MORTE SÚBITA INESPERADA NA INFÂNCIA: ESTIMATIVA DA PREVALÊNCIA MÍNIMA DA ACIDEMIA METILMALÔNICA TIPO MUT₀, CITRULINEMIA TIPO I E DEFICIÊNCIA DE DESIDROGENASE DE 3-HIDRÓXI-ACIL-COA DE CADEIA LONGA EM UMA AMOSTRA DE INDIVÍDUOS HÍGIDOS DO RIO GRANDE DO SUL

Dévora Natalia Randon

Orientadora: Profª. Dra. Ida Vanessa Doederlein Schwartz
Co-orientadora: Dra. Fernanda Sperb Ludwig

Porto Alegre, agosto de 2019
O presente trabalho foi desenvolvido no laboratório Basic Research and Advanced Investigations in Neurosciences do centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre. O estudo foi financiado pelo Fundo de Incentivo à Pesquisa e Eventos (FIPE), a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), e a Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). O protocolo do estudo foi aprovado pelo Comitê de Ética e Pesquisa do Grupo de Pesquisa e Pós-Graduação (GPPG) do Hospital de Clínicas de Porto Alegre, sob o registro n° 17-0249.
AGRADECIMENTOS

À Profª. Ida Schwartz, pela orientação, o apoio e o constante acompanhamento. Obrigada por acreditar em mim, por tantos ensinamentos e oportunidades; por me estimular a dar sempre o melhor de mim.

À Dra. Fernanda Sperb-Ludwig, pela orientação e todo o apoio. Obrigada por me ajudar a crescer. Tu és para mim um exemplo.

À Dra. Fernanda Bitencourt, pela amizade, a generosidade, tanto trabalho e dedicação. Não tenho palavras para expressar a minha gratidão.

À UFRGS e ao PPGBM por garantirem um ensino de excelência. Em Especial ao Sr. Elmo Cardoso, por estar sempre à disposição.

À todos os colegas do BRAIN, pelo companheirismo, o apoio e a amizade. Rafael Tresbach, Juliana Verch, Alexia Sant'Ana, Júlia Deimling, Vaneisse Monteiro, Mariana Lopes e Camila Matuella: vocês foram uma parte crucial da minha jornada, estarei sempre agradecida.

À toda minha querida família, em especial aos meus pais, tudo o que eu sou, eu devo a vocês. Obrigada pelo carinho, o apoio e as forças na distância.

Aos meus amigos, por todo o carinho apesar da ausência.

Ao meu namorado, pelo apoio e o carinho.
SUMÁRIO

1 INTRODUÇÃO... 13
1.1 Morte súbita inesperada na infância.. 13
1.2 Erros inatos do metabolismo .. 14
 1.2.1 Erros inatos do metabolismo: Classificação ... 15
 1.2.2 Erros inatos do metabolismo: Sintomatologia .. 16
 1.2.3 Erros inatos do metabolismo associados à morte súbita inesperada na infância............... 17
1.3 Acidemia metilmalônica tipo mut0 (AMMmut)
 1.3.1 Fisiopatologia .. 21
 1.3.2 Manifestações clínicas ... 23
 1.3.3 Aspectos moleculares ... 23
 1.3.4 Diagnóstico... 24
 1.3.5 Tratamento ... 25
1.4 Citrulinemia tipo I (CTLNI) .. 25
 1.4.1 Fisiopatologia .. 26
 1.4.2 Manifestações clínicas ... 27
 1.4.3 Aspectos moleculares ... 28
 1.4.4 Diagnóstico ... 30
 1.4.5 Tratamento ... 30
1.5 Deficiência de desidrogenase de 3-hidróxi-acil-CoA de cadeia longa (LCHADD)............. 30
 1.5.1 Fisiopatologia .. 31
 1.5.2 Manifestações clínicas ... 33
 1.5.3 Aspectos moleculares ... 34
 1.5.4 Diagnóstico... 35
1.5.5. Tratamento .. 36
1.6. Triagem neonatal .. 36
1.6.1. Triagem neonatal no Brasil.. 37
2 JJUSTIFICATIVA ... 39
3 OBJETIVOS .. 41
3.1. Objetivo geral .. 41
3.2. Objetivos específicos... 41
4 ARTIGO ... 43
5 DISCUSSÃO ... 45
6 CONCLUSÕES .. 53
7 REFERÊNCIAS ... 55
Anexo I Ficha de coleta de dados ... 69
Anexo II Carta de aprovação do projeto .. 70
Anexo III Comprovante de submissão do artigo .. 71
8 APÊNDICES ... 73
8.1. Genetic diagnosis and genotype-phenotype association in 113 Brazilian individuals with reduced biotinidase activity. .. 73
8.2. Diagnóstico genético e associação genótipo-fenótipo de 35 indivíduos brasileiros com atividade reduzida de biotinidase. ... 74
8.3. Erros inatos do metabolismo associados à morte súbita: investigação da frequência da variante patogênica c.199T>C no gene ACADM em indivíduos saudáveis do Rio Grande do Sul. .. 75
8.4. Diagnóstico genético e associação genótipo-fenótipo de 30 indivíduos brasileiros com atividade reduzida de biotinidase. ... 76
LISTA DE ABREVIATURAS

ABraOM: Arquivo Brasileiro Online de Mutações
AdoCbl: Adenosilcobalamina
AG: Ácidos graxos
AMM: Acidemia metilmalônica
AMMmut⁰: Acidemia metilmalônica tipo mut⁰
ARGI: Arginase
ASL: Argininosuccinato liase
ASS: Argininosuccinato sintetase
ATP: Adenosina trifosfato
CFSI: Carbamilfosfato sintetase
CoA: Coenzima A
CTLNI: Citrulinemia tipo I
EIM: Erros inatos do metabolismo
EUA: Estados Unidos da América
ExAC: “Exome Aggregation Consortium”
FAOD: “Fatty acid beta-oxidation disorder”
GAI: Acidemia glutárica tipo I
gnomAD: “The Genome Aggregation Database”
GSDIa: Glicogenose tipo Ia
GSDIb: glicogenose tipo Ib
GSDII glicogenose tipo II
KAT: 3-cetoacil-CoA tiolase
Kb: Kilobases
kDa: Kilodaltons
LCAD: Acil-CoA desidrogenase de cadeia longa
LCEH: 2,3-enoil-CoA hidratase de cadeia longa
LCHAD: Desidrogenase de 3-hidróxi-acil-CoA de cadeia longa
LCHADD: Deficiência de desidrogenase de 3-hidróxi-acil-CoA de cadeia longa
LKAT: 3-cetoacil-CoA tiolase de cadeia longa
MCAD: acil-CoA desidrogenase de cadeia média
MCADD: deficiência de acil-CoA desidrogenase de cadeia média
MCR: Metilmalonil-CoA epimerase
MKAT: 3-cetoacil-CoA tiolase de cadeia média
MS/MS: Espectrometria de massas em tandem
MTP: Proteína trifuncional mitocondrial
MUT: Metilmalonil-CoA mutase
NAGS: N-acetilglutamato sintetase
NO: Óxido nítrico
OTC: Ornitina carbamiltransferase
Pb: Pares de bases
PCC: Propionil-CoA carboxilase
PNTN: Programa Nacional de Triagem Neonatal
RS: Rio Grande do Sul
SCAD: Acil-CoA desidrogenase de cadeia curta
SCEH: 2,3-enoil-CoA hidratase de cadeia curta

SCHAD: 3-hidróxi-acilCoA de cadeia curta

SIDS: “Sudden infant death syndrome”

SKAT: 3-cetoacil-CoA tiolase de cadeia curta

SMSL: Síndrome de morte súbita do lactente

SNC: Sistema nervoso central

SUDI: “Sudden unexpected death in infancy”

SUS: Sistema Único de Saúde

VLCAD: Acil-CoA desidrogenase de cadeia muito longa

VLCADD: Deficiência de acil-CoA desidrogenase de cadeia muito longa
LISTA DE FIGURAS

Figura 1. Representação esquemática da via do Propionato.. 22
Figura 2. Representação esquemática da localização das variantes associadas à acidemia metilmalônica mut° no gene MUT.. .. 24
Figura 3. Representação esquemática do ciclo da ureia. ... 26
Figura 4. Representação esquemática da localização das variantes associadas à citrulinemia tipo I no gene ASSI.. ... 29
Figura 5. Representação esquemática da espiral de beta-oxidação dos ácidos graxos. .. 32
Figura 6. Representação esquemática da localização das variantes associadas à deficiência de 3-hidróxi-ácil-CoA de cadeia longa no gene HADHA.. 35

LISTA DE TABELAS

Tabela 1. Erros inatos do metabolismo associados à SUDI. 18
Tabela 2. Variantes patogênicas de maior prevalência para genes causadores de EIM associados à SUDI. ... 20
RESUMO

Introdução: A acidemia metilmalônica tipo mut0 (AMM mut0), a citrulinemia tipo I (CTLNI) e a deficiência de desidrogenase de 3-hidroxi-acil-CoA de cadeia longa (LCHADD) são erros inatos do metabolismo (EIM) associados à morte súbita inesperada na infância (SUDI). Destacam-se por serem passíveis de tratamento e identificáveis por triagem neonatal. As principais variantes patogênicas associadas a estas condições são: c.655A>T e c.1106G>A (AMM mut0 - gene MUT), 1168G>A (CTLNI - gene ASSI) e c.1528G>C (LCHADD - gene HADHA). Esses distúrbios não estão incluídos no Programa Nacional de Triagem Neonatal brasileiro, e não existem estimativas referentes à incidência dos mesmos no país. Estudos populacionais de prevalência são de fundamental importância para a consideração do estabelecimento de ações de triagem neonatal, diagnóstico precoce e aconselhamento genético. **Objetivo principal:** Determinar, em uma amostra da população saudável do Rio Grande do Sul (RS), a prevalência mínima da AMM mut0, CTLNI e LCHADD. **Metodologia:** Estudo transversal, com amostragem por conveniência. O tamanho amostral foi estimado em 980 indivíduos com base na proporção de heterozigotos para a variante c.1528G>C em diferentes populações europeias. Foram incluídos 1.000 indivíduos saudáveis (média de idade: 36,6±12,1; masculino: 504), recrutados entre os doadores do Banco de Sangue do Hospital de Clínicas de Porto Alegre, RS. A genotipagem foi realizada por PCR em tempo real. O cálculo da frequência alélica e genotípica foi feito com base no Equilíbrio de Hardy-Weinberg. **Resultados:** A variante c.1528G>C foi detectada em heterozigose em 2 indivíduos (frequência de heterozigotos= 1:500; frequência alélica= 0,001; prevalência mínima estimada de LCHADD= 1: 1.000.000 indivíduos). As variantes c.1168G>A, c.655A>T e c.1106G>A não foram encontradas. **Discussão/Conclusões:** Os dados resultantes estariam refletindo a raridade deste conjunto de EIM no RS. No entanto, fatores como o tamanho amostral e a heterogeneidade alélica associada a esses distúrbios devem ser considerados. A população brasileira é uma das mais heterogêneas do mundo, e este estudo salienta, de maneira inédita, a necessidade de expandir a investigação de EIM em relação à morbimortalidade infantil no território.
ABSTRACT

