
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MARCELO DE OLIVEIRA ROSA PRATES

Learning to Solve NP-Complete
Problems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Luís da Cunha Lamb

Porto Alegre
August 2019

CIP — CATALOGING-IN-PUBLICATION

Prates, Marcelo de Oliveira Rosa
Learning to Solve NP-Complete Problems / Marcelo de

Oliveira Rosa Prates. – Porto Alegre: PPGC da UFRGS,
2019.

149 f.: il.
Thesis (Ph.D.) – Universidade Federal do Rio Grande

do Sul. Programa de Pós-Graduação em Computação,
Porto Alegre, BR–RS, 2019. Advisor: Luís da Cunha Lamb.

1. Artificial Neural Network. 2. Deep Learning. 3. Graph
Neural Network. 4. Typed Graph Network. 5. Neural Sym-
bolic Reasoning. 6. Traveling Salesman Problem. I. Lamb,
Luís da Cunha. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

The PhD program is a long and trying road and being able to finish it brings
me much joy. I’m grateful to many people inside and outside academia that this
thesis was possible. For once, I’m indebted to Henrique Lemos for his insights,
companionship and for the works we have developed together towards the end of my
doctoral program. I understand that although many people have had their role in the
fulfillment of my goal, only a couple were decisive. I owe to Pedro Avelar the greater
part of my fascination by deep learning, and this thesis was only really possible
because of the time we shared together studying and researching geometric deep
learning. Finally, I am extremely grateful to my advisor Luis Lamb for believing in
me even when I did not, and for offering me the liberty and the encouragement to
carry out research on many varied subjects. To him I owe a plurality in my training
as a researcher which is deeply valuable to me.

ABSTRACT

Graph Neural Networks (GNN) are a promising technique for bridging differential
programming and combinatorial domains. GNNs employ trainable modules which
can be assembled in different configurations that reflect the relational structure of
each problem instance. In this thesis, we propose a new formulation for GNNs,
which employs the concept of “types” to partition the objects in the problem do-
main into many distinct classes, yielding the Typed Graph Networks (TGN) model
and a Python / Tensorflow library for prototyping TGNs. This thesis is also con-
cerned with the application of GNNs to the Traveling Salesperson Problem (TSP).
We show that GNNs can learn to solve, with very little supervision, the decision vari-
ant of the TSP, a highly relevant NP-Complete problem. Our model is trained to
function as an effective message-passing algorithm in graph in which edges from the
input graph communicate with vertices from the input graph for a number of itera-
tions after which the model is asked to decide whether a route with cost < C ∈ R+

0

exists. We show that such a network can be trained with sets of dual examples:
given the optimal tour cost C∗, we produce one decision instance with target cost
(C) x% smaller and one with target cost x% larger than C∗. We were able to obtain
80% accuracy training with −2%,+2% deviations, and the same trained model can
generalize for more relaxed deviations with increasing performance. We also show
that the model is capable of generalizing for larger problem sizes. Finally, we pro-
vide a method for predicting the optimal route cost within 1.5% relative deviation
from the ground truth. In summary, our work shows that Graph Neural Networks
are powerful enough to solve NP-Complete problems which combine symbolic and
numeric data, in addition to proposing a modern reformulation of the meta-model.

Keywords: Artificial Neural Network. Deep Learning. Graph Neural Network.
Typed Graph Network. Neural Symbolic Reasoning. Traveling Salesman Problem.

Aprendendo a Resolver Problemas NP-Completos

RESUMO

Graph Neural Networks (GNN) constituem uma técnica promisora para conectar
programação diferencial e domínios combinatoriais. GNNs lançam mão de módu-
los treináveis os quais podem ser montados em diferentes configurações, cada uma
refletindo a estrutura relacional de uma instância específica. Nessa tese, nós propo-
mos uma nova formulação para GNNs, a qual faz uso do conceito de “tipos” para
particionar os objetos no domínio do problema em múltiplas classes distintas, resul-
tando no modelo das Typed Graph Networks (TGN) e numa biblioteca Python /
Tensorflow para prototipar TGNs. Esta tese também se preocupa com a aplicação
de GNNs no Problema do Caixeiro(a) Viajante (PCV). Nós mostramos que GNNs
são capazes de aprender a resolver, com pouquíssima supervisão, a variante de de-
cisão do PCV, um problema NP-Completo altamente relevante. Nosso modelo é
treinado para funcionar, efetivamente, como um algoritmo de troca de mensagens
em grafos no qual as arestas do grafo de entrada comunicam-se com os vértices do
grafo de entrada por um determinado número de iterações, depois do qual o modelo
é forçado a responder se o grafo de entrada admite ou não uma rota Hamiltoniana de
custo < C ∈ R+

0 . Nós mostramos que esta rede pode ser treinada com conjuntos de
exemplos duais: dado o custo ótimo C∗, produzimos uma instância de decisão com
custo alvo (C) x% menor e uma com custo alvo x% maior do que C∗. Nós fomos
capazes de obter 80% de acurácia treinando o modelo com desvios de −2%,+2%, e
o mesmo modelo treinado foi capaz de generalizar para desvios mais relaxados com
melhor performance. Também mostramos que o modelo é capaz de generalizar para
problemas maiores. Finalmente, nós oferecemos um método para predizer o custo
de rota ótimo dentro de 1.5% de desvio relativo para o valor real. Em resumo, nosso
trabalho demonstra que GNNs são suficientemente poderosas para resolver problems
NP-Completos que combinam dados simbólicos e numéricos, além de propor uma
reformulação moderna do meta-modelo.

Palavras-chave: Rede Neural Artificial, Deep Learning, Graph Neural Network,
Typed Graph Network, Raciocínio Neural Simbólico, Problema do Caxeiro(a) Via-
jante.

LIST OF ABBREVIATIONS AND ACRONYMS

GNN Graph Neural Network

GCN Graph Convolutional Neural Network

GRN Graph Recurrent Neural Network

GAT Graph Attention Network

ANN Artificial Neural Network

MLP Multilayer Perceptron

LSTM Long Short-Term Memory

CNN Convolutional Neural Network

RNN Recurrent Neural Network

GAN Generative Adversarial Network

ReLu Rectified Linear Unit

TSP Traveling Salesperson Problem

ML Machine Learning

DL Deep Learning

TSP Traveling Salesman Problem

TGN Typed Graph Network

AI Artificial Intelligence

CNF Conjunctive Normal Form

SAT Boolean Satisfiability Problem

LIST OF FIGURES

Figure 2.1 Linear regression example. A nonlinear function f ∗(x) (in red) is
approximated by a linear model f≈(x) (in black). Source: Author. 28

Figure 2.2 Bidimensional curve fitting. Source: Author. 29

Figure 2.3 When performing K-clustering, we do not minimize the difference
between the approximation f≈ and the ground-truth f ∗, because f ∗ is
unknown. We minimize another error function instead (specifically the
sum of cluster variances). This is an example of unsupervised learn-
ing. Source: Author. .. 30

Figure 3.1 Drawing of neurons in the pigeon cerebellum by Spanish neurosci-
entist Santiago Ramón y Cajal. Source: Wikimedia Commons. 32

Figure 3.2 Graph of the hyperbolic tangent function (tanh(x) = ex−e−x

ex+e−x), which
is often used as an activation function for ANNs. Source: Author. 32

Figure 3.3 Graph of the sigmoid function S(x) = ex

ex+1 , which is often used as
an activation function for ANNs. ... 33

Figure 3.4 Graph of the rectifier function f(x) = x+ = max(0, x), which is
often used as an activation function for ANNs. Source: Author. 33

Figure 3.5 Pictorial representation of the single-layered ANN in Equation 3.1.
Source: Author. .. 34

Figure 3.6 Pictorial representation of the ANN in Equation 3.2 with one hid-
den layer. Hidden neurons are marked with H1, H2, H3, and neural
weights and biases are suppressed due to space constraints. Source: Author.35

Figure 3.7 Pictorial representation of the single-layered ANN in Equation 3.1.
Source: Author. .. 40

41figure.3.8

Figure 3.9 Pictorial representation of a simple cell receiving signals from a
square RGB window of the visual field. Source: Author.............................. 43

Figure 3.10 Pictorial representation of a 3 × 3 matrix of simple cells each
receiving signals from a different square RGB window of the visual field.
Source: Author. .. 43

Figure 3.11 Example of an equivariant function f : R2 → R2: As the input
image I undergoes a left shift, the composition f ◦ I is shifted by the
same amount. Source: Author. Beetle image obtained from Wikime-
dia Commons (<https://en.wikipedia.org/wiki/Stag_beetle##/media/
File:COLE_Lucanidae_Lissotes.png>). .. 44

Figure 3.12 Result of performing a convolution with the “blur kernel” in Equa-
tion 3.15. Source: Author. Beetle image obtained from Wikimedia Com-
mons (<https://en.wikipedia.org/wiki/Stag_beetle##/media/File:COLE_
Lucanidae_Lissotes.png>). .. 45

https://en.wikipedia.org/wiki/Stag_beetle####/media/File:COLE_Lucanidae_Lissotes.png
https://en.wikipedia.org/wiki/Stag_beetle####/media/File:COLE_Lucanidae_Lissotes.png
https://en.wikipedia.org/wiki/Stag_beetle####/media/File:COLE_Lucanidae_Lissotes.png
https://en.wikipedia.org/wiki/Stag_beetle####/media/File:COLE_Lucanidae_Lissotes.png

Figure 3.13 Visualizing some of the convolutional kernels learned by the In-
ceptionV3 model (XIA; XU; NAN, 2017) on the ImageNet dataset at
four different layers (conv2d_1, conv2d_30, conv2d_60, conv2d_90).
Kernels are visualized by applying them on a sample image contain-
ing a domestic cat. As is usual with convolutional models, images’
resolutions become lower as more convolutional layers are stacked, ab-
stracting unimportant pixel information. At the last stages, learned
convolutions weigh in high-level features such as the cat’s ears, face
and tail. This is in contrast with the first kernels, which are sensitive
to low-level features such as lines in particular orientations. Cat im-
age obtained from Wikipedia user Basile Morin and licensed under CC
BY-SA 4.0 (<https://en.wikipedia.org/wiki/Cat##/media/File:Felis_
silvestris_catus_lying_on_rice_straw.jpg>). InceptionV3 ImageNet weights
obtained from Keras Applications library <https://keras.io/applications/
>. ... 46

Figure 3.14 Pictorial representation of a one-dimensional convolutional neural
network with kernel size = 3 and strides = 3. Because the parameters
of all four convolutional blocks are shared, the resulting network can
be thought of as sweeping the same convolutional filter throughout the
entire 15-dimensional input. Source: Author. .. 47

Figure 3.15 Pictorial representation of a RNN block. Source: Author................. 49
Figure 3.16 Pictorial representation of the unrolling of a recurrent unit f into

six iterations. Because the parameters of all six blocks are shared, the
resulting network can be thought of as iterating the same operation over
the hidden state H(t) and the input observations X(t) that many times.
Inputs X(t) are colored red, outputs Y(t) are colored blue and hidden
states H(t) are colored green. Source: Author. ... 49

Figure 3.17 Architecture of a LSTM cell. Source: Wikipedia user Guillaume
Chevalier. Licensed under Creative Commons. .. 51

Figure 4.1 Literals ¬x5 and x3 can exchange places with no effect to the func-
tion f : B4 → B expressed by this clause. The same applies for any
exchange; in effect, the number of equivalent clauses one can obtain this
way corresponds to the number of permutations with 5 elements, com-
puted by 5! = 120. .. 54

Figure 4.2 CNF formula F = (x1∨¬x2)∧(x3∨x4∨x5) represented as a graph:
clauses and literals correspond to nodes, edges between clauses and lit-
erals are painted red and edges between literals and their complements
are painted blue.. 55

Figure 4.3 Pictorial representation of a 2D discrete convolution operation.
Source: Adapted from Tex Stack Exchange answer <https://tex.stackexchange.
com/questions/437007/drawing-a-convolution-with-tikz>. 56

Figure 4.4 Pictorial representation of a 2D discrete convolution operation with
a “sum” kernel. Source: Adapted from Tex Stack Exchange answer
<https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz>.57

Figure 4.5 Taxonomy of neural architectures in the graph neural network fam-
ily. The overarching field of deep learning to which these architectures
belong to, painted in red, is geometric deep learning. Architecture fami-
lies are painted in blue. The dashed line indicates that a graph recurrent
neural net can be implemented using attention mechanisms, but not nec-
essarily. ... 61

https://en.wikipedia.org/wiki/Cat####/media/File:Felis_silvestris_catus_lying_on_rice_straw.jpg
https://en.wikipedia.org/wiki/Cat####/media/File:Felis_silvestris_catus_lying_on_rice_straw.jpg
https://keras.io/applications/
https://keras.io/applications/
https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz
https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz
https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz

Figure 4.6 Example of a symbol manipulation operation: the operational se-
mantics of a while loop command in an imperative language. 62

Figure 4.7 The computation performed by a Graph Recurrent Neural Net-
work can be interpreted as the iterative refinement (over many message-
passing iterations) of an initial projection P0 : V → Rd of graph vertices
into hyperdimensional space. A successfully trained GNN model will
be capable of refining a projection which captures some property of the
learned problem, for example a 2-partitioning of V . The Figure shows a
pictorial representation of a sequence of progressively refined projections
P0,P2,P4,P6,P8 over tmax = 8 message-passing timesteps. Source: Author.63

Figure 4.8 Pictorial representation of a Graph Neural Network from the per-
spective of a vertex v. A set of embeddings is received from vertices in its
incoming neighbourhood , a message is computed from each embedding
with the message function µ and messages are aggregated and fed to the
update function φ , which produces an updated embedding for v. Simul-
taneously, v sends messages to vertices in its outgoing neighbourhood ,
which will undergo the same update process. Reproduced with autho-
rization from Pedro Avelar (PRATES et al., 2019). 64

Figure 4.9 Moves 1-186 of AlphaGo Master vs professional Go player Tang
Weixing (31 December 2016), won by resignation by AlphaGo Master.
AlphaGo is an example of a DL-fueled technology to solve combinatorial
problems, but it does not constitute end-to-end learning............................. 66

Figure 4.10 Growth in the number of publications related to topics in the
GNN family, as measured according to a manually curated set of rele-
vant papers. Since 2016, the field has experienced a significant boom in
quantity of publications as a result of the increased interest by end-to-end
differentiable models of relational reasoning... 67

Figure 4.11 When ML is combined with combinatorial algorithms, a ML mod-
ule is called upon possibly many times but an output solution is ulti-
mately produced by the combinatorial algorithm... 67

Figure 4.12 In end-to-end learning, machine learning provides a solution di-
rectly from the problem instance input, without requiring external tools.... 68

