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ABSTRACT

Companies have become increasingly consumer-oriented, aligning their around them.
Faced with the potential source of consumer generated revenue, managers should seek to
increase the value of their customer base. Customer relationship management provides
companies with the means to do this. Customer lifetime value (CLV) is, according to
Kumar and Shah (2009), a metric aimed to predict future cash flows that each consumer
can provide to the company. This thesis aims to develop a stochastic model to estimate
CLV. We found in the literature related to CLV a variety of methods, built to suit the
specificities of the relationship between companies and their clients. In order to better
situate the present thesis, we used the classification proposed by Fader and Hardie (2009),
between contractual and non-contractual relationships. Besides this, the model fits in
the classification proposed by Gupta et al. (2006) as a probabilistic model. The selected
probabilistic model for this work is the renewal reward process. In order to perform the
estimation in the non-contractual setting, we selected variables interpurchase and ticket
value. For the contractual case, we seek to identify patterns in this type of relationship
through the number of transactions and the total value spent within pre-defined periods.
We do not assign probability distributions a priori for such variables, since we understand
that, in order to obtain better CLV estimates, the model should represent the consumer
behavior as best as possible. Thus, the distribution family chosen for each variable depends
on the specific application. We also consider the possibility that client is active or inactive in
a given period, either for having interrupted, temporarily or permanently, the relationship
with the company, or for because he died. Finally, we consider the correlation between
clients, so that the construction of a customers portfolio, based on the present model
estimates, consider the systemic risk of the base. We developed a method which allows
the inclusion of the correlation between clients in the model solution. It wasn’t possible
to find an analytical solution to the model. So, we proposed a solution based on discrete
events simulation. We performed tests with two real world datasets, representing the two
types of relationships. It was possible to estimate the distributions of CLVs for each client
individually, considering the aforementioned characteristics.

Keywords: customer lifetime value; customer-base analysis; customer-base risk; proba-
bilistic models.



RESUMO

As empresas têm se cada vez mais voltadas para o consumidor, alinhando as suas ações em
torno deles. Diante da potencial fonte de geração de receita dos consumidores, os gestores
devem buscar aumentar o valor da sua base de clientes. A gestão do relacionamento com
clientes provê às empresas meios para isso, dentre eles, o customer lifetime value (CLV). De
acordo com Kumar e Shah (2009), CLV trata-se de prever os fluxos de caixa futuros que
cada consumidor pode prover. Diante disso, esta tese tem como objetivo desenvolver um
modelo estocástico para estimativa do CLV. Encontramos na literatura relacionada a CLV
uma diversidade de métodos, construídos de modo a se adequar melhor às especificidades
da relação entre empresas e seus clientes. No intuito de melhor situar a presente tese,
recorremos à classificação proposta por Fader e Hardie (2009), entre relacionamentos
contratuais e não-contratuais. Além desta, o modelo se enquadra na classificação proposta
por Gupta et al. (2006) como modelo probabilístico. O modelo probabilístico selecionado
para este trabalho é o processo estocástico de renovação com recompensa. Para efetuar as
estimativas de CLV em relacionamentos não-contratuais, selecionamos as variáveis intervalo
entre compras e valor da compra. Para o caso contratual, buscamos identificar padrões nesse
tipo de relacionamento por meio da quantidade de transações e o valor total gasto dentro
de períodos pré-definidos. Não atribuimos distribuições de probabilidade a priori para tais
variáveis, pois entendemos que, para que se obtenha melhores estimativas de CLV, o modelo
deve representar o comportamento do consumidor de maneira mais fidedigna possível.
Assim, a escolha da família de distribuições para cada variável depende da aplicação
específica. Consideramos também probabilidades de o cliente estar ativo ou inativo em
um dado período, seja por ter interrompido, temporariamente ou permanentemente, a
relação com a empresa, seja por ter falecido. Por fim, consideramos a correlação entre os
clientes presentes na base, de modo que a construção de um portfolio de clientes baseada
nas estimativas do presente modelo considerem o risco sistêmico da base. Desenvolvemos
um método que permite a inclusão da correlação entre clientes na solução do modelo. Não
foi possível encontrar solução analítica para o modelo. Assim, propusemos uma solução
baseada em simulação de eventos discretos. Efetuamos testes com duas bases de dados
reais, representando os dois tipos de relacionamentos considerados. Foi possível estimar as
distribuições de CLVs para cada cliente individualmente, considerando as características
mencionadas.

Palavras-chave: customer lifetime value; análise de base de clientes; risco em base de
clientes; modelos probabilísticos.
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1 INTRODUCTION

Companies have become more customer-centric (KUMAR; SHAH, 2009), aligning
their actions around their current and potential clients. Faced with the revenue generation
source of customers, marketing managers should seek to increase the value of the customer
base. This can be achieved by several ways, either by attracting new customers, retaining
existing ones while reducing the costs of keeping within the firm, and increasing sales. In
any case, the estimation of expected earnings from each customer is an important issue.

Customer relationship management (CRM) provides companies the opportunity to
contact the right customer at the right time and through the appropriate marketing contact
(NESLIN et al., 2013). Since it is the customer who makes a significant contribution to
corporate revenue, the prediction of those who can generate the best return on marketing
contact expenditures becomes central to CRM. In a seminal paper, Bell et al. (2002) note
in their review on the paradigm of customer value management that consumers should be
seen as assets, and since the time of the publication of their paper, a literature aimed at
customer value measurement was developed.

Customer Lifetime Value (CLV) is a metric aimed to help companies manage
their customer base. According to Kumar and Shah (2009), it seeks to predict the future
cash flows of each customer incorporating, in a single equation, the elements of revenue,
expenditure and behavior that guides the customers profitability. Such flows are then
discounted from capital costs in order to obtain the net present value of a customer
expected future cash flows.The customer lifetime value, or present value of the expected
future cash flows of a given consumer, is the key metric in CRM (ROMERO; LANS;
WIERENGA, 2013).

Figure 1 illustrates a typical purchase behavior of a customer in which each of
her transaction is depicted in a time frame. In the figure, Rn represents the contribution
margins generated by the clients, Sn the instant of occurrence of the nth transaction, and
Xn the interpurchase time between the n− 1th and the nth transactions. Most applications
that can be found in the literature define a finite horizon, like 36 months in Kumar and
Shah (2009), to predict future cash flows from customers. However, we argue that if we
are to estimate the actual lifetime value of a given customer, we must consider the whole
duration of the relationship between customer and companies.
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Figure 1 – Purchase behavior of a single customer

Source: the author.

The problem considered here is therefore to identify a model that allows an adequate
representation of this behavior so that one can obtain good predictions of the future cash
flows that each client can provide to the company, and thus, making it possible to estimate
a real lifetime value for each customer. The goal of this dissertation is to contribute to the
body of research on CLV by developing a stochastic model aimed to estimate CLV in two
different customer-company settings.

1.1 OBJECTIVES

The main goal of this dissertation is to develop a stochastic model to estimate CLV.
The specific objectives are:

1. determine the relevant variables to the individual CLV measurement, adjustable to
the type of company, product and service;

2. estimate a probabilistic model that best fit the variables for the individual CLV
estimation, according to the setting;

3. estimate a model that consider the possible correlations between customers, in order
to obtain a good risk assessment of the clients base;

4. select the right stochastic model to accommodate the selected variables;

5. illustrate the model using real-world data.
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2 THEORETICAL REVIEW

In this chapter we present the aspects related to the measurement of customer
value. Classifications of the relationship between customers and companies are discussed,
and how the models represent such relationships. Then, characteristics of the problem
of measuring customer value are presented. The theories and methods that support the
proposed solutions are discussed in the final two section.

2.1 CUSTOMER VALUE - RELATED WORK

Fader and Hardie (2009) note the importance for companies of using the best meth-
ods to estimate the customer value, based on the different types of business environments
in which they operate. Gupta et al. (2006) point out that it is possible that the approach
used to model CLV is context-dependent. Following these recommendations, in this section
we describe nature of the relationship between customers and companies and the types
of transactions opportunities, according to the literature, in order to identify in which
situations the proposed models can be generalized.

We found in the related literature, two main ‘axes’ that differentiate the relationship
between customers and companies that affects customer value measurement: (1) relationship
type (contractual and non-contractual), and (2) transaction opportunities (discrete and
continuous). Figure 2 presents examples of products and services classified according to
these criteria. We now will discuss them.

Figure 2 – Customer-company relationship classification

Relationship type
Contractual Non-contractual

Transactions
opportunities

Discrete Insurance
Subscriptions Conferences

Continuous Mobile phone
Banking services

Office supplies
Groceries

Source: Fader and Hardie (2009).

The existence of any formal contract guiding the relationship between companies
and consumers defines, among other things, the duration of this relationship, the prices
charged and possibly the period of payment due. Because of the implied impact in
predicting the expected revenues from consumers, customer value research classify such
relationships as “contractual” and “non-contractual”. Our model differs from those found
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in the literature, in terms of such classification, by including a set of variables adjustable
to the specific relationship type.

Bolton (1998) investigated the role of consumer satisfaction in the relationship
duration with continuous service providers, in mobile industry, that is, in a contractual
relationship. An important point made by the author is that small increments in customer
retention rates (increases in the relationship duration) have a considerable effect on
companies revenues, because customer retention costs are lower than the costs of acquiring
new ones. In the case studied by the authors, the contractual setting, it was confirmed the
proposition that satisfaction directly affects the relationship duration.

Even if in a contracted service situation the consumer intention is clearly expressed
through the service subscription, such as when opening a bank account or when hiring a
telephone service, customer desertion is always possible. Wirtz et al. (2014) contrasted
the intention to change service provider and the change act itself. Variables such as price,
quality and monetary costs of change are overvalued in relation to the act of change.
Conversely, non-monetary costs of change (such as the effort to cancel the contract and
search for a new supplier) are undervalued. The authors observed that, having identified
the drivers of provider change behavior, it is possible to reduce customer desertion, so
that costs associated with the acquisition of new clients (to compensate for desertions) are
reduced, and two desirable characteristics of the contractual environment are maintained –
greater predictability of relationship duration and revenues.

Fader and Hardie (2009) note that, in a contractual environment, the typical issues
of managerial concern are relate to the identification of customers who are most at risk of
defection in the next period and how much longer those clients can be expected to remain
doing business with the company. Moreover, they emphasize that the definitive character-
istic of the contractual setting is that the desertion is observable by the company. Such
characterizations are important, guiding the researchers in the use of models appropriate
to the relationship setting studied.

The problem of retention and desertion was addressed by Fader and Hardie (2007),
in a contractual setting. The authors defined retention rates, for a period t, as the proportion
of active clients in the period t− 1 that remained active at the end of t. Assuming that
the probability of the customer renewing the contract with the company is constant and
equal to 1− θ, then the probability that it remains client up to a time T can be modeled
by a Geometric distribution:

P (T = t|θ) = θ(1− θ)t−1.

The heterogeneity of clients, implying a θ parameter for each of them, was modeled by the
Beta distribution:

f(θ|α, β) = θα−1(1− θ)β−1

B(α, β) ,
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where B(., .) Is the Beta function. Given these two assumptions, the probability of a
randomly chosen client renewing his contract until the time T is

P (T = t|α, β) = B(α + 1, β + t− 1)
B(α, β) .

Such a model is called shifted-beta-geometric distribution and was used extensively in the
contractual context to model the probability of desertion.

In the case of non-contractual relationships, the problems faced by modelers differ.
In this case, companies should ensure that the relationship remains active, since consumers
generally split their purchases between different companies (REINARTZ; KUMAR, 2000).
According to Fader and Hardie (2009), the primary objectives in the non-contractual case
are to differentiate consumers who have terminated their relationship with the firm from
those who are only in a gap between purchases and make predictions about the amount of
business that can be expect from each consumer in the future.

Fader and Hardie (2009) point out the NBD (negative binomial distribution) model,
developed by Ehrenberg (1959), as the standard model for repetitive behavior in the
non-contractual case. Such distribution was adjusted to the amount of items purchased.

One of the most important extensions of this model is Pareto/NBD (SCHMIT-
TLEIN; MORRISON; COLOMBO, 1987). In this model, the authors sought to estimate
the likelihood of customers being active – that is, of having the potential to make purchases
with the company –, growth of the customer base, identification of customers with higher
probability of being active and the expectation of future business with them. In this model,
they assumed the following, as summarized by Gupta et al. (2006): (1) while active, the
number of transactions is characterized by a Poisson distribution, (2) the heterogeneity in
the transaction rate over consumers is adjusted to a gamma distribution, (3) the time a
customer remains active is exponentially distributed, (4) the heterogeneity in the desertion
rates are adjusted to a gamma distribution, and (5) the transaction and desertion rates
vary across consumers. It is important to note that according to such a model, after a long
period without purchases, it is considered that the customer deserted, that is, he will not
buy again.

Reinartz and Kumar (2000) and Schmittlein and Peterson (1994) validated the
Pareto/NBD model using data from a retailer and a company that markets office products,
respectively. The second work proposed, in addition, an extension of the model, incorporat-
ing the financial volume handled by the clients. Each purchase ticket value was adjusted
to a normal distribution, whose average parameter varied throughout the consumers, also
distributed according to a normal distribution. Finally, it was assumed independence of
this component in relation to transaction and retention rates.

Arguing about difficulties in implementing the Pareto/NBD model, Fader, Hardie
and Lee (2005) developed the beta-geometric/NBD (BG/NBD) model. According to
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the authors, the only difference in terms of the assumptions of the two models lies in
the fact that the BG/NBD assumes that customer defects occur immediately after the
last purchase, unlike the Pareto/NBD case, in which desertions can occur at any time.
More specifically, it is assumed that (1) after a transaction, the client becomes inactive
with probability distributed according to the shifted geometric distribution, and (2) the
heterogeneity of that probability is beta distributed. The other model assumptions are
identical to assumptions 1 and 2 of the Pareto/NBD model. The results found in the
comparison between the two models, using data from compact disc (CD) retail, indicate an
equivalence between the models. As a limitation, the authors indicate the need to extend
the model, such as Pareto/NBD, to adjust the quantity purchased.

We found some relaxation of the interpurchase imposition being exponentially
distributed, even in the non-contractual context. Allenby, Leone and Jen (1999) developed
a dynamic interpurchase model, aimed to get an indication of when specific consumers are
more likely to become less active. The interpurchase time was adjusted to a generalized
gamma distribution, consumer heterogeneity was adjusted to a generalized inverse gamma
distribution and the temporal variation in expected interpurchase time was adjusted
by relating covariates in a multiplicative model. They tested the model with data from
financial instruments broker (stocks, bonds, funds, etc.), using different parameterizations
and distributions. They identified the characteristics of each client, to classify them into
three possible states: super active, active and inactive.