Introduction: Methylmalonic acidemia type mut0 (mut0 MMA), citrullinemia type I (CTLNI), and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) are inborn errors of metabolism (EIM) associated with sudden unexpected death in infancy (SUDI), noteworthy for being treatable and detectable by neonatal screening. The major pathogenic variants associated with these conditions are c.655A>T and c.1106G>A (MMA - gene MUT), c.1168G>A (CTLNI - gene ASSI) and c.1528G>C (LCHADD - gene HADHA). These disorders are not included in the Brazilian neonatal screening program and there is no estimation of its prevalence in the country. Studies of prevalence are essential to early diagnosis, treatment and neonatal screening considerations. **Main objective:** To determine, in a sample of the healthy population of Rio Grande do Sul (RS), the minimum prevalence of mut0 MMA, CTLNI and LCHADD. **Methodology:** Cross-sectional study, with convenience sampling. The sample size was estimated at 980 individuals, based on the proportion of heterozygotes for c.1528G>C in different European populations. A total of 1,000 healthy individuals (mean age: 36.6 ± 12.1, male: 504), recruited among donors from the Hospital de Clínicas of Porto Alegre Blood Bank, RS were included. Genotyping was performed through real-time PCR. Allele and genotype frequencies were calculated based on Hardy-Weinberg Equilibrium. **Results:** The c.1528G>C variant was detected in heterozygosity in 2 subjects (carrier frequency = 1: 500, allele frequency = 0.001, LCHADD minimum estimated prevalence = 1: 1,000,000 individuals). Variants c.1168G>A, c.655A>T and c.1106G>A were not found. **Discussion/Conclusions:** The resulting data is thought to denote the rarity of these conditions in the state of RS. Nevertheless, the current sample size as well as the allelic heterogeneity related to these genes should be considered. Brazil is one of the most heterogeneous populations in the world and this study highlights, in an unprecedented way, the need to expand IEM investigation in relation to infant morbidity and mortality within the territory.
CAPÍTULO I INTRODUÇÃO
1 INTRODUÇÃO

1.1. Morte súbita inesperada na infância

A morte súbita inesperada na infância (“Sudden unexpected death in infancy” - SUDI) é definida como a morte de um infante que ocorre de forma súbita e inesperada, até o primeiro ano de idade. Representa uma das mais frequentes causas de óbito após o período neonatal (Moon et al., 2007), sendo responsável por cerca de 4.600 mortes infantis por ano nos Estados Unidos da América (EUA) (Shapiro-Mendoza, 2007). SUDI é uma categoria heterogênea que inclui tanto os casos de óbito cuja causa pode ser determinada após um meticuloso exame post-mortem, como aqueles que permanecem inexplicados após uma investigação completa, incluindo a realização de uma autópsia completa, análise do local de morte e revisão da história clínica. Estes últimos casos classificam-se dentro da subcategoria de síndrome da morte súbita infantil (“Sudden infant death syndrome” - SIDS), também denominada síndrome de morte súbita do lactente (SMSL), representando um diagnóstico de exclusão (Krous et al., 2004). As principais causas de SUDI são listadas abaixo:

- **Síndrome da morte súbita infantil (SIDS):** Nos EUA representa a maior causa de morte em crianças de um mês a um ano de idade e a terceira causa de mortalidade infantil, após anomalias congênitas e prematuridade/baixo peso ao nascer. Ocorre com maior frequência em crianças de dois a quatro meses de idade, geralmente em período de sono, não sendo causada por sufocamento, aspiração, abuso ou negligência (Shapiro-Mendoza, 2007).
- **Asfixia ou sufocamento:** A inabilidade de respirar conduz a uma falta de oxigenação que pode gerar perda de consciência e morte. As principais causas de asfixia reportada em crianças são o sufocamento acidental e o estrangulamento no leito (Shapiro-Mendoza, 2007).
- **Lesão ou trauma:** Podem ocorrer de forma intencional – abuso infantil - ou não-intencional (Deal, 2000).
- **Causas desconhecidas ou inclassificáveis:** Aplica-se como causa da morte se a investigação da cena da morte e/ou a autópsia foram incompletas ou não
realizadas e a declaração de óbito não possui evidência suficiente para registrar uma causa de morte mais específica (Shapiro-Mendoza, 2007).

- **Doença metabólica:** Erros inatos do metabolismo (EIM) afetam a síntese, transporte e degradação de moléculas podendo provocar o acúmulo de substâncias tóxicas ou a deficiência de substâncias necessárias para o funcionamento fisiológico normal (Shapiro-Mendoza, 2007).

1.2. Erros inatos do metabolismo

Os EIM – terminologia cunhada no ano de 1909 por Sir Archibald Edward Garrod – são um grupo de mais de 1000 distúrbios monogênicos que resultam da deficiência de uma determinada enzima, cofator ou proteínas de transporte, alterando o metabolismo de proteínas, ácidos graxos, carboidratos, bem como prejudicando o funcionamento normal de organelas (Pampols, 2010; Saudubray e Garcia-Cazorla, 2018; Agana et al., 2018). A diminuição da atividade enzimática e o subsequente bloqueio total ou parcial de uma rota metabólica geralmente leva ao acúmulo do substrato, à falta do produto final ou ao desvio do substrato para rota metabólica alternativa (Saudubray et al., 2006).

Os indivíduos com EIM podem apresentar sintomatologia variada, sendo a gravidade do quadro clínico de cada paciente dependente da rota metabólica afetada, bem como do metabólito acumulado ou deficiente. Portanto, apesar de conformarem um único grupo de doenças, os EIM representam uma vasta, diversa e heterogênea coleção de condições que são uma causa significante de morbidade e mortalidade, principalmente na infância. São, na sua grande maioria, doenças graves que podem levar o paciente a óbito quando não tratadas corretamente (Chuang e Shih, 2001; Gomes et al., 2005; Ezgu, 2016).

A grande maioria dos EIM apresenta um padrão de herança autossômico recessivo, com risco de recorrência de 25% para cada gestação de pais heterozigotos. A incidência e prevalência dos EIM varia entre países e, apesar de serem considerados individualmente raros, em conjunto apresentam uma incidência estimada em 1:800 (Mak et al., 2013; Saudubray e García-Cazorla, 2018; Agana et al., 2018).
Devido à sua raridade e à inespecificidade dos achados clínicos no momento do início dos sintomas, os EIM destacam-se por serem complexos em termos de diagnóstico e, por muitas vezes serem, ao contrário da maior parte das demais doenças genéticas, passíveis de tratamento em alguns casos (Giugliani, 1998; Kaku et al., 2018).

1.2.1 Erros inatos do metabolismo: Classificação

Os EIM podem ser classificados com base na idade de início, sinais e sintomas predominantes, principais órgãos ou sistemas afetados, assim como na acuidade ou cronicidade das manifestações. Segundo Saudubray e Garcia-Cazorla, os EIM classificam-se em duas grandes categorias. A categoria 1 inclui doenças que envolvem apenas um único sistema funcional (como sistema endócrino, sistema imune, ou fatores de coagulação) ou que afetam apenas um órgão ou sistema anatômico (intestino, túbulos renais, eritrócitos ou tecido conjuntivo). Os sintomas são uniformes e o diagnóstico é relativamente simples de ser estabelecido. A categoria 2, por sua vez, inclui doenças nas quais o defeito bioquímico base afeta uma via metabólica comum a um grande de número de células ou órgãos (por exemplo, doenças lisossômicas) ou é restrita a um órgão, mas que desencadeia consequências sistêmicas ou humorais (por exemplo, defeitos do ciclo da ureia, glicogenose hepática). As doenças dessa categoria, por sua vez, podem ser divididas em três grupos (Saudubray e Garcia-Cazorla, 2018):

- **Grupo 1:** Distúrbios que afetam o metabolismo intermediário de pequenas moléculas.

 Composto por doenças que afetam a rede de reações bioquímicas de catabolismo, anabolismo e reciclagem, a qual permite troca contínua entre células e nutrientes através da alimentação (carboidratos, lipídeos e proteínas) e da respiração (oxigênio). Inclui EIM que causam intoxicação aguda ou progressiva devido ao acúmulo de compostos próximos ao ponto de bloqueio metabólico, como, por exemplo, EIM do catabolismo de aminoácidos (fenilcetonúria, doença da urina do xarope do bordo, entre outros), a maioria das acidemias orgânicas (metilmalônica, propiônica, isolvalérica, entre outras), distúrbios do ciclo da ureia e
doenças relacionadas, defeitos no metabolismo de galactose, frutose e porfírias (Saudubray e Garcia-Cazorla, 2018)

- **Grupo 2: Distúrbios que envolvem o metabolismo energético**

 Inclui EIM cujos sintomas, pelo menos parcialmente, levam à deficiência na produção ou uso de energia no fígado, miocárdio, músculo, cérebro e outros tecidos. Defeitos mitocondriais são os mais graves e geralmente não são passíveis de tratamento. Os sintomas podem envolver sinais de intoxicação agudos (geralmente acionados por jejum, catabolismo, febre) ou crônicos. Os defeitos citoplasmáticos são geralmente menos graves e incluem distúrbios da glicólise, do metabolismo do glicogênio e gliconeogênese, hiperinsulinismo e defeitos no transportador da glicose, distúrbios no metabolismo da creatina e EIM da via da fosfato pentose (Saudubray e Garcia-Cazorla, 2018).