Figure 4.13 Convolutional and Deconvolutional Neural Networks are end-to-
end differentiable ML models. This enables one to connect the output
of a “generator” model, implemented as a deconvolutional network, to
the input of a “discriminator” model, implemented as a CNN. The dis-
criminator is fed with 50% real images and 50% artificial images (pro-
duced by the generator) with the goal of discriminating between the
two classes, while the goal of the generator is to maximize the classifi-
cation error of the discriminator. Because both models are end-to-end
differentiable, one can flow gradients from the beginning of the gener-
ator pipeline until the end of the discriminator’s. The end result are
two models which evolve simultaneously through competition in a zero-
sum game. Ultimately, the generator network becomes able to pro-
duce photo-realistic images of high quality, such as in these examples.
Source: images produced by the author using the Google Colab BigGAN
demo <https://colab.research.google.com/github/tensorflow/hub/blob/
master/examples/colab/biggan_generation_with_tf_hub.ipynb>............. 69

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb

Figure 4.14 The end-to-end differentiability of CNNs enables one to perform
gradient ascent on the activation of a given neuron (or set thereof), where
the parameters considered are the pixels of the input image. Over suffi-
cient gradient ascent iterations, an input image is morphed to exaggerate
the features which excite those neurons, possibly yielding surreal look-
ing images conventionally called “DeepDreams”. Strange as it is, the
DeepDream treatment is a powerful technique for feature visualization,
helping researchers and engineers understand which features are weighed
in the most by each neuron (SIMONYAN; VEDALDI; ZISSERMAN,
2013). Source: Wikipedia user MartinThoma. Licenced under CC0 1.0
Universal... 70

Figure 4.15 Tree of reductions betweenNP-Complete problems, showing which
problems A have their NP-Completeness proof relying on another prob-
lem B to perform polynomial-time reduction from B to A. Source:
Wikipedia user Gian Luca Ruggero. Public Domain.................................... 71

Figure 4.16 CNF formula F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4 ∨ x5) represented as a
graph: clauses and literals correspond to nodes, edges between clauses
and literals are painted red and edges between literals and their comple-
ments are painted blue. Source: Author. ... 73

Figure 4.17 Loss and accuracy curves of the NeuroSAT model over 1400 gra-
dient descent operations on batches of 32 CNF instances with sizes n ∼
U(20, 40). Results reproduced by the author in Tensorflow according to
the description of the model by the original authors in (SELSAM et al.,
2018)... 75

Figure 4.18 Results obtained with the NeuroSAT model proposed by (SEL-
SAM et al., 2018) implemented in the Typed Graph Networks library
(see Code Listing 4.1)... 85

Figure 4.19 Results obtained with the TSP GNN model proposed (PRATES
et al., 2018) implemented in the Typed Graph Networks library (see Code
Listing 4.2). .. 88

Figure 4.20 Results obtained with the graph centrality GNN model proposed
by (AVELAR et al., 2018) implemented with the Typed Graph Networks
library (see Code Listing 4.3). .. 90

Figure 4.21 Results obtained with the implementation of a k-colorability solver
in the Typed Graph Networks library (see Code Listing 4.4). 92

Figure 5.1 Example of an asymmetric (left) and symmetric (right) graph.
Source: Author. .. 96

Figure 5.2 Example of a violation to the triangle inequality. The path com-
posed by edges D → C and C → F underestimates the length of the
direct connection D → F . .. 97

Figure 5.3 A triangle drawn on the surface of a sphere. Two vertices are laid
at the equator at 90° from each other while the third one is laid at the
north pole, yielding three right angles. This is only possible because
spherical geometry violates the parallel postulate. This is an example of
a non-euclidean geometry. Source: Author... 97

Figure 6.1 Diagram representation of the MLP Einit : R2 → Rd mapping
ordered pairs of an edge weight an a target cost to an initial edge em-
bedding. The curly braces at the bottom indicate the size (in number of
neurons) of each layer. .. 101

Figure 6.2 Diagram for the architecture of the message-computing functions
Vmsg and Emsg. ... 102

Figure 6.3 Pictorial representation of the unrolling of a recurrent unit f into
six iterations. Because the parameters of all six blocks are shared, the
resulting network can be thought of as iterating the same operation over
the hidden state H(t) and the input observations X(t) that many times.
Inputs X(t) are colored red, outputs Y(t) are colored blue and hidden
states H(t) are colored green. Repeated here for clarity. Source: Author. . 103

Figure 6.4 Diagram for the architecture of the voting function Evote. 105
Figure 6.5 Examples of 2D Euclidean graphs sampled from the distribution

used to train our model, with the associated optimal TSP routes drawn
in red, green, blue and black. ... 111

Figure 6.6 Evolution of the binary cross entropy loss (downward curve in red)
and accuracy (upward curve in blue) throughout a total of 2000 training
epochs on a dataset of 220 graphs with n ∼ U(20, 40). Each graph with
optimal TSP route cost C∗ is used to produce two instances to the TSP
decision problem – “is there a route with cost < 1.02C∗?” and “is there a
route with cost < 0.98C∗?”, which are to be answered with YES and NO
respectively. Each epoch is composed of 128 batches of 16 instances each
(please note that at each epoch the network sees only a small sample of
the dataset, and the accuracy here is computed relative to it). 112

Figure 6.7 Accuracy of the trained model evaluated on datasets of 1024 in-
stances with varying numbers of cities (n). The model is able to obtain
> 80% accuracy for −2%,+2% deviation on the range of sizes it was
trained on (painted in pink), but its performance degenerates progres-
sively for larger instance sizes before reaching the baseline of 50% at
n ≈ 75. Larger deviations yield higher accuracy curves, with the model
obtaining > 95% accuracy for −10%,+10% deviation even for the largest
instance sizes. ... 114

Figure 6.8 Accuracy of the trained model evaluated on the same test dataset of
1024 n-city instances with n ∼ U(20, 40) for varying deviations from the
optimal tour cost. Although it was trained with target costs −2%,+2%
from the optimal (dashed line), the model can generalize for larger de-
viations with increasing accuracy. Additionally, it could still obtain ac-
curacies above the baseline (50%) for instances more constrained than
those it was trained on, with 65% accuracy at −1%,+1%......................... 115

Figure 6.9 Nearest Neighbor (NN) and Simulated Annealing (SA) do not yield
a prediction for the decision variant of the TSP but rather a feasible
route. To compare their performance with our model’s, we evaluate the
frequency in which they yield solutions below a given deviation from
the optimal route cost and plot alongside with the True Positive Rate
(TPR) of our model for the same test instances (1024 n-city graphs with
n ∼ U(20, 40))... 117

Figure 6.10 The larger the deviation from the optimal cost, the faster the
model learns: we were able to obtain > 95% accuracy for 10% deviation
in 200 epochs. For 5%, that performance requires double the time. For
2% deviation, two thousand epochs are required to achieve 85% accuracy.119

Figure 6.11 The result of training the same model with graphs of varying edge
densities is shown. To ease visualization and make the plot smoother, we
report the average accuracy at each 10 epoch interval. 120

Figure 6.12 Visual representation of the data reported in Table 6.6. For more
details of how this data was collected refer the original Table. 121

Figure 6.13 Loss and accuracy curves corresponding to the training setup
of general graphs described above. Although training was significantly
slower, we were able to achieve over 70% accuracy on this dataset............ 122

Figure 6.14 Average prediction obtained from the model as a function of the
deviation between the target cost and the optimal cost for varying in-
stance sizes (the pink band indicates the [−2%,+2%] interval). As ex-
pected, the curve is S-shaped, signalling that the model is very confident
that routes with sufficiently large/small costs do/do not exist. The aver-
age prediction undergoes a phase transition as we traverse from negative
to positive deviations. Larger instances exhibit smaller critical points, as
evidenced by the left shifts on the derivatives of the acceptance curves in
the bottom subfigure. The prediction for each deviation is averaged over
1024 instances... 124

LIST OF TABLES

Table 6.1 Hyperparameters of the model.. 109
Table 6.2 Training setup parameters .. 110
Table 6.3 Training instances generation parameters... 111
Table 6.4 Test accuracy averaged over 1024 n-city instances with n ∼ U(20, 40)

for varying percentage deviations from the optimal route cost. 115
Table 6.5 Test accuracy averaged over 1024 n-city instances with n ∼ U(20, 40)

for varying percentage deviations from the optimal route cost for differing
random graph distributions: two-dimensional euclidean distances, “ran-
dom metric” distances and random distances. ... 116

Table 6.6 Exhaustive evaluation of the accuracies computed for all combina-
tions of train and test datasets. In other words: cell (i, j) reports the
accuracy of the model trained with the i-th train dataset w.r.t. the j-th
test dataset. Train datasets consist of 220 instances as usual, while test
datasets consist of 215 instances. All accuracies are reported in percent-
ages, but the % symbol is removed due to space limitations. The average
accuracy, computed over all test datasets, is reported at the last column.
This table can also be visualized as a heatmap in Figure 6.12. 121

Table 6.7 The relative deviations from the optimal route cost are compared for
the prediction obtained from the trained model with Algorithm 7 (GNN)
and the Simulated Annealing heuristic (SA). Lines referring to instances
in which the trained model outperformed and underperformed the SA
heuristic are colored blue and red respectively. Note that deviations ob-
tained from the trained model are negative in general, as expected given
the discussion in the subsection about Extracting route costs above........... 125

CONTENTS

1 INTRODUCTION ...17
1.1 Research Questions ..18
1.1.1 Specific Goals .. 19
1.2 Our Contributions ..20
1.2.1 Problem Solving at the Edge of Chaos: Entropy, Puzzles and the Sudoku

Freezing Transition – Marcelo Prates, Luis Lamb 20
1.2.2 Neural Networks Models for Analyzing Magic: the Gathering Cards –

Felipe Zilio, Marcelo Prates, Luis Lamb... 21
1.2.3 On Quantifying and Understanding the Role of Ethics in AI Research:

A Historical Account of Flagship Conferences and Journals – Marcelo
Prates, Pedro Avelar, Luis Lamb.. 21

1.2.4 Assessing Gender Bias in Machine Translation – A Case Study with
Google Translate – Marcelo Prates, Pedro Avelar, Luis Lamb 22

1.2.5 Multitask Learning on Graph Neural Networks – Learning Multiple
Graph Centrality Measures with a Unified Network – Pedro Avelar,
Marcelo Prates, Henrique Lemos, Luis Lamb ... 23

1.2.6 Learning to Solve NP-Complete Problems – A Graph Neural Network
for the Decision TSP – Marcelo Prates, Pedro Avelar, Henrique Lemos,
Luis Lamb and Moshe Vardi... 24

1.2.7 Typed Graph Networks – Marcelo Prates, Pedro Avelar, Henrique Lemos,
Luis Lamb, Marco Gori .. 25

1.2.8 Graph Colouring Meets Deep Learning: Effective Graph Neural Net-
work Models for Combinatorial Problems – Henrique Lemos, Marcelo
Prates, Pedro H.C. Avelar and Luis C. Lamb... 26

1.2.9 Graph Neural Networks Improve Link Prediction on Knowledge Graphs
– Henrique Lemos, Marcelo Prates, Pedro H.C. Avelar and Luis C. Lamb27

2 MACHINE LEARNING BASICS ...28
3 DEEP LEARNING BASICS ...32
3.1 Multilayer Perceptron ..36
3.2 Expressiveness of Artificial Neural Networks.................................36
3.3 Feasibility of Training Artificial Neural Networks..........................37
3.4 Vectors, Matrices and Tensors ...37
3.5 Parameter Space and Gradient Descent...39
3.6 Batch Training and Stochastic Gradient Descent...........................40
3.7 Artificial Neural Network Building Blocks.....................................41
3.8 Convolutional Neural Networks ...42
3.9 Parameter Sharing in Convolutional Neural Networks47
3.10 Recurrent Neural Networks..48
3.11 Parameter Sharing in Recurrent Neural Networks50
3.12 Exploding / Vanishing Gradients and Long Short-Term Memory50
3.13 Recurrent Learning Beyond Neural Networks..............................52
4 GRAPH NEURAL NETWORKS..54
4.1 Graph Convolutions ...56
4.2 Graph Recurrent Neural Networks ..59
4.3 Graph Neural Networks in General ...60
4.4 Mechanics of Graph Neural Networks ...62

4.5 Motivations for Graph Neural Network Research and Recent
Advances in the GNN Family ..65

4.5.1 NeuroSAT.. 71
4.6 Graph Networks and Typed Graph Networks................................75
4.6.1 A Note on the Number of Message-Computing Functions 79
4.6.2 Typed Graph Networks with Customizable Aggregation 80
4.7 Typed Graph Networks Python / Tensorflow Library80
4.7.1 Technical Overview.. 83
4.7.2 NeuroSAT.. 84
4.7.3 Solving the decision TSP... 87
4.7.4 Ranking graph vertices by their centralities .. 90
4.7.5 Solving the Vertex k-Colorability Problem.. 91
5 TRAVELING SALESPERSON PROBLEM......................................94
5.1 Formulation ..94
5.2 Variants and Special Cases...95
5.2.1 Asymmetric / Symmetric .. 95
5.2.2 Metric .. 96
5.2.3 Euclidean... 97
5.3 Computational Complexity ..98
6 TYPED GRAPH NETWORKS FOR THE DECISION TSP99
6.1 Model ...99
6.1.1 Intuitive Description.. 99
6.1.2 Concrete Definition.. 100
6.1.2.1 Embeddings and Embedding Initialization... 100
6.1.2.2 Message-Computing Functions ... 102
6.1.2.3 Update Functions ... 103
6.1.2.4 Voting Multilayer Perceptron ... 105
6.1.2.5 Complete Model.. 105
6.2 Adversarial Training Concept...107
6.2.1 A Note on Adversarial Instances ... 107
6.3 Experimental Setup..108
6.3.1 A Note on Hyperparameters, Reproducibility and Deep Learning “Alchemy”108
6.3.2 Hyperparameters of our Model.. 109
6.3.3 Training Setup Parameters.. 110
6.3.4 Training Instances ... 110
6.4 Results and Analyzes ...111
6.4.1 Stochastic Gradient Descent and Accuracy Variation for the Same Train-

ing Setup... 112
6.5 Generalization at Test Time...113
6.5.1 Different Sizes.. 113
6.5.2 Different Deviations... 114
6.5.3 Different Graph Distributions.. 115
6.5.4 Comparing with Classical Baselines .. 117
6.6 Interpretability...118
6.7 Training..118
6.8 Training with Varying Deviations ..118
6.9 Training with Sparse Graphs..119
6.10 Training with General Graphs..122
6.11 Acceptance Curves & Extracting Route Costs...........................123
6.11.1 Acceptance Curves... 123
6.11.2 Binary Search .. 123

7 RECENT DEVELOPMENTS ...127
7.1 Pytorch Geometric Library ..127
7.1.1 Our Model in Pytorch Geometric.. 127
7.2 Other Applications of Geometric Deep Learning to the Traveling

Salesman Problem..130
8 DISCUSSION AND FUTURE WORK ...131
REFERENCES ...133
APPENDIX A — TYPED GRAPH NETWORKS LIBRARY CODE142
A.1 tgn.py ..142
A.2 mlp.py ...147

17

1 INTRODUCTION

Deep learning is rapidly pushing the state of the art in artificial intelligence,
with significant advances in many areas including but not limited to computer vision,
speech recognition, game playing, natural language processing and bioinformatics.
However, the black-box nature of DL systems – which lack a solid theoretical back-
ground – creates a divide between them and symbolic AI techniques. It has been
argued that DL provides a way to implement “fast thinking” or intuition into ma-
chines, while formal logic provides reliable, explainable “slow thinking”. Combining
fast (DL) and slow (logics) thinking is rapidly becoming a frontier in AI research,
with recent projects such as Vadalog aiming to stack a layer of logical deduction
on top of associations learned by ML technology (BELLOMARINI; SALLINGER;
GOTTLOB, 2018). Intelligent machines should be able not only to learn from expe-
rience but crucially to reason about what was learned. In this context, commiting
to combinatorial generalization – the ability to learn associations between elements
on discrete, symbolic domains – is regarded as a key path forward for AI research
today (BATTAGLIA et al., 2018).