We cite, in addition to this, the research of Wu and Chen (2000), which also relaxed
such imposition. In this work, the authors used the Erlang distribution, a generalization
of the exponential distribution, to adjust the interpurchases time. Following the modeling
construction practice of the previous models, that is, to consider heterogeneity among
clients, the authors adjusted the heterogeneity in the rate of purchases to a gamma
distribution. When compared with the NBD and Pareto/NBD models and using panel
data from a tea company, the model resulted in better predictive performance.

One of the problems associated with measuring customer value is determining
the amount of business that customers make with the company, that is, the fraction of
their consumption purchased from the company – share-of-wallet (SOW). Perkins-Munn
et al. (2005) point out the difficulties of obtaining such information in many of the
business categories. Thus, they sought to examine the relationship between satisfaction
with various attributes of performance, repurchase and SOW. Samples were collected from
companies, from two distinct industries: transportation companies that purchased trucks in
the observed period, and pharmacists. As result, the authors observed that the repurchase
behavior can be used as proxy for the SOW, and the repurchase can be explained by the
probability of repurchase, general satisfaction and general efficacy.

Information about SOW was used, for example, by Kumar and Shah (2009). Such
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information was useful to measure the vulnerability of expected future cash flows, since a
high SOW customer will most likely buy back, will have high retention and high satisfaction,
consonant with the findings of Perkins-Munn et al. (2005).

Given the diversity of characteristics inherent to the company-consumer relationship,
several modifications were proposed in traditional models. Romero, Lans and Wierenga
(2013) sought to develop a more generic stochastic model, which includes the incidence
of purchases (i.e. whether or not a consumer will buy in a period) and the variables
purchase frequency and monetary value. In addition, they incorporate: dynamic purchasing
patterns, situations in which the purchase frequency and monetary value are related, and
the possibility that the customer may retake the relationship with the firm after a period
of inactivity. The transition between the different states of activity and inactivity was
adjusted to a hidden Markov model, the purchase frequency follows a Poisson process,
whose parameters are modeled by a modified, state-dependent distribution. The purchase
value follows a gamma distribution, whose parameters were adjusted to a distribution of
the same family. Finally, monetary value and frequency could be dependent, throughout
the different states. Using two databases, the model performed better than all benchmark
models.

Park, Park and Schweidel (2014) proposed a model that considers multiple product
categories, in a non-contractual environment. The interpurchase time of each products
in the shopping basket has been adjusted to an exponential distribution. The authors
argue that for the consumer,the combination of categories in their shopping basket can be
informative about the time until the next purchase, depending on the relationship nature
between these categories.

It is possible to perceive, in the cited works, a concern with the probability
estimation that a certain client is inactive. This is aligned with the fundamental distinction
of the CLV problem in a non-contractual context.

2.2 CUSTOMER LIFETIME VALUE

We emphasize that the decision of which variables are used to predict the CLV
of a given client depends on the modeler intention. In the cases we mentioned, in the
non-contractual context, the modeling included transactional variables (instant of purchase
and its value). The work of Kumar and Shah (2009) sought to establish the link between
customer equity (CE, determined by the sum of all CLVs in the customer base) and the
company‘s market capitalization. The objective is to identify the specific consumers drivers
that influence the market value. Thus, CLV was specified as a function of transaction-
specific variables (e.g., purchase number, recency of last purchase), and firmographic (e.g.
industry type, number of employees, and annual revenue) and demographic variables. The
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method used was a system of seemingly unrelated regression equations (SUR).

For cases where transactions occur on a discrete time basis in non-contractual
relationships, we point to the Fader, Hardie and Shang (2010) model. The relationship
treatment as occurring in discrete time may be due to different causes, according to the
authors: (1) transactions can only occur at fixed regular intervals, (2) transactions may be
associated with specific events, and (3) the organization may opt, for convenience, to treat
the transactions occurrence in discrete time, although in fact occur in a continuum.

The objective of his work was to develop a model to predict future purchasing
patterns, called beta-geometric/beta-Bernoulli (BG/BB). Assuming that the customer
relationship at a given time is ’alive’ or ’dead’ with some probability (Bernoulli), and that
such probability differs according to the dataset heterogeneity (to a Beta distribution),
such assumptions lead to a beta-Bernoulli model. Furhter assuming that the relationship
has ended at the beginning of a transaction opportunity with a certain probability (whose
heterogeneity is also beta distributed), i.e. after a sequence of several purchase opportunities,
Bernoulli distributed, the customer decides to terminate the relationship, then such an
assumption leads to the beta-geometric model, since the occurrence of the first ‘success’
(desertion, in this case) in a Bernoulli experiment is distributed according to the geometric
distribution. The authors were able to derive an analytical formula for the model and
made a comparison with the Pareto/NBD model, from where it was possible to observe a
better performance of the BG/BB model. We point out the fact that, although the model
does not assume exponentially distributed intervals, the assumption of desertion used the
distribution in the discrete case that has the same property: absence of memory. Such a
supposition may be fragile in cases where the consumer’s experience with the company
has an influences over his future decision to consume again with the company.

In addition to the two classification axes discussed above, we highlight a differenti-
ation presented by some authors in their models, namely always-a-share and lost-for-good
clients. Dwyer (1997) states that in the first category includes customers who supply their
needs by buying from multiple suppliers, adjusting their participation in each of them at
their discretion. An example is the office supplies consumer. In the second category are
the clients who normally establish long-term relationships with their suppliers, since there
is a high exchange cost. Such clients generally seek, as the author claims, to solve more
complex problems. If the customer terminates their relationship, such account is forfeited.
The author points out telecommunication systems customers as an example.

Gupta et al. (2006) state that the modeling decision possibly depends on the
context. The authors use as an example the cell phone industries and banks. In these
cases, consumers usually maintain purchase with a single company, which must involve
lost-for-good models. In other contexts, such as consumable, airline and B2B industries,
consumers tend to purchase from more than one company, so always-a-share approaches
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are more appropriate.

Berger and Nasr (1998) comment on such a classification, stating that retention
models are best suited for lost-for-good situations, in which customers who buy back
with the company are treated as new clients. In the always-a-share cases, the migration
patterns are more appropriate. In this case, the last purchase recency is used to predict
the probability of repurchase.

In addition to these classifications, we present the one produced by Gupta et
al. (2006). In their review of CLV work, they identified a variety of models according
to their approach: (1) RFM, in which groups of consumers are created based on three
variables – recency, frequency and monetary value –, based on their previous purchases;
(2) probabilistic, where observed behaviors are seen as the realization of an underlying
stochastic process governed by behavioral characteristics and through which it is sought to
describe and predict behavior, rather than explaining it through covariates; (3) econometric,
using regression models, such as probit and logit; (4) persistence models, which use time
series and dynamic models, using VAR, unit root tests and cointegration; (5) computer
science models, using data mining and machine learning tools (neural networks, decision
trees, CART, SVM); and, (6) models of growth and diffusion.

The methods diversity used for CLV estimation is large, as the authors pointed out
above. This finding is in line with the recommendations made by Bechwati and Eshghi
(2005), namely, that the general model for computing CLV depends on the expected cash
flows pattern which, in turn, depends on the business nature: “ it is not one size fits all’”
(BECHWATI; ESHGHI, 2005).

Faced with the number of CLV models that can be found in the literature, we
selected some of them in Table 1, which we’ll discuss next.

Most CLV models, like the one presented in the seminal paper from (SCHMIT-
TLEIN; MORRISON; COLOMBO, 1987), assume the exponential distribution for the
interpurchases in a non-contractual, continuous setting. This choice is based on the easy
analytical treatment it provides. Interpurchases adjusted to a exponential distribution
implies a Poisson process. Our model differs in terms of do not assuming specific distri-
bution families for the random variables. Even if we cannot provide a closed form to the
computation of expected CLV, nor to the CLV distribution, we provide a solution good
enough for the managerial purposes.

Heterogeneity in transaction rates, in dropout rates and other inputs for the models
constitute another characteristic in some models. In our case, we deal with heterogeneity
by measuring lifetime of the individuals, in a disaggregate manner.

Berger and Nasr (1998) argue in favor of stipulating a finite length to the projection
period, specially in some industries like high-technology, because looking beyond some
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Table 1 – Some CLV models found in the literature

Reference Suppositions
Schmittlein and Peterson (1994) (1) Consider retention rates (exponential), (2) number

of transactions in a given period, Poisson distributed,
(3) heterogeneity in transaction rates as a gamma distri-
bution, (4) heterogeneity in dropout gamma distributed,
(5) independence between both rates, (6) purchases value
normally distributed.

Berger and Nasr (1998) (1) Finite length to projection period, (2) constant values
to contribution margin, promotional costs and retention
rates.

Kumar and Shah (2009) (1) Finite length to projection period, (2) consider the
influence of marketing contacts on customers expendi-
ture, (3) model level of marketing contacts, probability of
purchase and contribution margin by means of predictor
variables.

Romero, Lans and Wierenga (2013) (1) Allow purchase patterns to vary over time, (2) pur-
chases occur in discrete periods (weeks), (3) while active,
customers purchases follow a zero-truncated Poisson
distribution, (4) when active, the monetary value of a
customer is gamma distributed, (5) periods of active and
non-active modeled by a partially-hidden Markov model.

Sunder, Kumar and Zhao (2016) (1) Consider contribution margin from each brand sepa-
rately, (2) quantity purchased dependent on demographic
variables and seasonal effects.

Font: authors archives

threshold involves too much guesswork. We account for dropout rates, as well as actual
dying, in such a way that defining a finite horizon is not only unnecessary, but arbi-
trary. Their model was developed for a non-contractual setting, with discrete transaction
opportunities.

Finally, some models define the CLV relevant variables in terms of demographic
variables. Our model does account for that, because we want to present a model that
depends on a set of transactional variables that are, in almost all companies cases, readily
available.

2.3 RENEWAL REWARD PROCESS

The assignment of a probability distribution to the interpurchase time allows us to
model the problem of measuring the customer value using a renewal process. Figure 1,
which illustrates the set of transactional variables associated with a particular client, can
be interpreted as a rewarding renewal process model. This is the model of this dissertation,
to bring a stochastic model tool to the arena of estimate CLV.

Back to figure 1, we call each of company visits that becomes a sale as an “event”,
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for which we assign the random variable Sn. This variable corresponds to the instant
of occurrence of the nth event (nth purchase, therefore). We consider also a sequence of
independent, nonnegative random variables {Xn, n = 1, 2, . . .} with a common distribution
F . These variables represent the time interval between the (n− 1)th and the nth events
(hence, between purchases). Consider that S0 = 0 corresponds to the beginning of a
stochastic counting process and that the instant of occurrence of the nth event can be
calculated by summing the intervals between events up to nth:

Sn =
n∑
i=1

Xi.

The number of events up to instant t equals n when the nth event occurs before, or
exactly, in t. Thus, we have that N(t), the number of events occurring until t, is given by
eq. 1.

N(t) = sup{n : Sn ≤ t} (1)

The stochastic process whose occurrences count {N(t), t ≥ 0} is equal to eq. 1 is
called a renewal process. Figure 3 illustrates such process. Since the time between events,
also called renewals, are independent and identically distributed, with each renewal the
process probabilistically restarts. In this section, we use the definitions of Ross (1996).

Figure 3 – Renewal process

Source: the author

The distribution of N(t) can be obtained, according to Ross (1996), starting from
the observation that the number of renewals up to a time t is greater than or equal to n if,
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and only if, the nth renewal occurs until time t. That is,

N(t) ≥ n⇔ Sn ≤ t.

The probability of occurrence of n events up to time t will therefore be

P (N(t) = n) = P (N(t) ≥ n)− P (N(t) ≥ n+ 1).

Since variables Xi, i ≥ 1 are independent and have a common F distribution, we have
that

Sn =
n∑
i=1

Xi

is distributed according to Fn, the nth convolution of F with itself. Thus, the distribution
of N(t) can be obtained by means of eq. 2.

P (N(t) = n) = Fn(t)− Fn+1(t) (2)

An important information about such processes is the expected number of renewals,
which can be expressed in relation to the probability distribution of time between renewals:
F . Define m(t) = E[N(t)] a renew function. The relationship between the renewal function
and F is given by eq. 3.

m(t) =
∞∑
n=1

Fn(t) (3)

As n→∞, the values of Fn tend to zero, as they refer to the distribution of infinite
renewals within a finite time interval t. Thus, this function converges. This proof can be
found in Ross (1996).

Suppose that with each renewal, a reward is received. Such a reward represents,
in the modeling problem addressed in this dissertation, the purchase value. We denote
Rn the reward received in the nth renewal, and assume that Rn, n ≥ 1 are independent
and identically distributed, even though they may be dependent on Xn. Such a process is
called the renewal reward process. The total reward received until time t is calculated,
according to Ross (1996), by means of the eq. 4.

R(t) =
N(t)∑
n=1

Rn (4)

We note that such an equation does not consider the differences in the monetary
rewards over time. Because of this, an appropriate discount is required. Eq. 5 presents the
present value of the total reward received until the time t, according to a discount rate i.

Z(t) =
N(t)∑
n=1

Rne
−iSn (5)
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The expected value of rewards up to a certain time t is dependent on both
the distribution of each reward Rn, and the distribution between renewals, Xn. This
value converges, when t → ∞, to the expected reward value of each renewal divided
by the expected time between renewals, as expressed by eq. 6, where E[R] = E[Rn] e
E[X] = E[Xn].

E[R(t)]
t

→ E[R]
E[X] (6)

Again we are faced with a situation in which one does not consider reward differences
in time. The deduction of discounted rewards expected value up to t, which we present, can
be found in Serfozo (2009). Consider Yn random variables. Its expected value conditioned
to occurrence at time Sn = s can be equated to a function g(s), independent of n. That is,
E[Yn|Sn = s] = g(s). The Eq. 7 presents the expected value of the sum of these variables
Yn. The proof is presented by Serfozo (2009).

E[
N(t)∑
n=1

Yn] =
∫

(0,t]

g(s)dm(s), (7)

where m(s) is the renewal function (Eq. 3).

A variables exchange is performed:

Yn = Rne
−iSn .

The variable Yn will hence represent the value of the nth present value reward. Its condi-
tioned expected value is

E[Yn|Sn = s] = E[Rne
−iSn|Sn = s] = e−isE[Rn|Sn = s] = e−isf(s).

By doing the substitution in eq. 5, we have that

Z(t) =
N(t)∑
n=1

Yn.

Substituting this sum and the conditioned expected value of Yn na Eq. 7, we have

E[Z(t)] =
∫

(0,t]

e−isf(s)dm(s), (8)

which is the present value of expected rewards up to t.

