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Spatially modulated electrostatic fields can be designed to efficiently accelerate particles by

exploring the relationships between the amplitude, the phase velocity, the shape of the potential, and

the initial velocity of the particle. The acceleration process occurs when the value of the velocity

excursions of the particle surpasses the phase velocity of the carrier, as a resonant mechanism. The

ponderomotive approximation based on the Lagrangian average is usually applied in this kind of

system in non-accelerating regimes. The mean dynamics of the particle is well described by this

approximation far from resonance. However, the approximation fails to predict some interesting fea-

tures of the model near resonance, such as the uphill acceleration phenomenon. A canonical perturba-

tion theory is more accurate in these conditions. In this work, we compare the results from the

Lagrangian average and from a canonical perturbation theory, focusing in regions where the results

of these two approaches differ from each other. VC 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5049711

I. INTRODUCTION

As laser intensity grows, nowadays, due to technological

developments, new schemes of particle acceleration based

on the ponderomotive potential and on laser-particle interac-

tions are being applied, using the plasma as a medium or

even the vacuum.1–4 In recent papers,5,6 it was shown that a

particle could be accelerated by a spatially modulated elec-

trostatic field. The acceleration mechanism takes place when

the excursions of the particle velocity cross the line of the

phase velocity of the carrier. At this moment, the particle is

catapulted towards c—the speed of light. Beyond this prom-

ising result, the relatively simple physical model proposed in

Refs. 5 and 6 possesses some interesting features, which

have not yet been properly explored.

One of these features occurs when the particle is near to

the transition between the reflecting and accelerating

regimes. The closer it is to the accelerating regime, the more

the particle is attracted by the resonance generated by the

phase velocity of the carrier. If we look at the phase-space of

the particle (velocity against position), in this case, the parti-

cle is accelerated towards the phase velocity, and then, it is

decelerated, being reflected by the field. This behaviour is

known as uphill acceleration.7–9 The uphill acceleration is

also seen in laser produced plasmas and can be understood

as the acceleration the electrons feel which pushes them into

the direction of growing field strength.10

The mean dynamics of the particle can be described by

variational techniques11 or by an analytical Lagrangian

approach8 when the velocity excursions are far from resonance.

However, the Lagrangian approach fails to predict, for exam-

ple, uphill acceleration. According to Ref. 8, any averaged

Lagrangian quadratic in the electric field has a unique value of

the field amplitude corresponding to each value of the velocity.

It implies that the velocity is a monotonic function of the posi-

tion which prohibits the presence of the uphill.

In this work, we present a canonical perturbation theory

based on a change in coordinates in the Hamiltonian which

describes the mean dynamics for non-accelerating conditions

of the particle and deals with the uphill acceleration. This

paper is organized as follows: in Sec. II, the physical model

and the equations of motion of the particle, as well as the

Lagrangian and the Hamiltonian approximations, are given;

in Sec. III, the results are presented; and, finally, in Sec. IV,

we draw our conclusions.

II. THE MODEL

A. Full model

The one-dimensional model used in this work is exactly

the same used in Ref. 5, where the dynamics of a single rela-

tivistic particle is determined by an electrostatic modulated

wave. The Lagrangian of this system is written as

a)ivanessa.almansa@ufrgs.br
b)d.burton@lancaster.ac.uk
c)rac@st-andrews.ac.uk
d)marini@ufrgs.br
e)peterpeter@uol.com.br
f)rizzato@if.ufrgs.br
g)russman@ufrgs.br

1070-664X/2018/25(11)/113107/6/$30.00 VC Author(s) 2018.25, 113107-1

PHYSICS OF PLASMAS 25, 113107 (2018)

https://doi.org/10.1063/1.5049711
https://doi.org/10.1063/1.5049711
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5049711
mailto:ivanessa.almansa@ufrgs.br
mailto:d.burton@lancaster.ac.uk
mailto:rac@st-andrews.ac.uk
mailto:marini@ufrgs.br
mailto:peterpeter@uol.com.br
mailto:rizzato@if.ufrgs.br
mailto:russman@ufrgs.br
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5049711&domain=pdf&date_stamp=2018-11-12


L ¼ �mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _x2

c2

s
� qu x; tð Þ; (1)

where c is the speed of light, u is the electrostatic modulated

wave potential, and m and q are the mass and the charge of

the electron, respectively.