- **Grupo 3: Distúrbios envolvendo moléculas complexas**

 Inclui doenças que envolvem a síntese, processamento, controle de qualidade e catabolismo de moléculas complexas, processos que ocorrem em diversas organelas (mitocôndrias, lisossomos, peroxissomos, retículo endoplasmático e complexo de Golgi). Os sintomas são permanentes, geralmente progressivos e independentes de eventos intercorrentes ou da ingestão alimentar. O grupo inclui doenças de depósito lisossomal, distúrbios peroxissomais, erros inatos de purinas e pirimidinas, erros inatos da síntese do colesterol, distúrbios dos triglicerídeos, fosfolipídeos e glicoessfingolipídeos, entre outros (Saudubray e Garcia-Cazorla, 2018).

1.2.2 Erros inatos do metabolismo: Sintomatologia

Os EIM apresentam um amplo espectro de sinais e sintomas, os quais podem manifestar-se em qualquer idade. O número de EIM conhecidos provavelmente seja tão grande quanto o número de sintomas que podem indicar um distúrbio metabólico e, por tanto, o diagnóstico de EIM é complexo para a maioria dos profissionais (Saudubray e Charpentier, 2001; Poretti et al., 2013).

Dias ou semanas após o nascimento, um neonato previamente saudável pode começar a apresentar sinais de uma doença metabólica oculta, os quais
podem ser comuns a outras condições médicas graves. Apesar do quadro clínico poder variar, neonatos e crianças com doenças metabólicas tipicamente apresentam letargia, diminuição do apetite, vômitos, taquipneia e convulsões. Com o progresso da doença, podem surgir anormalidades em relação ao tônus (hipo ou hipertonia), postura e movimentos, além de apneia do sono (Clarke, 2005; Kölker et al., 2015). Elevado nível plasmático de amônia, hipoglicemia e acidose metabólica são sugestivos de EIM. Adicionalmente, os cuidadores ou profissionais podem perceber um odor não usual no lactente, o qual pode estar associado a algumas doenças metabólicas (ex.: doença da urina do xarope do bordo, fenilcetonúria, acidemia isovalérica). Além disso, uma doença similar à Síndrome de Reye (encefalopatia hepática não-específica, possivelmente acompanhada de hipoglicemia) pode estar presente em anormalidades da gliconeogênese, da oxidação de ácidos graxos, da cadeia de transporte de elétrons ou de ácidos orgânicos (Raghuveer et al., 2006). Quando uma criança com EIM não diagnosticado vai à óbito, este fato é frequentemente atribuído a sepse (Lindor e Karnes, 1995).

1.2.3 Erros inatos do metabolismo associados à morte súbita inesperada na infância

Aqueles EIM cujas crises ocasionam intoxicação ou alterações que aumentam o risco de falência de órgãos constituem potenciais causas de SUDI (Emery et al., 1988; Kaku et al., 2018).

Estima-se que os EIM sejam responsáveis por cerca de 0,9% a 6% dos casos de SUDI (Boles et al., 1998; Chace et al., 2001; Van Rijt et al., 2016). No entanto, esse valor poderia ser maior, dada a complexidade do diagnóstico dessas doenças, combinada com a falta de experiência e de recursos para proceder com a investigação metabólica de SUDI, se refletindo num cenário de subinvestigação e subdiagnóstico (Cote et al., 1999; Loughrey et al., 2005).

De acordo com o trabalho de van Rijt e colaboradores (2016) são pelo menos 43 os EIM associados à SUDI e/ou síndrome de Reye, sendo que 26 destes apresentam manifestações clínicas no período neonatal, 32 são passíveis de tratamento e 26 diagnosticáveis por triagem neonatal através de espectrometria de
massas em *tandem* (MS/MS) A Tabela 1 mostra exclusivamente os EIM associados à SUDI.

Tabela 1. Erros inatos do metabolismo associados à SUDI.

<table>
<thead>
<tr>
<th>Erro inato do metabolismo</th>
<th>Manifestação neonatal</th>
<th>Diagnóstico neonatal</th>
<th>Tratamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolismo de aminoácidos e peptídeos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distúrbios do ciclo da ureia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiência de carbamilfosfato</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deficiência de ornitina transcarbamilase</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citrulinemia tipo I</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acidúria arginosuccínica</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acidemias orgânicas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidemia glutárica</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acidemia metilmalônica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acidemia isovalérica</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acidemia metilglutânica tipo II</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acidemia L-2-hidroxiglutárica</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metabolismo da fenilalanina e tirosina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tirosinemia tipo I</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Metabolismo da glicina e serina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiperglicinemia não cetótica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Transporte de aminoácidos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intolerância à proteína lisinúrica</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Metabolismo de carboidratos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distúrbios da gliconeogênese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiência da fosfoenolpiruvato carboxiquinase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Doenças de depósito de glicogênio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicogenose tipo Ia</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Glicogenose tipo Ib</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Glicogenose tipo II</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Tabela 1. Erros inatos do metabolismo associados à SUDI (Continuação).

Metabolismo de ácidos graxos e corpos cetônicos

<table>
<thead>
<tr>
<th>Transporte da carnitina e do ciclo da carnitina</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiência do transportador da carnitina</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deficiência de carnitina palmitoiltransferase I</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deficiência de carnitina-acilcarnitina translocase</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deficiência de carnitina palmitoiltransferase II</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Beta-oxidação mitocondrial de ácidos graxos

<table>
<thead>
<tr>
<th>Deficiência de acil-CoA desidrogenase de cadeia muito longa</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiência de proteína trifuncional mitocondrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiência de desidrogenase de 3-hidroxi-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acil-CoA de cadeia longa</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deficiência de acil-CoA desidrogenase de cadeia média</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deficiência de 3-alfa-hidroxi-aci-ICOA</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Deficiência de múltiplas acil-CoA desidrogenases</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Metabolismo energético

<table>
<thead>
<tr>
<th>Cadeia respiratória mitocondrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutações de ponto no mtDNA</td>
</tr>
<tr>
<td>Deficiência de ubiquinona (CoQ10)</td>
</tr>
<tr>
<td>Deficiência do complexo I, responsiva à riboflavina</td>
</tr>
<tr>
<td>Deficiência do complexo I</td>
</tr>
<tr>
<td>Deficiência do complexo IV</td>
</tr>
</tbody>
</table>

Metabolismo de vitaminas e cofatores (não-proteicos)

<table>
<thead>
<tr>
<th>Metabolismo da biotina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiência de biotinidase</td>
</tr>
<tr>
<td>Deficiência de holocarboxilase sintetase</td>
</tr>
</tbody>
</table>

Fonte: van Rijt et al., 2016. + indica presença; - indica ausência.

Dentre os EIM associados à SUDI, a acideemia metilmalônica tipo mut⁰ (AMMmut⁰; #MIM 25100), a citrulinemia tipo I (CTLNI; MIM# 215700) e a deficiência de desidrogenase de 3-hidróxi-acil-CoA de cadeia longa (LCHADD; MIM# 609016), entre outros distúrbios não incluídos no Programa Nacional de Triagem Neonatal.
(PNTN) (vide sessão 1.6.1.), apresentam uma ou mais variantes patogênicas que se destacam pela sua elevada prevalência (Tabela 2), e são descritos a seguir.

Tabela 2. Variantes patogênicas de maior prevalência para genes causadores de EIM associados à SUDI.

<table>
<thead>
<tr>
<th>Erro inato do metabolismo</th>
<th>Enzima deficiente</th>
<th>Gene</th>
<th>Variantes patogênicas mais frequentes na população mundial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidemia glutárlica tipo I</td>
<td>Glutaril CoA desidrogenase</td>
<td>GCDH</td>
<td>c.1204C>T (p.Arg402Trp)</td>
</tr>
<tr>
<td>Acidemia metilmalônica tipo mut⁰</td>
<td>Metilmalonil-CoA mutase</td>
<td>MUT</td>
<td>c.655A>T (p.Asn219Tyr) c.1106AG>A (p.Arg369His)</td>
</tr>
<tr>
<td>Citrulinemia tipo I</td>
<td>Argininosuccinato sintetase</td>
<td>ASS1</td>
<td>c.1168G>A (p.Gly390Arg)</td>
</tr>
<tr>
<td>Deficiência da 3-hidroxiacil-CoA desidrogenase de cadeia longa</td>
<td>3-hidroxiacil-CoA desidrogenase</td>
<td>HADHA</td>
<td>c.1528G>C (p.Glu510Gln)</td>
</tr>
<tr>
<td>Deficiência da acil-CoA desidrogenase de cadeia média</td>
<td>Acil-CoA desidrogenase de cadeia média</td>
<td>ACADM</td>
<td>c.985A>G (p.Lys329Glu) c.199C>T (p.Tyr42His)</td>
</tr>
<tr>
<td>Deficiência de acil-CoA desidrogenase de cadeia muito longa</td>
<td>Acil-CoA desidrogenase de cadeia muito longa</td>
<td>ACADVL</td>
<td>c.848T>C (p.Val283Ala)</td>
</tr>
<tr>
<td>Glicogenose tipo Ia</td>
<td>Glicose-6-fosfatase</td>
<td>G6PC</td>
<td>c.247C>T (p.Arg854Ter) c.1039C>T (p.Gln347Ter)</td>
</tr>
<tr>
<td>Glicogenose tipo Ib</td>
<td>Defeito no transportador da glicose-6-fosfato</td>
<td>SLC37A4</td>
<td>c.1042_1043delCT</td>
</tr>
<tr>
<td>Glicogenose tipo II</td>
<td>α-glicosidase ácida</td>
<td>GAA</td>
<td>c.2560C>T (p.Arg854Ter) c.1935C>A (p.Asp645Glu) c.-32T>G</td>
</tr>
<tr>
<td>Tirosinemia tipo I</td>
<td>Fumarilacetooacetato hidrolase</td>
<td>FAH</td>
<td>c.1062+5G>A c.554-1G>T c.607-6T>G c.782A>C (p.Pro261Leu)</td>
</tr>
</tbody>
</table>

Fonte: Gene Reviews, 2019.
1.3. Acidemia metilmalônica tipo mut0 (AMMmut0)

A acidemia metilmalônica (AMM) é uma condição de etiologia heterogênea que afeta o catabolismo do propionato, representando um dos distúrbios mais prevalentes do metabolismo dos ácidos orgânicos (Caterino et al., 2016). A AMM pode se manifestar em combinação com homocistinuria ou de forma isolada, sendo esta última a mais frequente. A AMM isolada pode ser ocasionada tanto pela deficiência parcial ou total da enzima metilmalonil-CoA mutase (incluindo os subtipos mut' e mut0, respectivamente), como por defeitos na síntese e transporte do seu cofator, adenosilcobalamina (AdoCbl) (Fenton et al., 2001; Dionisi-Vici et al., 2006; Han et al., 2015).