Eq. 8 lets us compute the expected customer’s value for a given time t. Kumar
and Shah (2009) stipulated a time horizon of 36 months for their model, justifying that
this period offers a good trade-off between precision and prediction horizon in predicting
customer value. However, it may be useful to estimate the customer value without having
to arbitrate a value for t. Thus, we take the estimation horizon to infinity (t→∞), which
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implies N(t)→∞. Although the number of renewals, N(t), becomes infinite, the discount
e−iSn applied to each of them causes the present value of renewals to converge to zero 1,
when t → ∞. By means of this operation it is possible to estimate the expected value
for which the customer’s estimated cash flow converges, which we will denote as Z. Eq. 9
computes this result.

E[Z] = lim
t→∞

t∫
0

e−isf(s)dm(s) (9)

We propose a solution for this equation by means of simulation of the stochastic
process. Law and Kelton (2000) note that analytical solutions for certain mathematical
models can be extraordinarily complex, requiring vast computational resources. Very
complex systems make it impossible to reach analytical solutions. In these situations,
according to the authors, the models can be studied through simulation.

2.4 SIMULATIONMODELING AND THE OPERATIONS RE-

SEARCH METHOD

Simulation is a set of techniques for using computers to imitate or simulate, the
operations of various kinds of real-world facilities or processes (LAW; KELTON, 2000;
LAW, 2015). A set of entities that act and interact together toward the accomplishment of
some logical end is called a system. The system has a set of states, a collection of variables
necessary to describe it at a particular time.

In order to study the system scientifically, we have to make a set of assumptions
about how it works. These assumptions, which take the form of mathematical or logical
relationships, constitutes a model, used to try to gain some understanding of how the
corresponding system behaves. If these relationships are simples enough, it may be possible
to obtain exact information on questions of interest, the so-called analytic solution. However,
most real-world systems, as the system presented in eqs. 5 and 9, are too complex to allow
realistic models to be evaluated analytically, and these models must be studied by means
of simulation. In a simulation, we use a computer to evaluate a model numerically. Data
are gathered in order to estimate the desired true characteristics of the model.

According to the authors, for the simulation study purpose, a system can be
categorized as discrete, in which the state variable changes instantaneously at separated
points in time, and as continuous, in which the state variable changes continuously over
time. A simulation can be categorized as static, where the system is represented at a
particular time, or as dynamic, where the system represented evolves over time.
1 The condition for this convergence is that |i| < 1.
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The simulation method called discrete-event simulation concerns, according to Law
and Kelton (2000), in modeling a system as it evolves over time by a representation where
state variables change instantaneously at separate points in time, that is, the system can
change at only a countable number of times. Those points in time are the ones in which
events occur.

The system modeled in this work has a set of two entities: customers and companies.
Back to figure 1, we can see that the system state variables evolve instantaneously in time.
Therefore, this system can be studied by a discrete-event simulation. As we can see in
the following Chapter, where the model will be presented, no analytical solution could be
derived to it, due to the complexity of assumptions we made on the model. So, we have to
resort on simulation.

Law and Kelton (2000) points out that the model description is just part of the
overall effort to analyze complex systems. A typical simulation will be composed by several
steps. The authors enumerate ten steps to design a sound simulation study. Firstly, the
problem of interest must be formulated, and a plan for the study must be made. After
that, data must be collected e the model must be defined. Data will be used to the model’s
parameters and to estimate input probability distributions. Regarding the model details,
it should depend on project objectives, performance measures, data availability, time and
money constraints, amongst others.

The conceptual model validity test will follow. This step is necessary to verify that
the model assumptions are correct and complete. If the conceptual model is valid, then a
computer program is constructed and verified.

Then, a series of pilot runs should be conducted, for validation purposes. After
that, the model and an existing system, if one exists, are compared, in order to verify
validity. Also, in this step, sensitivity analysis should be conducted, to determine what
model factors have a significant impact no performance measures.

The seventh step is to design experiments. In this step, the length of each run
is determined, the length of a warm up period, if any, and number of independent runs
that facilitates construction of confidence intervals. After that, production runs should be
made and its output analyzed. These steps are necessary to determine the performance of
certain system configurations and to compare alternative system configurations. Finally, in
the last step, the simulation model must be documented, presented and the results, used.

Together with the simulation modeling, which was used to construct the solution
for the model, we present the usual phases of an Operations Research study, according to
Hillier and Lieberman (2015). Firstly, we must define the problem of interest and gather
relevant data. The problem defined in the present dissertation is to have good estimations
of the customer lifetime value. We gathered data from two companies to test our model.
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After that, a mathematical model must be formulated to represent the problem.
In the present case, our model’s mathematical representation is discussed in Chapter 1.
After we have a well defined model, we develop a computer-based procedure for deriving
solutions to the problem. The code used in the present dissertation is made available in
Appendices A and B. The solutions we derived from it are presented in Chapter 4. The
fourth phase is to test the model and refine it as needed. We conducted series of tests,
which are presented and discussed also in Chapter 4. The fifth and sixth phases are to
prepare for the ongoing application of the model as prescribed by management, and to
implement it, respectively.
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3 MODEL DEVELOPMENT

In this chapter, we present the stochastic model developed for the CLV estimation.
In the first section, we define the notation that will be used throughout the chapter and
present the equations for its computation. In the second section, we present the proposed
solution for the model.

3.1 MODEL DESCRIPTION

Firstly, we define the random variables (r.v.) and parameters needed for the model
development.

C : Set of customers. Parameter
CLVc : Lifetime value of customer c, c ∈ C, discounted to present

value.
R.v.

Sic : Time of the ith purchase made by customer c, c ∈ C. R.v.
Xic : Time between the ith and i− 1th purchases made by customer

c, c ∈ C. Xic = Sic − S(i−1)c.
R.v.

FXic
: Cumulative distribution function (CDF) of the variable Xic. Parameter

mc(t) : Expected number of purchases from customer c, c ∈ C, until
time t.

Parameter

Ric : Reward received from customer c, c ∈ C in his ith purchase. R.v.
FRic

: CDF of the variable Ric. Parameter
Ac(t) : Binary variable representing the state of customer c, c ∈ C, at

time t. Ac(t) =

1 if active at time t,

0 otherwise.

R.v.

Pac(t) : Probability of customer c, c ∈ C, being active at time t.
Pac(t) = P (Ac(t) = 1).

Parameter

Raic(t) : Reward received from customer c, c ∈ C on his ith purchase,
conditioned to being active at time t.

R.v.

r : Discount rate. Parameter
B : Correlation matrix between variables Xc and Rc, i ∈ C. Parameter
T : Cholesky factor of B. Parameter

Our CLV model can be used to estimate value in non-contractual and in contractual
settings. For the contractual case, we need to define additional notation, as follows.
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P : Set of periods starting times. Parameter
SBic : Beginning of the period of purchase imade by customer c, c ∈ C.

SBic = max{p ∈ P |p < Sic}.
Parameter

SEic : End of the period of purchase i made by customer c, c ∈ C.
SEic = min{p ∈ P |p ≥ Sic}.

Parameter

dic : Normalized time of the ith purchase made by customer c, c ∈ C,
normalized within the period it occurred. dic = Sic−SB

ic

SE
ic−S

B
ic

R.v.

Fdic
: CDF of the variable dic. Parameter

Qcp : Number of purchases made by customer c, c ∈ C in the period
starting at p, p ∈ P .

R.v.

FQcp : CDF of the variable Qcp. Parameter
Wcp : Sum of rewards received from customer c, c ∈ C, in the period

starting at p, p ∈ P .
R.v.

FWcp : CDF of the variable Wcp. Parameter
yic : Normalized reward of the ith purchase made by customer c, c ∈

C. yic = Ric

W
cSB

ic

.
R.v.

Fyic
: CDF of the variable yic. Parameter

We consider a counting process in continuous time, as the theory presented in
Chapter 2. Some authors compute the lifetime value of a customer considering a future
horizon of 36 months, as in Kumar and Shah (2009), justifying that such a period offers
good trade-off between precision and prediction horizon in estimating the customer value.
However, any predefined finite period (such as 36 months) is not only arbitrary, but do not
consider the actual lifetime value, only a part of it. If we are to estimate the true lifetime
value of a customer, we need to consider that the relationship with the company might end
at some unknown point in time, which is captured by the active probability Pac(t). This
model parameter depends on the probability that the customer still intends to purchase
with the company, and depends on the probability that he or she is actually alive.

So, an infinite horizon should be considered. Because of this, we must apply a
discount rate r to each reward received from each customer, and consider that he or she
can turn inactive at some time t.

The expected present value received from customer c is computed using eq. 10.

E[CLVc] =
∞∫

0

e−rtE[Rac(t)]dmc(t), (10)

The conditioned reward Raic(t) is computed with eq. 11.
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Rac(t) = RcAc(t) (11)

Ac(t) =

1 if active at time t,

0 otherwise.
(12)

Given that Ac(t) has support in the {0, 1} set, it is natural to suppose that it
is Bernoulli distributed with parameter Pac(t). Note that the expected value of Raic(t)
might not be (and in some cases, is not) stationary. This is because Pac(t) may depend on
t. For example, the case in which we consider the customer’s mortality to compute Pac(t),
as his or her mortality rate is age dependent.

For the computation of CLVc distribution, we take eq. 5 on page 21 and substitute
the notation to match the one defined in this section. Given that we want to consider the
probability of customer c being active, we substitute the reward for the conditioned reward
Raic(t). So, the distribution of CLVc, conditioned on being active, is given by eq. 13.

CLVc =
N(t)∑
n=1

Rac(t)e−rt (13)

We also consider that CLVc, ∀c ∈ C, might be correlated with CLVd, ∀d ∈ C, c 6= d.
This is an important consideration when we advance to the portfolio optimization stage,
when the portfolio risk can be assessed by the covariance between assets (customers, in
the present case): Cov(CLVc, CLVd) = ρc,d

√
V (c)V (d). So, if we know the distribution of

CLVc and we consider that two customers c ∈ C and d ∈ C are correlated with each other
(ρc,d 6= 0), then the portfolio risk computation is straightforward.

Eq. 13 is the CLV distribution for each customer, considering its transactional
variables distributions, the probability of being active and the correlation with the other
customers. Therefore, this equation is central, for it contains all the information needed to
compute all managerial relevant information. Having the distribution, we can compute
the expected CLV, its variance, the customer-base risk, and also, the probability that
the customer is still alive in a given moment in the future, amongst other interesting
managerial applications.

3.2 PROPOSED SOLUTION

In this section we present a simulation-based solution to the CLVc equation and to
the model that considers the correlation between customers’ variables.
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We developed a model that is robust enough to (1) accommodate any distribution to
the interpurchase times variable, as well as to the rewards; (2) consider that customers can
have phases in which they are active (the supposition in this case is that the interpurchase
times distribution completely describes such variable), and phases when they aren’t; and,
(3) consider that the customers purchase behavior (and, therefore, their CLV) is correlated.

As discussed in section 3.1, we consider that CLVc might be correlated with
CLVd, c, d ∈ C, c 6= d. We don’t know the closed form of the CLVc distribution, so
we have to resort on some other way to assess this correlation structure. Considering
that CLVc is mainly dependent on the interpurchase time and on the rewards, then
the correlation between those two variables could give us a good approximation to ρc,d.
So, we compute the correlation between interpurchases and rewards for each customer
and between customers: (1) ρXic,Ric

> 0,∀c ∈ C, (2) ρXic,Xid
> 0,∀c, d ∈ C, ∀c 6= d, (3)

ρRic,Rid
> 0,∀c, d ∈ C, ∀c 6= d, and (4) ρXic,Rid

> 0,∀c, d ∈ CI, ∀c 6= d, and use the
Cholesky decomposition to generate series of correlated random numbers. The Cholesky
decomposition of a square matrix B of order n consists in finding a lower triangular
matrix T of the order n, such that B=TT’. The T matrix is called the Cholesky factor.
One important consideration is that the B matrix must be positive definite or positive
semi-definite.

In order to generate a sequence of correlated random numbers, we must follow
this procedure: (1) estimate the correlation structure (a correlation matrix) we want to
replicate, which we will call P, (2) compute the Cholesky factor T of the P matrix, (3)
generate series of uncorrelated random numbers, (4) normalize these series, (5) multiply
these sequences by T’, and (4) reverse the normalization. We used Cholesky decomposition
because it is very straightforward and efficient algorithm. In fact, any generalized square
root of P would produce the same effect.

Every correlation matrix is at least positive semi-definite. In most applications, the
empirical sequences of variables Xi and Ri, for two customers i and j, i 6= j, don’t have the
same length, that is, their numbers of purchases are different. To compute the correlation
between that variables for those customers, some data from the longest sequence must be
discarded. This poses a major problem in the estimation process, as we might lose a lot of
valuable data.

We propose a procedure to circumvent such a problem based on bootstrapping.
The pseudo-code of this procedure is presented in Algorithm 1. The summation of two
positive semi-definite matrices, as depicted in Step 8 of this Algorithm, is also a positive
semi-definite matrix. Therefore, it is guaranteed that the output of Algorithm 1 is also a
positive semi-definite matrix.

Using Algorithm 1 and the Cholesky decomposition, the simulated CLVc distri-
butions will be based on randomly generated and correlated series, whose correlation
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replicates the original structure found in data. This result is most important when the
objective is to generate a customer’s portfolio, because the customer-base risk (based on
covariance) is readily available in the CLVc distributions.

Algorithm 1 Bootstrapping procedure to generate a correlation matrix
Input: V vector of n variables with distinct lengths.
Output: AvgCor correlation matrix.

Step 1: Compute the length of the largest vector in V and assign it to m.

Step 2: Declare a m by n, Rmat matrix.

Step 3: Estimate the CDF for each vector in V.

Step 4: Populate Rmat by column with each vector of V combined with a zero vector of
length equal to the difference between m and the length of the corresponding vector
of V.

Step 5: For each column of Rmat, generate a random sequence of length equal to the
difference between m and the length of the corresponding vector of V, from the
corresponding CDF, and assign this sequence to the zeros part of the corresponding
column in Rmat.

Step 6: Compute the correlation matrix of Rmat and assign to Cmat.

Step 7: Assign Cmat to AvgCor.

Step 8: Repeat Steps 5 and 6, compute the weighted average between Cmat and AvgCor,
assign it to AvgCor and stop when reaches convergence of AvgCor.

Ross (1996) shows that the renewal functionmc(t), eq. 3, can be calculated by means
of the nth convolution of the interpurchase times distribution function with itself, which
corresponds to the sum of n random variables. Renewal functions of simple distributions,
such as the exponential (which leads to the Poisson process), are available. More complex
distributions don’t have a known renewal function, and taking into account the complexity
of the model, an analytical solution to eq. 13 could not be presented at the moment. We
have to resort on a numerical approximation to find solutions to the proposed equation.