In this context, Graph Neural Networks (GNNs) – end-to-end differentiable
neural models that learn on relational structure – open exciting new possibilities.
The key insight behind GNNs is that there are advantages to not forcing the ANN
architecture to be fixed. One can in principle instantiate a small number of trainable
neural modules and assemble them in different configurations, the result of which
is a set of ANN architectures of combinatorial size all of which are parameterized
by the same neural weights. Fundamentally, this allows one to feed an ANN with
relational rather than numerical data: the input for a GNN is a graph. Because all
combinatorial problems can be expressed in the language of graphs, GNNs offer a
way to build models that learn from symbolic data. A CNF formula, for example,
can be expressed as a graph in which clauses are connected to the literals pertaining
to it. This insight has been applied to the development of NeuroSAT, a GNN which
becomes capable of predicting the satisfiability of a CNF formula upon training with
randomly-generated instances (SELSAM et al., 2018).

The NeuroSAT experiment was the first to show that GNNs in particular
and ANNs in general can solve classical NP-Complete problems. It also raised a
number of exciting research directions: when trained with the proposed dataset of

18

CNF formulas, the NeuroSAT architecture is able to achieve something unheard
of in deep learning: the accuracy of the model increases monotonically (although
with diminishing gains) with the number of iterations of message-passing (the core
operation of GNNs). Additionally, the authors show that even though the model
was only trained as a SAT predictor, it nevertheless generates satisfying assignments
which can be easily extracted from the network’s “memory”. Overall, this experiment
is an invitation to a deeper investigation on GNNs, which have shown an impressive
performance in the recent years (BATTAGLIA et al., 2018) and whose rapid growth
suggests they may very well be the “next CNN” in terms of popularity.

In this work, we investigate whether GNNs can solve conceptually harder
NP-Complete problems in which symbolic/relational information is combined with
numerical information. In this context, the Traveling Salesperson Problem is a
prime candidate, both for its relevance in computer science and for the fact that
in its general definition edges are labelled with numerical information in the form
of weights. We propose a novel GNN architecture to solve the decision variant of
the TSP, which relies on the insight of mapping the original graph into an abstract
graph representation in which edges are elevated to the status of nodes and can be
embedded with their weights. We propose a technique for training this model in
which it is fed with two copies of the same graph with a small variation in the target
cost X (as in “does graph G admit a Hamiltonian path with cost ≤ X?”) such that
one copy is answered correctly with NO and the other with YES. With this, we were
able to train the model to predict the decision problem within a −2%,+2% relative
deviation from the optimal tour cost. We evaluate our model on different datasets,
providing evidence that it is able to generalize (with diminishing accuracy) to other
graph distributions and larger problem sizes.

1.1 Research Questions

Combining symbolic reasoning with deep learning is an important and mostly
unexplored frontier in AI (BATTAGLIA et al., 2018). GNNs – neural computers
which work on relational data – show promise in this direction, but their applicability
and operation are still poorly understood. (SELSAM et al., 2018) have shown
that GNNs can tackle boolean satisfiability, a hard (NP-Complete) combinatorial
problem. The main research question we are interested in is assessing to which

19

extent GNNs can solve conceptually harder NP-Complete problems which combine
relational and numerical information. In this context, we want to assess whether
GNNs can be trained to solve the decision variant of Traveling Salesperson Problem
(TSP) as a case example.

A second issue is the explainability of GNNs. (SELSAM et al., 2018) has
shown that the algorithm learned by a GNN can be amenable to investigation, and
that some important facts about how a trained GNN processes data can be deduced
from the set of refined embeddings. We want to understand under which conditions
the choice of the training data can affect the learned algorithm. Most importantly,
we want to understand how a GNN defined on a decision problem can be trained to
learn a constructive algorithm – that is, how can it be trained in such a way that a
solution can be extracted from the refined embeddings.

1.1.1 Specific Goals

1. To investigate the extent to which GNNs can be applied to NP-Complete
problems which combine relational and numerical information.

2. To propose and train a GNN architecture to solve the decision variant of the
Traveling Salesperson Problem.

3. To evaluate the effects of training/evaluating the model with larger/smaller
relative deviations from the optimal cost.

4. To evaluate the model’s performance on different graph distributions and larger
problem sizes compared to what it was trained with.

5. To understand under which conditions the model can be trained to provide
constructive solutions (i.e. such that we can extract a Hamiltonian route from
the network’s memory).

6. To evaluate the effects of training the model with different (possibly parame-
terized) graph distributions, such as varying the network connectivity.

7. To assess the “data hunger” of our model: because we can create our training
instances, we can evaluate how many training examples are required for the
model to generalize well.

20

1.2 Our Contributions

During the course of the PhD program, the author has authored and co-
authored a number of scientific papers, spanning three main subjects: 1) the ethics
of artificial intelligence 2) phase transitions on hard computational problems and 3)
neural symbolic reasoning on graph neural networks. These papers are summarized
in this section.

1.2.1 Problem Solving at the Edge of Chaos: Entropy, Puzzles and the

Sudoku Freezing Transition – Marcelo Prates, Luis Lamb

Published at ICTAI 2018 (Qualis A2) (PRATES; LAMB, 2018a). Also avail-
able as a preprint on <arxiv.org> (PRATES; LAMB, 2018b). Prates was responsi-
ble for implementing the Sudoku Gecode solver and adapding the QQWing Sudoku
solver for the purposes of the study, as well as implementing the code for carrying
out the phase transition analysis. Prates was also responsible for the greater share
of the writing of the manuscript, while Lamb contributed with supervision during
the structuring of the project and technical and scientific suggestions during the
experimental setup and analysis, as well as the revision and writing of portions of
the manuscript.

Sudoku is a widely popular NP-Complete combinatorial puzzle whose
prospects for studying human computation have recently received at-
tention, but the algorithmic hardness of Sudoku solving is yet largely
unexplored. In this paper, we study the statistical mechanical proper-
ties of random Sudoku grids, showing that puzzles of varying sizes attain
a hardness peak associated with a critical behavior in the constrained-
ness of random instances. In doing so, we provide the first description
of a Sudoku freezing transition, showing that the fraction of backbone
variables undergoes a phase transition as the density of pre-filled cells
is calibrated. We also uncover a variety of critical phenomena in the
applicability of Sudoku elimination strategies, providing explanations as
to why puzzles become boring outside the typical range of clue densities
adopted by Sudoku publishers. We further show that the constrained-
ness of Sudoku puzzles can be understood in terms of the informational
(Shannon) entropy of their solutions, which only increases up to the
critical point where variables become frozen. Our findings shed light on
the nature of the k-coloring transition when the graph topology is fixed,
and are an invitation to the study of phase transition phenomena in
problems defined over alldifferent constraints. They also suggest advan-
tages to studying the statistical mechanics of popular NP-Hard puzzles,
which can both aid the design of hard instances and help understand
the difficulty of human problem solving.

arxiv.org

21

1.2.2 Neural Networks Models for Analyzing Magic: the Gathering Cards

– Felipe Zilio, Marcelo Prates, Luis Lamb

Published at ICONIP 2018 (Qualis B2) (ZILIO; PRATES; LAMB, 2018).
Also avaliable as a preprint on <arxiv.org> (??). This paper is the fruit of a
Bachelor Thesis Prates has co-advised with Lamb. Zilio was responsible for imple-
menting the code, carrying out the experiments and writing the greater share of
the manuscript’s text. Prates and Lamb contributed by pointing out this specific
research direction (combining the hot topic of deep learning with Zilio’s personal
interest for MTG), as well as proof-reading and performing revisions to Zilios Bach-
elor’s thesis. Prates additionally contributed by adapting Zilio’s thesis into this
publication.

Historically, games of all kinds have often been the subject of study
in scientific works of Computer Science, including the field of machine
learning. By using machine learning techniques and applying them to
a game with defined rules or a structured dataset, it’s possible to learn
and improve on the already existing techniques and methods to tackle
new challenges and solve problems that are out of the ordinary. The al-
ready existing work on card games tends to focus on gameplay and card
mechanics. This work aims to apply neural networks models, including
Convolutional Neural Networks and Recurrent Neural Networks, in or-
der to analyze Magic: the Gathering cards, both in terms of card text
and illustrations; the card images and texts are used to train the net-
works in order to be able to classify them into multiple categories. The
ultimate goal was to develop a methodology that could generate card
text matching it to an input image, which was attained by relating the
prediction values of the images and generated text across the different
categories.

1.2.3 On Quantifying and Understanding the Role of Ethics in AI Re-

search:

A Historical Account of Flagship Conferences and Journals – Marcelo

Prates, Pedro Avelar, Luis Lamb

Published and presented at GCAI 2018 (Qualis unavailable) (PRATES; AVE-
LAR; LAMB, 2018). Also available as a preprint on <arxiv.org> (PRATES; AVE-
LAR; LAMB, 2018). Lamb is credited with the idea of performing a corpus-based
analysis on the subject. Avelar is credited with implementing the web scraper to
obtain paper titles and abstracts for the selected conferences and journals, as well as
performing the statistical tests described at the end of the paper. Prates is credited

arxiv.org
arxiv.org

22

with performing the greater share of the analysis as well as writing the greater part
of the manuscript’s text. Prates and Lamb were responsible for the greater share
of the literature review present in the paper. Prates, Avelar and Lamb contributed
equally with hypothesis and experimental setup scenarios.

Recent developments in AI, Machine Learning and Robotics have raised
concerns about the ethical consequences of both academic and indus-
trial AI research. Leading academics, businessmen and politicians have
voiced an increasing number of questions about the consequences of AI
not only over people, but also on the large-scale consequences on the the
future of work and employment, its social consequences and the sustain-
ability of the planet. In this work, we analyse the use and the occurrence
of ethics-related research in leading AI, machine learning and robotics
venues. In order to do so we perform long term, historical corpus-based
analyses on a large number of flagship conferences and journals. Our
experiments identify the prominence of ethics-related terms in published
papers and presents several statistics on related topics. Finally, this re-
search provides quantitative evidence on the pressing ethical concerns
of the AI community.

1.2.4 Assessing Gender Bias in Machine Translation – A Case Study with

Google Translate – Marcelo Prates, Pedro Avelar, Luis Lamb

Accepted for publication at Neural Computing and Applications (Journal,
Qualis B1). Also available as a preprint on <arXiv.org> (PRATES; AVELAR;
LAMB,). Prates was responsible for designing the experimental setup, implement-
ing the code for carrying out the analyzes in the paper and writing the entirety of its
first version, subject to revisions and suggestions by Lamb. Upon rejection, Avelar
was included as a co-author and was responsible for obtaining a respected source
(in the U.S. Bureau for Labor Statistics) for the job occupations analyzed in the
experiments, as well as contributing with revisions to the manuscript’s text. This
work has received substantial attention in the local and international media.

Recently there has been a growing concern in academia, industrial re-
search labs and the mainstream commercial media about the phenomenon
dubbed as machine bias, where trained statistical models – unbeknownst
to their creators – grow to reflect controversial societal asymmetries,
such as gender or racial bias. A significant number of Artificial Intelli-
gence tools have recently been suggested to be harmfully biased towards
some minority, with reports of racist criminal behavior predictors, Ap-
ple’s Iphone X failing to differentiate between two distinct Asian peo-
ple and the now infamous case of Google photos’ mistakenly classifying
black people as gorillas. Although a systematic study of such biases
can be difficult, we believe that automated translation tools can be ex-
ploited through gender neutral languages to yield a window into the
phenomenon of gender bias in AI.

arXiv.org

23

In this paper, we start with a comprehensive list of job positions from
the U.S. Bureau of Labor Statistics (BLS) and used it in order to build
sentences in constructions like “He/She is an Engineer” (where “Engi-
neer” is replaced by the job position of interest) in 12 different gender
neutral languages such as Hungarian, Chinese, Yoruba, and several oth-
ers. We translate these sentences into English using the Google Trans-
late API, and collect statistics about the frequency of female, male and
gender-neutral pronouns in the translated output. We then show that
Google Translate exhibits a strong tendency towards male defaults, in
particular for fields typically associated to unbalanced gender distribu-
tion or stereotypes such as STEM (Science, Technology, Engineering
and Mathematics) jobs. We ran these statistics against BLS’ data for
the frequency of female participation in each job position, in which we
show that Google Translate fails to reproduce a real-world distribution
of female workers. In summary, we provide experimental evidence that
even if one does not expect in principle a 50:50 pronominal gender dis-
tribution, Google Translate yields male defaults much more frequently
than what would be expected from demographic data alone.
We believe that our study can shed further light on the phenomenon of
machine bias and are hopeful that it will ignite a debate about the need
to augment current statistical translation tools with debiasing techniques
– which can already be found in the scientific literature.

1.2.5 Multitask Learning on Graph Neural Networks – Learning Multiple

Graph Centrality Measures with a Unified Network – Pedro Avelar,

Marcelo Prates, Henrique Lemos, Luis Lamb

Accepted for publication at the 28th International Conference on Artificial
Neural Networks (ICANN). Also available as a preprint on <arXiv.org> (AVELAR
et al., 2018). Prates and mostly Avelar were responsible for the development of
the Python / Tensorflow library used to implement the model described in this
paper. The idea for this particular model is a joint contribution of Prates and
mostly Avelar. The initial code for this model was implemented by Avelar, while
Lemos was responsible for analyzing it, debugging it and ultimately getting it to
work, while additionally carrying out the analyzes described in the paper. The
experimental setup is mostly due to Avelar. Overall, Prates, Avelar and Lamb were
responsible for the greater share of the text, in decreasing order of contribution.

