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ABSTRACT
Fires are one of the main factors for disturbances in Niassa
Reserve-Mozambique, with economic and environmental impacts.
There are cyclical records of fire occurrences across the reserve.
However, studies on the main causative factors and identification
of more susceptible locations are very limited. In this perspective,
this study had as objectives: (1) determine the main significant
factors for wildfire occurrences; (2) Map the probability of wildfire
occurrences, using logistic regression. Independent variables
included vegetation index (NDVI), climatic, topographic and socio-
economic data. The analysis period was from 2001 to 2015 and
comprised the months with more occurrences of wildfire (May to
December). According to the results, the main factors that deter-
mine the occurrence of fires were: NDVI, temperature, elevation,
followed by precipitation, slope, relative humidity and human set-
tlements. The spatial distribution of probability of fire occurrence
reveals that zones with high and very high risk are located at the
west and central west zones (areas with higher accumulation of
dry biomass); medium risk zones are located in the centre of the
reserve, while in central east and east zones the probability of fire
occurrence is low and very low risk. Results showed that the
expectation of wildfire ignition using logistic regression presented
good precision (area under the curve 74%).
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1. Introduction

Wildfire is one of the most important sources of economic, social and environmental
damages globally (Lozano et al. 2008; Renard et al. 2012). African savannahs, more
specifically, miombo vegetation, are prone to fire. Fire is an integral part of these eco-
systems, and is one of the key factors in the dynamics of regeneration, development
and spatial distribution of countless species of fauna and flora (Trapnell 1959;
Chidumayo 1988, 1997).
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Niassa Reserve is the most extensive area of miombo vegetation conservation
worldwide (Ribeiro et al. 2008), with one of the largest fauna concentrations in
Mozambique (Leo-Smith et al. 2007). Though fires can play an ecologically significant
role in biogeochemical cycles and functioning of this system, the frequency and inten-
sity of fires many times lead to forest vegetation destruction with huge negative
effects in atmospheric chemistry (atmospheric pollution and carbon emission) and in
ecology (loss of biodiversity, landscape instability and proliferation of invasive spe-
cies) (Chuvieco 2003; Bond and Keeley 2005), becoming a threat to economic goods
and to human health (Shlisky et al. 2007).

According to Timberlake et al. (2004), every year, from May to October there is a
recurrence of fires in Niassa Reserve. From 2000 to 2012 alone, 45% of the reserve
area burnt annually or over two years, and 27% burnt each 3–4 years, only 9% of the
total area did not record burning during this period (Ribeiro et al. 2017). According
to this same author, fire in the Reserve presents a return interval of 3.29 years, which
means a total frequency of 0.36 year–1.

Miombo forests’ ecological characteristics, their seasonality, climatic factors and
physiographic characteristics have influenced the incidence of fires in Niassa Reserve.
In addition to these factors, the pressure on this area, with an increase of anthropic
activities, has considerably increased the number of fires detected and burnt areas.

However, for the burning to occur, three conditions are required: propitious
meteorological conditions; availability of combustible vegetation; existence of an igni-
tion source (Parisien and Moritz 2009). The action of each of these factors is different
for each region and time of the year, which causes high variability in the pattern
observed in fires. In African forests, it is known that this variability is determined by
a combination of factors: climatic (rainfall and temperature), herbivory and human
activities (Archibald et al. 2010).

In this perspective, the understanding of the way the environment is occupied, its phys-
ical characterization, including biological and climatic aspects of each geographic region,
and the determination of controlling factors of fires can assist in the detection of locations
more susceptible to the occurrence of wildfire, facilitating the planning of strategies for fire
prevention and fighting (San-Miguel-Ayanz et al. 2003; del Hoyo et al. 2011).

The modelling of fire risk thus becomes an important tool for forest managers in
the identification of locations with high risk of forest fire, also leading to the opti-
mization and allocation of resources for firefighting (San-Miguel-Ayanz et al. 2003;
Mohammadi et al. 2014). In locations like Niassa reserve, the identification of deter-
minant factors to control wildfire and the use of maps of fire risk probability can
serve, therefore, as a preventive or protective approach to improve fire management.

Methods coupled to Geographic Information Systems, integrating remote sensing
data, have been often used to model the probability of fire risk and determine con-
trolling factors at the large, local and regional scales. Among them, statistical methods
are outstanding: Artificial neural network (de Vasconcelos et al. 2001; Costafreda-
Aumedes et al. 2015), the maxent algorithm (Renard et al. 2012), the autoregressive
model (Prestemon et al. 2012), classification trees (Lozano et al. 2008), global logistic
regression (Zhang et al. 2013;), multiple linear regression and random forest (Oliveira
et al. 2012; Guo et al. 2016a).
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However, the choice of the modelling method depends on the characteristic of the
dependent variable, while using a very fine spatial resolution (for example 1 km), binomial
response is required because only presence or absence is recorded (Taylor et al. 2013).