A AMMmut0 foi descrita pela primeira vez no ano de 1967 por Oberholzer e colaboradores. A incidência estimada é de cerca de 1:100.000, com base nos dados de triagem neonatal dos EUA e Taiwan (Niu et al., 2010; Feuchtbau et al., 2012).

1.3.1. Fisiopatologia

O catabolismo dos aminoácidos isoleucina, valina, treonina e metionina, assim como dos ácidos graxos de número ímpar de carbonos e da cadeia lateral do colesterol, resulta na formação de propionil-CoA, que será incorporado no ciclo dos ácidos tricarboxílicos. Essa reação ocorre através de uma série de três etapas enzimáticas reversíveis da via do propionato, no interior da matriz mitocondrial (Fenton et al., 2001) (Figura 1).

A primeira etapa consiste na conversão de propionil-CoA em D-metilmalonil-CoA, pela enzima propionil-CoA carboxilase (PCC; EC 6.4.1.3). Em seguida, a isomerização para L-metilmalonil-CoA é efetuada pela metilmalonil-CoA epimerase (MCR; EC 5.1.99.1). Finalmente, a enzima metilmalonil-CoA mutase (MUT; EC 5.4.99.2) catalisa a conversão de L-metilmalonil-CoA em succinil-CoA, que funciona como intermediário do ciclo dos ácidos tricarboxílicos (Fenton et al., 2001; Fowler et al., 2008).

Na AMMmut₀, a atividade residual da enzima MUT é nula, não sendo responsiva à AdoCbl, isto leva ao acúmulo de uma série de metabolitos tóxicos em diversos fluidos e tecidos, principalmente propioiicarnitina e metilmalonil-CoA, o qual é subsequente hídrolisado em CoA e ácido metilmalônico (Fowler et al., 2008). O acúmulo de ácido metilmalônico induz a formação de ácido metilcítico, inibidor de enzimas do ciclo dos ácidos tricarboxílicos, e malonato, inibidor da enzima succinato desidrogenase, provocando estresse oxidativo, apoptose excitotóxica e disfunção mitocondrial (Fontella et al., 2000; Okun et al., 2002; Mirandola et al., 2008). Consequentemente, a AMM é caraterizada por apresentar dano tecidual generalizado, com efeitos proeminentes no cérebro, possivelmente devido a sua dependência no metabolismo aeróbico, e ao fato do ácido
metilmalônico ser acumulado em maior concentração no mesmo (Baulny et al., 2005; Saad et al., 2006).

1.3.2. Manifestações clínicas

A AMMmut⁰ representa uma condição extremamente severa, associada à elevada morbidade e mortalidade precoce. A maioria dos pacientes apresenta sinais e sintomas clínicos nas primeiras semanas de vida, incluindo episódios intermitentes de descompensação metabólica aguda, potencialmente fatais, em decorrência do catabolismo induzido pela elevada ingesta de proteína (Hörster e Hoffmann, 2004; Fraser e Venditti, 2016). As crises metabólicas, frequentemente confundidas com septicemia, são caracterizadas por cetoacidose, hiperamonemia, dificuldades de alimentação, letargia e hipotonia, geralmente progredindo para um estado comatoso, com apneia e episódios de convulsão. Complicações a longo prazo incluem atraso no desenvolvimento, insuficiência renal crônica, pancreatite e manifestações neurológicas severas (Hörster et al., 2007; Manoli et al., 2013).

1.3.3. Aspectos moleculares

Trata-se de um distúrbio de herança autossômica recessiva ocasionado por variantes patogênicas no gene MUT, que codifica a enzima mitocondrial MUT (Ledley et al., 1988). A enzima é composta por 750 aminoácidos, com peso molecular de 77,5kDa, e apresenta dois domínios funcionais. O domínio amino-terminal é responsável pela interação com a metilmalonil-CoA, enquanto que o domínio carboxi-terminal contém o sítio de ligação para o cofator AdoCbl (Froese et al., 2010). O gene MUT abrange 35Kb no cromossomo 6p21 e está composto por 13 éxons, o primeiro deles não codificante (Ledley et al., 1988; Nham et al., 1990). Até o momento mais de 80 variantes foram descritas em associação exclusiva com a AMMmut⁰ e, dentre as mesmas, as substituições c.655A>T (Acquaviva et al., 2001) e c.1106G>A (Worgan et al., 2006) destacam por sua prevalência, principalmente entre pacientes caucasoides (Figura 2).
A variante c.655A>T, localizada no éxon 3, resulta na substituição de um resíduo de asparagina por tirosina na posição 219 da proteína (p.Asn219Tyr). A mesma representa até 26% dos alelos em pacientes diagnosticados com AMMmut0 (Acquaviva et al., 2005). Já a variante c.1106G>A, no éxon 6, leva à substituição de arginina por histidina na posição 369 (p.Arg369His) e corresponde a cerca de 10% dos pacientes tipo mut0 (Forny et al., 2016). As duas variantes são localizadas no domínio de interação com o substrato, de maneira que, tanto em homozigose como em heterozigose composta com outra variante patogênica, desestabilizam a estrutura tridimensional da enzima, anulando sua atividade catalítica (Acquaviva et al., 2005; Sakamoto et al., 2007; Zsengeller et al., 2014).

1.3.4. Diagnóstico

A determinação dos níveis de ácido metilmalônico e outros ácidos orgânicos, através de cromatografia gasosa acoplada à espectrometria de massas, é a metodologia mais amplamente utilizada para o diagnóstico de AMM em indivíduos.
sintomáticos (Fowler et al., 2008). No entanto, a dosagem de acilcarnitinas no sangue, pela técnica de MS/MS, pode ser utilizada para identificar indivíduos afetados na fase pré-sintomática. A mesma permite detectar o incremento no nível de propionilcarnitina (C3), marcador primário para a AMM e outras acidemias orgânicas (Chace et al., 2001). A proporção propionilcarnitina/acetilcarnitina (C3/C2) é frequentemente utilizada como marcador secundário para AMM (Al-Dirbashi et al., 2016).

A confirmação do diagnóstico, bem como a discriminação entre os subtipos mut e mut⁰, pode ser realizada através de uma série de ensaios bioquímicos para a determinação da atividade da enzima MUT em fibroblastos, assim como pela análise do gene MUT (Fowler et al., 2008).

1.3.5. Tratamento

Na ausência de tratamento precoce a maioria dos pacientes não responsivos à AdoCbl vão a óbito. A estratégia terapêutica consiste fundamentalmente na restrição da ingesta de proteínas naturais, com a administração de suplementos dietéticos isentos de aminoácidos propiogênicos, visando reduzir assim o acúmulo de metabólitos tóxicos (Hörster e Hoffmann, 2004). A eliminação dos metabólitos pode ser efetuada, quando necessário, por medidas mais ou menos agressivas (ex: transfusão sanguínea, diálise peritoneal, hemofiltração ou hemodiálise) (Baulny et al., 2005). Adicionalmente, a suplementação com L-carnitina auxilia na remoção do excesso de acil-CoA através da produção de acilcarnitinas orgânicas de excreção urinaria, reestabelecendo os níveis de CoA livre (Ribas et al., 2010). A prevenção de situações favorecedoras do catabolismo, como o jejum prolongado e as infecções, são de primordial importância neste contexto (Hörster e Hoffmann, 2004; Dionisi-Vici et al., 2006).

1.4. Citrulinemia tipo I (CTLNI)

A CTLNI, descrita por primeira vez por McMurray e colaboradores em 1962, é o terceiro distúrbio mais prevalente do ciclo da ureia. Com base em dados de diversos programas de triagem neonatal sua incidência foi estimada em 1:250.000 (Summar et al., 2013).
A CTLNI pode ser classificada em duas categorias: CTLNI clássica, com manifestações clínicas severas de início precoce ou tardio, e CTLNI leve, assintomática na maioria dos casos (Häberle et al., 2003).

1.4.1. Fisiopatologia

O ciclo da ureia é a principal via para a eliminação do excesso de nitrogênio, sendo também responsável pela biossíntese *de novo* da arginina. O mesmo consiste em cinco etapas enzimáticas sequenciais, que ocorrem principalmente nos hepatócitos, e resultam na conversão de amônia e outros compostos nitrogenados em ureia, um produto não-tóxico de excreção urinária (Figura 3) (Brusilow e Horwich, 2001).

![Ciclo da Ureia](image)

Figura 3. Representação esquemática do ciclo da ureia. CFSI- carbamilfosfato sintetase, NAGS- N-acetil glutamato sintetase, OTC- ornitina carbamiltransferase, ASS- argininosuccinato sintetase, ARGI- arginase (Adaptado de Blair et al., 2014).

Na primeira etapa a amônia, derivada principalmente de glutamina e glutamato, é convertida em carbamilfosfato pela enzima mitocondrial
carbamilfosfato sintetase (CFSI; EC 6.3.4.16), através da condensação de acetil-CoA e glutamato catalisada pela N-acetilglutamato sintetase (NAGS; EC 2.3.1.1). Em seguida, a enzima mitocondrial ornitina carbamiltransferase (OTC; EC 2.1.3.3) catalisa a condensação entre carbamilfosfato e ornitina, produzindo citrulina. Já no citoplasma, a citrulina condensa-se com aspartato para produzir argininosuccinato, pela ação da enzima argininosuccinato sintetase (ASS; EC 6.3.4.5). O argininosuccinato é então hidrolisado a arginina e fumarato pela argininosuccinato liase (ASL; EC 4.3.2.1). Finalmente, a enzima arginase (ARGI; EC 3.5.3.1) hidrolisa a arginina em ornitina e ureia (Summar e Tuchman, 2001).

A CTLNI é ocasionada pela deficiência na atividade da enzima ASS (Beaudet et al., 1986), resultando em hiperamonemia, acúmulo de citrulina, glutamina, alanina e ácido orótico, com depleção de arginina (Häberle et al., 2012).

A amônia, metabolizada em glutamina nos astrócitos, no fígado e no músculo esquelético, é extremamente tóxica quando presente em elevadas concentrações, podendo ocasionar danos irreversíveis no cérebro em desenvolvimento. O acúmulo de glutamina nos astrócitos devido ao consequente incremento da osmolaridade intracelular seria uma das principais causas de dano cerebral (Brusilow et al., 2010). Além disso, a hiperamonemia induz o bloqueio do ciclo dos ácidos tricarboxílicos, leva à apoptose excitotóxica e apresenta efeito tóxico direto sobre a neurotransmissão inibitória e excitatória (Cooper, 2001; Felipo e Butterworth, 2002; Tofteng et al., 2006).