The application of deep learning to symbolic domains remains an ac-
tive research endeavour. Graph neural networks (GNN), consisting of
trained neural modules which can be arranged in different topologies
at run time, are sound alternatives to tackle relational problems which
lend themselves to graph representations. In this paper, we show that
GNNs are capable of multitask learning, which can be naturally en-
forced by training the model to refine a single set of multidimensional
embeddings ∈ Rd and decode them into multiple outputs by connect-
ing MLPs at the end of the pipeline. We demonstrate the multitask

arXiv.org

24

learning capability of the model in the relevant relational problem of
estimating network centrality measures, i.e. is vertex v1 more central
than vertex v2 given centrality c?. We then show that a GNN can be
trained to develop a lingua franca of vertex embeddings from which all
relevant information about any of the trained centrality measures can be
decoded. The proposed model achieves 89% accuracy on a test dataset
of random instances with up to 128 vertices and is shown to generalise to
larger problem sizes. The model is also shown to obtain reasonable ac-
curacy on a dataset of real world instances with up to 4k vertices, vastly
surpassing the sizes of the largest instances with which the model was
trained (n = 128). Finally, we believe that our contributions attest to
the potential of GNNs in symbolic domains in general and in relational
learning in particular.

1.2.6 Learning to Solve NP-Complete Problems – A Graph Neural Net-

work for the Decision TSP – Marcelo Prates, Pedro Avelar, Hen-

rique Lemos, Luis Lamb and Moshe Vardi

Presented at AAAI 2019 (Qualis A1). Main author. Also available as a
preprint on <arXiv.org> (PRATES et al., 2018). Prates and mostly Avelar were re-
sponsible for the development of the Python / Tensorflow library used to implement
the model described in this paper. Prates is credited with the design of the model,
including the original idea of projecting edges to multidimensional space to feed it
with edge weight data. The experimental setup, including the idea of developing
adversarial instance pairs, is also due to Prates. Avelar is credited with the idea and
carrying out of the “acceptance curves” experiments, while Lemos is credited with
carrying out baseline comparisons with traditional methods. Prates is responsible
for the greater share of the manuscript’s text, although Avelar, Lemos and mostly
Lamb contributed with revisions. Lamb and Vardi are credited with suggesting
and advocating for the research direction of approaching traditional NP-Complete
problems with neural networks.

Graph Neural Networks (GNN) are a promising technique for bridging
differential programming and combinatorial domains. GNNs employ
trainable modules which can be assembled in different configurations
that reflect the relational structure of each problem instance. In this
paper, we show that GNNs can learn to solve, with very little supervi-
sion, the decision variant of the Traveling Salesperson Problem (TSP),
a highly relevant NP-Complete problem. Our model is trained to func-
tion as an effective message-passing algorithm in which edges (embedded
with their weights) communicate with vertices for a number of iterations
after which the model is asked to decide whether a route with cost < C
exists. We show that such a network can be trained with sets of dual
examples: given the optimal tour cost C∗, we produce one decision in-
stance with target cost x% smaller and one with target cost x% larger

arXiv.org

25

than C∗. We were able to obtain 80% accuracy training with −2%,+2%
deviations, and the same trained model can generalize for more relaxed
deviations with increasing performance. We also show that the model
is capable of generalizing for larger problem sizes. Finally, we provide a
method for predicting the optimal route cost within 2% deviation from
the ground truth. In summary, our work shows that Graph Neural
Networks are powerful enough to solve NP-Complete problems which
combine symbolic and numeric data.

1.2.7 Typed Graph Networks – Marcelo Prates, Pedro Avelar, Henrique

Lemos, Luis Lamb, Marco Gori

Under review at IEEE Transactions on Neural Networks and Learning Sys-
tems. Available as a preprint on <arxiv.org> (PRATES et al., 2019). Prates and
mostly Avelar are responsible for the development of the Python / Tensorflow library
which is a companion to and one of the two main subjects of this paper. Prates is
credited with the original idea of formalizing Graph Neural Networks in the setting
of types, yielding the Typed Graph Networks formalization. Prates is responsible
for the greater share of the manuscript’s text, including algorithms, visualizations
and figures. Avelar is credited with the block diagram illustrating the structure of a
TGN. Prates is credited with implementing one, Avelar two and Lemos one of the
models described in the paper. Lamb is credited with the suggestion of turning the
TGN formalization (originally developed for this thesis) into a paper. Lamb and
Gori contributed with revisions to the manuscript text. Gori is credited with the
development of the original GNN model and unique historical perspective on the
differences between it and our modern formalization.

Recently, the deep learning community has given growing attention to
neural architectures engineered to learn problems in relational domains.
Convolutional Neural Networks employ parameter sharing over the im-
age domain, tying the weights of neural connections on a grid topology
and thus enforcing the learning of a number of convolutional kernels.
By instantiating trainable neural modules and assembling them in var-
ied configurations (apart from grids), one can enforce parameter sharing
over graphs, yielding models which can effectively be fed with relational
data. In this context, vertices in a graph can be projected into a hyperdi-
mensional real space and iteratively refined over many message-passing
iterations in an end-to-end differentiable architecture. Architectures of
this family have been referred to with several definitions in the litera-
ture, such as Graph Neural Networks, Message-passing Neural Networks,
Relational Networks and Graph Networks. In this paper, we revisit the
original Graph Neural Network model and show that it generalises many
of the recent models, which in turn benefit from the insight of thinking
about vertex types. To illustrate the generality of the original model,
we present a Graph Neural Network formalisation, which partitions the

arxiv.org

26

vertices of a graph into a number of types. Each type represents an
entity in the ontology of the problem one wants to learn. This allows -
for instance - one to assign embeddings to edges, hyperedges, and any
number of global attributes of the graph. As a companion to this paper
we provide a Python/Tensorflow library to facilitate the development
of such architectures, with which we instantiate the formalisation to
reproduce a number of models proposed in the current literature.

1.2.8 Graph Colouring Meets Deep Learning: Effective Graph Neural

Network Models for Combinatorial Problems – Henrique Lemos,

Marcelo Prates, Pedro H.C. Avelar and Luis C. Lamb

Under review at The IEEE International Conference on Tools with Artificial
Intelligence (ICTAI). Available as a preprint on <arxiv.org> (LEMOS et al., 2019).
Prates and mostly Avelar are responsible for the development of the Python / Ten-
sorflow library which was used to write the models proposed in this paper. Lemos
is credited with the original idea of applying GNNs to graph colouring, with the
experimental design and with the models themselves, as well as the greater part of
the writing of the manuscript. Prates, Avelar and Lamb contributed with revisions
to the text.

Deep learning has consistently defied state-of-the-art techniques in many
fields over the last decade. However, we are just beginning to understand
the capabilities of neural learning in symbolic domains. Deep learning
architectures that employ parameter sharing over graphs can produce
models which can be trained on complex properties of relational data.
These include highly relevant NP-Complete problems, such as SAT and
TSP. In this work, we showcase how Graph Neural Networks (GNN) can
be engineered – with a very simple architecture – to solve the fundamen-
tal combinatorial problem of graph colouring. Our results show that the
model, which achieves high accuracy upon training on random instances,
is able to generalise to graph distributions different from those seen at
training time. Further, it performs better than the Neurosat, Tabucol
and greedy baselines for some distributions. In addition, we show how
vertex embeddings can be clustered in multidimensional spaces to yield
constructive solutions even though our model is only trained as a binary
classifier. In summary, our results contribute to shorten the gap in our
understanding of the algorithms learned by GNNs, as well as hoarding
empirical evidence for their capability on hard combinatorial problems.
Our results thus contribute to the standing challenge of integrating ro-
bust learning and symbolic reasoning in Deep Learning systems.

arxiv.org

27

1.2.9 Graph Neural Networks Improve Link Prediction on Knowledge

Graphs – Henrique Lemos, Marcelo Prates, Pedro H.C. Avelar and

Luis C. Lamb

Under review at 2019 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Prates and mostly Avelar are responsible for the development
of the Python / Tensorflow library which was used to write the models proposed in
this paper. Lemos is credited with the original1 idea of applying GNNs to knowledge
link prediction, with the experimental design and with the models themselves, as
well as the greater part of the writing of the manuscript. Prates contributed with
the formalization of the problem and model, writing of some sections and decisions
regarding the presentation of diagrams. Prates, Avelar and Lamb contributed with
revisions to the text.

Knowledge graphs are repositories of facts about real-world entities.
Each fact is structured as a 3-tuple connecting a source entity and a tar-
get entity with a relation. However these repositories can be incomplete,
with several missing facts about the stored entities. Recently, there have
been attempts to infer missing facts from existent ones, which can be
modelled as a machine learning task. Two notable research efforts try to
predict a new fact between two entities es and et by considering (i) all
known facts connecting es and et and (ii) several paths of facts connect-
ing es and et. In this paper, we propose a new approach based on Graph
Neural Networks which enforces learning over all these paths naturally
by feeding a model with the minimal subset of the knowledge graph
containing all of them. By learning to produce representations for enti-
ties and facts akin to word embeddings, we can train a model to decode
these representations and predict new facts in a multitask approach. We
demonstrate that such a model improves the state-of-the-art mean av-
erage precision in the Freebase+ClueWeb link prediction benchmark to
92%.

1

28

2 MACHINE LEARNING BASICS

Generally speaking, Machine Learning (ML) refers to the study and engineer-
ing of statistical models which are capable of generalizing a function given a limited
observation window of it. For example, a ML model can be given a set of example
input-output pairs (X, f ∗(X)) sampled from a function f ∗, and its goal is to produce
an approximation f≈ which minimizes some loss w.r.t. f ∗ in the example dataset,
such as f≈ = min

f

(∑
X

(f ∗(X)− f(X))2
)

for sum-of-squares loss. This definition

encompasses a surprisingly wide range of techniques, ranging from linear regression
(Figure 2.1) to (for example) the graph neural networks which are the topic of this
thesis.

Figure 2.1: Linear regression example. A nonlinear function f ∗(x) (in red) is ap-
proximated by a linear model f≈(x) (in black). Source: Author.

In most cases, ML can be interpreted as generalized curve-fitting. Figure
2.2 exemplifies bidimensional curve-fitting (i.e. f ∗ : R2 → R). Even when it is
dealing with higher dimensionalities, we can think of ML applications as producing
a hypersurface whose average distance to the example datapoints is minimized. Each
deep neural network architecture, which most often than not receives as input vectors

29

of high dimensionality, can be thought of as a family of hypersurfaces. Because
neural networks are parameterized by their (many) neural weights and biases, each
parameter configuration yields a different hypersurface. When training is successful,
the hypersurface obtained is satisfactorily close to all training examples.

Figure 2.2: Bidimensional curve fitting. Source: Author.

The category of ML discussed above is known as supervised learning,
as we have access to all input-output pairs (x, f ∗(x)). We do not always have
input-output pairs (also called labelled data) readily available for training, but in
some contexts ML can learn even without explicitly knowing the desired output
for each input example. When performing k-means clustering (Figure 2.3), for
instance, we are not allowed to train our model with labelled observations and have
it generalize to other domains accordingly. We are instead presented with a single
set of observations and asked to cluster them into k distinct categories. This can
nevertheless be accomplished if we proceed to arrange observations in such a way as
to minimize the variance of each cluster. In this context we are still minimizing some
error term, but it is not directly related to the difference between f≈ and f ∗ (which
we do not know). This category of ML is known as unsupervised learning. At the
interface between supervised and unsupervised learning we have semi-supervised

30

learning when some but not all input examples have outputs associated to them.
Related to semi-supervised learning is active learning, when the model is only able
to obtain a limited number of outputs (based on some budget) and has to actively
choose from which inputs it will obtain them.

Figure 2.3: When performing K-clustering, we do not minimize the difference be-
tween the approximation f≈ and the ground-truth f ∗, because f ∗ is unknown. We
minimize another error function instead (specifically the sum of cluster variances).
This is an example of unsupervised learning. Source: Author.

Finally, a reinforcement learning agent is not fed with the correct outputs
for each input, but rather with rewards / penalties associated with each decision it
makes while interacting with the environment. An example of reinforcement learning
is Q-learning, in which an agent tries to learn the reward / penalty associated with
each combination of state and decision. For example in (MNIH et al., 2013) the agent
is required to learn the reward / penalty associated with each Atari button press for
each configuration of pixels in the screen. The space of possible 260×160 RGB pixel
configurations is of course a huge exponential number (= (260× 160)3×255 ≈ 103533),
but this difficulty can be bypassed by replacing the usual Q-learning table of size
#states×#actions by a convolutional neural network fed with visual inputs.

The main advantage of ML is that it allows one to synthesize algorithms

31

purely from training data, without explicitly programming them. These algorithms
are rather simple when few variables are involved, corresponding to a linear equation
for example in Figure 2.1, but can become rather involved when more parameters
are added. The highly successful model ResNet for image classification, for in-
stance, spans 152 convolutional layers (HE et al., 2016). Even though the status
of the functions learned by simple ML systems as “algorithms” may be disputed,
the state-of-the-art in deep learning is rife with applications which blur the bor-
der between what could be considered an algorithm or not. As we will see in the
next sections, ML systems in general and graph neural networks in particular can
nowadays be trained to perform complex computations on symbolic domains, extend
their computation over a controllable number of iterations and even produce rela-
tional output – attributes which are at the very least reminiscent of hand-engineered
algorithms.

32

3 DEEP LEARNING BASICS

In its modern and usual sense, Deep Learning (DL) corresponds to the study
and engineering of ML models based on deep (i.e. many-layered) artificial neural
networks. An ANN is a model of which the main building block – the artificial neuron
– was envisioned to mimick the “all-or-none” rule of neuroscience, which states that
a neuron (Figure 3.1) either fires or does not fire depending on its received signal. In
other words: the intensity of the received signal does not interfere with the intensity
of the signal which is propagated forward (if any), it merely determines, in a boolean
fashion, whether a signal will be sent.

Figure 3.1: Drawing of neurons in the
pigeon cerebellum by Spanish neu-
roscientist Santiago Ramón y Cajal.
Source: Wikimedia Commons.

For reasons which will become clear
briefly, however, it is paramount that the
artificial neurons of ANNs do not actually
fire in a strictly boolean fashion. For the
moment, it suffices to state that the “all-or-
none” rule must be approximated by con-
tinuous (differentiable) means. Fortunately,
this can be done very easily as we have
many differentiable functions at our disposal
whose outputs saturate to a fixed value ap-
proximately above a certain threshold. This
is the case of the hyperbolic tangent func-
tion and the sigmoid function (Figures 3.2
and 3.3 respectively).

Figure 3.2: Graph of the hyperbolic tangent function (tanh(x) = ex−e−x

ex+e−x), which is
often used as an activation function for ANNs. Source: Author.

−4 −3 −2 −1 1 2 3 4

−1

−0.5

0.5

1

x

y

33

Figure 3.3: Graph of the sigmoid function S(x) = ex

ex+1 , which is often used as an
activation function for ANNs.