The electrostatic modulated wave is expressed as

u x; tð Þ ¼ u0 exp � x2

r2

� �
cos kx� xtð Þ; (2)

where the amplitude u0 is constant, k and x are the wavevec-

tor and the frequency, respectively, of a carrier moving along

the x axis, and r measures the envelope length of the wave.

We consider r � 1/k to enforce the condition of a slowly

modulated wave train. The physics of this purely electro-

static modulated wave proposed here is similar to the physics

of a particle submitted to the combined action of collinear

electromagnetic and wiggler fields. This kind of arrangement

is usually seen in inverse free-electron lasers devices.12–14

The Hamiltonian which describes the evolution of the

particle dynamics can be written as

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p
þ qu x; tð Þ: (3)

As seen in Refs. 5 and 6, there are three different possi-

ble behaviours for the particle submitted to this Hamiltonian:

either the particle is reflected by the electrostatic potential;

or the particle passes through the potential with no apprecia-

ble change in its velocity; or the particle is accelerated by

the potential. The particle is accelerated when, at some point

during its path, its velocity is equal to or bigger than the

phase velocity of the carrier.

B. Ponderomotive approximation—via Lagrangian
average

One way to describe the mean dynamics of the particle is

using the ponderomotive approximation via the Lagrangian

average, based on Refs. 7–9 and 15. This approximation may

be used far from resonance and may be applied to estimate

whether a transition of regimes occurs.

The Lagrangian average is written as

L ¼ hLi ¼ �mc2

c
� qu x; tð Þ

� �
: (4)

The velocity v of the particle may be expressed as

v ¼ V þ d _x, where hd _xi ¼ 0 and hd _x2i ¼ q2u2ðxÞ
2m2c6

0
n2, where uðxÞ

¼ u0 exp � x2

r2

� �
is the envelope, with n2 ¼ x2ð1� V=cÞ2

(V is the mean velocity of the particle). The kinetic term of

the Lagrangian average is expressed as

�mc2

c

� �
¼ �mc2

c0

þ m

2
c3

0hd _x2i; (5)

where c�2
0 ¼ 1� aV2=c2, with a ¼ x2=k2c2.

This way, the Lagrangian average is simplified and after

some algebra is finally written as

L ¼ �mc2

c0

� q2

4m

u2ðxÞ
n2c3

0

: (6)

Through the Lagrangian of Eq. (6), it is possible to find

the equations that describe the mean dynamics of the particle

far from resonance by using the Euler-Lagrange equations.

C. Canonical perturbation theory

Sufficiently far from resonance, as shown in Ref. 5, the

mean dynamics of the particle is well described by a canoni-

cal perturbation theory obtained via a change in coordinates

in the Hamiltonian. The transformed Hamiltonian removes

the high-frequency variables of the Hamiltonian of Eq. (3)

and allows us to describe the dynamics solely in terms of

new quantities.17,18 These quantities form a self-consistent

set of low-frequency variables.

Consider the Hamiltonian of Eq. (3), now designating it

asHðx; p; tÞ. Hamilton’s equations are

dx

dt
¼ @pH;

dp

dt
¼ �@xH (7)

and are obtained from stationary variations of the action

S C½ � ¼
ð

C

p dx�H dtð Þ (8)

with respect to the curve C, which has components

ðxðtÞ; pðtÞ; tÞ on three-dimensional extended phase space. It

can be shown16 that if (X, P) is related to (x, p) by a t-depen-

dent canonical transformation, then the differential

X ¼ p dx�H dt (9)

on the three-dimensional extended phase space can be

expressed as

X ¼ P dX � K dtþ db; (10)

where K is the Hamiltonian in (X, P, t) coordinates.