For specific cases Logistic Regression was used, which is one of the statistical
methods mostly used, both for prediction of fire risk and to determine the causes of
fire, at the global level (de Vasconcelos et al. 2001; Lozano et al. 2008; Syphard et al.
2008; del Hoyo et al. 2011; Padilla and Vega-Garcıa 2011; Magnussen and Taylor
2012). Compared to other techniques, it is flexible, variables can be continuous and/
or categorical, and it is not necessary to follow the normality principle (Legendre and
Legendre 1998; Catry et al. 2009).

Thus, this study had as objectives (1) determine the main significant factors for
wildfire occurrence and (2) map the probability of wildfire occurrence in Niassa
Reserve, based on logistic regression.

2. Materials and methods

2.1. Study area

Niassa Reserve is located at the north of Mozambique, between parallels 12�36046,6700

and 11�26005.8300 south and meridians 32�25020.1600 and 38� 31023.1600 east (Figure 1).
The reserve is part of Rovuma watershed and its territorial extension is 42,311 km2.
However, this study is concentrated in the central area of the reserve (Conservation
Area), with around 23,040 km2, and the remaining portion is part of the buffer area,

Figure 1. Geographic localization of the study area, Niassa Reserve, Mozambique. (a) Localization
of the study area; (b) average temperature; (c) average precipitation; (d) total vegetation productiv-
ity, Source: Nhongo et al. (2017).
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administered by the concessionary for touristic purposes. The climate in the region is
dry sub-humid tropical, characterized by two distinct climatic seasons: dry (May to
September) and rainy (October to April). The average annual temperature ranges
from 20� to 26 �C, while average annual rainfall ranges from 770 to 1,140mm.

The vegetation cover is characterized by occurrence of four large vegetal forma-
tions: Deciduous forest; open semi-deciduous forest, mountain forest, riverside forests
(woods) and scrubland (Nhongo et al. 2017). From the reserve total area, 72% is cov-
ered by the Zambezian dry miombo forest, which occurs in Sandy soils, high lands,
with predominance of Brachystegia spiciformis, Bachystegia boehmii and species of
Julbernardia globiflora (White 1983). Elevations range from 136 to 1,413m, above sea
level, with gradual increase from east to west, and occurrence of several inselberg
rock formations.

The reserve is an area with the lowest demographic density in the country, around
1.3 inhabitants/km2 (Ribeiro et al. 2017).

2.2. Dependent variable: active fire

Data from active fire sources obtained for the period from January 2001 to December
2015, from the MODIS sensor on board the Aqua and Terra platforms, with a spatial
resolution of 1 km, collection 6, monthly thermal anomalies product MCD14ML,
made available by NASA FIRMS (Fire Information for Resource Management
System) through the website (https://earthdata.nasa.gov/earth-observation-data/near-
real-time/firms/). Each position of MODIS active fire represents the centre of a
1� 1 km2 pixel that is labelled by the algorithm as containing one or more fires
inside the pixel.

To avoid false alarms (commission errors), only high reliability fire pixels were
considered (>80% reliability), because in some cases the product underestimates the
occurrence of some fires like: short duration burnings, which occur among images
available or that start and end before the passing of the satellite; very small fire fronts
hardly detectable; cloud coverage at the time images are being taken; heavy smoke
and fire only on the ground of a dense forest, without affecting treetops (Oliveras
et al. 2014; Giglio 2015; Anderson et al. 2015). It can also overestimate fire pixels in
target situations with contrasting temperatures (e.g. forest limit and bare soil, on hot
days), sandy soils or exposed rock presenting high temperatures on hot days
(Schroeder et al. 2008; Devisscher et al. 2016), and some fire pixels highly question-
able are still classified as nominal reliability, despite the adjustments made in collec-
tion 6 (Giglio 2015).

2.3. Independent variables

Independent variables comprised four categories: climate, vegetation, topography and
socioeconomic factors. Criteria for selection of variables were based on previous stud-
ies on fire occurrence (Achard et al. 2008; Wotton et al. 2010; Gralewicz et al. 2012;
Oliveira et al. 2012; Chuvieco et al. 2012) and knowledge of the area of study. It is
worth mentioning that variable land use and cover was not included because the area
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of study presents the lowest demographic density and, therefore, low diversity of land
use and cover. 70% of the reserve area is occupied by vegetation cover, represented in
this study by NDVI. Details of variables used are presented in Table 1.