−4 −3 −2 −1 1 2 3 4

0.5

1

x

y

Although −1 < tanh(x) < 1 and par-
ticularly 0 < S(x) < 1 capture well the de-
sired “all-or-none” behavior while the rectifier function 0 ≤ f(x) (Figure 3.4) is
unbounded to the right and not everywhere differentiable, there are advantages for
using it as an ANN activation, the most important one being that computing its
derivative is less costly.

Figure 3.4: Graph of the rectifier function f(x) = x+ = max(0, x), which is often
used as an activation function for ANNs. Source: Author.

−4 −3 −2 −1 1 2 3 4

1

2

x

y

ANNs, in their crudest form, are built by composing these nonlinear activa-
tion functions with weighted sums. Something like

f(~x) = tanh(a1x1 + a2x2 + a3x3 + b) (3.1)

can be interpreted as a single-layer ANN where a1, a2, a3 represent the “neural
weights” (i.e. how strongly the output neuron is connected to the input signals
x1, x2, x3) in our neuroscience metaphor, while b represents the output neuron’s bias.
The greater the bias (which corresponds to a left shift in the graph in Figure 3.2), the
closer the activation is to 1, regardless of the received signal. Equation 3.1 can also be
visualized in a pictorial representation (Figure 3.5) where each neuron is represented
as a circle. The directionality of the computation flow is left → right: feeding the
initial layer are the inputs x1, x2, x3, while the output f(x) points outwards. Forward

34

neural connections are annotated with their corresponding weights (a1, a2, a3), and
the bias b is also fed to the output neuron.

Figure 3.5: Pictorial representation of the single-layered ANN in Equation 3.1.
Source: Author.

x1

x2

x3

f(x)
a1

a2

a3

b

Input
layer

Ouput
layer

Possibly the major insight from the deep learning renaissance of the last
decade is that depth is often more powerful than width when designing ANNs.
The depth corresponds to the number of layers in the network (in Figure 3.1 we
have one input layer and one output layer), while the width corresponds to the
size of each layer in the number of neurons (in Figure 3.1 three neurons for the
input layer and one for the output layer). This observation was initially exemplified
in the evolution of convolutional neural network architectures for the ImageNet
dataset, a collection of over 50 million cleanly labelled full resolution images used
as a benchmark for image classification (DENG et al., 2009). The ∼4M parameter
architecture ResNet (HE et al., 2016) was able to surpass VGGNet, with ∼140M
parameters (SIMONYAN; ZISSERMAN, 2014). ResNet sported 152 layers, however,
while VGGNet encompassed only 16. A deeper network is simple to visualize as just
an iterated composition of an activation function (i.e. tanh) and a weighted sum.
For example, adding an additional layer of three neurons to Equation 3.1 corresponds
to:

f(x) = tanh
bO +

3∑
i=1

aOi · tanh
bHi +

3∑
j=1

aHi,j · xj

 (3.2)

which can also be visualized in pictorial format as the diagram in Figure 3.6.
aHi,j corresponds to the neural weights between the input layer and the hidden layer,
while aOh corresponds to the neural weights between the hidden layer and the output
layer. Analogously, bHi and bO correspond to the biases of the hidden neurons and

35

to the bias of the output neuron respectively. We now have 3 × 3 + 3 = 12 neural
weights and 3 + 1 = 4 biases, because for every fully-connected layer of width n2

connected to the output of a previous layer of width n1 we add n1×n2 neural weights
and n2 biases to the collection of parameters of our model.

Figure 3.6: Pictorial representation of the ANN in Equation 3.2 with one hidden
layer. Hidden neurons are marked with H1, H2, H3, and neural weights and biases
are suppressed due to space constraints. Source: Author.

x1

x2

x3

H1

H2

H3

f(x)

Input
layer

Hidden
layer

Ouput
layer

Finally, the collection of weighted sums operated at each layer can be suc-
cinctly described by a matrix multiplication. Consider for example the 3 inputs
received by neurons H1, H2, H3 in the hidden layer of the ANN in Figure 3.6. In
tensorial form, they can be described as

aH1,1x1 + aH1,2x2 + aH1,3x3 + bH1

aH2,1x1 + aH2,2x2 + aH2,3x3 + bH2

aH3,1x1 + aH3,2x2 + aH3,3x3 + bH3

 =

aH1,1 aH1,2 aH1,3

aH2,1 aH2,2 aH2,3

aH3,1 aH3,2 aH3,3

x1

x2

x3

+

bH1

bH2

bH3

 (3.3)

A ANN model with N layers with sizes n1, n2, . . . , nN spans N − 1 such
matrices M1 . . .MN−1, with sizes n1 × n2, . . . , ni × ni+1, . . . nN−1 × nN respectively.
The model also spans N − 1 bias vectors ~b2 . . .~bN with sizes n2 . . . nN respectively.
One way to think about ANN layers is to focus on the function that each layer
applies to the tensor of inputs received from the previous layer, which corresponds
to an activation applied to a matrix multiplication plus a bias. Concretely, the
function fi : Rni−1 → Rni computed by the i-th layer can be expressed as:

fi(~x) = ϕ·(Mi × ~x+ ~bi) (3.4)

36

Where ϕ· is the activation function (for example tanh(x)) applied element-
wise. As a result, the entire ANN can be interpreted in terms of iterated function
composition as

f(~x) = fN ◦ f(N−1) ◦ · · · ◦ f3 ◦ f2 =
(

2
©
i=N

fi

)
(~x) (3.5)

Where the notation
n2
©
i=n1

fi = fn1 ◦ · · · ◦ fn2 denotes iterated function compo-
sition. Notice that this formalization also encompasses networks where layers are
not necessarily fully-connected: to disconnect two neurons it suffices to make the
corresponding element in the weight matrix equal zero.

3.1 Multilayer Perceptron

A Multilayer Perceptron (MLP) is a class of artificial neural network in which
the connections are feedforward (i.e. do not form a cycle) and are organized into at
least three layers: an input layer, a hidden layer and an output layer. The ANN in
Figure 3.6, for instance, is an example of a MLP.

3.2 Expressiveness of Artificial Neural Networks

The formalization presented above exemplifies the simplicity of ANNs, which
can be entirely described in terms of matrix multiplications and a simple activa-
tion function such as tanh or the rectifier function (ReLU). This may lead to the
conclusion that ANNs are somewhat limited in their capability of approximating
complex functions, but since the early 1990s it is known that feed-forward neural
networks can approximate with arbitrary precision any continuous function defined
over compact subsets of Rn (i.e. hyperrectangles). This is due to the Universal ap-
proximation theorem (CYBENKO, 1989; HORNIK, 1991), whose formal description
is the following:

Theorem 1 (Universal approximation theorem (HORNIK, 1991)). Let ϕ : R→ R

be a nonconstant, continuous bounded function. For every ε ∈ R and function
f : [0, 1]m → R in the unit hypercube there exists a layer size N ∈ N, hidden neural
weights M1 ∈ Rm×N , hidden biases ~b ∈ Rm and output neural weights M2 ∈ RN

37

such that
f≈(~x) = M2 × ϕ·

(
M1 × ~x+~b

)
(3.6)

satisfies |f≈(~x)− f(~x)| < ε for all ~x ∈ [0, 1]m.

3.3 Feasibility of Training Artificial Neural Networks

The Universal approximation theorem asserts the ultimate capability of ar-
tificial neural networks, showing that there exists an ANN and a parametrization
thereof which together yield an approximation for any continuous function. It does
not, crucially, say anything about the feasibility of training such a ANN to satis-
factory levels of accuracy. Regardless of the unquestioned successes of deep learning
in the last decades, theoretical arguments in this direction have been scarce. Nev-
ertheless, at least one recent effort has made important advances on the theoretical
understanding of gradient descent for ANNs. (ALLEN-ZHU; LI; SONG, 2018) were
able to show that deep neural networks can achieve perfect (100%) classification
accuracy on the training dataset in polynomial time w.r.t. the number of training
samples and the number of layers in the model.

3.4 Vectors, Matrices and Tensors

Although it is not strictly necessary to formalize deep learning concepts in
the language of tensors, it is extremely useful to do so. A tensor, put succinctly,
generalizes the concept of a matrix in analogy to how a matrix generalizes the
concept of a vector and to how a vector generalizes the concept of scalar quantities.
A vector ~x can be thought of as an ordered list of real numbers xi ∈ R (although in
principle one could define vectors over any set other than R), as exemplified below
for a four dimensional real vector.

~x =

3
−2π

0
−1

 (3.7)

The corresponding vector space (i.e. the set to which all such four dimensional

38

vector pertain) can be described by the 4-ary cartesian product R4 = R×R×R×R.
In this sense, a scalar quantity can be thought of as a unitary vector described by the
unary cartesian product R1 = R, and we can immediately see how vectors extend
the concept of scalars to ordered lists thereof.

Matrices are similar to vectors in the sense that a matrix is an ordered list
of vectors analogously to how vectors themselves are ordered lists of scalars:

A =

3 8 −2 0

3π −2π 5.2 9
0 0 1 0

 (3.8)

Accordingly, in the context of 3×4 real matrices such as A, the corresponding
space can be described by a 3-ary cartesian product performed over 4-dimensional
vectors: R3×4 = R4×R4×R4. This immediately allows us to generalize the concept
to ordered lists of (ordered lists of (ordered lists of (...))) indefinitely: one must just
define spaces Rn1×n2×...nN . This generalization to vectors of any rank (0 for scalars,
1 for vectors, 2 for matrices, 3 for “three-dimensional” matrices, etc.) is called a
tensor.

R

N is the tensor rank︷ ︸︸ ︷
n1 × n2 × . . . nN (3.9)

Tensors are useful in deep learning because training data is usually logically
organized into multiple dimensions. In the context of computer vision, for instance,
images correspond to rectangular grids of pixels the content of each one usually
corresponds to a color defined over three (RGB) channels. In this context, it is
customary to represent each channel of an image as a n×m matrix and the image
itself is corresponds to stacking the three channels, yielding a 3 × n × m tensor.
When input images pass through the first convolutional layer (which is usually
composed of not one but many convolutional kernels), each of the K learned kernels
will yield a different filtered image. In this context, it makes sense to treat all
K output images as if they were mere channels on an hypothetical image format
with multidimensional pixel colors. In the language of tensors, this corresponds to
replacing the 3 × n × m input to the first layer for a K × n × m to the second.
Additionally, because deep learning models are customarily trained in batches (i.e.
the gradients to the loss computed over many different instances are added up and

39

we perform descent on the resulting gradient), the inputs to the first layer usually
have one additional “batch” dimension: b× 3× n×m.

3.5 Parameter Space and Gradient Descent

An ANN model is parameterized by its neural weights and biases, meaning
that each different assignment of values to these parameters potentially implements
a different function. The configuration of all P parameter values in a given ANN
modelM can be interpreted in tensorial format as a multidimensional vector p ∈ RP ,
giving rise to a parameter space P = RP . Given a parameter configuration p ∈ P for
M, if one has access to a input/output training example (x, y), they can in principle
evaluate a loss L between the ground-truth output y and the output of the function
computed byM with configuration p given input x for example as:

L(p) = (Mp(x)− y)2 (3.10)

For fixed x and y, the loss L(p) is ultimately a function of the parameter
configuration p. Because M is differentiable w.r.t. each individual parameter, we
can compute a partial derivative ∂

∂pi
L for each parameter p1, . . . , pP . Ultimately,

these partial derivatives can be stacked in a vector to obtain a gradient for the
loss:

5L =

∂
∂p1
L

∂
∂p2
L
...
∂
∂pP

L

 (3.11)

Because each orthogonal direction in the gradient is weighted by the steepness
of the loss function in that direction, the gradient effectively points towards the
direction of steepest ascent in the hyperdimensional landscape defined by the loss
function. Therefore if one were to take a step in the parameter space in the direction
opposite to that pointed by the gradient, they should expect to see the loss diminish.
This is the insight behind using gradient descent to train ANN models: repeatedly
take small steps in the direction of steepest descent (i.e. opposite to the gradient)
until the loss is satisfactorily small. This process is visualized in Figure 3.8, where

40

the loss of the small single-layer ANN depicted in Equation 3.12 and Figure 3.7 is
decreased throughout 200 gradient descent operations.

f(~x) = w1x1 + w2x2 (3.12)

Figure 3.7: Pictorial representation of the single-layered ANN in Equation 3.1.
Source: Author.

x1

x2

f(x)
w1

w2

b = 0

Input
layer

Ouput
layer

Notice that the smaller the length of a gradient descent step, the closest we
are to a displacement on the plane tangent to the point in consideration. Yet we
cannot make steps infinitesimally small, so as a result they must be chosen arbitrarily
and the gradient descent method is also parameterized by a learning rate: a scalar
determining the step length. For smooth losses, we should expect large learning
rates to be effective, because we expect the gradient to vary little over considerable
distances and consequently to be approximated moderately well by a straight line.
On the other hand, one should be careful not to employ large learning rates when
training on complex loss landscapes.

3.6 Batch Training and Stochastic Gradient Descent

In the last subsection we have illustrated the gradient descent method on a
toy problem with a single training instance. On practice, machine learning appli-
cations employ thousands to millions of training examples. The gradients of the
corresponding models can still be computed in a straightforward way: we must only
reduce all individual losses into a single, scalar value. This can be done, for example,
by adding them up or by computing their arithmetic mean. In some specific cases
it may even be useful to reduce them multiplicatively or in other unusual manner.
Nevertheless, when a large number of instances is considered, we must take into

41

Figure 3.8: The result of performing gradient descent on the loss L(w1, w2) =(
Mw1,w2(

(
1 1

)ᵀ
)− 4

)2
of the single-layer ANN Mw1,w2(x) = S(w1x1 + w2x2)

w.r.t. the inputs x1 = 1, x2 = 1 and the output y = 4. The model evolves through-
out 200 gradient descent operations with initial parameters w1 = −2, w2 = −0.25
and learning rate = 0.01. Source: Author.

account the computational cost of computing such a gradient, which can be very
expensive. A solution is to repeatedly sample a random instance, compute its gra-
dient and perform a gradient descent step on it. In this setup we are required to run
an expected number of gradient descent operations equal to the size of the training
set to sweep over all instances, which might also be costly. An hybrid strategy is to
sample not one but a minibatch of n > 1 random instances and perform a gradi-
ent step on its gradient. This is the most commonly used technique to train ANN
models, with minibatch sizes varying from implementation to implementation.

3.7 Artificial Neural Network Building Blocks

In subsection 3.5 we have described ANNs in their crudest form as iterated
composition of matrix multiplication operations with activation functions, pointing

42

out how this formalization can capture even networks where layers are not necessarily
fully-connected. However, ANN models can – and often do – transcend the weighted
sum model. Because the sole restriction to the applicability of the gradient descent
method is that the loss function is differentiable, we are only fundamentally limited
by the differentiability of candidate ANN building blocks. As a result, we are for
example free to feed a layer with the weighted product p =

n∏
i=1

wixi of all its inputs,

which can be easily differentiated w.r.t. wi as ∂p
∂wi

= 1
wi

n∏
i=1

wixi.