Now we present the simulation method proposed to solve eq. 13, according to the
general procedure depicted in Figure 4. As was discussed in section 2.1, the relationship
between customer and companies can be classified as non-contractual or contractual. In
the non-contractual setting, companies don’t observe when the customer has stopped
purchasing with them, because there is no formal contractual instrument guiding the
relationship. If we only have transactional data from customers, then interpurchase times
and ticket values are the variables that can be used to identify her or his purchasing
pattern. Therefore, for the non-contractual setting, variables Xic and Ric are the main
variables described in Figure 4.
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In the contractual case, companies know when the customer has finished the
relationship with them. But more than that, there’s a pattern in time with respect to
contract-related expenditures. Normally, customers pay for the service monthly (credit
cards bills, for example). Because of that, we argue that a pattern in the customer’s
usage behavior could emerge. In order to identify and benefit from such pattern, for the
contractual setting, variables Qcp, Wcp, dic, and yic are the main variables (see Figure 4).

The CLVc is estimated by a finite sum of eq. 13. The discrete-event simulation
method used in this framework is presented in Algorithm 2. This algorithm follows the
notation presented bellow, in addition to the one presented in section 3.1.

θ̂ : Estimated vector of the main variables distribution parameters.
Loop_crit : Convergence criteria for each simulation run.
Loop_crit : Convergence criteria for the mean CLVc, ∀c ∈ C.
CLVc : Vector of simulated CLVc, c ∈ C, with length equal to the

number of simulation runs.
n_sim : Number of simulation runs.
RND : Vector of randomly generated numbers.

Figure 4 – Proposed solution method for the model

Customer`s 

transactions

Main variables 

distribution 

estimators ( )

Estimated correlation 

matrix (Algorithm 1) 

and Cholesky factor

Discrete-event 

simulation

(Algorithm 2)

Discount rate Active probability

CLV distribution for 

each customer

Source: the author.



32

Algorithm 2 Discrete-event simulation method to estimate CLVc

INPUT: θ̂, r, T , Loop_crit, Sim_crit.
OUTPUT: CLVc

1: Initialize variables: CLVc, InnerConvc, n_sim
2: repeat
3: Initialize variables: RND, CLVc, CLV ac, InnerConvc
4: repeat
5: RND = Random numbers for the main variables according to θ̂, ∀c ∈ C
6: Cholesky decomposition of RND with Cholesky factor T
7: Update Sic
8: Compute Pac(t), according to θ̂
9: Compute Raic(t)
10: InnerConvc =

(
Raic(t)
CLVc

< Loop_crit
)

11: Update CLVc
12: until Convc == true, ∀c ∈ C
13: OuterConvc =

(
mean(CLVc)(n_sim−1)+CLVc

n_sim < Sim_crit
)

14: Update CLVc

15: until OuterConvc == true, ∀c ∈ C
16: return CLVc
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4 EMPIRICAL ANALYSIS

In this chapter, we present the empirical tests performed with the model. We run
a set of tests with two data sets, representing two different relationships between company
and customer, that is, non-contractual and contractual.

All tests were run using R programming language (R Core Team, 2018), except for
the bootstrapping procedure described in Algorithm 1, which was coded in C++. The code
used for the non-contractual setting is presented in Appendix A, and for the contractual
setting, in Appendix B. The following sections shows the results.

4.1 NON-CONTRACTUAL SETTING

For the non-contractual setting, we used a set of transactions from a medium sized
groceries store located in the southern region of Brazil. This transactions set comprised
72,664 tickets between 02/Jan/2014 and 31/Oct/2015, and 561 randomly chosen, loyal
clients (i.e. clients that purchased using a credit scheme offered by the groceries store).
Table 4 shows descriptive statistics of ticket values and interpurchase times.

Table 4 – Transactions descriptive statistics from a groceries store

Ticket value (R$) Interpurchase times (days)
Mean 183.04 3.65
Standard deviation 1,276.00 3.47
Skewness 17.23 2.74
Kurtosis 365.51 12.11
Minimum 0.07 1
Maximum 48,244.09 43

Font: research data

We must emphasize the fact that the selected clients are considered to be loyal. So,
it is quite possible that the purchases frequency and total expenditures are larger than in
other situations. Also, we expect that the variables distributions are more stable, because
the customers possibly are using a high fraction of their budgets on the particular groceries
store, resulting in a smaller variability. Therefore, the results shown in this section cannot
be generalized to other situations, although the model still is generalizable to different
settings, companies, and industries.

Following the proposed solution for the model (Figure 4), firstly we defined the
distributions for variables Xic and Ric. One of the main characteristics of our model is that
it is robust enough to accommodate different distribution families for the variables. For
this reason, it can be easily adapted to different kinds of companies e customers, working
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on a non-contractual basis. All that is needed is the definition of the distributions that
best describe the behavior of those variables.

For the application in this dissertation, we used the empirical distribution for both
variables. After that, we followed Algorithm 1 to generate a correlation matrix between
those variables, for all customers, and computed the Cholesky factor.

We evaluated the running time of the correlation matrix estimation, varying the
number of customers (100, 200 and 400) and convergence criteria (0.1, 0.01 and 0.001) for
this estimation. The running times for convergence are shown in Table 5.

Table 5 – Running time for the correlations bootstrapping procedure with groceries data

Number of customers Convergence criteria Running time
100 .1 .36
200 .1 .89
400 .1 3.58
100 .01 1.50
200 .01 3.50
400 .01 15.86
100 .001 12.80
200 .001 35.61
400 .001 134.13

Source: the author.

The line graph in Figure 5 shows the growth in running time for convergence of
Algorithm 1, based in the Table 5 parameters. The x-axis values “Treatment” in this graph
are calculated as − log10(criteria). As we can see in Table 5 and Figure 5, the computation
time needed for convergence grows very quickly. Since there are two variables for each
customer, the matrix size is (2n)2 (n : number of customers). Given the quick growth in
computation time with respect to both number of customers and convergence criteria, the
decision on which convergence criteria to choose lies in the trade off between the precision
needed for the correlations and the computation time available.

The Pearson correlation coefficient between interpurchases and rewards, for each
customer and between customers, varied from −0.1142 to 0.3972 (excluding correlations
ρXic,Xic

, ∀c ∈ C and ρRic,Ric
, ∀c ∈ C). In order to illustrate the distribution of correlations

between those variables, a correlations matrix heat map is presented in Figure 6. The
top right corner and the bottom left corner shows the lowest and highest correlations,
respectively. As we can see, those variables are not strongly correlated. This could be due
to the nature of the particular business (groceries store), to the specific data set we used,
or even it is a general characteristic of the non-contractual setting. For that matter, we
suggest further investigations, since the correlations structure between customers directly
affect the construction of a customers portfolio.

With this procedure, we replicate the variable’s correlation structure in the sim-



35

Figure 5 – Convergence run time for the bootstrapping procedure to generate the correla-
tion matrix

Source: the author.

Figure 6 – Correlations matrix heat map for the groceries data set

Source: the author.
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ulations. Thereby, we expect that each customer’s simulated CLV distribution will be
correlated to each other customer’s CLV distributions, accordingly to the natural correla-
tion structure found in the transactions data. The main managerial implication for this
is that a customer’s portfolio based on these distributions will have a more realistic risk
assessment.

Following the procedure to compute customers values, we proceeded to simulate
eq. 13 using Algorithm 2. The annual discount rate was defined to 15%. Since we don’t
have the actual data for churn rates and the customers ages (to compute their actual
dying probability), we randomly attributed dates of birth to the customers and used the
mortality tables published by IBGE (IBGE, 2015) to compute their dying probability.
Variable Pac(t) is, therefore, the complement of the dying probability for a given customer.

Table 6 shows the running times and number of runs needed for the simulations
convergence.

Table 6 – Running time and number of runs for the convergence of simulations with
non-contractual data

Number of
customers

Active
probability

Correlation
structure

Convergence
criteria

Run time
(s)

Number of
simulation runs

100 False True 0.001 99.7 332
100 False True 0.01 13.7 48
100 False True 0.1 2.0 6
100 True False 0.001 252.4 365
100 True False 0.01 144.0 233
100 True False 0.1 46.0 68
200 False True 0.001 318.2 405
200 False True 0.01 48.6 71
200 False True 0.1 3.7 5
200 True False 0.001 3688.0 1895
200 True False 0.01 452.9 370
200 True False 0.1 72.9 54
400 False True 0.001 1417.8 511
400 False True 0.01 397.5 170
400 False True 0.1 29.9 11
400 True False 0.001 3505.4 1397
400 True False 0.01 829.0 326
400 True False 0.1 334.4 115

Source: the author.

Beyond the correlation structure that is considered in the simulated CLVs, we also
take into account the active probability for each customer. With this feature, we can
incorporate both the churn behavior and the customer’s dying probabilities. Given the
fact that we don’t necessarily need to stipulate an arbitrary, finite, simulation horizon,
the relationship end is incorporated in a more realistic fashion. The main managerial
implication is that the manager don’t need to decide a CLV estimation horizon for all
customers. A compound active probability (considering both churn and dying probabilities)
can be estimated based on actual data, which in turn, will handle the estimation horizon
endogenously.
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We selected ten customers simulated with the whole data set until convergence in
0.001, considering the correlation structure and don’t considering the active probability.
Their mean CLV and standard deviation (sd) from 482 independent runs are shown in
Table 7.

Table 7 – Mean CLV and standard deviation for a few customers of the non-contractual
data set

Customer Mean CLV Sd
78 12554.6 908.3

175 34532.4 1960.2
157 65022.4 15406.4
464 20841.9 2479.6
12 44701.8 3231.5

120 88994.5 5724.6
268 9179.9 835.7
383 44015.1 5374.4
548 14792.6 2048.6
439 17428.1 921.3
Source: the author.

The distribution of simulated CLVs (482 independent runs) from the first four
customers of Table 7 were plotted in histograms, as depicted in Figure 7.

Figure 7 – CLV distribution histograms for a few customers

(a) Customer 78 (b) Customer 175

(c) Customer 157 (d) Customer 464

Source: the author

As we can see in the four graphs of Figure 7, these histograms have a shape
similar to the Normal distribution. We ran a Shapiro-Wilk normality test with the CLV
distribution for all 561 simulated customers. Of the 561 customers, 269 adjusted (α = .05)
to the Normal distribution (47.95%), which is a low proportion.
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We tested for normality, but the simulated CLVs don’t necessarily need to follow
this family. In fact, there is no need to choose a theoretical family of distributions at all,
because the simulated distribution contains enough information: the moments (expected
value, variance, and so on) and the risk assessment (covariance between customers). So, one
of the main contributions of our model is to present a CLV distribution that summarizes
what we consider the most important features of customer’s behavior: (1) interpurchase
and ticket value distributions individually, (2) correlation between all customers, and (3)
individual active probabilities.

Figure 8 depicts the number of runs needed for simulation convergence, according
to the selected treatments, for the tested levels of numbers of customers. As we can see,
the lines representing the number of customers are almost parallel, with a small difference,
compared to the difference when we move to a more strict convergence criteria. It suggests
that the number of customers don’t affect the number of simulation runs as much as the
convergence criteria.

Figure 8 – Number of runs needed for convergence with different treatments, for the
non-contractual setting

Source: the author.

Figure 9 shows the run time needed for the simulations convergence, according
to each different convergence criteria (treatment), for the tested levels of numbers of
customers. Even though the number of customers do not affect the number of runs as
much as the convergence criteria, it does affect the runtime. The number of runs necessary
for convergence of a particular c customer has little effected from the number of customers
being simulated, but the data structures size increases significantly when we simulate
more customers. So, the larger difference between the simulations with small number of
customers (100 and 200) and the larger (400), in terms of run time, should be due to the
growth in data structures.
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Figure 9 – Convergence run time for different treatments, for the non-contractual setting

Source: the author.

Figure 10 presents the run time needed for simulation convergence with respect to
the number of customers, for the three different treatments. Again, we can see a quick
growth in run time needed for convergence when increasing both number of customers
and convergence criteria for the simulation.

Figure 10 – Convergence run time for different numbers of customers, for the non-
contractual setting

Source: the author.

We devise a few guidelines to choose the convergence criterion. If the decision
maker needs a very precise estimate of the mean, then a maximum width of the confidence
interval (CI) could be a good criterion, which would guide the necessary number of runs
to reduce the mean CI width to a desired value. Also, if the available time for simulation
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is low, then a maximum run time could be chosen. We would not suggest to diminish
our criterion (the difference between mean CLVc of two consecutive simulation runs) to a
more strict precision, because the mean CLVc is rather high.

4.2 CONTRACTUAL SETTING

For the contractual setting, we used a set of transactions from a credit card company.
This transactions set comprised 18,675 operations between 04/Jun/2012 and 06/Oct/2015,
and 79 clients. Table 8 shows descriptive statistics of ticket values and interpurchase times.

Table 8 – Transactions descriptive statistics from a credit card data set

Ticket value (R$) Interpurchase times (days)
Mean 78.94 3.04
Standard deviation 100.63 9.39
Skewness 3.71 12.37
Kurtosis 18.97 260.00
Minimum 0.29 0
Maximum 999.00 335

Font: authors archives

For the contractual case, the main variables chosen for the proposed solution (Figure
4) are: Qcp, Wcp, dic, and yic. We tested the adjust of those variables to several distribution
families. For variable Qcp, we used the two-sided truncated Normal distribution; for variable
Wcp, we used a one sided truncated (lower tail) Normal distribution; variable dic was
adjusted to a beta distribution; and variable yic was adjusted to a log-normal distribution.

As was discussed in section 3.2, the contractual setting generally has a specific
pattern regarding contract-related expenditures. In some cases, such pattern repeats
monthly, which generally coincides with the customer’s salary. This rationale justifies the
use of period-related variables, as the ones chosen.

Variable dic, and its CDF Fdic
, contain the information regarding purchases distribu-

tion along each period. For most services, customers may split their usages among different
service providers (e.g. customers may have more than one credit card). One important
managerial impact of our model is that the distribution Fdic

may indicate whether the
customer is splitting her or his usages between different providers. Since this variable has
a support between 0 and 1, its CDF can naturally be adjusted to a beta distribution. If
this distribution is not even (it’s not uniform), then probably the customer has more than
one provider for the particular service.

We ran Algorithm 1 for the data set, to get the Pearson correlation matrix between
variables Qcp and Wcp. The coefficients varied from −0.4457 to 0.8638 (excluding correla-
tions ρQcp,Qcp and ρWcp,Wcp , ∀c ∈ C). We draw a heat map with this correlation matrix,
which is depicted in Figure 11.
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Figure 11 – Correlations matrix heat map for the credit card data set

Source: the author.