1.4.2. Manifestações clínicas

A sintomatologia da CTLNI decorre principalmente da hiperamonemia, com quadros variáveis de encefalopatia e disfunção hepática, sendo a forma clássica de início precoce a mais severa. As manifestações clínicas incluem recusa alimentar, êmese, taquipneia, convulsões, edema cerebral e letargia, progredindo rapidamente para coma (Leonard e Morris, 2002; Gropman et al., 2007). Esta inespecificidade de sintomas pode sugerir o diagnóstico de sepse (Leonard, 2006). Na ausência de tratamento um número significante de pacientes vão a óbito durante o período neonatal/infantil (Lee et al., 2013).
A forma clássica de início tardio caracteriza-se principalmente por disfunção hepática grave, distúrbios de aprendizagem e do desenvolvimento (Faghfouri et al., 2011), enquanto que indivíduos com a forma leve da doença podem ser assintomáticos, apresentando crises metabólicas agudas em períodos de estresse fisiológico (Gao et al., 2003).

1.4.3. Aspectos moleculares

A CTLNI é um distúrbio monogênico com padrão de herança autossômico recessivo, ocasionado por variantes patogênicas no gene ASSI, que codifica para a enzima ASS (McMurray et al., 1962). A enzima ASS apresenta uma estrutura tetramérica, constituída por monômeros de 46kDa e 412 aminoácidos, cada um contendo três domínios funcionais: um domínio amino-terminal de ligação ao ATP, um domínio catalítico e um domínio carboxi-terminal, responsável pela oligomerização da proteína (Karlberg et al., 2008).

O gene ASSI se encontra no cromossomo 9q34.1, abrange um total de 63Kb e contem 16 éxons, com o sitio de início de tradução localizado no éxon 3 (Freytag et al., 1984; Häberle et al., 2002). Existem aproximadamente 10 a 14 pseudogenes distribuídos pelo genoma, no entanto, apenas a sequência no cromossomo 9 seria funcional (Su et al., 1984). Mais de 100 variantes patogênicas foram descritas até o momento no gene ASSI, sendo a substituição c.1168G>A no éxon 15 a mais prevalente em diversos grupos étnicos (Diez-Fernandez et al., 2017) (Figura 4).
Figura 4. Representação esquemática da localização das variantes associadas à citrulinemia tipo I no gene ASS1. Os éxons são representados em caixas com suas dimensões em pares de bases (pb). Os íntrons são representados em linhas. As variantes são listadas abaixo dos respectivos éxons e acima dos respectivos íntrons. Em vermelho a variante patogênica de maior prevalência. Sequências de referência utilizadas NG_011542.1 e NM_000050.4. Fonte: Gao et al., 2003; Engel et al., 2009; Kose et al., 2017; Bijarnia-Mahay et al., 2018.

A variante c.1168G>A resulta na substituição de um resíduo de glicina por arginina na posição 390 da proteína (p.Gly390Arg), localizada no domínio de oligomerização. Essa alteração compromete a conformação tetramérica tridimensional da enzima, provocando a inativação catalítica da mesma (Berning et al., 2008). Em homozigose esta variante associa-se à CTLNI clássica severa, de início precoce (Gao et al., 2003; Engel et al., 2009; Laróvere et al., 2012), já em heterozigose composta com outra variante patogênica, pode estar relacionada tanto com a forma severa quanto com formas mais leves da doença (Gao et al., 2003).

A variante representa até 62% dos alelos em pacientes europeus clinicamente diagnosticados, e foi identificada em 100% dos alelos de pacientes analisados no estado de San Luis, Argentina (Laróvere et al., 2012; Diez-Fernandez et al., 2017).
1.4.4. Diagnóstico

A dosagem de citrulina em sangue pode ser efetuada através de MS/MS. Um valor elevado pode ser indicativo de CTLNI, entre outras condições como CTLN tipo II, acidúria argininosuccínica e deficiência de piruvato carboxilase (Woo et al., 2014). O diagnóstico diferencial e a confirmação de CTLNI são realizados com base nos níveis elevados de amônia em plasma e ácido orótico em urina, bem como pela determinação da atividade da enzima ASS em fibroblastos ou tecido hepático e a análise do gene ASSI (Leonard, 2006).

1.4.5. Tratamento

Devido à elevada mortalidade e às sequelas neurológicas irreversíveis decorrentes da hiperamonemia associada à CTLNI, o início imediato do tratamento torna-se fundamental para a sobrevida dos pacientes (Uchino et al., 1998; Summar e Tuchman, 2001).

A abordagem terapêutica baseia-se na remoção do excesso de amônia, limitando também sua produção através do metabolismo proteico (Blair et al., 2014). A mesma inclui uma dieta vitalícia restrita em proteínas com suplementação de aminoácidos essenciais e a reversão do catabolismo via infusão intravenosa de glicose, quando necessário (Rocha et al., 2009; Lee et al., 2013). Tanto a hemodiálise como a terapia farmacológica com administração de arginina, benzoato de sódio ou fenilbutirato de sódio são utilizadas visando a eliminação do excesso de nitrogênio em episódios intercorrentes de hiperamonemia (Schwartz et al., 2008; Rocha et al., 2009). O transplante hepático ortotópico dentro dos primeiros três meses de vida é efetivo em determinados casos (Whittington et al., 1998).

1.5. Deficiência de desidrogenase de 3-hidróxi-acil-CoA de cadeia longa (LCHADD)

A LCHADD foi descrita por primeira vez por Wanders e colaboradores (1989) e representa um dos distúrbios da beta-oxidação de ácidos graxos (“fatty acid beta-oxidation disorders”; FAOD) mais graves (Rinaldo et al., 2002). Sua incidência foi estimada em 1:250.000, com base nos dados combinados de triagem neonatal por MS/MS da Austrália, Alemanha e EUA (Lindner et al., 2010).
1.5.1. Fisiopatologia

Os ácidos graxos (AG) são uma fonte de energia fundamental na resposta fisiológica à depleção de energia nos tecidos em períodos de jejum, doença febril e aumento de atividade muscular. Constituem, em condições fisiológicas normais, o principal recurso energético para o coração, o músculo esquelético e os rins. Portanto, desempenham um papel crucial no período neonatal, considerando a limitada reserva de glicogênio e alta taxa metabólica que o caracteriza (Rinaldo et al., 2002; Wanders et al., 2010; Houten et al., 2016).

A beta-oxidação mitocondrial é a principal via para a degradação de AG, desempenhando também um papel relevante no metabolismo intermediário do fígado (Eaton et al., 1996; Vockley e Whiteman 2002; Wanders et al., 2010).

O processo de beta-oxidação inicia com a ativação dos AG plasmáticos de cadeia longa (comprimentos de cadeia de átomos de carbono entre C14 a C20) na forma de ésteres de Coenzima A (acil-CoA). Em seguida, os mesmos são carreados por proteínas de ligação através do citoplasma para a mitocôndria, e translocados para dentro da matriz mitocondrial por canais de carnitina. Os AG de cadeia curta e média (C4 a C12) ingressam na matriz mitocondrial sem precisarem do sistema de transporte da carnitina. No interior da mitocôndria inicia-se a espiral de beta-oxidação, uma série cíclica de quatro etapas enzimáticas que resulta na remoção sequencial de unidades de dois carbonos na forma de acetil-CoA. Para a degradação completa dos AG, atuam diferentes enzimas, específicas do comprimento de cadeia de átomos de carbono (Rector et al., 2008) (Figura 5).

A primeira etapa consiste na desidrogenação de acil-CoA, catalisada pela acil-CoA desidrogenase de cadeia muito longa (VLCAD; EC 1.3.8.9) e suas enzimas homólogas, acil-CoA desidrogenase de cadeia longa (LCAD; EC 1.3.8.8), média (MCAD, EC 1.3.8.7) e curta (SCAD; EC 1.3.8.1), com produção de enoil-CoA. Em seguida, uma molécula de água é adicionada pela 2,3-enoil-CoA hidratase de cadeia longa (LCEH; EC 4.2.1.74) ou curta (SCEH; EC 4.2.1.150), enquanto que as desidrogenases de 3-hidróxi- acilCoA de cadeia longa (LCHAD; EC 1.1.1.2.11) ou curta (SCHAD; EC 1.1.1.35) produzem 3-cetoacil-CoA oxidando a posição 3-hidróxi. Finalmente, A 3-cetoacil-CoA tiolase (KAT; EC 2.3.1.16) de cadeia longa
(LKAT), média (MKAT) ou curta (SKAT) reduz o substrato de acil-CoA graxo pela clivagem de um resíduo de acetil-CoA (Rector et al., 2008; Wanders et al., 2010).

As três reações enzimáticas subsequentes à ação da VLCAD são catalisadas pela proteína trifuncional mitocondrial (MTP), um complexo hetero-octamérico (α4β4) associado à membrana mitocondrial interna. A subunidade alfa do complexo contém as enzimas LCEH e LCHAD, já a subunidade beta contém a enzima LKAT (Carpenter et al., 1992). Embora a atividade das três enzimas do complexo podem ser deficientes (deficiência geral de MTP; #MIM 609015), a deficiência isolada de LCHAD é a mais frequente (Ijlst et al., 1994).

A LCHADD resulta na oxidação incompleta de AG de cadeia longa, levando ao acúmulo de intermediários tóxicos de 3-hidróxiacil, a maioria deles não esterificados, o que afeta o funcionamento da cadeia respiratória. A disponibilidade de acil-CoA de cadeia média é reduzida e, consequentemente, a produção de acetil-CoA é limitada. Normalmente, como produto da beta-oxidação, o acetil-CoA ingresa como substrato para o ciclo dos ácidos tricarboxílicos, oxidando-se para gerar ATP, necessário no fígado para a síntese de glicose a partir de substratos como lactato e alguns aminoácidos (substratos que não carboidratos) pela gliconeogênese. Esse método de produção de glicose é vital para a manutenção plasmática de glicose – o principal combustível para o funcionamento do sistema nervoso central (SNC). O acetil-CoA também pode ser convertido em corpos cetônicos no fígado. Apesar da glicose ser o combustível de escolha para o funcionamento do SNC, os corpos cetônicos podem ser utilizados durante longos períodos de jejum. Além disso, o ATP também é necessário para outras funções metabólicas vitais, incluindo a conversão de amônia em ureia no fígado (Bhagavan, 2002).