1. Topographic parameters: Three topographic parameters were used: elevation, slope,
and aspect, extracted from the digital elevation model (DEM), made available by the
NASA Shuttle Radar Topographic Mission (SRTM), http://srtm.csi.cgiar.org/) with
90m spatial resolution, re-sampled to 1,000 m (using the nearest neighbor method).

2. Climatological parameters: Climate data covered the period from May to
December, from 2001 to 2015, and comprised: air temperature, precipitation and
relative air humidity. For precipitation, a monthly time series was used, made avail-
able by the Climate Hazards group InfraRed Precipitation with Station data
(CHIRPS), http://chg.geog.ucsb.edu/data/chirps/), version 2, with 5 km � 5km spa-
tial resolution, re-sampled to 1 km (using the nearest neighbour method).
For temperature, monthly air temperature at 2 m data and dew point temperature
at 2 m data (used for calculation of relative humidity), both ERA-Interim reanalysis
data, made available by the European Centre for Medium-Range Weather Forecasts
(ECMWF), http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype¼sfc/, with 0.
125� � 0.125� spatial resolution re-sampled to 1 km.Relative humidity was calculated
based on dew point temperature and temperature at 2 m data, estimated by Penman
Monteith model, parameterized according to FAO bulletin 56 (Allen et al. 1998).

3. Vegetation cover parameters: A time series of NDVI/MODIS data from the
Terra satellite, MOD13Q1 (Collection 5) product, 250 m spatial resolution, 16
days’ time composition was used, acquired on website https://mrtweb.cr.usgs.
gov/, from 2001 to 2015. However, only images from the period of record of
occurrence of fires, from May to December were used. Monthly means were cre-
ated from the 16-day time composition.

4. Socioeconomic parameters: Socioeconomic data include roads and human settle-
ments, obtained by CENACARTA (2008). The proximity of roads and human

Table 1. Independent variables analysed in logistic regression model.
Variable name Code Data sources Type of data/resolution Units

Topographic parameters
Elevation Elev SRTM Raster/90 m � 90 m m
Aspect Asp N, S,E,W
Slope Slop %
Climatological parameters
Average monthly temperature Tem ERA-interim Raster/0.125� 0.125� �C
Relative humidity

monthly mean
RH The calculation was based

on the FAO Penman-Monteith
equation. Derivatives of
temperature and temperature
dew point at 2 m

Raster/0.125� 0.125� %

Average monthly precipitation Prec Raster/5 km mm
Socioeconomic parameters
Distance to road Dis_road CENACARTA Vectorial 1:250 000 m
Distance to settlement Dis_sett CENACARTA Vectorial 1:250 000 m
Vegetation cover parameters
NDVI NDVI NASA 250m �1 a1
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settlements was generated based on the Euclidian distance of each cell to the
nearest road or human settlement.

2.4. Methods

2.4.1. Ignition frequency of wildfire conditioning factors
First, an analysis of ignition frequency of fires in the 15-year period was made with
regard to the conditioning factors. Histograms were generated representing the fre-
quency of fire ignition per class in each conditioning factor. Mean and coefficient of
variation were also calculated for each factor.

2.4.2. Modelling approach
To estimate the probability of fire risk in Niassa Reserve, logistic regression was
applied based on the following equation:

Pi ¼ 1
1þ e�zi

(1)

where zi ¼ aþ b1Xi1 þ b2Xi2 þ � � � þ bqXiq (2)

where P is the probability of occurrence of the event, and should be included as a
dichotomous variable; z is obtained from a linear combination of independent varia-
bles based on adjustment of maximum likelihood, with constant a; coefficient of par-
tial lineal regression b and original values of variables x:

The use of logistic regression assumes that the predictable variable is dichotomous,
the existence of both presence and absence of fire sources. For presence, fire sources
recorded from 2001 to 2015 were used, codified as 1 (representing the occurrence).
For nonoccurrence (absence) 31,834.5 random points noncoincident with ignition
points in the whole reserve were generated, in a 1:1.5 ratio to ignition sources (Catry
et al. 2009; Chang et al. 2013) which were codified as zero (0) (representing
nonoccurrence).

Additionally, in order to validate the model, two distinct groups were generated,
one to build the model (training) and the other for its validation, a procedure used
by several authors (Catry et al. 2009; Chuvieco et al. 2009; del Hoyo et al. 2011; Guo
et al. 2016b) varying only in the percent used in the construction of the respective
groups. In the present work 50% of ignition points (10.612) and 50% of nonignition
points (15.917) were selected and used as a subset for training and remaining points
to test the model’s predictive capacity, that is, its validation. All analyses were made
using the software SPSS 24.0.