We run the model with different levels of simulation convergence criteria (0.1, 0.01, 0.001),
considering the active probability, computing the correlation structure, and number of
customers (20, 40 and 79). Table 9 shows the runtime and number of simulation runs
necessary for convergence.
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Table 9 – Runtime and number of runs for the contractual setting simulations

Number of
customers

Active
probability

Correlation
structure

Convergence
criteria

Run time
(s)

Number of
simulation runs

20 False True 0.001 154.0 345
20 False True 0.01 13.6 26
20 False True 0.1 2.6 5
20 True False 0.001 115.1 204
20 True False 0.01 19.3 30
20 True False 0.1 2.7 4
40 False True 0.001 211.1 328
40 False True 0.01 31.4 46
40 False True 0.1 4.9 7
40 True False 0.001 342.5 410
40 True False 0.01 35.3 39
40 True False 0.1 3.6 4
79 False True 0.001 612.6 535
79 False True 0.01 59.5 55
79 False True 0.1 10.4 8
79 True False 0.001 735.9 501
79 True False 0.01 71.1 49
79 True False 0.1 18.5 11

Font: authors archives

We selected ten customers simulated with the whole data set until convergence in
0.001, considering the correlation structure and don’t considering the active probability.
Their mean CLV and standard deviation from 535 independent runs are shown in Table
10.

Table 10 – Mean CLV and standard deviation for a few customers of the contractual data
set

Customer Mean CLV Sd
75 2254.1 343.2
58 6087.9 829.6
25 1655.4 308.3
28 5508.9 763.9
42 13044.7 1591.6
32 13843 1176.7
14 23242.2 3408
51 5262.3 677.1
64 4194.4 595.4
72 21300.6 2387.4
Source: the author.

The distribution of simulated CLVs (535 independent runs) from four customers
were plotted in histograms, as depicted in Figure 12.

As we did in the non-contractual case, we tested these series against the hypothesis
of normality. Shapiro-Wilk test was used with the CLV distribution of all 79 customers of
the data set. Of those, 70 adjusted (α = .05) to the normal distribution (88.6%).
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Figure 12 – CLV distribution histograms for a few customers

(a) Customer 18 (b) Customer 19

(c) Customer 54 (d) Customer 64

Source: the author

Figure 13 depicts the number of runs needed for convergence, with different levels
of convergence criterion, and Figure 14 shows the convergence run time for the different
treatments chosen. As it happened in the non-contractual case, here we can see that the
number of runs necessary for convergence is less affected by the convergence criterion than
the run time, probably due to the fact that a single customer will take a very similar
number of runs to converge when the data set increases in number of customers. The quick
growth in run time for the 79-customers case, as compared to 20 and 40 customers cases,
could be due to the growth in the data structures and amount of randomly generated
numbers necessary for the simulator.

Figure 13 – Number of runs needed for convergence with different treatments, for the
contractual setting

Source: the author.
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Figure 14 – Convergence run time for different treatments, for the contractual setting

Source: the author.

Figure 15 shows the run time needed for the simulations convergence when changing
the number of customers, for the different levels of convergence criteria. When the treatment
is held fixed and the number of customers increases by an order of almost 4 (3.95, from
20 to 79), then the run time increases by an order of 735.9−154.0

154.0 = 3.77 in treatment 3
(convergence 0.001), by an order of 71.1−13.6

13.6 = 4.22 in treatment 2 (convergence 0.01), and
by an order of 18.5−2.6

2.6 = 6.11 in treatment 1 (convergence 0.1). This suggests that for a
given convergence criteria, an increase in the amount of simulated customers will cause
linear growth in run time, or even less than that.

This result demonstrates that even a programming language not intended for
strict performance, like R, but easier to program than faster languages, like C++, can be
used in some real world implementations. Fader, Hardie and Lee (2005) pointed out the
implementation easiness of their model, as the use of marketing models in actual practice
is becoming less of an exception, and more of a rule.
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Figure 15 – Convergence run time for different numbers of customers, for the contractual
setting

Source: the author.
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5 CONCLUSIONS

In this dissertation, we developed and implemented in two real cases a stochastic
model to estimate the discounted lifetime value of a customer. The problem addressed
consists in identifying a model that allows an adequate representation of the relationship
between customers and companies, so that one can obtain good predictions of future cash
flows that clients can provide to companies. The goal of this dissertation is, therefore, to
contribute to the body of research on CLV by developing a model that can estimate CLV
in two different configurations of customer-company settings The selected model is the
renewal reward process, a generalization of the Poisson process, which allows the use of
any probability distribution family to the interpurchase times variable.

The relationship between companies and customers is complex. The extant literature
has developed some methods to classify CLV-related problems, such as non-contractual
and contractual, as to the nature of the relationship, discrete and continuous, as to the
opportunities of transactions, and so forth. Bechwati and Eshghi (2005) points out that
models must take into account the patterns of cash flow: “it is not one size fits all”. Besides
that, dropout rates must be considered, possible correlation between customers, and the
possibility that, after leaving the company, the former client returns.

Our first specific objective leads us to identify the following relevant variables:
interpurchase times, rewards received from each customer, number of purchases made
by a customer in a given period, sum of rewards received from a customer in a given
period, normalized time of the ith purchase, and normalized rewards. Those variables were
operationalized according to the relationship nature between company and customer. Our
second specific objective leads us to attribute distribution functions families which best
fit the aggregate of customers. The third objective, successfully implemented, made the
problem even more complex, which is one of the reasons we had to resort on discrete-event
simulation method to solve it. Our fourth specific objective leads us to the renewal reward
process. Finally, regarding the fifth specific objective, we tested the model with two real
world sets of transactions, from two different settings.

We selected the aforementioned variables because they are readily available in a
company, or they can be easily computed from transactional data. Specifically in the case
of the variables used for the contractual setting, the choice is based on the patterns that
we suppose can be found in this particular setting. In this case, the contracted service
payments frequency may coincide with the customer’s salary frequency, possibly giving
rise to a pattern that repeats in these periods.

There are several CLV-correlated problems that can be found in the literature
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and that directly or indirectly affects customer profitability. Amongst them, we mention:
the estimation of dropout rates, a probability that a given customer is close to end his
relationship with the company, the link between customer equity (summation of CLVs
over all clients) and firm value, etc.

Our model is characterized by: allowing the variables to be adjusted to any distri-
bution family, considering an infinite prediction horizon, considering a possible correlation
structure between customers, and taking into account the specificities of the contractual
setting, by identifying a pattern in the purchases incidence. In short, it is flexible enough
to take into account all those characteristics when estimating CLV, or easily disconsider
some of them, when we find out that they’re not relevant to a specific application.

We point out the main managerial implications of our model: (1) the correlation
structure present in the transactional data is replicated in the simulated distributions,
which leads to a more realistic customers portfolio risk assessment; (2) the manager don’t
need to stipulate a simulation horizon, because the model internally handles the CLV
distribution convergence; (3) the manager can decide which CDFs will be adjusted to
the variables, which makes the model more robust and customizable to the application
specificities; (4) the consideration of a customizable active distribution makes the model
adaptable to the specific application churn behavior. More than that, if the manager finds
out that any of those customizations are not needed, it can easily be removed from the
model.

The model was implemented and solved using discrete-event simulation. It was run
using two real world data sets: one provided by a groceries store owner, and another by a
credit card company.

One of the limitations is that only one case was use to test each setting (contractual
and non-contractual). We also didn’t have access to dropout rates from the customers, so
we had to use artificially generated data to test a part of our model. Future studies could
explore our model in different industries, other than groceries and credit card. Due to a
relatively short time horizon in the data sets, it wasn’t possible to study the influence of
seasonality, which is likely to be present in both cases.
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APPENDIX A � FUNCTIONS USED TO

SIMULATE THE CLV MODEL WITH THE

NON-CONTRACTUAL SETTING

Main program.
1 ############################
2 # Non−con t ra c tua l Se t t i ng
3 # Main Program
4 #
5 ############################
6
7
8 #### HEADER ####
9 # I n i t i a l i z e environment

10 source ( " i n i t i a l i z a t i o n .R" )
11
12 # Load func t i on s
13 Load_Functions ( " General " , "CLV" , "Optim" , " Tests " , "Graph " )
14
15
16 #### SOLVE THE NON−CONTRACTUAL MODEL BY SIMULATION ####
17
18 # MODEL PARAMETERS
19 param <− l i s t (
20 # Name o f the data s e t
21 data_set = (_____) ,
22 # Minimun number o f ob s e rva t i on s per customer
23 min_obs = (_____) ,
24 # Remove o u t l i e r s from the data s e t ?
25 remove_o u t l i e r s = (_____) ,
26 # Amount o f s ub j e c t s to es t imate CLV
27 n_s ub j e c t s = (_____) ,
28 # Anual Discount ra t e
29 anual_d i s c_r a t e = (_____) ,
30 # Estimate the best d i s t r i b u t i o n to the data ? Else : emp i r i c a l
31 best_f i t = (_____) ,
32 # Use the v a r i a b l e s c o r r e l a t i o n s t r u c tu r e in the s imu la t i on ?
33 vars_c o r r e l = (_____) ,
34 # Convergence c r i t e r i a f o r the c o r r e l a t i o n matrix boots t rapp ing
35 co r r_converge = (_____) ,
36 # Consider the s u r v i v a l p r obab i l i t y o f each customer
37 s u r v i v a l_prob = (_____) ,
38 # Minimum r e l a t i v e p r e c i s i o n f o r the s imu la t i on convergence t e s t
39 sim_converge = (_____)
40 )
41
42
43 # CLV SIMULATIONS
44 #################
45 CLV_r e s u l t s <− compute_CLV()
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Initialization script.
1 ############################
2 # Workspace i n i t i a l i z a t i o n
3 #
4 ############################
5
6 # Remove v a r i a b l e s
7 rm( l i s t=l s ( ) )
8
9 # Clean memory

10 gc ( r e s e t = T)
11
12 # Set d e f au l t opt ions
13 Sys . s e t l o c a l e ( "LC_ALL" , " Engl i sh " )
14
15 # Load packages
16 source ( " Load_Packages .R" )
17
18 # Load func t i on s
19 source ( " Load_Functions .R" )
20
21 # Pa r a l l e l i z a t i o n
22 nCores <− detectCores ( log ica l = TRUE) − 1
23
24 # Clean conso l e
25 cat ( " \ f " )

Packages loading script.
1 # General s t a t i s t i c s
2 l ibrary (MASS)
3 l ibrary (VGAM)
4 l ibrary ( EnvStats )
5 l ibrary ( psych )
6
7 # Extreme value theory
8 l ibrary ( evd )
9

10 # Goodness−of− f i t t e s t s
11 l ibrary (ADGofTest )
12
13 # Data t rans fo rmat ion and s im i l a r packages
14 l ibrary ( p ly r )
15 l ibrary ( reshape2 )
16
17 # Graphics
18 l ibrary ( ggp lot2 )
19
20 # C++ in t e g r a t i o n
21 l ibrary (Rcpp)
22
23 # Pa r a l l e l i z a t i o n
24 l ibrary ( p a r a l l e l )
25
26 # Mathematical programming
27 l ibrary ( quadprog )
28 l ibrary ( lpSo lve )
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29
30 # Others
31 l ibrary ( t i c t o c )
32 l ibrary ( beepr )
33 l ibrary (microbenchmark )
34 l ibrary ( l ub r i d a t e )
35 l ibrary ( e ep t oo l s )

Definition of function Load_Functions().
1 Load_Functions <− function ( . . . ) {
2
3 p r e f i x <− c ( . . . )
4 func_l i s t <− vector ( )
5 for (p in p r e f i x ) {
6 func_l i s t <− c ( func_l i s t ,
7 dir (path = paste0 ( " . / f un c t i on s " ) ,
8 pattern = paste0 (p) ,
9 f u l l .names = TRUE)

10 )
11 }
12 for ( fun in func_l i s t ) {
13 i f ( g r ep l ( pattern = " .R" , x = fun ) ) {
14 source ( fun )
15 } else i f ( g r ep l ( pattern = " . cpp " , x = fun ) ) {
16 Rcpp : : sourceCpp ( fun )
17 }
18 }
19 cat ( " \ f " )
20 }

Definition of function compute_CLV().
1 compute_CLV <− function ( ) {
2
3 # 0 Preamble
4 r e s u l t <− l i s t ( )
5 chol_factor <− NULL
6 tCor <− NULL
7
8 da i l y_d i s c_r a t e <− −log (1 − param$anual_d i s c_r a t e ) / 365
9

10
11 # 1 Load data , remove z e r o e s
12 data <− read_data (data_set = param$data_set , remove_o u t l i e r s = param$remove_

ou t l i e r s ,
13 min_obs = param$min_obs )
14 f i r s t_day <− min(data$Date )
15 l a s t_day <− max(data$Date )
16 i f ( param$ s u r v i v a l_prob ) {
17 b i r t h s <− read . csv ( f i l e = " . . /supermercado_01/b i r th . csv " )
18 b i r t h s$b i r th <− as . Date (as . character ( b i r t h s$b i r th ) , format = "%Y−%m−%d" )
19 morta l i ty <− read . csv ( f i l e = " . . /morta l i ty_t ab l e s/morta l i ty_t ab l e_2015 . csv " )
20 }
21
22
23 # 2 Prepare data f o r the s imu la t i on s
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24 i d s <− unique (data$Cod_c l i )
25 # inc lude <− as . numeric ( u n l i s t ( read . csv ( " . . /supermercado_01/sampled_i d s . csv " ) ) )