Introducing the choice b¼ f � P@Pf in Eq. (10), with f¼ f(x,

P, t), and substituting X using Eq. (9) gives

P dðX � @Pf Þ � K dt ¼ ðp� @xf Þdx� ðH þ @tf Þdt: (11)

Hence, the relationships

x ¼ X � @Pf ; P ¼ p� @xf ; K ¼ Hþ @tf (12)

between the coordinates, the Hamiltonians, and the generat-

ing function f emerge.

The potential of interest

uðx; tÞ ¼ uðxÞ cosðkx� xtÞ (13)

is that of a harmonic travelling electric wave, with angular

frequency x and wavenumber k, modulated by a slowly-

varying amplitude uðxÞ ¼ u0 exp ð�x2=r2Þ. The separation

between fast and slow (or short and long) scales facilitates a

perturbative analysis whose result can be interpreted as the

motion averaged over one cycle of the fast oscillations.

However, unlike in the Lagrangian approach, oscillatory

113107-2 Almansa et al. Phys. Plasmas 25, 113107 (2018)



terms are absorbed into a coordinate transformation instead

of being averaged away. For simplicity, we will assume that

the pointwise dependence of the amplitude is negligible up

to the second order in the perturbation theory.

The coordinate system (X, P) is adapted to the cycle-

averaged motion, order-by-order in the perturbation theory,

by transferring the explicit dependence on time t from the

Hamiltonian H to the generating function f. The ensuing

analysis is facilitated by introducing a parameter � for track-

ing the perturbative order of terms. The parameter � is

merely a mathematical device with no physical meaning; it

will be discarded at the end of the analysis.

Using (12), the Hamiltonian for the cycle-averaged

motion is given by

K�ðX;P; tÞ ¼ HðX � @Pf �;Pþ @x� f
�; tÞ þ @tf

�; (14)

where the superscript � denotes a quantity with an explicit

dependence on �. Note that x� must be determined order-by-

order from the implicit equation x� ¼ X � @Pf �, where

f �ðx�;P; tÞ ¼ �f1ðx�;P; tÞ þ
1

2
�2f2ðx�;P; tÞ þ Oð�3Þ; (15)

with each coefficient labelled by the corresponding power of

�. The choice u�ðx�Þ ¼ �u1ðx�Þ for the slowly-varying ampli-

tude allows f �ðx�;P; tÞ to be determined order-by-order in �
using Eq. (14). The t-dependence of the coefficients in Eq.

(15) are chosen to ensure the overall t-independence of the

right-hand side of Eq. (14) to Oð�3Þ.
The first three terms in the expansion

K�ðX;P; tÞ ¼ K0ðX;PÞ þ �K1ðX;PÞ þ
1

2
�2K2ðX;PÞ þ Oð�3Þ

(16)

are

K0ðX;PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2c2 þ m2c4

p
; (17)

K1ðX;PÞ ¼
c2P@Xf̂ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2c2 þ m2c4
p þ qu1ðX; tÞ þ @t f̂ 1; (18)

K2ðX;PÞ ¼
c2ð@Xf̂ 2 � 2@Pf̂ 1@

2
Xf̂ 1ÞPþ c2ð@Xf̂ 1Þ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2c2 þ m2c4
p

� c4P2ð@Xf̂ 1Þ
2

ðP2c2 þ m2c4Þ3=2
� 2q@Pf̂ 1@Xu1ðX; tÞ

�2@Pf̂ 1@X@tf̂ 1 þ @t f̂ 2; (19)

where u1ðX; tÞ ¼ u1 cos ðkX � xtÞ, and a circumflex indi-

cates evaluation at �¼ 0, e.g., f̂ 1 ¼ f1ðX;P; tÞ. Contributions

arising from the derivatives of the amplitude u are assumed

to be Oð�3Þ.
Inspection of Eq. (18) and Eq. (19) shows that f̂ 1; f̂ 2 can

be chosen to absorb all of the harmonic behaviours of the right-

hand sides of Eq. (18) and Eq. (19), respectively, without incur-

ring secular behaviour in t. In particular, Eq. (18) leads to

f̂ 1 ¼
qu1ðXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2c2 þ m2c4
p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2c2 þ m2c4
p

� Pkc2
sin ðkX � xtÞ; (20)

and f̂ 2 / cos ð2kX � 2xtÞ follows using Eq. (19) and Eq.