Since logistic regression assumes that independent variables should not be corre-
lated (Colinearity), multicollinearity among independent variables was tested using
Tolerance and VIF (Variance Inflation Factor). Multicollinearity is present when there
is some level of inter-relation among predictive variables (Villagarc�ıa 2006). Its exist-
ence in a regression model may distort the model estimate or interfere with the preci-
sion estimate. Variables presenting significant colinearity (VIF� 10) and coefficient
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of tolerance (Tolerance >0.1) must be removed from the model. The values of
Tolerance and VIF obtained indicated that there are no multicollinearity problems.

The Stepwise Forward method was applied to build the model’s logistic regression.
The Forward method is characterized for considering variables with higher coeffi-
cients of sample correlation observed with the response variable. It only starts the
model with the constant and adds the variables, more correlated, one at a time.
When there is no inclusion in a stage, the process is interrupted and the variables
selected up to this stage will define the final model ( del Hoyo et al. 2011) .

The significance of each variable was assessed by the Wald test (Legendre and
Legendre 1998) at 5% (P< 0.05) significance level. Besides, the odds ratio was also
calculated based on the exponential coefficient Exp (bi), which is an indicator of
change in probabilities resulting from the change of one unit in the predictor.

Once the model was defined, the next stage was testing its performance, which
was done using different approaches. The global assessment of the model was made
using the adjustment to the Hosmer-Lemeshow model test (Hosmer et al. 1997;
Hosmer and Lemeshow 2000). According to Norusis (2002), in case the test result is
inferior to 5%, the null hypothesis that there is no difference among values observed
and predicted was rejected, meaning that data do not adjust to the model. To assess
the predictive capacity of the logistic model 2� 2 classification tables of values
observed predicted were also created, using and comparing the set of training and
validation data. However, to determine threshold probability (cutoff), above which
fire ignition occurrence is accepted, and below which it is considered that no fire
occurred, the Youden index was applied (Garcia et al. 1995; Chang et al. 2013), which
was also used in previous studies to determine the best cutoff values in logistic
regression to predict the occurrence of fires (Catry et al. 2009; Chang et al. 2013).
The optimal value corresponds to the value of intersection between sensitivity and
specificity (de Vasconcelos et al. 2001). For such, the set of training data was used to
build the classification table and determine the optimal cutoff value, which was
0.3824 for the present work.

Another procedure used to assess how well a model is parameterized and cali-
brated was the receiver operating characteristic (ROC) curve, which analyses the pro-
portion of positive true, classified as positive (sensitivity), and negative true classified
as negative (specificity) for the model, which is a plotting of sensitivity versus specifi-
city for several thresholds of probability (Swets 1988; Fielding and Bell, 1997). A
model that denotes good performance is the one that covers large areas below the
curve (Catry 2007; del Hoyo et al. 2011; Jim�enez-Valverde 2012). Values between 0.5-
0.7 indicate low precision, values between 0.7-0.8 indicate acceptable precision,
between 0.8-0.9 indicate good precision and values above 0.9 reveal excellent predict-
ive capacity of the model (Swets 1988; Hosmer and Lemeshow 2000; McCune et al.
2002; del Hoyo et al. 2011).

2.4.3. Analysis of variables’ importance
To assess the influence of individual variables in the model, several criteria were glo-
bally computed and analysed, according to Mart�ınez et al. (2009); Martınez-
Fernandez et al. (2013): (i) steps where variables were inserted in the model; (ii) level
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of statistical significance (Wald statistics); (iii) odds ratio or logit B coefficient expo-
nential (Exp (B)); (iv) simple calculation of standardized coefficients, according the
Menard method (2010). For the standardized coefficient, the calculations involve
multiplication of each non standardized logistic coefficient by the standard deviation
of the variable to which the variable belongs, the higher the absolute value of the
standard coefficient, the higher is the importance of the variable (Gal�an and L�opez
2003); and (vi) change in R2 when the variable was removed from the model (the
higher the change, the more important is the variable). For the present study, the
change in likelihood logarithm was used (�2 LL). And the most important variable
to the model is the one that presents the lower global scoring.

2.4.4. Spatial modelling
To produce an ignition probability map, all independent variables were represented
in layers, in a geographic information system. The regression model equation was
created through map algebra in the ArcGis 10.4 environment, using the coefficients
obtained through the regression model and independent variables. The map produced
was classified in five classes: Very Low (0.01-0.20); Low (0.20-0.40); Medium (0.40-
0.60); High (0.60-0.80) and Very High (>0.80).