[ 1 : param$n_s ub j e c t s ]
26 i n c lude <− sample ( ids , s i z e = param$n_s ub j e c t s )
27 rows_i n c l <− unlist ( lapply ( inc lude , function ( x ) which(data$Cod_c l i == x) ) )
28 sp l i t_data <− sp l i t ( x = data [ rows_i n c l , c ( 3 , 5 ) ] , f = data$Cod_c l i [ rows_i n c l ] )
29
30
31 # 3 Estimate the d i s t r i b u t i o n s parameters , means and sd
32 t i c ( " Parameter_e s t imat ion " )
33 # var_d i s t s <− s p l i t ( x = data [ rows_i n c l , c ( 3 , 5 ) ] , f = data$Cod_c l i [ rows_i n c l ] )
34 c l <− makeCluster ( nCores )
35 c lu s t e rExpor t ( c l , l i s t ( " f i t_d i s t " , " bes t_f i t " , " f i t_emp i r i c a l " , " param" ,
36 " gen_rnd " , " r emp i r i c a l " ) )
37 var_d i s t s <− parLapply ( c l , sp l i t_data , function ( x ) {
38 l ibrary (ADGofTest )
39 l ibrary ( evd )
40 RW <− f i t_d i s t ( s e r i e s = x [ , 1 ] , bes t_d i s t = param$best_f i t )
41 IP <− f i t_d i s t ( s e r i e s = x [ , 2 ] , bes t_d i s t = param$best_f i t )
42 return ( l i s t ( "RW" = RW, " IP " = IP ) )
43 })
44 s topClus t e r ( c l )
45 var_mean <− as . vector ( vapply ( sp l i t_data , function ( x ) {
46 RW_mean <− mean( x [ , 1 ] )
47 IP_mean <− mean( x [ , 2 ] )
48 return (c (RW_mean, IP_mean) )
49 } , FUN.VALUE = c ( . 1 , . 1 ) ) )
50 var_sd <− as . vector ( vapply ( sp l i t_data , function ( x ) {
51 RW_sd <− sd ( x [ , 1 ] )
52 IP_sd <− sd ( x [ , 2 ] )
53 return (c (RW_sd , IP_sd ) )
54 } , FUN.VALUE = c ( . 1 , . 1 ) ) )
55 tPar <− toc ( )
56
57
58 # 4 Estimate the c o r r e l a t i o n and decompose the matrix , when needed
59
60 i f ( param$vars_c o r r e l ) {
61 t i c ( " Cor r e l a t i on " )
62 cor_mat <− co r r_fun ( subj_vars = sp l i t_data ,
63 d i s t s = var_d i s t s ,
64 co r r_converge = param$ co r r_converge )
65 chol_factor <− chol ( cor_mat)
66 tCor <− toc ( )
67 }
68 i f ( param$cor_boots_only ) return (c ( param$n_sub j e c t s , param$ co r r_converge , as .

numeric ( tBot$toc−tBot$ t i c ) ) )
69
70
71 # 5 Separate the customer ’ s dates o f b i r th f o r the s imu la t i on
72 i f ( param$ s u r v i v a l_prob ) {
73 b i r t h s <− lapply (as . integer (names(var_d i s t s ) ) , function ( x ) {
74 b i r t h s$b i r th [which( b i r t h s$Cod == x) ]
75 })
76 }
77
78
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79 # 6 Run the s imu la t i on s f o r the datase t
80 t i c ( " S imulat ion " )
81 s imulated_CLV <− CLV_s imu la t i on (var_d i s t s = var_d i s t s ,
82 b i r t h s = b i r ths ,
83 morta l i ty = morta l i ty ,
84 chol_factor = chol_factor ,
85 d i s c_r a t e = da i l y_d i s c_rate ,
86 means = var_mean,
87 sds = var_sd ,
88 i n i_date = l a s t_day+1)
89 tSim <− toc ( )
90
91 r e s u l t <− l i s t ( " Customers " = as .numeric (names(var_d i s t s ) ) ,
92 "CLV_vec t o r s " = s imulated_CLV$CLV,
93 " Convergence_time " = s imulated_CLV$Convergence_time ,
94 "n_s imu la t i on s " = s imulated_CLV$n_runs ,
95 " Running_time " = c ( " Parameter_e s t imat ion "=tPar$toc−tPar$ t i c ,
96 " Co r r e l a t i on "=tCor$toc−tCor$ t i c ,
97 " S imulat ion "=tSim$toc−tSim$ t i c ) )
98 return ( r e s u l t )
99 }

Definition of function fit_empirical().
1 f i t_emp i r i c a l <− function ( s e r i e s ) {
2
3 l en <− length ( s e r i e s )
4 va lue s <− sort (unique ( s e r i e s ) )
5 d i s t <− data . frame ( " va lue s " = va lue s )
6
7 d i s t$ cd f <− vapply ( values , function ( x ) sum( s e r i e s <= x) / len , FUN.VALUE = . 1 )
8 d i s t <− as . matrix ( d i s t )
9

10 return ( d i s t )
11 }

Definition of function corr_fun().
1 co r r_fun <− function ( subj_vars , d i s t s , c o r r_converge ) {
2
3 # Prepare data
4 n_subj <− length ( subj_vars )
5 n_vars <− ncol ( subj_vars [ [ 1 ] ] )
6 matrix_dim <− n_subj ∗ n_vars
7 l <− vector (mode = " l i s t " , length = matrix_dim)
8 for ( i in 1 : n_subj ) {
9 l [ ( i ∗ n_vars − n_vars + 1) : ( i ∗ n_vars ) ] <− as . l i s t ( subj_vars [ [ i ] ] )

10 }
11
12 ## Compute the c o r r e l a t i o n matrix
13
14 # Populate i n i t i a l va lue s f o r i n i_mat
15 max_l en <− max( vapply ( l , length , FUN.VALUE = 1) )
16 i n i_mat <− vapply ( l , function ( x ) {
17 c (x , rep (NA, max_l en − length ( x ) ) )
18 } , FUN.VALUE = rep ( . 1 ,max_l en ) )
19
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20 # Estimate the emp i r i c a l d i s t r i b u t i o n s
21 d i s t s <− lapply ( l , f i t_emp i r i c a l )
22
23 # Compute the bootstrapped c o r r e l a t i o n matrix
24 co r r_matrix <− avg_cor ( i n i_mat = i n i_mat , d i s t s = d i s t s , converge = cor r_converge

)
25
26 return ( co r r_matrix )
27 }

Definition of functions rempirical() and avg_cor().
1 #include <Rcpp . h>
2 #include <cmath>
3 #include <chrono>
4
5 using namespace Rcpp ;
6
7 // [ [ Rcpp : : p lug in s ( cpp11 ) ] ]
8
9 int supremum(NumericVector A, double T){

10 int L = 0 ;
11 int R = A. s i z e ( ) ;
12
13 while (L < R){
14 int m = f l o o r ( (L + R) / 2) ;
15
16 i f (A[m] < T)
17 L = m + 1 ;
18 else
19 R = m;
20 }
21 return L ;
22 } ;
23
24 // [ [ Rcpp : : export ] ]
25 NumericVector r emp i r i c a l ( int n , NumericMatrix par ) {
26 // n : number o f random numbers to be generated
27 // par : two−column emp i r i c a l d i s t r i b u t i o n matrix
28
29 int idx ;
30 NumericVector u(n) ;
31 NumericVector Vr(n) ;
32
33 // Generate uni formly d i s t r i b u t e random numbers
34 u = run i f (n) ;
35
36 // Search for the supremum on the par_matrix
37 for ( int i =0; i<n ; i++){
38 idx = supremum( par . column (1) , u [ i ] ) ;
39 Vr [ i ] = par . column (0) [ idx ] ;
40 }
41 return Vr ;
42 }
43
44 NumericMatrix corC (NumericMatrix x ) {
45
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46 Environment s t a t s ( " package : s t a t s " ) ;
47 Function co r r=s t a t s [ " cor " ] ;
48 NumericMatrix out=cor r ( x ) ;
49
50 return out ;
51 }
52
53 NumericMatrix SumMat( NumericMatrix x , NumericMatrix y ) {
54
55 NumericMatrix out (x . nrow ( ) , x . nco l ( ) ) ;
56
57 for ( int i =0; i<x . nrow ( ) ; i++)
58 for ( int j =0; j<x . nco l ( ) ; j++)
59 out ( i , j ) = x ( i , j ) + y ( i , j ) ;
60 return out ;
61 }
62
63 NumericMatrix DifMat ( NumericMatrix x , NumericMatrix y ) {
64
65 NumericMatrix out (x . nrow ( ) , x . nco l ( ) ) ;
66
67 for ( int i =0; i<x . nrow ( ) ; i++)
68 for ( int j =0; j<x . nco l ( ) ; j++)
69 out ( i , j ) = x ( i , j ) − y ( i , j ) ;
70 return out ;
71 }
72
73 NumericMatrix DivMat ( NumericMatrix x , NumericMatrix y ) {
74
75 NumericMatrix out (x . nrow ( ) , x . nco l ( ) ) ;
76
77 for ( int i =0; i<x . nrow ( ) ; i++)
78 for ( int j =0; j<x . nco l ( ) ; j++)
79 out ( i , j ) = x ( i , j ) / y ( i , j ) ;
80 return out ;
81 }
82
83 NumericMatrix AbsMat( NumericMatrix x ) {
84
85 NumericMatrix out (x . nrow ( ) , x . nco l ( ) ) ;
86
87 for ( int i =0; i<x . nrow ( ) ; i++){
88 for ( int j =0; j<x . nco l ( ) ; j++){
89 out ( i , j ) = fabs (x ( i , j ) ) ;
90 }
91 }
92 return out ;
93 }
94
95 double AcumMat( NumericMatrix x ) {
96
97 int nCol = x . nco l ( ) ;
98 double out = 0 ;
99 for ( int i =0; i<nCol ; i++)

100 out += sum(x . column ( i ) ) ;
101 return out ;
102 }
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103
104 bool nextStepTest ( NumericMatrix x , double maxCrit ) {
105 // Returns true i f at l e a s t one c o r r e l a t i o n i s not l e s s e r than maxCrit
106
107 int nCol = x . nco l ( ) ;
108 int nRow = x . nrow ( ) ;
109 bool out = true ;
110 for ( int i =0; i<nRow ; i++)
111 for ( int j =0; j<nCol ; j++)
112 out = out & ( x ( i , j ) < maxCrit ) ;
113 return ! out ;
114 }
115
116 // [ [ Rcpp : : export ] ]
117 NumericMatrix avg_cor ( NumericMatrix i n i_mat , L i s t d i s t s , double converge ) {
118 /∗ i n i_mat : i n i t i a l va lue s o f the matrix , used to es t imate the emp i r i c a l CDF
119 the miss ing part w i l l be bootstraped
120 d i s t s : l i s t o f emp i r i c a l CDF matr i ce s
121 converge : the minimum convergence decimal for the c o r r e l a t i o n s ∗/
122
123 int Ncol = i n i_mat . nco l ( ) ;
124 int Nrow = i n i_mat . nrow ( ) ;
125 In tege rVector l en_rand = rep (0 , Ncol ) ;
126 NumericMatrix r_mat( c lone ( i n i_mat) ) ; // bootstraped matrix
127 NumericMatrix r_cor ( Ncol , Ncol ) ; // Randomly generated c o r r e l a t i o n matrix
128 NumericMatrix d i f f ( Ncol , Ncol ) ; // Matrix w d i f f e r e n c e s between new and avg

co r r
129 NumericMatrix out ( Ncol , Ncol ) ; // Average c o r r e l a t i o n s matrix
130 NumericMatrix auxOut (Ncol , Ncol ) ;
131 bool next = true ;
132
133 // 0 Compute the l ength o f the random part o f each va r i ab l e
134 for ( int j =0; j<Ncol ; j++)
135 for ( int i =0; i<Nrow ; i++)
136 i f ( r_mat . column ( j ) [ i ] == NA)
137 l en_rand [ j ]++;
138
139 int N = 1 ;
140
141 // 1 Populate the random part o f out
142 for ( int j =0; j<Ncol ; j++)
143 for ( int i =0; i<l en_rand [ j ] ; i++)
144 r_mat ( (Nrow − l en_rand [ j ] + i ) , j ) = as<double>( r emp i r i c a l (1 , d i s t s [ j ] ) ) ;
145
146 // 2 Compute the c o r r e l a t i o n matrix
147 out = corC ( r_mat) ;
148
149 while ( next ) {
150 N++;
151
152 // 3 Repopulate the random part o f out
153 for ( int j =0; j<Ncol ; j++)
154 for ( int i =0; i<l en_rand [ j ] ; i++)
155 r_mat ( (Nrow − l en_rand [ j ] + i ) , j ) = as<double>( r emp i r i c a l (1 , d i s t s [ j ] ) ) ;
156
157 // 4 Recompute the c o r r e l a t i o n matrix
158 r_cor = corC ( r_mat) ;
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159
160 // 5 Compute the new average c o r r e l a t i o n matrix
161 auxOut = out ;
162 out = SumMat( ( out ∗ (N−1) ) , r_cor ) / N;
163
164 // 6 Compute the s top ing c r i t e r i a
165 d i f f = AbsMat(DifMat ( out , auxOut ) ) ;
166 next = nextStepTest ( d i f f , converge ) ;
167 }
168 return out ;
169 }

Definition of function CLV_simulation().
1 CLV_s imu la t i on <− function (var_d i s t s , b i r ths , morta l i ty , means , sds ,
2 chol_factor = NULL, d i s c_rate , i n i_date ) {
3
4 n_i n i <− 500 # i n i t i a l amount o f random numbers f o r each customer
5 seq_min <− rep (TRUE, 10) # Minimum sequence l ength o f converged d i f f e r e n c e s
6 n_cus <− length (var_d i s t s )
7 RW_idx <− seq (1 , n_cus∗2−1, by = 2)
8 IP_idx <− seq (2 , n_cus∗2 , by = 2)
9 CLV <− matrix (nrow = 0 , ncol = n_cus )

10 mean_CLV <− rep (0 , length = n_cus )
11 converge_mat <− matrix (nrow = 0 , ncol = n_cus )
12 n_path <− 1
13 # sim_time <− 0
14
15
16 ## LOOP FOR THE SERIES OF SIMULATIONS
17 repeat{
18 # t i c ( " path_time " )
19 # pr in t ( paste ( " path " , n_path ) )
20
21 # I n i t i a l i z e the s imu la t i on v a r i a b l e s
22 rnd_vars <− matrix (nrow = 0 , ncol = 2∗n_cus )
23 IP_cum <− matrix (nrow = 0 , ncol = n_cus )
24 RW_d i s c <− matrix (nrow = 0 , ncol = n_cus )
25 RW_cum_d i s c <− matrix (nrow = 0 , ncol = n_cus )
26 a c t i v e <− matrix (data = TRUE, nrow = n_i n i , ncol = n_cus )
27 converge_row <− rep (0 , n_cus )
28 n_run <− 1
29
30 # Randomly gene ra t e s dates at which customers w i l l die , i f nece s sa ry
31 i f ( param$ s u r v i v a l_prob ) d i e_dates <− d i e_date_fun ( dates_b i r t h s = b i r ths , i n i_date