(20), where the coefficient of proportionality is independent

of t. The remaining terms are independent of t and yield

K1ðX;PÞ ¼ 0; (21)

K2ðX;PÞ ¼
m2c6k2q2u2

1ðXÞ
2 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2c2 þ m2c4
p

� Pkc2
	 
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2c2 þ m2c4
p :

(22)

The Hamiltonian KðX;PÞ¼K0ðX;PÞþK1ðX;PÞþK2ðX;
PÞ=2 describes the cycle-averaged motion of the particle in the

lowest order approximation. Collecting Eqs. (17), (21), and

(22) gives

KðX;PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2c2 þ m2c4

p
þ m2c6k2q2u2ðXÞ

4 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2c2 þ m2c4
p

� Pkc2
	 
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2c2 þ m2c4
p :

(23)

The Hamiltonian of Eq. (23) describes the mean dynam-

ics of the original Hamiltonian.

D. Normalization of the equations

For numerical reasons, it is useful to express the equa-

tions to be solved in a dimensionless way. In this section, we

present the normalized forms of the equations used in this

work.

The normalized Hamiltonian of the full system, corre-

sponding to Eq. (3), is written as

H ¼ cþ u0 exp � x2

r2

� �
cos x� tð Þ: (24)

The relativistic factor c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ p2=a�

p
is written in

terms of the dimensionless momentum p, with a ¼ v2
/=c2

and v/¼x/k being the phase-velocity of the carrier. The

Hamiltonian H is normalized by the factor mc2, while x, t, v,

r, p, and u0 are substituted by x/k, t=x; v=
ffiffiffi
a
p

; r=k; pmc2=
v/, and u0mc2/q, respectively.

Hamiltonian’s canonical equations for Eq. (24) yield

_x ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ap2

p (25)

and

_p ¼ u0 exp � x2

r2

� �
2x

r2
cos x� tð Þ þ sin x� tð Þ

� �
: (26)

As can be seen in Eq. (25), the particle’s velocity is an

increasing function of momentum. Analyzing Eq. (26), as

the value of jxj decreases, the exponential factor goes to 1

and the term involving the cosine goes to 0. In this case, the

dominant temporal term of Eq. (26) is u0 sin ðx� tÞ.
The Lagrangian of Eq. (6) can be normalized as well, tak-

ing the form [with n¼ (1 � V), being V normalized by c=
ffiffiffi
a
p

]

L ¼ � 1

c0

� 1

4a
u2ðxÞ
n2c3

0

: (27)
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Finally, Eq. (23), obtained from the canonical perturba-

tion theory, is written as

K ¼ Cþ au2ðXÞ
4 P� aCð Þ2C

; (28)

where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2=a

p
: (29)

From Eq. (28), it can be seen that asymptotically K � C
(because u goes to zero for X � r). So, the velocity of the

particle in the limit X!1 tends to a constant. Additionally,

Eq. (28) is equal to the ponderomotive Hamiltonian obtained

in Ref. 5.

It is important to state that if one keeps the particle

velocity away from resonance, @U/@V (where U is the pon-

deromotive potential for the respective approaches) is finite,

DP [the variation of the momentum DP¼P(t) � P(t¼ 0)] is

small, and the Lagrangian average and the canonical pertur-

bation theory are approximately identical.

However, closer to the resonance, the term @U/@V of the

Lagrangian average diverges, while in the canonical perturba-

tion theory, this term is finite. P/C is not simply the velocity

of the particle—the velocity is obtained from V ¼ @H=@P. It

leads to different results near the acceleration regime, as it

will be shown later.