Figure 2. Fire ignition frequency in relation to different variables: (a) Temperature; (b)
Precipitation; (c) Relative Humidity; (d) Elevation; (e) Slope; (f) Aspect; (g) NDVI; (h) Distance to
Human Settlement; (i) Distance to Roads. CV: coefficient of variation (%).
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2.4.5. Model validation
The validation of the logistic regression model is obtained by applying the model to
the validation sample (Hair 1998). Thus, independent analysis was made using the
validation group to check the efficacy of the predictive model built. For such, the
ROC curve and classification table were used. Additionally, to assess the predictive
capacity of the risk map produced, a distribution of ignition points of the validation
group across classes of the ignition probability map was made.

3. Results

3.1. Analysis of frequency of fire ignition

A preliminary analysis of fire spatial distribution against the variables selected (Figure
2) shows that the highest frequencies of fires occurred in areas where temperatures
were mild (between 23� and 26�), with low precipitation (<50mm), while 90% of
fires occurred in areas with low to medium relative humidity (40–60%). Most fire
sources occurred between low and medium elevation (150–650m) and around 80%
on flat slopes and gentle hillsides (0–25%). However, with regard to Aspect, ignitions
were evenly distributed across several north, east, south and west quadrants, but with
higher incidence in the north of the reserve. The highest frequencies of fires were
also recorded in areas with low and medium NDVI values, 0.2–0.4. Results also
revealed that most fires occurred at a distance between 10 and 20 km from human
settlements and near roads. This analysis also shows that the variable with more vari-
ability was precipitation (Coefficient of variation, CV ¼ 213) and with less variability
was air temperature (CV ¼ 6.1).

3.2. Model of fire ignition

After several interactions, the final model selected the variables most correlated to
wildfire, which were NDVI, Air temperature, Elevation, Precipitation, Slope, Relative
humidity and Distance to human settlements. These variables were revealed to be sig-
nificantly related with the probability of occurrence of wildfire ignitions (P< 0.05).
Roads and Aspect were excluded. The significance of explanatory variables and their
respective coefficients are presented in Table 2.

Table 2. Results of binary logistic regression model.

Variable Coefficient B
Std.
error Wald df Sig. Exp(B)

Change
in �2 LL

Std.
deviation

Std.
coefficient B

Step for
input into
model

NDVI �1.131 .021 2 812.0 1 .000 0.323 34 037.0 1.161 �1.313 1
Temperature -.396 .011 1.330.0 1 .000 0.673 32 466.0 1.966 �0.779 2
Elevation .004 .000 709.0 1 .000 1.004 31 680.7 141.107 0.564 3
Precipitation .022 .001 233.0 1 .000 1.022 31 329.6 12.796 0.282 4
Slope -.040 .003 189.2 1 .000 0.960 31 110.0 6.107 �0.244 5
Relative humidity .020 .004 26.4 1 .000 1.020 31 083.5 4.409 0.088 6
Distance to

settlement
.000004 .000 5.5 1 .019 1.000 31 078.0 7637.2 0.031 7

Constant 10.580 .396 712.121 1 .000 39 323
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According to the results, a negative relation was found between fire occurrences
and NDVI, Air temperature, Slope; and a positive relation was observed among
Elevation, Precipitation, Relative humidity and distance to human settlements.

The Hosmer and Lemeshow goodness-of-fit test indicated insufficient fit of the
regression to the data (x2 ¼ 310,422, df¼ 8, P< 0.0001). The model predictive cap-
acity was also assessed using classification tables, comparing observed and pre-
dicted values, and using a cutoff value of 0.3830, global classification was 67.10%
of correctly classified cases (Table 3), using training data. The area under the curve
(AUC) was 75% (acceptable precision) (Figure 3) indicating good adjustment.
These measurements combined suggest model acceptance as a significant logistic
regression model.

The model obtained was represented by Equation (2):

Pi ¼ 1= e� 10:580þ0:004Elevþ0:000004Dissett�1:131NDVIþ0:022Prec�0:040Slop�0:396Tempþ0:020Ruðð (2)

where Pi is the probability of a point to correspond to one ignition per fire; Elev is
elevation; Dist_sett is Distance to settlements; NDVI is normalized difference vegeta-
tion index; Prec is rainfall; Slop represents Slope; Temp is temperature; UR is rela-
tive humidity.

3.3. Relative importance of variables

The result of relative importance of variables is presented in Table 4. The global scor-
ing, calculated by the sum of classification of all variables, is presented in the last col-
umn. NDVI was the most important variable in fire occurrences, followed by air
temperature, elevation, precipitation, slope and air relative humidity, and in last pos-
ition, distance to human settlements.