, mor ta l i ty )
32
33
34 ## LOOP FOR A SINGLE PATH
35 repeat{
36 # pr in t ( paste ( " run " , n_run ) )
37
38 # Computes the cur rent run s imu la t i on rows
39 run_rows <− (n_run ∗ n_i n i − n_i n i + 1) : ( n_run ∗ n_i n i )
40
41 # 0 Generate s e r i e s o f unco r r e l a t ed random va r i a b l e s
42 rnd_l i s t <− lapply (var_d i s t s , function ( x ) {
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43 RW_d i s t <− x$RW$ d i s t
44 RW_par <− x$RW$pars
45 IP_d i s t <− x$IP$ d i s t
46 IP_par <− x$IP$pars
47
48 IP_rnd <− gen_rnd (n = n_i n i , d i s t = IP_d i s t , par = IP_par , var = " IP " )
49 RW_rnd <− gen_rnd (n = n_i n i , d i s t = RW_d i s t , par = RW_par , var = "RW" )
50 out <− matrix (data = c (RW_rnd , IP_rnd ) , ncol = 2 , byrow = F)
51
52 return ( out )
53 })
54 rnd_vars <− rbind ( rnd_vars , do . c a l l (cbind , rnd_l i s t ) )
55
56 # 1 Mu l t i p l i c a t e by Cholesky , i f needed
57 i f ( param$vars_c o r r e l ) {
58 # Standard ize the s e r i e s
59 rnd_vars [ run_rows , ] <− sweep( rnd_vars [ run_rows , ] , 2 , means ) %∗% diag (1/ sds )
60
61 # Mult ip ly the s e r i e s by the Cholesky f a c t o r
62 rnd_vars [ run_rows , ] <− rnd_vars [ run_rows , ] %∗% chol_factor
63
64 # Reverse the s t anda rd i z a t i on
65 rnd_vars [ run_rows , ] <− sweep ( ( rnd_vars [ run_rows , ] %∗% diag ( sds ) ) , 2 , means , "+" )
66 }
67
68 # 2 Update IP_cum
69 IP_cum <− apply ( rnd_vars [ , IP_idx ] , 2 , cumsum)
70
71 # 3 Computes the vec to r o f dates and the vec to r o f morta l i ty , i f needed
72 i f ( param$ s u r v i v a l_prob ) {
73 for ( i in 1 : n_cus ) {
74 t e s t_dates <− i n i_date + IP_cum [ run_rows , i ]
75 a c t i v e [ , i ] <− t e s t_dates < d ie_dates [ [ i ] ]
76 }
77 }
78
79 # 3 Update RW_cum_d i s c
80 RW_d i s c <− rbind (RW_disc ,
81 rnd_vars [ run_rows , RW_idx ] ∗
82 exp(−d i s c_r a t e ∗ IP_cum [ run_rows , ] ) ∗
83 a c t i v e )
84 RW_cum_d i s c <− apply (RW_disc , 2 , cumsum)
85
86 # 3 Compute convergence only f o r non converged customers
87 not_conv <− which( converge_row == 0)
88 converge_row [ not_conv ] <− apply (RW_cum_d i s c [ run_rows , not_conv , drop=F] , 2 ,

function ( x ) {
89 d i f f e r e n c e s <− d i f f ( x ) / x [ 1 : ( length ( x )−1) ]
90 d i f f e r e n c e s [ i s .nan( d i f f e r e n c e s ) ] <− 0
91 t e s t <− d i f f e r e n c e s < .001
92 t rue_i n i <− which( t e s t [ 1 : ( length ( t e s t )−length ( seq_min)+1) ] )
93 converge <− sapply ( t rue_i n i , function ( i n i )
94 a l l ( t e s t [ i n i : ( length ( seq_min)+in i −1) ] == seq_min) )
95 i f (any( converge ) ) {
96 converge <− t rue_i n i [ converge ] [ 1 ]
97 row <− converge + n_i n i ∗ (n_run − 1)
98 return (row)
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99 } else {
100 return (0 )
101 }
102 })
103
104 # 4 Test f o r convergence o f a l l customers
105 i f (any( converge_row == 0) ) {
106 n_run <− n_run + 1
107 } else {
108 converge_mat <− rbind ( converge_mat , diag ( IP_cum [ converge_row , ] ) )
109 break
110 }
111 } # End o f s i n g l e path
112
113 # 5 Save the s imulated CLVs
114 CLV <− rbind (CLV,
115 diag ( sapply ( converge_row , function ( x ) RW_cum_d i s c [ x , ] ) ) )
116
117 i f (n_path >= 2) {
118 new_mean <− (mean_CLV ∗ (n_path − 1) + CLV[ n_path , ] ) / n_path
119 conv_aux <− abs (mean_CLV − new_mean) / mean_CLV < param$sim_converge
120 conv_t e s t <− a l l ( conv_aux )
121
122 end_path <− toc ( qu i e t = TRUE)
123 # sim_time <− sim_time + end_path$ toc − end_path$ t i c
124 print (paste (n_path , " : ␣ " , sum( conv_aux ) , "/ " , n_cus , sep = " " ) )
125 # i f ( conv_t e s t | ( sim_time > 3600) ) break
126 i f ( conv_t e s t ) break
127 } else {
128 mean_CLV <− as . vector (CLV)
129 }
130 n_path <− n_path + 1
131 } # End o f s imu la t i on s
132
133 r e s u l t <− l i s t ( "CLV" = CLV,
134 " Convergence_time " = converge_mat ,
135 "n_runs " = n_path )
136 return ( r e s u l t )
137 }

Definition of function die_date_fun().
1 d i e_date_fun <− function ( dates_b i r ths , i n i_date , mor ta l i ty ) {
2 out <− lapply ( dates_b i r ths , function ( x ) {
3 age <− f loor ( age_c a l c (x , enddate = i n i_date , un i t s = " years " ) )
4 row <− which( mor ta l i ty [ , 1 ] == age ) + 1
5 ra <− runif (1 )
6 for ( i in row :nrow( mor ta l i ty ) ) {
7 i f ( ra <= morta l i ty [ i , 2 ] ) break
8 }
9 d i e_age <− morta l i ty [ i , 1 ]

10 rm <− runif (1 )
11 d i e_date <− ( x + years ( d i e_age ) ) %m+% months ( cei l ing (rm ∗ 12) )
12 return ( d i e_date )
13 })
14 return ( out )
15 }
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Definition of function gen_rnd().
1 gen_rnd <− function (n , d i s t , par , var ) {
2
3 i f ( d i s t == " gev " ) {
4 out <− rgev (n , par [ 1 ] , par [ 2 ] , par [ 3 ] )
5 } else i f ( d i s t == " we ibu l l " ) {
6 out <− rweibull (n , par [ 1 ] , par [ 2 ] )
7 } else i f ( d i s t == "gamma" ) {
8 out <− rgamma(n , par [ 1 ] , par [ 2 ] )
9 } else i f ( d i s t == " emp i r i c a l " ) {

10 out <− r emp i r i c a l (n , par = par )
11 }
12
13 i f (var == " IP " ) {
14 # Always gene ra t e s >= 1 va lues f o r IP
15 out [which( out <= 0) ] <− 1
16 }
17
18 return (unname( out ) )
19 }
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APPENDIX B � FUNCTIONS USED TO

SIMULATE THE CLV MODEL WITH THE

CONTRACTUAL SETTING

Main program.

1

2 ##########################
3 # Contractual Se t t i ng
4 # Main Program
5 #
6 ##########################
7

8

9 #### HEADER ####
10 # I n i t i a l i z e environment
11 source ( " i n i t i a l i z a t i o n .R" )
12

13 # Load func t i on s
14 Load_Functions ( "Data " , " Vars " , " D i s t r i bu t i o n s " , " S imulat ion " , " Test " ,

"Graph " )
15

16

17 #### SOLVE THE CONTRACTUAL MODEL BY SIMULATION ####
18

19 # MODEL PARAMETERS
20

21 param <− l i s t (
22 # Name o f the data s e t
23 data_set = (_____) ,
24 # Minimun number o f ob s e rva t i on s per customer
25 min_obs = (_____) ,
26 # Remove o u t l i e r s from the data s e t ?
27 remove_o u t l i e r s = (_____) ,
28 # Fract ion o f s ub j e c t s to es t imate CLV
29 n_s ub j e c t s = (_____) ,
30 # Anual Discount ra t e
31 anual_d i s c_r a t e = (_____) ,
32 # Estimate the bes t d i s t r i b u t i o n to the data ? Else : emp i r i c a l
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33 best_f i t = (_____) ,
34 # Use the v a r i a b l e s c o r r e l a t i o n s t r u c tu r e in the s imu la t i on ?
35 vars_c o r r e l = (_____) ,
36 # Consider the s u r v i v a l p r obab i l i t y o f each customer
37 s u r v i v a l_prob = (_____) ,
38 # Minimum r e l a t i v e p r e c i s i o n f o r the s imu la t i on convergence t e s t
39 sim_converge = (_____)
40 )
41

42 # ESTIMATE CLVs
43 CLV_r e s u l t s <− compute_CLV( )

Packages loading script.

1 # General s t a t i s t i c s
2 l ibrary (MASS)
3 l ibrary ( r r i s kD i s t r i b u t i o n s )
4 l ibrary (msm)
5 l ibrary ( EnvStats )
6

7 # Data t rans fo rmat ion and s im i l a r packages
8 l ibrary ( reshape2 )
9

10 # Graphics
11 l ibrary ( ggp lot2 )
12

13 # C++ in t e g r a t i o n
14 l ibrary (Rcpp)
15

16 # Pa r a l l e l i z a t i o n
17 l ibrary ( p a r a l l e l )
18

19 # Others
20 l ibrary ( t i c t o c )
21 l ibrary ( beepr )
22 l ibrary (microbenchmark )
23 l ibrary ( l ub r i d a t e )
24 l ibrary ( e ep t oo l s )

Definition of function compute_CLV().

1 compute_CLV <− function ( ) {
2

3 # 0 Preamble
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4 dayly_d i s c_r a t e <− −log (1 − param$anual_d i s c_r a t e ) / 365
5

6

7 # 1 Load data
8 data <− read_data (data_set = param$data_set , remove_o u t l i e r s = param$

remove_ou t l i e r s ,
9 min_obs = param$min_obs )

10 i d s <− unique (data$Cl i en t e )
11 i n c lude_i d s <− sample ( x = ids , s i z e = param$n_s ub j e c t s )
12 i n c lude_rows <− unlist ( lapply ( i n c lude_ids , function ( x ) which(data$

Cl i en t e == x) ) )
13 data <− data [ i n c lude_rows , ]
14 i d s <− unique (data$Cl i en t e )
15 # i n i_date <− as . Date ( paste ("1−" ,month(max( data$Data . da . Transacao ) ) ,

"−" , year (max( data$Data . da . Transacao ) ) , sep = " " ) , format = "%d−%m
−%Y" )

16 i n i_date <− dmy(paste ( "1−" ,month(max(data$Data . da . Transacao ) )+1, "−" ,
year (max(data$Data . da . Transacao ) ) , sep = " " ) )

17

18 i f ( param$ s u r v i v a l_prob ) {
19 b i r t h s <− read . csv ( f i l e = " . . /cc_movimentos/b i r th . csv " ,

s t r i ng sAsFac to r s = FALSE)
20 b i r t h s$b i r th <− ymd( b i r t h s$b i r th )
21 morta l i ty <− read . csv ( f i l e = " . . /morta l i ty_t ab l e s/morta l i ty_t ab l e_

2015 . csv " )
22 }
23

24 # 2 Compute the model ’ s v a r i a b l e s
25 Q_w_month <− q_w_month_fun (data , i d s )
26 d_purch <− d_purch_fun (data , i d s )
27 d_rewards <− R_fun (data , ids , Q_w_month)
28

29

30 # 3 Estimate the d i s t r i b u t i o n parameters
31 Q_par <− t ( vapply ( ids , function ( x ) {
32 s e r i e s <− Q_w_month$monthly_purchases [which(Q_w_month$ id == x) ]
33 # s e r i e s <− s e r i e s [ ! s e r i e s == 0 ]
34 q <− msm: : qtnorm (p = c ( 0 . 025 , 0 . 5 , 0 . 75 , 0 . 975 ) , mean = mean(

s e r i e s ) , sd = sd ( s e r i e s ) , lower = 0 , upper = 1)
35 suppressWarnings (get . tnorm . par (q = q , show . output = FALSE) )
36 # get . tnorm . par ( q = q , show . output = FALSE)
37 } , FUN.VALUE = rep ( . 1 , 4 ) ) )
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38 W_par <− t ( vapply ( ids , function ( x ) {
39 s e r i e s <− Q_w_month$sum_purch [which(Q_w_month$ id == x) ]
40 # s e r i e s <− s e r i e s [ ! s e r i e s == 0 ]
41 q <− msm: : qtnorm (p = c ( 0 . 025 , 0 . 5 , 0 . 75 , 0 . 975 ) , mean = mean(

s e r i e s ) , sd = sd ( s e r i e s ) , lower = 0)
42 suppressWarnings (get . tnorm . par (q = q , show . output = FALSE) )
43 } , FUN.VALUE = rep ( . 1 , 4 ) ) )
44 d_purch_par <− t ( vapply (d_purch , function ( x ) {
45 suppressWarnings ( ebeta (x , method = "mle " )$parameters )
46 } , rep ( . 1 , 2 ) ) )
47 d_rewards_par <− t ( vapply (d_rewards , function ( x ) {
48 f i t d i s t r (x , densfun = " log−normal " )$ es t imate
49 } , rep ( . 1 , 2 ) ) )
50

51 # 4 Compute mean and sd f o r vars Q_m and W_m
52 # Q_mean_sd <− data . frame ( "mean"=E_tnorm (Q_par [ , 1 ] ,Q_par [ , 2 ] ,Q_par

[ , 3 ] ,Q_par [ , 4 ] ) ,
53 # " sd"=sd_tnorm (mean = Q_par [ , 1 ] , sd = Q_par

[ , 2 ] , lw = Q_par [ , 3 ] , up = Q_par [ , 4 ] ) )
54 # W_mean_sd <− data . frame ( "mean"=W_par [ , 1 ] ,
55 # " sd"= sq r t ( (W_par [ , 1 ] ∗pi ^2)/3) )
56

57

58 # 4 Estimate the c o r r e l a t i o n between Q_month and W_month
59 # and decompose the matrix , when needed
60 i f ( param$vars_c o r r e l ) {
61 t i c ( " Cor r e l a t i on " )
62 cor_mat <− co r r_fun ( input_data = Q_w_month [ , c ( 1 , 5 , 6 ) ] ,
63 Q_par ,
64 W_par , ids , c o r r_converge = .001 )
65 chol_factor <− chol ( cor_mat)
66 tCor <− toc ( )
67 }
68

69

70 # 5 Separate the customer ’ s dates o f b i r th f o r the s imu la t i on
71 i f ( param$ s u r v i v a l_prob ) {
72 b i r t h s <− lapply ( ids , function ( x ) {
73 b i r t h s$b i r th [which( b i r t h s$Cod == x) ]
74 })
75 }
76
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77

78 # 6 Run the s imu la t i on s
79 t i c ( " S imulat ion " )
80 s imulated_CLV <− CLV_s imu la t i on (Q_par , W_par , d_purch_par , d_rewards_

par ,
81 b i r ths , morta l i ty , chol_factor ,
82 d i s c_r a t e = dayly_d i s c_rate ,
83 i n i_date = i n i_date )
84 tSim <− toc ( )
85

86 r e s u l t <− l i s t ( " Customers " = ids ,
87 "CLV_vec to r s " = s imulated_CLV$CLV,
88 " Convergence_time " = simulated_CLV$Convergence_time ,
89 "n_s imu la t i on s " = s imulated_CLV$n_runs ,
90 " Running_time " = tSim$toc−tSim$ t i c )
91 return ( r e s u l t )
92 }

Definition of function q_w_month_fun().