1.5.2. Manifestações clínicas

Na ausência de tratamento, tanto a deficiência geral de MTP como a LCHADD, estão associadas à uma elevada mortalidade e morbidade. Os sintomas clínicos se desenvolvem principalmente durante períodos de doença ou jejum. Alguns dos casos apresentam doença hepática grave, incluindo falha renal aguda em recém-nascidos e falha renal crônica na infância, algumas vezes progredindo
para cirrose. Outras complicações observadas durante episódios de descompensação aguda são hipoglicemia hipocetótica, acidose láctica, hipotonia, cardiomiopatia, rabdomiólise e/ou mioglobinuria e morte súbita (Rinaldo et al., 2002; Spiekerkoetter, 2010). Complicações a longo prazo incluem episódios recorrentes de crises metabólicas, cardiomiopatia, dificuldades de alimentação, neuropatia periférica e retinopatia (Sykut-Cegielska et al., 2011).

1.5.3. Aspectos moleculares

A LCHADD é um distúrbio monogênico de herança autossômica recessiva, ocasionado por variantes patogênicas no gene HADHA, que codifica para a subunidade alfa da MTP, com 763 aminoácidos e 78KDa. O gene é localizado no cromossomo 2p23 e contém 20 éxons, abrangendo 52Kb (Wanders et al., 1989; Yang et al., 1996). Cerca de 60 variantes foram descritas em associação à LCHADD, sendo a substituição c.1528G>C, no éxon 15, a mais prevalente (Sims et al., 1995; Nedoszytko et al., 2017) (Figura 6).
Figura 6. Representação esquemática da localização das variantes associadas à deficiência de 3-hidróxi-acil-CoA de cadeia longa no gene HADHA. Os éxons são representados em caixas com suas dimensões em pares de bases (pb). Os íntrons são representados em linhas. As variantes são listadas abaixo dos respectivos éxons e acima dos respectivos íntrons. Em vermelho a variante patogênica de maior prevalência. Sequencias de referência utilizadas NG_007121.1 e NM_000182.4. Fonte: Wanders et al., 1989; Choi et al., 2007; Gregersen e Olsen, 2010; Boutron et al., 2011; Bo et al., 2017; Bursle et al., 2017).

1.5.4. Diagnóstico

A dosagem de acilcarnitinas no sangue por espectrometria de massas em tandem (MS/MS) ou cromatografia líquida (HPLC) permite detectar o perfil característico de indivíduos com LCHADD e deficiência geral de MTP, o qual reflete o acúmulo de 3-hidróxi-palmitoicarnitina(C16-OH) e 3-hidróxi-oleilcarnitina (C18:1-
OH) como marcadores primários de ambas condições (Sweetman et al., 2006). A confirmação do diagnóstico pode ser feita através da determinação da atividade enzimática de LCHAD em fibroblastos, tecido muscular ou hepático, bem como por análise do gene HADHA (Olpin et al., 2005; Kasper et al., 2010).

1.5.5. Tratamento

O tratamento, tanto para a LCHAD como para a deficiência geral de MTP, é relativamente simples e efetivo, principalmente quando iniciado precocemente. Consiste em evitar períodos de jejum, especialmente durante situações de catabolismo acelerado, associado à dieta hipercalórica com redução da ingesta de ácidos graxos de cadeia longa e suplementação com ácidos graxos de cadeia média (Spiekerkoetter et al., 2009). A suplementação com L-carnitina visando a excreção urinária dos metabolitos tóxicos acumulados, é ainda controversa pois poderia incrementar a concentração de acilcarnitinas de cadeia longa com potencial efeito arritmogênico (Primassin et al. 2008; Derks et al., 2014).

1.6. Triagem neonatal

A triagem neonatal é um programa de saúde populacional que tem como objetivo identificar doenças no recém-nascido, em tempo oportuno para permitir a intervenção adequada, garantindo tratamento e acompanhamento contínuo nos casos de diagnóstico positivo, com vistas a reduzir a morbimortalidade e melhorar a qualidade de vida dos indivíduos (Therrell, 2001). O sistema de triagem neonatal iniciou-se na década de 60 com o rastreio da fenilcetonúria, um distúrbio metabólico para o qual o diagnóstico precoce e o tratamento pré-sintomático podem efetivamente evitar o desenvolvimento de sequelas neurológicas em indivíduos afetados. A fenilcetonúria, por tanto, foi considerado o modelo tradicional de doença passível de ser detectada por triagem neonatal (Wilson e Jungner, 1968).

Em 1967, a Organização Mundial de Saúde definiu os critérios de Wilson e Jungner para que uma doença fosse candidata a fazer parte de programas de triagem neonatal, a saber: a doença deve representar um importante problema de saúde pública, deve existir tratamento disponível, infraestrutura para confirmação diagnóstica e tratamento, assim como um período pré-sintomático em que a
intervenção melhore o desfecho. Adicionalmente, o teste de triagem deve ser adequado e confiável, a história natural da doença deve ser bem conhecida, deve haver um protocolo que estabeleça quem deve efetivamente ser tratado como paciente, o programa deve ser custo-efetivo, e a busca de casos deve ser um processo contínuo (Andermann et al., 2008).

A introdução de novas técnicas laboratoriais, como a utilização de cartões de papel filtro para coleta de amostras de sangue e o advento do espectrômetro de massas em tandem, permitiu a ampliação do acesso ao teste em grandes populações, incrementando exponencialmente as possibilidades diagnósticas (Botler et al., 2010).

1.6.1 Triagem neonatal no Brasil

O PNTN é um programa de rastreamento populacional que visa promover e implementar a triagem neonatal no âmbito do SUS, visando ao acesso universal, integral e equânime, com foco na prevenção, na intervenção precoce e no acompanhamento permanente quando necessário (BRASIL, 2001).

A triagem neonatal na rede pública nacional rastreia 6 doenças: fenilcetonúria, hipotireoidismo congênito primário, anemia falciforme (e outras hemoglobinopatias), fibrose cística, hiperplasia adrenal congénita e deficiência de biotinidase (BRASIL, 2012). Entretanto, para o Distrito Federal, foi aprovada em 2008 a lei n°4.190, que torna obrigatório o teste do pezinho ampliado em todas as crianças nascidas, incluindo a triagem por MS/MS de 27 doenças, dentre elas, defeitos de beta-oxidação de ácidos graxos, toxoplasmose congênita, galactosemia e leucinose (BRASIL, 2008). No âmbito privado, também é possível a realização desta denominada triagem neonatal ampliada.
CAPÍTULO II JUSTIFICATIVA
2 JUSTIFICATIVA

Os EIM seriam responsáveis por até 6% dos casos de SUDI (Green et al., 2002); no entanto, a relação entre EIM e SUDI poderia estar sendo subestimada, tanto pela complexidade do diagnóstico dessas doenças, como pelas dificuldades inerentes ao processo de investigação desse tipo de óbitos.

A AMMmut⁰, assim como a CTLNI e a LCHADD, fazem parte da fração dos EIM relacionada à SUDI (van Rijt et al., 2016), e as suas principais variantes patogênicas já foram identificadas. Visto que estes EIM não estão incluídos no PNTN e que não há qualquer estudo na literatura que avalie a frequência destas variantes, ou a incidência referente a este grupo de doenças na população brasileira, se desconhece a contribuição que os mesmos possam ter como fatores causais de SUDI no RS. Um maior entendimento acerca dessa associação torna-se necessário para possibilitar o aconselhamento genético familiar com relação ao prognóstico de pacientes e o risco de recorrência da doença.

Considerando também que esses distúrbios são passíveis de tratamento, uma parcela das mortes precoces relacionadas podem ser referidas como evitáveis, desde que seja garantido o acesso em tempo oportuno a serviços qualificados de saúde, com diagnóstico precoce e preciso. Para tanto, estudos populacionais de prevalência, através da identificação da frequência de heterozigotos, são de fundamental importância para averiguar a importância relativa das doenças metabólicas nas situações de SUDI para a consideração do estabelecimento de ações de triagem neonatal, diagnóstico precoce e aconselhamento genético que possam colaborar na redução da morbidade e mortalidade infantil associada aos EIM no RS.

A seleção dos EIM incluídos no presente trabalho foi realizada com base nos dados disponíveis sobre a prevalência relativa dos mesmos dentro do grupo dos EIM frequentemente associados à SUDI, assim como na viabilidade metodológica para a análise das suas variantes patogênicas mais frequentes.
CAPÍTULO III OBJETIVOS
3 OBJETIVOS

3.1. Objetivo geral
Determinar a prevalência mínima da AMMmut0, CTLNI e LCHADD em uma amostra da população saudável do Rio Grande do Sul.

3.2. Objetivos específicos
a) Estimar a frequência das variantes c.655A>T e c.1106G>A do gene MUT no Rio Grande do Sul.
CAPÍTULO IV ARTIGO
4 ARTIGO

Título do manuscrito: Prevalence of the most common pathogenic variants in three genes for inborn errors of metabolism associated with sudden unexpected infant in infancy: a population-based study in Southern Brazil.

Situação: Submetido.

Revista: Journal of Inherited Metabolic Diseases Reports.
CAPÍTULO V DISCUSSÃO
5 DISCUSSÃO

O perfil de mortalidade infantil pode ser considerado um indicador relativamente sensível da qualidade de vida da população e os cuidados de saúde dispensando às crianças menores de um ano de idade (Volpe et al., 2009). Apesar do Brasil e o RS terem apresentado em 2015 as menores taxas de mortalidade infantil desde a década de 70, com valores de 13,82:1.000 (1:72) e 10,1:1000 (1:99) nascidos vivos, respectivamente, as mesmas ainda superam notavelmente àquelas de países desenvolvidos como Noruega, Suécia, França e Itália, os quais apresentam valores de 2,48; 2,70; 3,28 e 3,29:1.000 nascidos vivos, respectivamente (ODM Brasil, 2016; IBGE, 2015). A SUDI representa uma fração substancial da mortalidade infantil no país, sendo que somente os casos de SIDS ranquearam na 19ª posição para esses tipos de óbitos em 2015. No mesmo ano, a primeira causa de óbito infantil na maior parte do país, incluindo o RS foram as anomalias congênitas, categoria na qual estão incluídos os EIM (França et al., 2017).