3.4. Spatial modelling of probability of fire occurrence

The spatial distribution of logistic probability of the final model (Figure 4) is the
estimate of fire risk for Niassa Reserve. The probability interval scale was divided
in five classes: Very low (0.00–0.20) located at east; low (0.20–0.40), located at
central east; medium (0.40–0.60) central area of the reserve; high (0.60–0.80), cen-
tral west of the reserve and very high (>0.80) west of the reserve. In terms of
relative distribution, it was identified that 10% of the reserve area presents very
low probability of occurrence, 14% low, 21% moderate, 28% high and 27% very
high susceptibility (Table 5).

3.5. Model validation

According to validation results, presented in the contingency table, the model classi-
fied correctly 66.8% of all observations. This result is slightly inferior to those
obtained with the training group (67.1%).

This difference between results obtained in the training group and for validation
lead us to conclude that the model revealed good predictive capacity in the ignition
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points, reducing the capacity of classification of points of nonignition points, which
may mean an excess of predicted areas. In short, the correctness rates in the valid-
ation sample are almost identical to the correctness rates in the training sample
(Table 5), and one may conclude that the logistic regression model has strong empir-
ical support both in the validation sample and in the training sample.

The model performance was analysed through the area under the ROC curve. For
the validation group, it was 0.74, which reveals acceptable capacity of the model,
slightly reducing when compared to the results of the training group (0.75), but both
are quite satisfactory.

In order to assess the predictive capacity of the map produced, distribution of igni-
tion points of the validation group across classes of the ignition probability map was
made. According to the results (Table 5), it can be observed that, though very high
probability classes represent 27%, it can predict 39% of the total of ignition points of
the validation group and present the highest density (0.66 km2). The high class repre-
sents 28% of the area and can predict 29%. The two classes can predict 68% of the
total ignition points of the validation group. The medium class, on the other hand,
occupies only 21% of the area, but can predict 18% of ignition points. On the other
hand, only 13% of ignitions are located in low and very low risk classes which repre-
sent 24% of the territory. With these results one can conclude that the ignition prob-
ability map presents good predictive capacity.

4. Discussion

4.1. Determinant factors in fire occurrence

The logistic regression analysis provided ground for the understanding of determin-
ant factors for fire occurrence in Niassa Reserve. Results show that NDVI, air tem-
perature, and precipitation are the most important variables, followed by slope and
relative humidity, and finally, the less important variable in the determination of fire
occurrence is distance to human settlements. These results show consistency with
recent studies on determinant factors for occurrence of fire in African savannahs and
conservation areas (Berjak and Hearne 2002; Trollope and Trollope 2004; Archibald
et al. 2009).

NDVI is the most important variable, it presented strong negative relation with
fire occurrence, which means higher probability of fire occurrence as there is reduc-
tion in vegetation vigor. According to Eva and Lambin (1998), in African savannahs,
NDVI is reduced seasonally, and in the dry season can reach values as low as those
of burnings and exposed soil. Works developed by Nhongo et al. (2017) in Niassa
reserve report low NDVI values in the dry season, ranging, on average, from 0.2 to
0.4, according to the type of vegetation cover. This means that as NDVI values
decrease, there is a reduction in vegetation vigor (moisture content in combustible
vegetation) and increase of dry biomass accumulation with consequent fire risk. One
can assume that moisture is inversely proportional to the inflammability of the com-
bustible vegetation.

Studies developed globally show that the combustible moisture condition is a crit-
ical factor that influences the danger of wildfire in ecosystems prone to fire, like
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African savannahs (Zarco-Tejada et al. 2003). There are records of significant correl-
ation coefficients between vegetation index and combustible moisture content, based
on the hypothesis of dependence of chlorophyll content with regard to the content of
water in treetops (Dasgupta et al. 2007; Glenn et al. 2008). Results with obtention of
coefficients of negative correlation of vegetation and wildfire were also reached
(Leblon et al. 2007; Bisquert et al. 2011; Fan et al. 2017).

According to Fried et al. (2008), high temperatures proportionally reduce the com-
bustible moisture, making zones highly susceptible to fires. Research developed in
pastures and savannahs in South Africa indicated that air temperature has a highly
important positive effect on fire intensity (Yakubu et al. 2015). In the present study a
negative relation was obtained between air temperature and fires in Niassa reserve.
However, it is important to mention that 60% of them occurred in areas with
medium and high temperatures, of �23–26 �C (dry season). The negative relation is
possibly related to the spatial dynamics of burnings within the reserve, whose dynamics
migrate from east (higher temperatures) to west (lower temperatures), as well as to the
analysis window (May to December). However, if we consider the analysis in the long
term, air temperature presents a positive relation with fire sources. Results with a nega-
tive relation between fire and air temperature were also found by Chang et al. (2013);
Guo et al. (2015); Ye et al. (2017), again indicating the complexity of these analyses.