III. RESULTS

As can be seen in Eq. (2), for values of jxj much higher

than r, the amplitude of the potential goes to zero and the

velocity is essentially constant. To run the simulations, the

particle starts with v0 > 0 and x(t¼ 0)¼�3.5r. The simula-

tions are stopped as soon as the particle reaches x(t)¼�3.5r
(with negative velocity) or x(t)¼ 3.5r, and the velocity of

the particle at this moment is taken as the final velocity (or

the exiting velocity).

The system analysed here has at least three different

regimes, depending on the exiting velocity of the particle

(which is denoted by the colour graded map of Fig. 1—built

for
ffiffiffi
a
p
¼ 0:95 and r¼ 100), exactly as shown in Ref. 5. The

gray colour represents the reflecting regime. In this regime,

the particle sees the electrostatic wave (as a barrier) and it is

reflected by the field. The magnitude of the initial and the

final velocities of the particle are exactly the same, but in the

opposite direction. The passing regime is represented by the

colour red. In the passing regime, the particle passes through

the electrostatic potential, undergoing longitudinal jittering,

but its final velocity is equal to the initial velocity.

Finally, there is what is called the accelerating regime. In

this regime, the velocity excursions of the particle cross

the line of the phase velocity of the wave (in this case, the

Lagrangian average diverges, once n goes to zero, while the

canonical perturbation theory does not). As soon as the line is

crossed, the particle is accelerated towards the speed of light.

The final velocity of the particle is indicated through the col-

ours yellow, green, and blue. There are small regions in the

accelerating regime that resemble half-moons, in which the

acceleration mechanism is not effective. At the corner of these

half-moons, the entering and the exiting velocities of the par-

ticle are exactly the same (this is analogous to a fixed point).

The labeled points of Fig. 1 are explored in detail in the

following figures.

Figure 2 (for v0¼ 0.5, u0¼ 0.5, r¼ 100, and
ffiffiffi
a
p
¼ 0:95)

shows that the time evolution of the particle in panel (a) and

the phase-space v vs. x in panel (b). The solid line represents

the solution obtained through the integration of Eqs. (25) and

(26), while the dashed line is the phase velocity of the wave

and the thick red solid line is the time-averaged value of the

dynamics of the particle. To obtain the red solid line, we evalu-

ate the mean value of the time, position, and velocity between

two consecutive peaks of velocity. As a result, this approach

FIG. 1. Colour graded map for
ffiffiffi
a
p
¼ 0:95 and r ¼ 100. The colors repre-

sent the final velocity of the particle.

FIG. 2. The time evolution of the velocity of the particle is plotted in panel

(a), while panel (b) shows the phase-space of the particle dynamics for u0 ¼
0.50, v0 ¼ 0.50, r ¼ 100, and

ffiffiffi
a
p
¼ 0:95. The red solid line is the mean

dynamics of the particle.
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provides a smoother curve in comparison to fixed or moving

window averaging techniques.

Far from resonance, the canonical perturbation theory

well describes the mean particle dynamics both in passing or

in reflecting regimes. Figure 3 shows the phase-space of the

particle. The red solid line is the time-averaged dynamics of

the particle from the integration of Eqs. (25) and (26), the

blue solid line is obtained from the canonical perturbation

theory for the Hamiltonian [Eq. (28)] and the green solid line

is obtained from the Lagrangian average [Eq. (27)]. It is

important to notice that the initial and final velocities are the

same. As x!�1 and x!þ1, the field vanishes and only

the kinetic energy of the particle remains. The blue and red

curves reasonably agree. However, the green line is consid-

erably different: to the lowest approximation, the energy

expression E ¼ V@L=@V � L derived from the Lagrangian

of Eq. (27) monotonically associates a unique field intensity

to a given velocity—it means that there is a unique value of

u(x) corresponding to any value of the velocity.8 This associ-

ation gives incorrect results.