A primeira referência à associação entre um distúrbio metabólico - hiperplasia congênita da supra-renal - e SUDI foi estabelecida por Cleveland e colaboradores no ano de 1962. Porém, somente a partir de meados dos anos 80 ampliaram-se os estudos relacionados à associação entre EIM e SUDI (Bennett et al., 1986; Bonham e Downing, 1992), focando predominantemente nos FAOD, os quais seriam responsáveis por cerca de 5% dos casos de SUDI (Wilcox et al., 2002; Yamamoto et al., 2015). Subsequentemente, outros EIM, incluindo acideleias orgânicas, aminoacidopatias e alterações da cadeia respiratória, foram estabelecidos como fatores causais de SUDI (Moore et al., 2000; Loughrey et al., 2005). Atualmente, estima-se que ao menos 32 EIM estão associados à SUDI, sendo que a maioria é passível de alguma forma de tratamento (van Rijt et al., 2016). No entanto, a literatura referente à mortalidade infantil decorrente de EIM associados à SUDI é limitada e pouco se sabe sobre essa associação no país e no RS. Bitencourt e colaboradores (2019) determinaram que a taxa de mortalidade infantil atribuível a esse conjunto de EIM para o Brasil, no período de 2002-2014, foi de 0,67:10.000 (1:14.925) nascidos vivos, valor que estaria refletindo a raridade, subnotificação ou subdiagnóstico destas condições.
A população brasileira é uma das mais heterogêneas do mundo, como resultado de 5 séculos de miscigenação entre populações indígenas, europeias e africanas. Moura e colaboradores relatam que o sul do Brasil é composto por 77% de ancestralidade europeia, dado este que corrobora com outros achados da literatura e com o presente trabalho (Parra et al., 2003; Moura et al., 2015). Consequentemente, os dados resultantes deste trabalho não deveriam ser extrapolados diretamente para outras regiões do país. Também, essa predominância de ancestralidade europeia poderia sugerir para o RS, a princípio, uma prevalência das variantes aqui analisadas semelhante àquela reportada em populações da Europa.

Conforme o último censo demográfico, o RS compreende mais de 10.693.929 habitantes, dos quais 1.409.351 (13%) residem na capital, Porto Alegre (IBGE, 2010), a qual é caracterizada por um importante histórico de imigração açoriana (Laytano, 1974; Carneiro, 1992). As migrações internas constituem um movimento social de grande importância no estado, sendo Porto Alegre e toda a Região Grande Metropolitana os principais polos de concentração de migrantes, principalmente na faixa produtiva jovem (25 a 29 anos), apontando a atração propiciada pelo estudo e o dinamismo econômico (Leal et al., 1985; Jardim e Barcellos, 2012). Apesar da maioria dos indivíduos incluídos neste trabalho serem oriundos de Porto Alegre, indivíduos de outros 135 municípios também foram avaliados, o que contribui para uma maior representatividade do estado em geral.

O percentual de consanguinidade na família relatado pelos indivíduos incluídos no estudo, de 11,7%, referindo-se a qualquer grau de parentesco e não somente entre pais, é superior às estimativas de consanguinidade estabelecidas para o Brasil e para o RS, com valores de 1-4% (Bittles e Black, 2010) e 1.6% (Liascovich et al., 2001), respectivamente. Apesar da potencial subjetividade desse tipo de informação, esse dado poderia estar relacionado a um maior risco e prevalência de EIM na região, pois tanto os EIM incluídos no presente trabalho, quanto a maioria dos que estão associados à SUDI, apresentam padrão de herança autossômico recessivo, com uma taxa de recorrência para famílias afetadas de 25%.
No período de 2002-2014, a taxa de mortalidade infantil por SUDI no Brasil e no RS foi de 47:10.000 (1:213) e 45:10.000 (1:222) nascidos vivos, respectivamente (Bitencourt, 2018). Entretanto, 8,8% (n=88) dos indivíduos aqui avaliados relataram algum caso de morte súbita de crianças menores de um ano de idade na família, o que representa uma proporção de 1:11 indivíduos. Apesar de ser um dado indireto, e de não se ter acesso às declarações de óbitos dessas crianças e/ou acesso ao diagnóstico formal, a proporção relatada supera consideravelmente os valores estabelecidos a nível nacional e regional.

Até o momento, apenas 2 estudos brasileiros avaliaram a prevalência da variante patogênica mais frequente para um gene um associado à SUDI: o gene ACADM, responsável pela deficiência de acil-CoA desidrogenase de cadeia média (MCADD). Esses estudos foram realizados no sul e sudeste do país, encontrando frequências inferiores aquelas estimadas para populações europeias (Netto, 1997; Ferreira et al., 2009).

Com relação às variantes analisadas no presente trabalho, a ausência dos alelos c.655T e c.1106A no gene MUT estaria indicando a raridade dos mesmos no RS, em concordância com a informação disponível no Exome Aggregation Consortium (ExAC) e The Genome Aggregation Database (gnomAD), que mostram para a variante c.655C>T uma frequência gênica de ~0,00005 na população global, sendo observada apenas em populações da Europa (excluindo a Finlândia) e judeus Ashkenazi. De forma similar, a frequência global de c.1106G>A é de ~0,00004 (ExAC) e ~0,00006 (gnomAD), enquanto que para a Europa (excluindo a Finlândia) é de ~0,00004 (ExAC) e ~0,00007 (gnomAD). No entanto, essas bases de dados não incluem informação sobre indivíduos brasileiros. O Arquivo Brasileiro Online de Mutações (ABraOM), por outro lado, compreende variantes exónicas de 609 idosos saudáveis da cidade de São Paulo, no sudeste do Brasil, sendo que ambos alelos não estão representados em referida população.

Nossos dados estariam apontando uma baixa prevalência de AMMmut⁰ na região, sendo necessário considerar também o tamanho amostral utilizado. Deve-se ressaltar que a ausência desses alelos na população aqui analisada, assim como sua baixa frequência em relação à incidência estimada da AMMmut⁰, poderia
ser consequência da heterogeneidade alélica relacionada a esta condição. Os dados referentes à prevalência da AMMmut0 são limitados, e não existem até o momento outras estimativas para a frequência das variantes c.655C>T e c.1106G>A em uma população saudável.

Em relação ao gene ASS1, a variante c.1168G>A apresenta uma frequência de ~0,0003, tanto na população global como na população europeia (excluindo a Finlândia), segundo dados do ExAC e gnomAD. Interessantemente, os dados do ABraOM mostram uma frequência ligeiramente mais elevada, de 0,0016.

Nossos dados sugerem uma baixa prevalência para a CTLNI na região, relacionada a este alelo em particular. A prevalência desta condição foi estimada para algumas populações, com base em diversos programas de triagem neonatal. A maior frequência foi observada na Alemanha, com um valor de 1:60.000 (Gramer et al., 2018). Shibata e colaboradores (2018) estimaram para a Coreia e o Japão uma prevalência de 1:115.000 e 1:306.000, respectivamente, enquanto que para Taiwan, os mesmos determinaram um valor de 1:199.000, em consonância com os resultados de Niu e colaboradores (2010), que apontam uma magnitude ligeiramente superior, de 1:118.543.

Apesar do fato dessa variante ser a mais comum em várias populações, existe a possibilidade de que no RS outros sejam os alelos mais prevalentes associados à CTLNI. No entanto, a ausência desta variante também pode ser decorrente do tamanho amostral utilizado no presente trabalho.

A prevalência do alelo c.1168A foi descrita anteriormente para populações dos EUA e Argentina. Em um estudo retrospectivo de 11.132 indivíduos dos EUA, Bardos e colaboradores (2019) determinaram uma frequência de heterozigotos de 1:383, com uma prevalência de 1:575.000, contrastando com as estimativas disponíveis até o momento. Ao considerar individualmente os grupos étnicos da população analisada, os autores determinaram uma proporção de heterozigotos de 1:422, 1:392 e 1:124 para indivíduos caucasoides, hispânicos e judeus Ashkenazi, respectivamente. Por outro lado, o alelo não foi encontrado em indivíduos afro-americanos (n=785), asiáticos (n=1.091), nativos americanos (n=16) e judeus Sefarditas (n=58). Em comparação, na cidade de Villa Mercedes, Argentina,
Laróvere e colaboradores (2012) estimaram, a partir de uma amostra de apenas 172 indivíduos hígidos, uma frequência de heterozigotos 1:25, com uma correspondente prevalência de 1:2.427. Adicionalmente, os autores determinaram uma a ocorrência de CTLNI de 57% em filhos de casais compostos por ambos progenitores heterozigotos para a variante em questão. Esta frequência duplica à esperada para distúrbios autossômicos recessivos, sugerindo uma transmissão preferencial do alelo c.1168A (Laróvere et al., 2012). Este fenômeno foi descrito anteriormente por Kleijer e colaboradores (2006), os quais sugeriram um papel protetor do alelo patogênico contra o possível efeito prejudicial ou apoptótico do óxido nítrico (NO) nas gametas haploides masculinas. O NO é produzido normalmente a partir da L-arginina pela ação das enzimas óxido nítrico sintetases, no entanto, devido à depleção da enzima ASS nas células portadoras do alelo patogênico, a arginina não pode ser reciclada a partir da citrulina, resultando em uma menor concentração de NO (Morris, 2004; Rodriguez et al., 2005). Este fato salienta a relevância da variante c.1168G>A em relação tanto ao diagnóstico precoce como ao aconselhamento genético para a CTLNI em populações em risco.

Por outro lado, a frequência gênica estimada no presente trabalho para a variante c.1528G>C (HADHA) está em concordância com os dados exibidos no ExAC e gnomAD, os quais mostram valores de ~0,0012 e ~0,0016 para a população global e para a Europa (excluindo a Finlândia), respectivamente. Em São Paulo a frequência também é de 0,0016 (ABraOM).

A proporção de heterozigotos determinada para o alelo c.1528C no RS (1:500) supera o valor de 1:680 estimado para a Holanda por den Boer e colaboradores (2000), a partir de uma amostra de 2.047 indivíduos, no entanto, é inferior ao relatado para as outras populações europeias que foram avaliadas até o momento. Na Polônia, Piekutowska-Abramczuk e colaboradores (2010) determinaram a partir de uma amostra de 4.137 crianças uma frequência de 1:189, em consonância com os resultados de Nedoszytko e colaboradores (2017), os quais mostram uma proporção de 1:163 (n=5.877 adultos). A maior frequência foi observada na região da Pomerânia, com um valor de 1:103 (n=413 adultos), provavelmente em decorrência de um efeito fundador na população Kashubiana, na qual encontrou-se uma frequência de 1:57 a partir da análise de 1.023 adultos (Nedoszytko et al.,
Cabe destacar que a região Pomerânia teve um papel importante na colonização do sul do RS, na segunda metade do século XIX, principalmente na região correspondente aos atuais municípios de São Lourenço do Sul, Pelotas, Santa Cruz do Sul e São Leopoldo (Salamoni, 2001). A população analisada no presente trabalho inclui apenas 55 indivíduos (5,5%) oriundos de tais municípios. O alelo c.1528C também exibe uma elevada frequência na Finlândia, com uma proporção de heterozigotos de 1:181 (n=1.1637 indivíduos), principalmente na região oeste, com um valor de 1:132 (n=392 indivíduos), conforme Pastinen e colaboradores (2001). De maneira similar, na Estônia Joost e colaboradores estimaram uma frequência de 1:173 (n=1.040 indivíduos). Em comparação, esta variante não foi encontrada nos 1.200 indivíduos analisados em Beijing (Zhu et al., 2005).