Several studies mention that low precipitation is typically described as a determin-
ant factor for fire risk globally (Batista 2000; Chang et al. 2008). According to the
adjusted model of the present work, there is a positive relation between fire probabil-
ity and precipitation. However, despite the positive relation, 90% of fires occur in
areas with low precipitation, of �0–50mm. It is worth highlighting the beginning of
the water year, in October, and the occurrence of fire until December, which some-
how ends up by influencing the positive relation of rainfall and fires.

Among climatological variables, relative humidity is, in isolation, one of the less
important factors in fire susceptibility in Niassa Reserve. High air relative humidity
reduces the possibility of fires. This result seems contradictory, because, according to
Turner et al. (1961), relative humidity inferior to 30–40% is the optimal condition for
start and spread of wildfire. On the other hand, air relative humidity above 60% may
avoid sustained vegetation material combustion (Ronde et al. 1990). In the present
study, despite the positive relation between relative humidity and fires, 90% of fires
occur under conditions where relative humidity is below 60%, meaning that fires
occur under conditions favorable to vegetal combustion.

Table 3. Relative importance of variables, assessed based on different criteria.

Variable name
(i)

Stepwise
(ii)
Wald

(iii)
Exp(B)

(iv) Std
coefficient B

(V) Change in
�2 LL

Global
score (sum)

NDVI 1 1 7 1 1 11
Temperature 2 2 6 2 2 14
Elevation 3 3 3 3 3 15
Precipitation 4 4 1 4 4 17
Slope 5 5 5 5 5 25
Relative humidity 6 6 2 6 6 26
Distance to settlement 7 7 4 7 7 32
Sum 28 28 28 28 28 140
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The elevation variable, on the other hand, has a significant and positive effect on fire
occurrence. Records of higher numbers of fires are observed between 400 and 650m,
where mountain forests and deciduous vegetation occur. According to Castro and
Chuvieco (1998), elevation influences vegetation structure, combustible moisture and air
humidity. Combustible distribution depends on topography. Certain species of trees, par-
ticularly species with larger structures, are located in more elevated altitudes. In Niassa
Reserve there is a direct relation between vegetation structure increase (vegetal biomass)
and altitude. Vegetation density and structure increase occurs from east (low elevation)
to west (high elevation), due to the increase of precipitation and reduction of air tem-
perature (Nhongo et al. 2017). Studies developed in subtropical forests have documented
the increase of tree density in subtropical forests as altitude increases (Millar et al. 2004;
Dolanc et al. 2014). Considering that the present study was made during the dry period,
where vegetation reaches low NDVI values, one can infer that the increase of dry bio-
mass (accumulation of forest’s combustible load), precisely in areas with higher elevation
and larger vegetation structures, determines the higher incidence of fires in Niassa
reserve. The positive relation between Elevation and wildfire was also found by Schwartz
et al. (2015); Sass and Sarcletti (2017) and Zhang et al. (2016).

On the other hand, more declivitous areas are associated with the increase of wild-
fire risk, which can be due to the increase of speed of fire propagation, and influences
wind conditions, air humidity and moisture of combustible material (Jaiswal et al.
2002). Results obtained for Niassa Reserve reveal that most wildfire occurs in areas
with Slope below 25%.

Figure 3. ROC curve, training data (a) and ROC curve, validation data (b).

Table 4. Contingency table for the set of training and validation data of logistic regression mod-
els, with 0.383 cutoff, according to Yueden criterion.

Predicted

Training Validation

0 1 Percent correct 0 1 Percent correct

Observed 0 9,715 5,813 62.3 0 9,380 5,881 61.5
1 2,789 7,834 73.9 1 2,713 7,887 74.4

Overall percentage 67.1 66.8
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Finally, it is known that areas near human settlements are more prone to fires,
because they are subject to fires of vehicles and loads and fires produced by those
who pass by the area and by the human presence (Ferraz and Vettorazzi 1998;
Jaiswal et al. 2005); though previous studies have verified that the probability of fire
occurrence in Niassa Reserve did not increase or reduce with increase or reduction of
distance to human settlements. One of the reasons may be related to low demo-
graphic density, proximity to river courses, and mitigating measures near human set-
tlements. Zumbrunnen et al. (2011) demonstrated the nonlinear character of the
relation involving fire occurrence, population density, human settlements and roads,
particularly the levelling of fire occurrence when potential anthropic ignition sources
increase. Therefore, expected increases in the number of inhabitants and the associate
expansion of urbanized areas and road cover may not result in more fires.