3.8 Convolutional Neural Networks

Neuroscience research in the late 1960s showed that the visual cortices of
some mammals, in particular cats and monkeys, contain neurons which are sensitive
to small, localized regions of the visual field. The outputs of these neurons, dubbed
“simple cells” (Figure 3.9), are maximized upon observation of straight lines with
particular orientations. This neural wiring is different from the fully-connected
architecture discussed in the previous subsections in two fundamental ways: first
because in this case layers are sparse and second and perhaps most importantly
because the connections between the retina and a layer of simple cells archives (even
if passively) visual information. That is not to say that the signals sent through
these connections contain visual information (although they certainly do), but that
the neural wiring itself is enriched with it. By connecting a simple cell with a set
of neurons closely localized in the visual field, we are passively feeding the model
with the information that those neurons are near one another. This is the main
insight behind Convolutional Neural Networks (CNNs), which intelligently engineer
layers to imprint visual information into an ANN model.

43

Figure 3.9: Pictorial representation of a simple cell receiving signals from a square
RGB window of the visual field. Source: Author.

There are significant advantages to tying together the weights of all simple
cells – that is, making each simple cell feed on a different square window of the
visual field (Figure 3.10) but share the same neural weights as all other simple cells.
If all simple cells are conditioned on learning the same relationship, the function
f : RGB2 → R2 learned by the model as a whole will exhibit an important property
called equivariance to translation. This essentially means that the sole effect of
performing an horizontal or vertical shift in the input image will be an equivalent
shift in the output of f . Figure 3.11 exemplifies this property on a function f :
R2 → R2

Figure 3.10: Pictorial representation of a 3× 3 matrix of simple cells each receiving
signals from a different square RGB window of the visual field. Source: Author.

44

Figure 3.11: Example of an equivariant function f : R2 → R2: As the input image I
undergoes a left shift, the composition f ◦ I is shifted by the same amount. Source:
Author. Beetle image obtained from Wikimedia Commons (<https://en.wikipedia.
org/wiki/Stag_beetle#/media/File:COLE_Lucanidae_Lissotes.png>).

An insight about the kind of functions such a model can possibly learn is the
following: notice that each simple cell weighs each of its inputs (i.e. each pixel) by
a certain amount which is ultimately determined by the neural weight connecting
it to the corresponding neuron in the visual field. For a simple cell connected to a
grid of 3× 3 pixels, a possible arrangement of neural weights is the following:

W =

0.08 0.13 −0.45
0.22 −0.35 −0.07
0.17 0.29 −0.29

 (3.13)

The input signal of such a simple cell would then be given by

I =
3∑
i=1

3∑
j=1

Wijxij (3.14)

This is exactly equivalent to the 2D convolution operation (with stride = 3)
which is commonly used in digital image processing. In simple terms, what such a
model does is that it sweeps over the input image producing an output image for
which the value of each pixel (i, j) is a linear combination of the values of its (9-

https://en.wikipedia.org/wiki/Stag_beetle##/media/File:COLE_Lucanidae_Lissotes.png
https://en.wikipedia.org/wiki/Stag_beetle##/media/File:COLE_Lucanidae_Lissotes.png

45

connected) neighbors (notice that, in this context, each pixel is considered a neighbor
of itself). In image processing parlance, matrices such as W are called convolution
kernels. Ultimately, the convolution kernel determines which kind of filtering will
be applied over the input image, but obviously the operation implemented by most
matrices ∈ R3×3 have no useful interpretation. Some matrices, nevertheless, have
useful effects. The convolution kernel

W = 1
9

1 1 1
1 1 1
1 1 1

 (3.15)

for example, can be used to blur an image, as Figure 3.12 exemplifies. It
is easy to see how such a result emerges from this kernel, as what it effectively
implements is a replacement of the original pixel values by the averages of their
3× 3 neighborhoods.

Figure 3.12: Result of performing a convolution with the “blur kernel” in
Equation 3.15. Source: Author. Beetle image obtained from Wikime-
dia Commons (<https://en.wikipedia.org/wiki/Stag_beetle#/media/File:COLE_
Lucanidae_Lissotes.png>).

The most important insight behind CNN architectures is that such useful
kernels can ultimately be learned through gradient descent on the parameter space
of kernel weights. The second to most important insight is that not only 1) many
kernels can be learned at the same time but also 2) kernels can be learned at multiple
consecutive levels. In simple terms, a CNN learns n1 convolutional kernels to be
applied to the input image, which yield n1 filtered images, then it learns n2 kernels
to be applied to these n1 images, and so on for many convolutional steps. The
interpretation of this chain of convolution operations is that a successfully trained

https://en.wikipedia.org/wiki/Stag_beetle##/media/File:COLE_Lucanidae_Lissotes.png
https://en.wikipedia.org/wiki/Stag_beetle##/media/File:COLE_Lucanidae_Lissotes.png

46

CNN model should be able to learn simple associations in the first layer, such as
detecting lines in particular orientations, and it should be able to learn filters to
effectively combine features learned at a given layer into more complex associations
in the next layer. Eventually, upon stacking many layers, a CNN should be able (for
example) to have a neuron activate in lesser or greater intensity depending on how
much the input image resembles a photograph of a stag beetle, or, as Figure 3.13
exemplifies, high-level features of a cat such as ears, face and tail.

Figure 3.13: Visualizing some of the convolutional kernels learned by the Incep-
tionV3 model (XIA; XU; NAN, 2017) on the ImageNet dataset at four different
layers (conv2d_1, conv2d_30, conv2d_60, conv2d_90). Kernels are visualized by
applying them on a sample image containing a domestic cat. As is usual with convo-
lutional models, images’ resolutions become lower as more convolutional layers are
stacked, abstracting unimportant pixel information. At the last stages, learned con-
volutions weigh in high-level features such as the cat’s ears, face and tail. This is in
contrast with the first kernels, which are sensitive to low-level features such as lines
in particular orientations. Cat image obtained from Wikipedia user Basile Morin
and licensed under CC BY-SA 4.0 (<https://en.wikipedia.org/wiki/Cat#/media/
File:Felis_silvestris_catus_lying_on_rice_straw.jpg>). InceptionV3 ImageNet
weights obtained from Keras Applications library <https://keras.io/applications/>.

https://en.wikipedia.org/wiki/Cat##/media/File:Felis_silvestris_catus_lying_on_rice_straw.jpg
https://en.wikipedia.org/wiki/Cat##/media/File:Felis_silvestris_catus_lying_on_rice_straw.jpg
https://keras.io/applications/

47

3.9 Parameter Sharing in Convolutional Neural Networks

Although this thesis does not make direct use of CNNs, there are fundamental
insights shared by CNNs and the main topic of this work, the most important
one being the concept of parameter sharing in ANN models. As discussed above,
CNNs benefit from the insight of employing tied weights over sparse, localized neural
connections to effectively learn convolutional kernels (Figure 3.14). This makes sense
due to the fact that the equivariant property is useful for analyzing images, as our
visual ontology is not usually interested on pixel coordinates on a global level but
rather on a local one. In other words: if you are going to learn an association
for a small grid of pixels, there are not, in general, good reasons to learn different
associations depending on your position on the big picture. Edge detection is a
good example: to perform edge detection it suffices to know about the immediate
neighborhood of each pixel, and as a result the required operation can be carried out
regardless of whether you are performing it (for example) above or below the center
of the visual field. Rigorously speaking, our visual cortex is also interested on pixel
correlations over long distances (such as combining pixel information from the paws
and ears of a dog to identify it), but CNNs analyze these correlations indirectly by
stacking multiple layers of abstraction between the pixel level and the conceptual
level, progressively reducing the dimensionality of the analyzed domain until paw
and ear information are brought spatially closer to each other.

Figure 3.14: Pictorial representation of a one-dimensional convolutional neural net-
work with kernel size = 3 and strides = 3. Because the parameters of all four
convolutional blocks are shared, the resulting network can be thought of as sweep-
ing the same convolutional filter throughout the entire 15-dimensional input. Source:
Author.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

f(X) f(X) f(X) f(X)

y1 y2 y3 y4

48

Although parameter sharing can be understood conceptually, its effect can
also be exemplified numerically if we take into consideration the sizes of the param-
eter space in the context of a fully-connected network in comparison to a convolu-
tional architecture. For an image with n pixels and a hidden layer of m neurons,
a fully-connected scheme yields n × m weights and biases, while a convolutional
scheme with kernels ∈ Rk×k yields m × k2. If k2 � n (as it is almost surely the
case), we obtain a dramatic reduction on the size of the parameter space, which
allows for less iterations of gradient descent and ultimately faster training. In this
context, the triumph of CNNs is that they reduce the parametrization of the model
to the level of pixel neighborhoods. We will see briefly how this relates to the type
of parameter space reduction implemented by Graph Neural Networks, which also
employ parameter sharing on a different domain.

3.10 Recurrent Neural Networks

When dealing with time series data, it is not much useful to devote the
same level of attention to datapoints in different timesteps. Conceptually, older
informations should be weighed in more as they potentially have more leverage on
the future of the system. Something which has happened at t = 0 potentially
influences all events up to the last timestep, while the influence of something which
happened at t = n does not capture the first n events. This suggests that an effective
implementation of ANNmodels to perform predictions on time series should take this
factor into account. A solution is to augment the model with an internal “memory
state” (called a “hidden state” in DL parlance) to allow it to store information
about what it has already seen. If each temporal observation at time t is a vector
X(t) ∈ Rdi , each output at time t is a vector Y(t) ∈ Rdo and each hidden state at
time t is a vector H ∈ Rdh (where di is the input dimensionality and do is the output
dimensionality), ideally we want to train some function f : Rdh × Rdi → Rdh × Rdo

whose role is to receive an observation X(t), update the current hidden state H(t−1)

into H(t) and produce an output Y(t). Concretely:

f(H(t−1),X(t)) = (H(t),Y(t)) (3.16)

49

Figure 3.15: Pictorial representation of a
RNN block. Source: Author.

f
(
H(t),X(t)

)X(t) Y(t)

H(t)

This is the fundamental in-
sight behind Recurrent Neural Networks
(RNNs), which correspond to the func-
tion f in equation 3.16. Programati-
cally, a RNN can be thought of as a
neural network block augmented with a
self-loop which implements a feedback
(Figure 3.15). Architecturally, a RNN
can be thought of as a series of identical NN blocks connected in sequence, their
weights tied together to enforce parameter sharing (Figure 3.16).

Figure 3.16: Pictorial representation of the unrolling of a recurrent unit f into six
iterations. Because the parameters of all six blocks are shared, the resulting network
can be thought of as iterating the same operation over the hidden state H(t) and
the input observations X(t) that many times. Inputs X(t) are colored red, outputs
Y(t) are colored blue and hidden states H(t) are colored green. Source: Author.

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

H
(1

)

H
(2

)

H
(3

)

H
(4

)

H
(5

)

H
(0

)

H
(6

)

X(1) X(2) X(3) X(4) X(5) X(6)

Y(1) Y(2) Y(3) Y(4) Y(5) Y(6)

The process of repeating a recurrent unit many times in sequence as Figure
3.16 illustrates is called “unrolling”. It is analogous to the loop unrolling imple-
mented by optimizing compilers in the context of programming languages (Listings
3.1 and 3.2). Unrolling allows for the computation of gradients in a straightforward
way, as one would compute for a feed-forward NN. The twist here is that weights
and biases are identical for every layer, or, in other words, that all layers are param-
eterized by the same reduced set of values. This is acceptable, as gradients can still
be computed w.r.t. these parameters.

50

1 int H = 0;

2 for (t = 1; t <= 6; t++)

3 {

4 H += X[t];

5 }

6 return H;

Listing 3.1: For loop in the C
language.

1 int H = 0;

2 H += X[1];

3 H += X[2];

4 H += X[3];

5 H += X[4];

6 H += X[5];

7 H += X[6];

8 return H;

Listing 3.2: Equivalent
unrolled implementation of the
for loop in 3.1.

3.11 Parameter Sharing in Recurrent Neural Networks

As discussed in Section 3.9, one of the triumphs of convolutional neural net-
works is that they employ parameter sharing over the spatial domain to enforce a key
property for image analysis: equivariance to (spatial) translation. As the reader will
recall, this ties into the intuition that it makes sense for image analysis techniques
working from the bottom-up to be indifferent to pixel coordinates. In the same
way, it makes sense for models predicting over the temporal domain not to differ-
entiate between identical sequences of observations occurring on different moments
in time. Recurrent Neural Networks, consequently, employ parameter sharing over
the temporal domain (i.e. by tying weights sequentially) to enforce equivariance to
translation in time.

3.12 Exploding / Vanishing Gradients and Long Short-Term Memory

As previously mentioned, depth is a very important feature of neural models,
since stacking additional layers can yield more gains in performance than expanding
the size of the existent layers correspondingly. Ironically, depth can also harm
models, in what are conventionally called the vanishing and exploding gradient
problems. These problems are linked to the numerical artifacts which arise from the

51

backpropagation algorithm when we compute gradients for deep neural networks.
This is due to the fact that the gradients of long series of function compositions are
defined over products of multiple partial derivatives. If sufficiently many of these
partial derivatives are slightly larger / smaller than 1, such a product may result
in very large / small gradients, corresponding respectively to the “exploding” and
“vanishing” gradient problems. This is especially problematic for recurrent neural
networks, which are trained via unrolling. This essentially means that to compute
gradients we will be forced to multiply the partial derivatives of the same function
(the RNN) w.r.t. the learnable parameters N times.

One (very successful) proposal to overcome this difficulty is the Long Short-
Term Memory architecture, which enables a RNN to learn to prevent the accumula-
tion of information over arbitrarily long durations by empowering it with a “forget
gate”.

Figure 3.17: Architecture of a LSTM cell. Source:
Wikipedia user Guillaume Chevalier. Licensed un-
der Creative Commons.

The parameters of the forget
gate can be optimized in such
a way that the model can learn
to forget the old state at par-
ticular moments when the cor-
responding information is no
longer useful in the recurrent
computation. This potentially
prevents the long-term depen-
dencies which are ultimately re-
sponsible for vanishing or ex-
ploding gradients. From the
outside, a LSTM cell behaves just like a RNN, feeding on input features and produc-
ing feature outputs throughout all computation steps. From the inside, however, a
LSTM cell has an internal recurrence (a self-loop) in addition to the outer recurrence
shared with typical RNNs (Figure 3.17). LSTMs have been sucessfully applied to a
wide range of learning tasks over sequential domains, such as handwriting (GRAVES
et al., 2009) and speech (GRAVES; MOHAMED; HINTON, 2013) recognition, hand-
writting generation (GRAVES, 2013) and machine translation (BAHDANAU; CHO;
BENGIO, 2014).