1 q_w_month_fun <− function (data , i d s ) {
2

3 unique_month <− lapply ( ids , function ( x ) {
4 rows <− which(data$Cl i en t e == x)
5 n <− length ( rows )
6

7 f i r s t <− as . Date (
8 paste ( "1−" , month(data$Data . da . Transacao [ rows [ 1 ] ] ) , "−" , year (data$

Data . da . Transacao [ rows [ 1 ] ] ) , sep = " " ) ,
9 format = "%d−%m−%Y" )

10 l a s t <− as . Date (
11 paste ( "1−" , month(data$Data . da . Transacao [ rows [ n ] ] ) , "−" , year (data$

Data . da . Transacao [ rows [ n ] ] ) , sep = " " ) ,
12 format = "%d−%m−%Y" )
13 seq_m <− seq ( from = f i r s t , to = la s t , by = "month " )
14 df <− data . frame ( " id " = x , "month "=seq_m)
15 return (df )
16 })
17 out <− do . ca l l ( rbind , unique_month)
18 out$month <− ymd( out$month)
19

20 c l <− makeCluster ( nCores )
21 c lu s t e rExpor t ( c l , l i s t ( " data " ) , env i r = environment ( ) )
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22 vars_vec <− t ( parApply ( c l , out , 1 , function ( y ) {
23 l ibrary ( l ub r i d a t e )
24 c l i <− as .numeric ( y [ [ 1 ] ] )
25 dt <− ymd(y [ [ 2 ] ] )
26 purchases <− which(data$Cl i en t e == c l i &
27 month(data$Data . da . Transacao ) == month(dt ) &
28 year (data$Data . da . Transacao ) == year (dt ) )
29 days_purch <− day (data$Data . da . Transacao [ purchases ] )
30 n_purch <− length ( days_purch )
31 d i f f_days_purch <− length (unique ( days_purch ) )
32 amount <− sum(data$Valor . da . Transacao [ purchases ] )
33 return (c (n_purch , d i f f_days_purch , amount ) )
34 }) )
35 s topClus t e r ( c l )
36 out$n_purchases <− vars_vec [ , 1 ]
37 out$days_purch <− vars_vec [ , 2 ]
38 var <− out$days_purch / n_days ( out$month)
39 out$monthly_purchases <− var
40 out$sum_purch <− vars_vec [ , 3 ]
41 return ( out )
42 }

Definition of function d_purch_fun().

1 d_purch_fun <− function (data , i d s ) {
2 d <− lapply ( ids , function ( x ) {
3 rows <− which(data$Cl i en t e == x)
4 dates <− data$Data . da . Transacao [ rows ]
5 day ( dates ) / n_days ( dates )
6 })
7 return (d)
8 }

Definition of function R_fun().

1 R_fun <− function (data , ids , W) {
2 purch_vec to r s <− vector (mode = " l i s t " , length = nrow(W) )
3 id_rows <− lapply ( ids , function ( x ) which(W$ id == x) )
4 out <− vector (mode = " l i s t " , length = length ( i d s ) )
5 for ( i in 1 :nrow(W) ) {
6 rows <− which(data$Cl i en t e == W$ id [ i ] &
7 month(data$Data . da . Transacao ) == month(W$month [ i ] ) &
8 year (data$Data . da . Transacao ) == year (W$month [ i ] ) )
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9 purch_vec to r s [ [ i ] ] <− data$Valor . da . Transacao [ rows ] / sum(data$Valor .
da . Transacao [ rows ] )

10 }
11

12 for ( i in 1 : length ( i d s ) ) {
13 out [ [ i ] ] <− unlist ( purch_vec to r s [ id_rows [ [ i ] ] ] )
14 }
15 names( out ) <− i d s
16 return ( out )
17 }

Definition of function CLV_simulation().

1 CLV_s imu la t i on <− function (Q_par , W_par , d_purch_par , d_rewards_par ,
2 b i r ths , morta l i ty , chol_factor , d i s c_rate , i n i_date ) {
3

4 n_i n i <− 12 # i n i t i a l amount o f months f o r each customer
5 n_path <− 1
6 n_cus <− nrow(Q_par )
7 Q_W_par <− sp l i t (cbind (Q_par , W_par ) , seq (n_cus ) )
8 Q_c o l s <− seq ( from = 1 , by = 2 , length . out = n_cus )
9 W_c o l s <− seq ( from = 2 , by = 2 , length . out = n_cus )

10 CLV <− matrix (data = 0 , nrow = 0 , ncol = n_cus )
11 conv_t <− rep (0 , n_cus )
12 conv_vec <− matrix (data = 0 , nrow = 0 , ncol = n_cus )
13 a c t i v e <− lapply ( 1 : n_cus , function ( x ) rep (T, n_i n i ) )
14 sim_time <− 0
15 # Q_W_means <− as . double ( u n l i s t ( s p l i t ( cbind (Q_mean_sd [ , 1 ] , W_mean_sd

[ , 1 ] ) , seq (n_cus ) ) ) )
16 # Q_W_sds <− as . double ( u n l i s t ( s p l i t ( cbind (Q_mean_sd [ , 2 ] , W_mean_sd

[ , 2 ] ) , seq (n_cus ) ) ) )
17

18

19 ## LOOP FOR THE SERIES OF SIMULATIONS
20

21 repeat{
22 # pr in t ( paste ( " path " , n_path ) )
23 t i c ( " path_time " )
24

25 sim_months <− seq ( i n i_date , by = "months " , length . out = n_i n i )
26 n_run <− 1
27 run_rows <− (1+n_run∗n_i n i−n_i n i ) : ( n_run∗n_i n i )
28 CLV_single <− rep (0 , n_cus )
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29 CLV_aux <− rep (0 , n_cus )
30 days2sum <− 0
31 converge <− rep (FALSE, n_cus )
32

33 # Randomly gene ra t e s dates at which customers w i l l die , i f nece s sa ry
34 i f ( param$ s u r v i v a l_prob ) d i e_dates <− d i e_date_fun ( dates_b i r t h s =

b i r ths , i n i_date , mor ta l i ty )
35

36

37 ## LOOP FOR A SINGLE PATH
38 repeat{
39 # pr in t ( paste ( " run " , n_run ) )
40 n_days_months <− n_days ( sim_months ) # n_days f o r the loop months

only
41

42 # 0 Generate v a r i a b l e s Q_m and W_m
43 rnd_l i s t <− lapply (Q_W_par , function ( x ) {
44 Q <− rtnorm (n_i n i , mean = x [ [ 1 ] ] , sd = x [ [ 2 ] ] , lower = x [ [ 3 ] ] , upper

= x [ [ 4 ] ] )
45 W <− rtnorm (n_i n i , x [ [ 5 ] ] , x [ [ 6 ] ] , x [ [ 7 ] ] , x [ [ 8 ] ] )
46 return (cbind (Q, W) )
47 })
48 rnd_Q_W <− do . ca l l (cbind , rnd_l i s t )
49

50 # 1 Mu l t i p l i c a t e by Cholesky , i f needed
51 i f ( param$vars_c o r r e l ) {
52 # Standard ize the s e r i e s
53 Q_W_means <− colMeans ( rnd_Q_W[ run_rows , ] )
54 Q_W_sds <− apply ( rnd_Q_W[ run_rows , ] , 2 , sd )
55 rnd_Q_W <− sweep( rnd_Q_W[ run_rows , ] , 2 , Q_W_means ) %∗% diag (1/Q_W_

sds )
56

57 # Mult ip ly the s e r i e s by the Cholesky f a c t o r
58 rnd_Q_W[ run_rows , ] <− rnd_Q_W[ run_rows , ] %∗% chol_factor
59

60 # Reverse the s t anda rd i z a t i on
61 rnd_Q_W <− sweep ( ( rnd_Q_W[ run_rows , ] %∗% diag (Q_W_sds ) ) , 2 , Q_W_means

, "+" )
62 }
63

64 # 2 Compute ac tua l number o f purchases in each month (Q_month ∗ days_
in_month)
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65 rnd_Q_W[ run_rows , Q_c o l s ] <− sweep( rnd_Q_W[ run_rows , Q_c o l s ] , MARGIN
= 1 , n_days_months , "∗ " )

66 rnd_Q_W[ run_rows , Q_c o l s ] <− round( rnd_Q_W[ run_rows , Q_c o l s ] )
67

68 # 3 When Q_m i s negat ive , Q_m <− 0 and W_m <− 0
69 # When W_m i s negat ive , W_m <− Q_m ∗ . 01
70 to_zero <− rnd_Q_W[ run_rows , Q_c o l s ] < 0
71 rnd_Q_W[ run_rows , Q_c o l s ] [ to_zero ] <− 0
72 rnd_Q_W[ run_rows , W_c o l s ] [ to_zero ] <− 0
73 to_i n c r <− rnd_Q_W[ run_rows , W_c o l s ] < 0
74 rnd_Q_W[ run_rows , W_c o l s ] [ to_i n c r ] <− . 01 ∗ rnd_Q_W[ run_rows , Q_c o l s

] [ to_i n c r ]
75

76 # 4 Compute a c t i v e p robab i l i t y , when needed
77 i f ( param$ s u r v i v a l_prob ) {
78 seq_months <− seq ( from = i n i_date , to = i n i_date %m+% months (n_i n i −1)

, by = "months " )
79 a c t i v e <− lapply ( d i e_dates , function ( x ) seq_months < x)
80 }
81

82 # 5 Generate d_purch and reward
83 for ( i in 1 : n_cus ) {
84 # input <− cbind ( rnd_Q_W[ run_rows , c (Q_c o l s [ i ] ,W_c o l s [ i ] ) ] , n_days_

months )
85 # purch_months <− apply ( input , 1 , f unc t i on (x ) {
86 input <− cbind ( rnd_Q_W[ run_rows , c (Q_c o l s [ i ] ,W_c o l s [ i ] ) ] , n_days_

months )
87 input [ , 1 ] <− input [ , 1 ] ∗ a c t i v e [ [ i ] ]
88 input <− sp l i t ( input , seq (n_i n i ) )
89 purch_months <− lapply ( input , function ( x ) {
90 d <− sort ( rbeta ( x [ [ 1 ] ] , d_purch_par [ i , 1 ] , d_purch_par [ i , 2 ] ) ∗ x [ [ 3 ] ] )
91 r <− rlnorm ( x [ [ 1 ] ] , d_rewards_par [ i , 1 ] , d_rewards_par [ i , 2 ] )
92 r <− r / sum( r )
93 r <− r ∗ x [ [ 2 ] ]
94 cbind (d , r )
95 })
96 i f (n_run > 1) {
97 days2sum <− days2sum +
98 sum(n_days ( seq ( sim_months [1]−months (n_i n i ) , by = "months " , length . out

= n_i n i ) ) )
99 for ( j in 1 : n_i n i ) {

100 purch_months [ [ j ] ] [ , 1 ] <− purch_months [ [ j ] ] [ , 1 ] + days2sum
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101 }
102 purchases <− do . ca l l ( rbind , purch_months )
103 CLV_aux [ i ] <− CLV_single [ i ]
104 CLV_single [ i ] <− CLV_single [ i ] + sum( purchases [ , 2 ] ∗ exp(−d i s c_r a t e ∗

purchases [ , 1 ] ) )
105 } else {
106 for ( j in 2 : n_i n i ) {
107 purch_months [ [ j ] ] [ , 1 ] <− purch_months [ [ j ] ] [ , 1 ] + cumsum(n_days_months

) [ j −1]
108 }
109 purchases <− do . ca l l ( rbind , purch_months )
110 CLV_single [ i ] <− sum( purchases [ , 2 ] ∗ exp(−d i s c_r a t e ∗ purchases [ , 1 ] ) )
111 }
112 }
113

114 # 6 Compute convergence
115 converge <− abs (CLV_single − CLV_aux ) / CLV_aux < .001
116 conv_aux <− conv_t == 0 & converge
117 conv_t [ conv_aux ] <− n_run ∗ n_i n i
118 i f (any( ! converge ) ) {
119 n_run <− n_run + 1
120 sim_months <− seq ( sim_months [ n_i n i ]+months (1 ) , by = "months " , length .

out = n_i n i )
121 } else {
122 break
123 }
124 } # End o f a s i n g l e path
125

126 # 7 Save the s imulated CLVs
127 CLV <− rbind (CLV, CLV_single )
128 conv_vec <− rbind ( conv_vec , conv_t )
129

130 # 8 Compute paths convergence and stopping c r i t e r i a
131 i f (n_path > 1) {
132 new_mean <− (mean_CLV ∗ (n_path−1) + CLV[ n_path , ] ) / n_path
133 sim_t e s t <− abs (new_mean − mean_CLV) / mean_CLV < param$sim_converge
134 print (paste (n_path , " : ␣ " , sum( sim_t e s t ) , "/ " , n_cus , sep = " " ) )
135 end_path <− toc ( qu i e t = TRUE)
136 sim_time <− sim_time + end_path$ toc − end_path$ t i c
137 i f ( a l l ( sim_t e s t ) | ( sim_time > 3600) ) break
138 } else {
139 mean_CLV <− CLV[ 1 , ]
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140 }
141 n_path <− n_path + 1
142 } # End o f s imu la t i on
143

144 r e s u l t <− l i s t ( "CLV" = CLV,
145 " Convergence_time " = conv_vec ,
146 "n_runs " = n_path )
147 return ( r e s u l t )
148 }

Definition of function n_days().

1 n_days <− function ( dates ) {
2 dt <− ymd( dates )
3 d31 <− c (1 , 3 , 5 , 7 , 8 , 10 , 12)
4 d30 <− c (4 , 6 , 9 , 11)
5

6 m <− month( dates )
7 y <− year ( dates )
8

9 in31 <− m %in% d31
10 in30 <− m %in% d30
11 m2 <− m == 2
12 l eapyear <− ( ( y %% 4 == 0) & ( y %% 100 != 0) ) | ( y %% 400 == 0)
13

14 return ( in31 ∗ 31 + in30 ∗ 30 + (m2 ∗ l eapyear ) ∗ 29 + (m2 ∗ ! l eapyear
) ∗ 28)

15 }
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