Figure 4. Probability of risk of wildfire, Niassa Reserve.

Table 5. Classification of risk areas.
Fire
probability

Fire risk
class

Area
km2

Area
percentage (%)

Number
of fires

Fire
percentage (%)

Fire
density

0.20 Very low 2,330 10 329 3 0.14
0.20–0.40 Low 3,173 14 1,107 10 0.35
0.40–0.60 Medium 4,710 21 1,901 18 0.40
0.60–0.80 High 6,431 28 3,121 29 0.49
0.80 Very high 6,309 27 4,176 39 0.66
Total 22,953 100 10,624 100

GEOMATICS, NATURAL HAZARDS AND RISK 1785



4.2. Spatial modelling of probability of occurrence

Areas with very high and high risk probability, located in the central-west and west of the
reserve, respectively, are mostly covered by deciduous and mountain forests (Nhongo
et al. 2017). Though presenting mild temperatures due to elevated altitudes, they are also
characterized by occurrence of vegetation with larger structure and higher treetop density.
Due to that, this is the region with more accumulation of dry biomass in the dry period,
when compared to other areas of the reserve, and consequently with higher fire risk.

The centre of the reserve presents medium probability of wildfire occurrence, with
predominance of deciduous forests, dominated by species of trees and a layer of well-
developed grasses on the inferior stratum; temperatures are medium to high and alti-
tudes are intermediary. These results were expected, because in these areas there is
accumulation of dry biomass, and climatological variables present magnitudes prone
to wildfire occurrences.

However, at the reserve’s central east and east, the probability of occurrence is
low, despite the high air temperatures, low precipitation and air relative humidity.
This pattern can be explained by the occurrence of semi-deciduous open vegetation,
constituted mostly by grasses and sparse trees, typical of savannahs, with low biomass
density. According to Scholes et al. (1997), the strongly seasonal character of water
availability in these phytophysiognomies leads to accumulation of fine, dry and easily
inflammable combustibles that can potentially burn every year. However, the low
density of biomass influences low occurrence of fires and their nonmaintenance for a
long period after the start.

These results are, therefore, in accordance with the analysis of relative importance
of variables used, which showed NDVI, air temperature and elevation as determinant
factors in fire occurrences.

4.3. Validation of results

The model obtained showed good predictive capacity when applied to the set of val-
idation data. ROC curve analysis, with 74% of agreement (acceptable precision),
66.8% global classification, shows that results were good when compared to other
models of logistic regression developed to predict fire occurrences. For example,
Bisquert et al. (2011) estimated the probability of fire occurrence in the Galicia
Region (northwest of Spain) and obtained global precision of 58.2%; Padilla and
Vega-Garcıa (2011) modelled the occurrence of fires caused by humans, with preci-
sion ranging from 47.4 to 82.6% for different ecoregions in Spain; Chang et al. (2013)
modelled the occurrence of fires based on logistic regression in Heilongjiang province
(China) and obtained global accuracy of 64.9%.

Another aspect worth mentioning is the reliability of the final map, since the two
classes (high and very high) can predict 68% of the total of ignition points of validation.

5. Conclusions

In this work, the feasibility of modelling fire risks was illustrated, and also which bio-
physical and human factors are important drivers of fire in Niassa Reserve, based on
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logistic regression. The model applied showed good performance, proving to be statis-
tically significant with regard to the explanation of spatial correlation between wild-
fires and their location.

NDVI, air temperature and elevation are the main determinant factors of fire sour-
ces, followed by precipitation, Slope, relative humidity and distance from human set-
tlements. NDVI is the most important factor, for it reflects both humidity contained
in combustible material and their seasonality, and the amount of combustible mater-
ial (biomass accumulation), which influences the occurrence of fires in
Niassa Reserve.

Areas in the east of the reserve, with higher altitude, larger vegetation structures
and consequently more accumulation of biomass in the dry season, are more suscep-
tible to fire source occurrences, showing that vegetation, climate and topography have
significant control on fires in this region.

The results obtained in the present study, in addition to providing better under-
standing of the spatial distribution of wildfire in the reserve, provide an important
tool to guide the management of fires in Niassa Reserve, since they consider charac-
teristics of vegetation cover.

Though several studies point to human factors as drivers of fire sources, it was
observed that vegetation is one of the main factors for occurrence of fires in Niassa
Reserve, due to seasonality and biomass accumulation. However, despite the strong
influence of vegetation cover, climatic and topographic factors, as well as the effect of
human factors should not be ignored.

One of the strategies for management of fires would be controlled burn to reduce
combustibles and fire intensity, and this should be developed in areas with high sus-
ceptibility to wildfire.
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