52

3.13 Recurrent Learning Beyond Neural Networks

Over the last decades, RNNs have paved the way for a revolution in machine
learning in particular and artificial intelligence as a whole, but they also have their
shortcomings. Although one can in principle unroll the same RNN any number
of times and thus train it over any arbitrary number of timesteps, the decision is
still arbitrary, and this is often undesirable. Consider for example a learning task
on the medical history of a patient, in which events can be distributed in any way
imaginable (and with any variance imaginable) over time. A deep learning engineer
will be forced to decide at which level of granularity this timeline must be quantized
in order to be fed into a RNN in discrete steps. Ideally, we want to be able to
drop this arbitrariness entirely, but to do that one must break out from the concept
of a RNN unit. This is what (CHEN et al., 2018a) have done, by intelligently
generalizing the definition of a RNN to the continuous domain in a step not much
different – kept in due proportion – to what Newton and Leibniz have done with
calculus in the eightheenth century. The authors’ insight is the following: A RNN,
parameterized by the set of parameters φ, can be formalized as a function f(~ht, φ)
which can be used to compute additive increments to the previous hidden state,
updating it:

~ht+1 = ~ht + f(~ht, φ) (3.17)

This recurrence relation has a natural mapping to the continuous domain as
a differential equation, namely:

∂~h(t)
dt

= f(~h(t), t, φ) (3.18)

That is to say that the sequence of hidden states in the previous formaliza-
tion is now replaced by a continuous-time function of hidden states ~h(t) ∈ R→ Rn.
The recurrent neural network analougue f(~h(t), t, φ) is now rewritten as the deriva-
tive of the function of hidden states ~h(t) w.r.t. time.

This approach drops the concept of a neural network entirely, replacing it for
a functional unknown which is not to be learned by gradient descent as usual, but
discovered by (numerically) solving an ordinary differential equation. The feasibility
and applications of such a technique are still unknown as we are only a few months

53

ahead of this publication, but one can hypothesize that neural ordinary differential
equations (as the authors call them) can have a very disruptive effect on sequence
modelling. In particular, it is possible that the technique can be coupled with
Graph Neural Networks (the main subject of this thesis, to be described in the next
chapter), which suffer from a similar problem as the medical application described
before: most often than not, the number of iterations the model runs must be defined
on an arbitrary basis.

54

4 GRAPH NEURAL NETWORKS

Convolutional Neural Networks and Recurrent Neural Networks are appli-
cable, respectively, to domains where spatial and temporal invariance make sense.
There is another type of invariance, however, which is central to discrete math-
ematics in general and combinatorial problem solving in particular: permutation
invariance. Consider, as an example, the problem of boolean satisfiability – i.e. de-
termining whether a boolean formula F (x) in the Conjunctive Normal Form1 admits
at least one assignment x ∈ Bn of boolean values to its variables which renders its
truth value F (x) = > (SELSAM et al., 2018). Whether F (x) admits a satisfying
assignment or not is indifferent to any particular ordering on clauses or literals2

inside clauses (Figure 4.1).

Figure 4.1: Literals ¬x5 and x3 can exchange places with no effect to the function
f : B4 → B expressed by this clause. The same applies for any exchange; in effect,
the number of equivalent clauses one can obtain this way corresponds to the number
of permutations with 5 elements, computed by 5! = 120.

(x1 ∨ ¬x5 ∨ x2 ∨ x3 ∨ ¬x4) (4.1)

However, traditional ANN techniques would require one to encode a CNF for-
mula in a way such that for every possible formula over n variables and m clauses,
there would be a number of equivalent encodings combinatorial on n and m. For
example, if one enumerates all 2n literals, clauses can then be encoded by assigning
for each of them a vector ∈ B2n with zeros everywhere except for ones in those
positions corresponding to the specific literals they contain. For example, for a for-
mula with 5 variables, literals x1 . . . x5 can be mapped to integers 1 . . . 5, literals
¬x1 . . .¬x5 can be mapped to integers 6 . . . 10 and thus the clause (x1 ∨ ¬x2 ∨ x3)
can be encoded with the vector ~v =

(
1 0 1 0 0 0 1 0 0 0

)
3. However,

all 10! different enumerations of literals correspond to exactly the same instance.
Encoding all clauses could be done by concatenating their encodings, but, to make
matters worse, all m! different permutations of clauses in the encoding also cor-
respond to exactly the same instance, yielding 10! × m! equivalent encodings per

1A boolean formula is said to be in the Conjunctive Normal Form if it is described by a logical
conjunction over logical disjunctions of boolean variables, i.e. F = (x1 ∨ x2 ∨ x5) ∧ (¬x4 ∨ x3)

2A literal is a possibly negated variable, e.g. x1,¬x2
3Mapping integers 0 ≤ i ≤ n to binary, unitary vectors ∈ Bn is called one-hot encoding in DL

parlance.

55

instance. To train an ANN model to generalize over CNF formulas, one must be
able to show it sufficiently many equivalent encodings for the same formula to allow
for the memorization of the encoding bias. If we fix m = 5, an exhaustive enumer-
ation of equivalent encodings amounts to 4.35456 × 108 per instance, which is still
within the computational limits of training ANN models but imposes a significant
overhead. Dealing even with CNF formulas of small size becomes rapidly unfeasible
(n = 10,m = 20 yields > 8.8× 1024 equivalent encodings per formula).

Figure 4.2: CNF formula F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4 ∨ x5) represented as a graph:
clauses and literals correspond to nodes, edges between clauses and literals are
painted red and edges between literals and their complements are painted blue.

(x1 ∨ ¬x2) ∧ (x3 ∨ x4 ∨ x5)

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 x5 ¬x5

(4.2)

Note that the boolean satisfiability problem discussed above can be described
in terms of graphs, because it is relational in nature. Each clause references a set
of literals, and each negated literal (such as ¬x5) references its non-negated vari-
ant (x5). Or, in other words, each CNF formula can be defined by an adjacency
matrix between clauses and literals and an adjacency matrix between literals and
literals (Figure 4.2). The same applies for virtually every other symbolic/combi-
natorial problem defined over variables. The issue raised in the last paragraph,
accordingly, applies for ANN models over graphs in general, fundamentally because
graph vertices are invariant to permutations. The only true information encoded
by a (non-labelled) graph is in its connections (i.e. which vertices connect with
what other vertices), which also respond to no particular order. This imposes a
significant barrier for bridging deep learning with combinatorial problem solving: in
order to learn over graphs, one must be able to enforce permutation invariance on
nodes whilst still feeding the model with relational (i.e. edge) data. This problem
motivates the study of graph-based deep learning models, of which the fundamental
operation is the graph convolution.

56

4.1 Graph Convolutions

Although the neurons of convolutional neural networks’ layers have no true
position in space (each layer is uniquely defined by its connections with the previous
one), it is useful to think that the neurons in each layer are arranged in a rectangular
grid. In this context, each neuron of a given layer feeds (by the means of a weighted
sum) on the outputs of a rectangular window of neurons in the previous layer. The
analogy with a discrete convolution operation is clear: the input layer can be seen as
a 2D signal X ∈ Rn1×n2 and the set of neural weights associated with the weighted
sum (each one directly mapped to a position of that rectangular window) can be
seen as a 2D signal Y ∈ Rm1×m2 . Remember that because CNNs employ parameter
sharing, this set of weights is the same for all neurons. Then, one can easily see that
a discrete convolution X ~ Y between these two signals is effectively computed by
the outputs of the neurons in the second layer.

Figure 4.3: Pictorial representation of a 2D discrete convolution operation.
Source: Adapted from Tex Stack Exchange answer <https://tex.stackexchange.
com/questions/437007/drawing-a-convolution-with-tikz>.

0 1 1 1x1 0x0 0x1 0
0 0 1 1x0 1x1 0x0 0
0 0 0 1x1 1x0 1x1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

∗

1 0 1
0 1 0
1 0 1

 =

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

In this context, every CNN logically enforces a grid topology on the input
layer (Figure 4.3). The motivation for defining a convolution operation for graphs
stems from the necessity of training deep learning models on non-grid topologies,
including irregular ones. Conceptually, a graph convolution operation is fairly sim-
ple, but the analogy with convolutions in the traditional signal processing context
is not immediate. The reader will be referred to (KIPF; WELLING, 2016) for a
throughout explanation.

To introduce graph convolutions, let us exploit an analogy with the image
context. In the image context, we have a visual signal X : Nn×m → R3 corresponding

https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz
https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz

57

to a mapping between pixel coordinates and RGB triples. By analogy, in the context
of a graph G = (V , E) we have a signal X : V → Rd corresponding to a mapping
between graph vertices and real-valued multidimensional vectors. The goal of a
graph convolution operation is to produce a new signal X′ from X, in the same
way that a typical 2D convolution produces a new image by convolving the input
image with a convolution kernel. For example, a new vector can be computed for
each vertex simply by adding up the vectors of all of its neighbors after applying a
transformation:

X′i =
∑

vj∈Nvi

Xj (4.3)

Where Xi and X′i denote the vectors corresponding to vertex vi in the map-
pings X and X′ respectively. Note how this is analogous to performing a traditional
2D convolution with a “sum” kernel (i.e. a matrix of ones). In the context of images,
this corresponds to computing the value of each pixel in the resulting image as the
sum of the values of all of its 9-connected neighbors (Figure 4.4).

Figure 4.4: Pictorial representation of a 2D discrete convolution operation with a
“sum” kernel. Source: Adapted from Tex Stack Exchange answer <https://tex.
stackexchange.com/questions/437007/drawing-a-convolution-with-tikz>.

0 1 1 1x1 0x1 0x1 0
0 0 1 1x0 1x1 0x1 0
0 0 0 1x1 1x1 1x1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

∗

1 1 1
1 1 1
1 1 1

 =

3 6 7 6 3
1 4 7 7 4
1 4 6 6 3
3 5 5 3 1
5 5 3 1 0

However, up until now, our operation has no trainable parameters, which
blocks us from perform deep learning over graphs. This can be amended by defining
a trainable function f : Rd → Rd′ . We can then update Equation 4.3 to have the new
vector for each vertex be computed by adding up the vectors of all of its neighbors
after applying the transformation f :

X′i =
∑

vj∈Nvi

f(Xj) (4.4)

https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz
https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz

58

Note that what enables us to perform deep learning over graphs using graph
convolutions is the transformation f , which can be parameterized and thus trainable
with gradient descent.

Equation 4.4 is usually referred to as a graph convolution layer. One can in
principle stack an arbitrary number of such layers sequentially. This corresponds to
a production of a sequence of signals X′,X′′,X′′′, Note that because the trans-
formations f can map to vector spaces of any dimensionality, the dimensionality of
the vectors associated with each vertex at each point in the sequence can vary. This
is analogous to how the number of “channels” for each pixel in a CNN architecture
can vary throughout layers.

One may also want to apply another transformation g to the result of the
sum in Equation 4.4, for example:

X′(vi) = g

 ∑
vj∈Nvi

f(X(vj))
 (4.5)

In some definitions (KIPF; WELLING, 2016), the vertex-wise transformation
f corresponds to applying a linear layer to the original vector, and the sum-wise
transformation g corresponds to a non-linearity σ:

X′(vi) = σ

 ∑
vj∈Nvi

W×X(vj)
 (4.6)

It also should be noted that if the input graph has no self edges, the original
vector X(vi) will not be considered in the equation which computes the new vector
X′(vi). This can be undesirable, as the new state for a given vertex will be computed
only as function of its neighbors, not itself. This can be amended by adding a self-
edge to every vertex in the graph, a technique which is common practice on graph
convolutional neural networks.

59

Algorithm 1 Graph Convolutional Neural Network.
1: procedure GraphConvNet(G = (V , E))
2: Initialize vertex embeddings Xi ∈ Rd1 | ∀vi ∈ V

3: for k = 1 . . . K do

4: for vi ∈ V do

5: // fk is a function fk : Rdk → Rdk+1

6: Xi ←
∑

vj∈N (vi)
fk (Xi)

7: // Thus, Xi is now ∈ Rdk+1

8: return {Xi}i=1...|V|

We are now enabled to define a generic graph convolutional neural network
architecture with K layers (Algorithm 1). Note that we initialize vertex embeddings
with dimensionality d1. This is analogous to how the pixels of the input layer of
a typical CNN have dimensionality 3 (i.e. three channels). We also define a series
of functions f1, f2, . . . fK . Each of these functions will be applied to each vertex
embedding, and it may be the case that they map from a given dimensionality
to a different one. For example, one can have initial vertex embeddings ∈ R30

and f1 : R30 → R50. In this scenario, after the first convolutional layer, vertex
embeddings will be ∈ R50.

4.2 Graph Recurrent Neural Networks

Instead of stacking many different graph convolution layers sequentially, one
may borrow insights from recurrent models and share the parameters of graph con-
volution layers over time. Or, in other words, one can define a single convolution
layer and “unroll” it, in a RNN fashion, for many iterations. This corresponds to
defining, in addition to the function f : Rd → Rd′ of Equation 4.4, another function
φ : Rd′ × Rd′ → Rd such that we can define:

X(t+1)
i = φ

X(t)
i ,

∑
vj∈Nvi

f
(
X(t)
j

) (4.7)

Equation 4.7 can be read in the following way:

1. φ is a recurrent neural network

60

2. X(t)
i is the vector associated with vertex vi at time = t. X(t)

i is also the hidden
state of the RNN φ at time = t

3. Upon receiving a hidden state h = X(t)
i and a input x =

∑
vj∈Nvi

f
(
X(t)
j

)
(which

corresponds to an aggregation of messages), the RNN φ produces a new hidden
state h′ = X(t+1)

i .

We are now enabled to describe a graph recurrent neural network in pseu-
docode (Algorithm 2). Note that, in opposition to Algorithm 1, we are annotating
vertex embeddings with their “timestamps” (for example, X(t)

i is the vertex embed-
ding at time = t). We could have done the same for the graph convolutional model,
annotating the output at each k-th layer as X(k)

i , but instead we chose to overwrite
the same variable Xi many times for simplicity.

Algorithm 2 Graph Recurrent Neural Network.
1: procedure GraphRecNet(G = (V , E))
2: Initialize vertex embeddings X(1)

i ∈ Rd | ∀vi ∈ V

3: for t = 1 . . . T do

4: for vi ∈ V do

5: // f is a function f : Rd → Rd′

6: // φ is a function φ : Rd′ × Rd′ → Rd

7: X(t+1)
i ← φ

X(t)
i ,

∑
vj∈N (vi)

fk
(
X(t)
i

)
8: // Thus X(t+1)

i ∈ Rd

9: return {X(T)
i }i=1...|V|

It should be noted that although we have defined graph convolutional neu-
ral networks and graph recurrent neural networks as two distinct architectures,
the convolutional and recurrent aspects are both present in graph recurrent neural
networks. This is due to the fact that vertex embeddings are updated in a recurrent
fashion with inputs computed by graph convolutional layers.