Nossos dados apontam para a LCHADD uma prevalência mínima de 1:1.000.000, um valor consideravelmente inferior às estimativas disponíveis tanto para a população mundial como para diferentes populações específicas. Com uma prevalência de 1:50.000, esta condição foi descrita como o FAOD mais frequente na Suécia (Hagenfeldt et al., 1995). Na Estônia, a prevalência foi estimada em 1:91.700 (Joost et al., 2012), enquanto que para a Polônia, Piekutowska-Abramczuk e colaboradores (2010) estabeleceram um valor de 1:118.336, sendo de 1:16.900 na região Pomerânia. Com base nos dados de programas de triagem neonatal, obtidos através de MS/MS, a prevalência da LCHADD foi estimada em 1:116.129 em Portugal (Rocha et al., 2014), 1:176.000 na Alemanha (Gramer et al., 2018), 1:640.707 na Itália (Rocha et al., 2014), e 1:840.000 no Japão (Shibata et al., 2018). No entanto, o valor estimado no presente trabalho supera a prevalência de 1:1.148.000 estabelecida para a Coreia, conforme o trabalho de Shibata e colaboradores (2018). Cabe ressaltar que a metodologia de MS/MS não permite distinguir entre a LCHADD e a deficiência geral da proteína trifuncional (Sander et al., 2005) e, portanto, a frequência desta condição poderia estar sendo superestimada. O tamanho da população de estudo e a heterogeneidade alélica, também devem ser considerados em relação às estimativas do presente estudo.

Considerando a patogenicidade da variante c.1528G>C, nós avaliamos os perfis de acilcarnitinas dos 2 indivíduos identificados como heterozigotos para este
alelo, os quais sugerem que os mesmos não portam alguma outra variante patogênica associada à LCHADD no gene HADHA, ao menos em configuração *trans*. Dentre eles, somente um indivíduo alega ter ancestralidade europeia, especificamente italiana e portuguesa, no entanto, não existem estimativas acerca da prevalência desta variante para essas populações em particular. Ambos indivíduos serão contatados para fins de aconselhamento genético.

Levando em consideração os achados resultantes deste trabalho, pretendemos ampliar a análise genética com o intuito de estimar a prevalência das variantes patogênicas mais frequentes para outros 7 EIM associados à SUDI e não incluídos no PNTN: deficiência de acil-CoA desidrogenase de cadeia média (MCADD), acidemia glutárica tipo I (GAI), deficiência de acil-CoA desidrogenase de cadeia muito longa (VLCADD), glicogenose tipo Ia (GSDIa), glicogenose tipo Ib (GSDIb), glicogenose tipo II (GSD II) e tirosinemia tipo I. Os resultados da ampliação do estudo possibilitarão estimar a frequência dos EIM estudados na população do RS, permitindo-se assim, uma avaliação mais abrangente do panorama da morbimortalidade infantil decorrente dos EIM na região, visando a consideração da inclusão dessas doenças, especialmente FAOD, no PNTN.
CAPÍTULO VI CONCLUSÕES
6 CONCLUSÕES

O presente trabalho é o primeiro a avaliar a frequência do conjunto das principais variantes patogênicas nos genes causadores de CTLNI, LCHADD e AMMmut0 – associados à SUDI – em uma população saudável, particularmente no sul do Brasil. O estudo possibilitou estimar para a LCHADD uma prevalência mínima de 1:1.000.000 indivíduos. Os dados resultantes estariam refletindo a raridade desses distúrbios no RS ao mesmo tempo que destacam especial relevância no contexto do diagnóstico precoce e aconselhamento genético. No entanto, é necessário considerar a possível influência do tamanho amostral utilizado, assim como da heterogeneidade alélica associada aos genes ASS1, HADHA e MUT, visto que, apesar da preponderância europeia na região, outros alelos patogênicos poderiam apresentar uma frequência maior que a estabelecida para as áreas geográficas incluídas atualmente na literatura. A população brasileira é uma das mais heterogêneas do mundo e o presente trabalho salienta, de maneira inédita, a necessidade de expandir a investigação de EIM em relação à morbimortalidade infantil no território.

Conclusões de acordo com os objetivos específicos

a) Estimar a frequência das variantes c.655A>T e c.1106G>A do gene MUT no Rio Grande do Sul.

As variantes c.655A>T e c.1106G>A não foram encontradas no total da população analisada.

b) Estimar a frequência da variante c.1168G>A do gene ASS1 no Rio Grande do Sul.

A variante c.1168G>A não foi encontrada no total da população analisada.

Foi possível determinar para a variante c.1528G>C uma frequência gênica de 0,001 e uma frequência de heterozigotos de 1:500.
7 REFERÊNCIAS

mutation (1528G>C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the dutch population is low. Pediatr Res 48(2):151-154.

FICHA DE COLETA DE DADOS

Título do Projeto: Identificação de heterozigotos para a Erros Inatos do Metabolismo associados à morte súbita: investigação da prevalência de mutações em doadores de sangue voluntários no Hospital de Clínicas de Porto Alegre

1. Nome:

2. Data de nascimento:

3. Local de nascimento:

4. Ancestralidade europeia
 . Qual? () Alemã
 () Italiana
 () Portuguesa
 () Outra ____________
 () Não () Não sabe

5. Consangüinidade na família
 () Não sabe () NÃO () SIM

6. Histórico familiar de morte súbita (em crianças menores de um ano de idade)
 () Não sabe () NÃO () SIM

Telefone para contato:

Rubrica do pesquisador ________
Anexo II Carta de aprovação do projeto

HCPA - HOSPITAL DE CLÍNICAS DE PORTO ALEGRE
GRUPO DE PESQUISA E PÓS-GRADUAÇÃO

COMISSÃO CIENTÍFICA

A Comissão Científica do Hospital de Clínicas de Porto Alegre analisou o projeto:

Projeto: 170249
Data da Versão do Projeto: 11/05/2017

Pesquisadores:
IDA VANESSA DOERERLEIN SCHMARTZ
FERNANDA SPERLUZIANO
FERNANDA SALES LUCAS

Título: Identificação de heterozigotos para a Erros Intates do Metabolismo associados à morte súbita: investigação da prevalência de mutações em doadores de sangue voluntários no Hospital de Clínicas de Porto Alegre

Este projeto foi APROVADO em seus aspectos éticos, metodológicos, logísticos e financeiros para ser realizado no Hospital de Clínicas de Porto Alegre. Esta aprovação está baseada nas parcerias dos respectivos Comitês de Ética e do Serviço de Gestão em Pesquisa.

- Os pesquisadores vinculados ao projeto não participaram de qualquer etapa do processo de avaliação de seus projetos.
- O pesquisador deverá apresentar relatórios semestrais de acompanhamento e relatório final ao Grupo de Pesquisa e Pós-Graduação (GPPG)

Prof. José Roberto Golim
Coordenador DEP/HCPA
Anexo III Comprovante de submissão do artigo

JIMD Reports - Submission Notification to co-author

JIMD Reports <msj@editorialmanager.com>
To me

Body.

Re: "Prevalence of the most common pathogenic variants in three genes for inborn errors of metabolism associated with sudden unexpected infant in infancy: a population-based study in Southern Brazil"
Full author list: Débora Natalia Randier, Msc; Fernanda Mendes de Etancourt, phd; Fernanda Spirib-Ludwig, phd; Fernanda Sales Luiz Vieira, phd; Ana Paula Piccio Bokiak; Carmen Regina Vargas, phd; Angela Silva, Fernanda Nelles Sant'Ana, Msc; Vanessa Doederlein Schwartz.

Dear Miss Débora Randier,

We have received the submission entitled: "Prevalence of the most common pathogenic variants in three genes for inborn errors of metabolism associated with sudden unexpected infant in infancy: a population-based study in Southern Brazil" for possible publication in JIMD Reports, and you are listed as one of the co-authors.

The manuscript has been submitted to the journal by Dr. M.D. Ph.D. Vanessa Doederlein Schwartz who will be able to track the status of the paper through her login.

If you have any objections, please contact the editorial office as soon as possible. If we do not hear back from you, we will assume you agree with your co-authorship.

Thank you very much.

With kind regards,

JIMD Reports Editorial Office
JIMD Reports

Please be aware that if you wish to have your user record removed, we will retain your name in the records concerning manuscripts for which you were an author, reviewer, or editor.
APÊNDICES
8 APÊNDICES

Produção científica correspondente ao período de mestrado em áreas afins.

8.1. Genetic diagnosis and genotype-phenotype association in 113 Brazilian individuals with reduced biotinidase activity.

Randon DN, Borsatto T, Sperb-Ludwig F, Carvalho de Andrade MDF, Ribeiro E, Medeiros P, Félix TM, Pinto LLC, de Souza CFM, Schwartz IVD.

Modalidade de apresentação: Oral.
8.2. Diagnóstico genético e associação genótipo-fenótipo de 35 indivíduos brasileiros com atividade reduzida de biotinidase.

Randon DN, Borsatto T, Sperb-Ludwig F, Donis KC, Ribeiro E, de Souza CFM, Medeiros P, Schwartz IVD.

Modalidade de apresentação: E-Pôster.

Sant’ana AN, Bitencourt FH; Randon DN, Portela LF, Becker APP, Sperb-Ludwig F, Vianna FSL, Schwartz IVD

Modalidade de apresentação: E-Pôster.
8.4. Diagnóstico genético e associação genótipo-fenótipo de 30 indivíduos brasileiros com atividade reduzida de biotinidase.

Randon DN, Borsatto T, Sperb-Ludwig F, Donis KC, Ribeiro E, de Souza CFM, Medeiros P, Schwartz IVD

Modalidade de apresentação: Oral.