algorithms were tested to classify the 

point cloud as four classes. The highest 
accuracy was observed with the Support 

Vector Machine algorithm with Radial 
Basis Function kernel. This result shows 
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