When the system is near resonance, new features appear

in the dynamics of the particle. The case of the reflecting

regime, shown in Fig. 4, is of particular interest, where the

solid red line represents the mean obtained through the inte-

gration of Eqs. (25) and (26), while the blue and the green

solid lines are the results from the canonical perturbation the-

ory and the ponderomotive approximation via Lagrangian

average, respectively. Far from resonance, the oscillations of

the particle are symmetrical. This way, the phase-space of

the particle is described by horizontal lines (þv0 and –v0)

connected by a transition curve, as can be seen in panel (a),

for u0¼ 1.5 and v0¼ 0.4. All the curves agree reasonably.

As we increase the initial velocity, the excursions of the

velocity of the particle come closer to the resonant velocity,

breaking the symmetry of the oscillations: the particle spends

more time at higher velocities (pushing the time-averaged

results of the full simulations to higher values). This effect,

known as uphill acceleration, induces the appearance of the

knob shown by the solid red line (from the full system) in

panels (b) and (c) of Fig. 4. The phase velocity line acts as

an attractor of the particle but it is still unable to accelerate

the particle. As in panel (a), the blue and green solid lines are from the canonical perturbation theory of the

Hamiltonian and from the Lagrangian average ponderomo-

tive approximation.

A qualitative difference between the curves can be seen

in panels (b) and (c) (built for u0¼ 1.5 and for v0¼ 0.55 and

v0¼ 0.6, respectively). While the canonical theory based on

the Hamiltonian reproduces the uphill acceleration, the

approximation via the Lagrangian average does not. The rea-

son is that the particle cannot possess the same value of its

velocity at positions with different field amplitudes8—it also

explains the difference observed in Fig. 3. Here, the direct

relationships between velocity, position, and field amplitude

do not allow the uphill acceleration. In the case of the

approximation via the canonical perturbation theory, the

relationships depend on the momentum, which has a more

complicated connection with the velocity, allowing the same

value of velocity for different positions with different values

FIG. 3. Phase-space for v0 ¼ 0.50, u0 ¼ 0.50, r ¼ 100, and
ffiffiffi
a
p
¼ 0:95. The

red solid line is the mean dynamics obtained from Eqs. (25) and (26). The

green (blue) solid line is from the Lagrangian (Hamiltonian) approximation.

FIG. 4. Phase-space for u0 ¼ 1.5, r ¼ 100, and
ffiffiffi
a
p
¼ 0:95, and for panel

(a), v0 ¼ 0.40, panel (b), v0 ¼ 0.55, and panel (c), v0 ¼ 0.60.
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of the field amplitude. Additionally, the curve of the ponder-

omotive approximation via the Lagrangian average cannot

be used for parameters near the transition to the accelerating

regime. The existence of n2 in the Lagrangian average of Eq.

(27) introduces a singularity which occurs when the particle

is about to be accelerated. However, even though the ponder-

omotive approximation, itself, fails at resonance, it can

describe the beginning of the acceleration process.

IV. CONCLUSION

In this work, we compared the exact solutions obtained

from the model described by the Hamiltonian of Eq. (3) to

the solutions of the ponderomotive approximation via the

Lagrangian average and the canonical perturbation theory.

Far from resonance, the approximations well describe the

dynamics of the system, in the reflecting regime.

However, as the system comes closer to the resonance

in the reflecting regime, the approximation based on the

Lagrangian average strays from the exact solution. The

approximation cannot depict, for example, the uphill accel-

eration. Furthermore, the approximation fails to predict the

two peaks present in the mean dynamics of the passing

regime. In both cases, the exact solution associates the same

velocity with different positions and field intensities, which

cannot be accounted by the lowest order Lagrangian

approach.8

On the other hand, the canonical perturbation theory

allows us to predict the mean dynamics in both regimes

including the uphill acceleration and the two peaks of the

passing regime. In the Hamiltonian approach, one works more

formally with momentum dependent generating functions and

velocities are obtained accordingly. This approximation will

be explored (focusing on different scenarios, including finite

cross sections for the envelope, multi-dimensional analysis,

and using different shapes for the envelope) and applied to

other systems, in upcoming studies.
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