4.3 Graph Neural Networks in General

Because deep learning over graphs is a relatively recent field, the taxonomy of
different architectures is somewhat still debated, with some authors preferring one

61

label over another for the same underlying model. For this reason, we have made an
effort to describe in detail the taxonomy adopted for this thesis, a diagram of which
is presented in Figure 4.5. First of all, the overarching field of deep learning we
are interested in is geometric deep learning. Geometric deep learning is concerned
with learning problems defined over non-euclidean spaces, which can be modelled
as graphs. Then, for the purposes of this thesis, a Graph Neural Network (GNN)
is any neural architecture which feeds on graphs enforcing permutation invariance
among vertices. A Graph Convolutional Neural Network (GCN) is any kind of
GNN which makes use of graph convolutional layers. A Graph Attention Network
(GAT) is any kind of GNN which employs attention mechanisms over neighbors
(VELIČKOVIĆ et al., 2017). A Graph Recurrent Neural Network (GRN) is any
kind of GNN which updates vertex embeddings with a recurrent unit (RNN, LSTM,
GRU). A Graph Network, as defined by (BATTAGLIA et al., 2018), is a GRN which
assigns embeddings to vertices, embeddings to edges and an embedding to the entire
graph. Finally, a Typed Graph Network (TGN) (PRATES et al., 2019), which is a
conttribution of this thesis, extends the concept of vertex / edge / graph embeddings
by partitioning graph vertices into different types.

Figure 4.5: Taxonomy of neural architectures in the graph neural network family.
The overarching field of deep learning to which these architectures belong to, painted
in red, is geometric deep learning. Architecture families are painted in blue. The
dashed line indicates that a graph recurrent neural net can be implemented using
attention mechanisms, but not necessarily.

Geometric Deep Learning

Graph Neural Nets

Graph Convolutional Neural Nets

Graph Attention Nets

Graph Recurrent Neural Nets

Graph Nets

Typed Graph Nets

62

4.4 Mechanics of Graph Neural Networks

Up until now, we have defined GNNs based on their architectural description.
It remains to be seen, however, how GNNs operate to solve a problem. In this
context, it should be noted that even though GNNs can be run for any number of
iterations and feed on relational / symbolic data, their modus operandi could not
be more different than that of traditional methods in the symbolic AI family.

Figure 4.6: Example of a symbol manipulation operation: the operational semantics
of a while loop command in an imperative language.

〈B, s〉 =⇒ >
〈while B do C, s〉 → 〈C;while B do C, s〉

〈B, s〉 =⇒ ⊥
〈while B do C, s〉 → s

GNNs do not manipulate symbols (Figure 4.6) – at least not directly –,
but rather refine projections of these symbols into hyperdimensional real spaces.
The divide between symbol manipulation and tensor algebra is at the heart of im-
portant discussions regarding artificial intelligence today, such as the longstanding
debate between Gary Marcus and some members of the deep learning community
such as Yann LeCun. A sharp critic of some aspects of the recent deep learning hype
(MARCUS, 2018a; MARCUS, 2018b) – such as “the notion that deep learning is
without demonstrable limits and might, all by itself, get us to general intelligence”
(MARCUS, 2018c), Marcus has defended that Artificial General Intelligence4 will
require a combination of deep learning techniques (relying on tensor algebra) with
discrete symbol manipulation operations. LeCun, by contrast, suggests that “what-
ever we do [to achieve AGI], DL is part of the solution”, from which he deduces that
fundamentally vectors/tensors are required instead of symbols (MARCUS, 2018c).
Graph Neural Networks fit into an interesting position in this debate, as the triumph
of GNNs is that, in many cases, a manipulation of projections can be learned which
captures symbolic transformations as an emergent property. Although there is not
sufficient evidence pointing towards any direction, we have reason to believe that
the polished and well-behaved rules governing symbolic domains can emerge from
the messy world of tensors, as something similar is conceivably what happens inside
our brains.

4Artificial General Intelligence, or AGI refers to an artificial intelligence capable of performing
any intellectual task a human being can (KURZWEIL, 2010).

63

Figure 4.7: The computation performed by a Graph Recurrent Neural Network can
be interpreted as the iterative refinement (over many message-passing iterations) of
an initial projection P0 : V → Rd of graph vertices into hyperdimensional space.
A successfully trained GNN model will be capable of refining a projection which
captures some property of the learned problem, for example a 2-partitioning of V .
The Figure shows a pictorial representation of a sequence of progressively refined
projections P0,P2,P4,P6,P8 over tmax = 8 message-passing timesteps. Source: Au-
thor.

Recall that a GRNN assigns a vector (called embedding) Xi ∈ Rd to each
vertex ∈ V . This vector acts as a memory storage unit for that vector, which is
updated (by the function φ) at every new message-passing iteration. If we consider
all embeddings at once, this collection can be thought both as a distributed memory
storage system and as a projection of graph vertices ∈ V into the hyperdimensional
real space Rd. Following the second interpretation, the operation of a GNN can
be understood as the iterative refinement of an initial projection P0 : V → Rd

into a final projection Ptmax : V → Rd which reshapes the spatial distribution of
vertex embeddings into some geometrical shape from which useful information can
be decoded. Figure 4.7 for example imagines the execution of a GNN whose ultimate
effect is to 2-partition vertex embeddings into two clusters. In general we are not
directly interested on the distribution of these embeddings in hyperdimensional space
but rather on some reduction which is to be performed over all of them. For example,

64

a GNNmodel can be trained such that the magnitude of the average embedding (over
all vertices) predicts some scalar property of the input graph. In practice, however,
it makes sense to perform some complex computation over each vertex embedding
before reduction. The rationale here is that vertex embeddings can be left free to
act as memory storage units rather than as the output for the learned problem,
which can be decoded from them by some function. Architecturally speaking, this
function can be implemented as a MLP and its parameters can be learned by the
trained model.

Figure 4.8: Pictorial representation of a Graph Neural Network from the per-
spective of a vertex v. A set of embeddings is received from vertices in its
incoming neighbourhood , a message is computed from each embedding with the
message function µ and messages are aggregated and fed to the update function
φ , which produces an updated embedding for v. Simultaneously, v sends messages
to vertices in its outgoing neighbourhood , which will undergo the same update
process. Reproduced with authorization from Pedro Avelar (PRATES et al., 2019).

Time (t)
Incoming

Neighbourhood

Message (µ)

Time (t)
Update (φ)

Time (t− 1)
Update (φ)

Time (t+ 1)
Update (φ)

Message (µ)

Time (t+ 1)
Outgoing

Neighbourhood

Time

GNNs can also be understood in terms of the information flow running
through their pipeline, in the spirit of the diagram in Figure 3.16. Although the
computation flow is still centered on RNNs, in this case the inputs fed to the recur-
rent units at each timestep do not originate from the external world but are rather
indirectly produced by themselves in the last timestep. Figure 4.8 illustrates this
process in a diagram.

65

4.5 Motivations for Graph Neural Network Research and Recent Ad-

vances in the GNN Family

Graph neural network research has underwent significant progress in the last
few years, most notably since 2016. The plot in Figure 4.10 visualizes the growth in
the number of publications related to topics in GNN family, as measured according
to a manually curated list of relevant publications enumerated below:

• 2005 (3 publications): (GORI; MONFARDINI; SCARSELLI, 2005; SCARSELLI
et al., 2005; BIANCHINI et al., 2005)

• 2006 (4 publications): (MONFARDINI et al., 2006; MASSA et al., 2006;
PUCCI et al., 2006; YONG et al., 2006)

• 2009 (4 publications): (SCARSELLI et al., 2009b; SCARSELLI et al., 2009a;
MICHELI, 2009; LU et al., 2009)

• 2010 (3 publications): (NOI et al., 2010; BANDINELLI; BIANCHINI; SCARSELLI,
2010; MURATORE et al., 2010)

• 2011 (2 publications): (QUEK et al., 2011; UWENTS et al., 2011)

• 2013 (2 publications): (BORDES et al., 2013; BRUNA et al., 2013)

• 2015 (4 publications): (LI et al., 2015; DUVENAUD et al., 2015; TANG et
al., 2015; HENAFF; BRUNA; LECUN, 2015)

• 2016 (10 publications): (DEFFERRARD; BRESSON; VANDERGHEYNST,
2016; NIEPERT; AHMED; KUTZKOV, 2016; ATWOOD; TOWSLEY, 2016;
KIPF; WELLING, 2016; BATTAGLIA et al., 2016; BELLO et al., 2016;
GROVER; LESKOVEC, 2016; DEFFERRARD; BRESSON; VANDERGHEYNST,
2016; CHANG et al., 2016; KIPF; WELLING, 2016)

• 2017 (21 publications): (RAPOSO et al., 2017; SANTORO et al., 2017; WU
et al., 2017; WATTERS et al., 2017; HOSHEN, 2017; OÑORO-RUBIO et al.,
2017; HAMAGUCHI et al., 2017; GILMER et al., 2017; VASWANI et al., 2017;
HAMRICK et al., 2017; PASCANU et al., 2017; TOYER et al., 2017; NOWAK
et al., 2017; KHALIL et al., 2017; JOHNSON, 2017; DURAN; NIEPERT,
2017; BRONSTEIN et al., 2017; MORAVČÍK et al., 2017; GARCIA; BRUNA,
2017; ALLAMANIS; BROCKSCHMIDT; KHADEMI, 2017; VELICKOVIC et
al., 2017)

• 2018 (22 publications): (LI et al., 2018b; HU et al., 2018; STEENKISTE et

66

al., 2018; SANCHEZ-GONZALEZ et al., 2018; KIPF et al., 2018; CUI et
al., 2018; WANG et al., 2018b; WANG et al., 2018c; CHEN et al., 2018b;
SHAW; USZKOREIT; VASWANI, 2018; GULCEHRE et al., 2018; WANG
et al., 2018a; HAMRICK et al., 2018; ZAMBALDI et al., 2018; SELSAM et
al., 2018; YOON et al., 2018; LI et al., 2018a; CAO; KIPF, 2018; YOU et
al., 2018; BOJCHEVSKI et al., 2018; PRATES et al., 2018; AVELAR et al.,
2018)

Figure 4.9: Moves 1-186 of AlphaGo Master vs professional Go player Tang Weix-
ing (31 December 2016), won by resignation by AlphaGo Master. AlphaGo is an
example of a DL-fueled technology to solve combinatorial problems, but it does not
constitute end-to-end learning.

The significant growth in number of GNN-related publications in the last two
years coheres with a recent interest from the AI community in applying deep learn-
ing to combinatorial / symbolic domains. (BATTAGLIA et al., 2018) suggest that
“a key path forward for modern AI is to commit to combinatorial generalization as
a top priority”. (BENGIO; LODI; PROUVOST, 2018) additionally argue that ex-
pert knowledge may not be sufficient to design effective heuristics for combinatorial
optimization problems, suggesting that ML offers itself as an alternative as it is well
suited for signals for which no clear mathematical formulation is known, adding that
“deep learning excels when applied in high dimensional spaces with a large number
of data points”. Moreover, as (BENGIO; LODI; PROUVOST, 2018) also argue,
operations research and machine learning are closely related through optimization,
as ML is interested in minimizing the error between predictions and targets. This is

67

Figure 4.10: Growth in the number of publications related to topics in the GNN
family, as measured according to a manually curated set of relevant papers. Since
2016, the field has experienced a significant boom in quantity of publications as
a result of the increased interest by end-to-end differentiable models of relational
reasoning.

20
05

20
06

20
09

20
10

20
11

20
13

20
15

20
16

20
17

20
18

5

10

15

20

Year

Publications

of Publications in the GNN family

an invitation for bridging both fields, as they can overlap or complement each other
in some areas.

Figure 4.11: When ML is combined with
combinatorial algorithms, a ML module is
called upon possibly many times but an
output solution is ultimately produced by
the combinatorial algorithm.

Combi-

natorial

Algo-

rithm

ML

Model

Problem
Instance

Solution
Output

Naturally, deep learning has been
applied to combinatorial domains in
more than one occasion. One can en-
vision a decision-making process fueled
by a DNN “brain” which can be trained
to yield appropriate decisions for each
scenario. This is essentially how Deep-
Mind’s highly successful Go playing al-
gorithm AlphaGo (SILVER et al., 2018)
(Figure 4.9) structures itself: the evalu-
ation of the quality of each board con-
figuration is up to a DNN, but ulti-
mately this DNN module fits into a
Monte Carlo tree search algorithm. The
structure of the AlphaGo algorithm has
sparked controversy in the AI community when DeepMind published AlphaGo Zero,
a successor to AlphaGo which was able to reach superhuman levels purely through

68

self-play. DeepMind promoted AlphaZero as evidence that ML models can learn
complex tasks from scratch, but (MARCUS, 2018b) argued that the claim that
AlphaGo Zero starts tabula rasa is overstated considering that the Monte Carlo
tree search structure was not learned from data but rather built innately into
the model. This brings us into the distinction between using machine learning
alongside combinatorial algorithms (as AlphaGo does) and end-to-end learning.
End-to-end learning refers to training a ML model which is able to provide output
solutions directly from the input instance (Figure 4.12), as opposed to training an
ML model which acts as a subroutine of a larger algorithm (Figure 4.11).

End-to-end learning has a number of advantages over other approaches, both
from the engineering perspective and perhaps most importantly from the scientific
standpoint.

Figure 4.12: In end-to-end learning, ma-
chine learning provides a solution directly
from the problem instance input, without
requiring external tools.
Problem

Instance

ML

Model

Output

Solution

By reducing the impact of engineers’ bi-
ases in the model, we might be able
to achieve greater levels of accuracy in
the proposed algorithm, which is desir-
able for pragmatical reasons. But leav-
ing ML free to learn its own associa-
tions is also exciting as it potentially
opens doors in algorithm design, shed-

ding light on as of yet esoteric novel ways to solve a traditional problem. This
partially justifies the recent increased interest by GNNs, which are end-to-end

differentiable models of machine learning – that is, they are self-contained recipes
for solving problems which are differentiable throughout their entire pipeline, allow-
ing for gradients to flow from input to output and therefore lending themselves to
improvement purely through gradient descent. Another way to think about it is
to understand that GNNs have no “moving parts” in the same way that AlphaGo,
for example, has: a GNN is entirely described by a continuous hyperdimensional
function. This yields for free support for a significant range of techniques which
have been perfected for deep learning in the last decade, such as using GNNs to im-
plement Generative Adversarial Networks (GANs) (Figure 4.13) (GOODFELLOW
et al., 2014) or producing feature visualizations of the associations learned by GNNs
by performing gradient ascent on the activation of some neurons as a function of
the problem inputs, as in DeepDream (Figure 4.14) (CASTELVECCHI, 2016).

69

Figure 4.13: Convolutional and Deconvolutional Neural Networks are end-to-end
differentiable ML models. This enables one to connect the output of a “generator”
model, implemented as a deconvolutional network, to the input of a “discrimina-
tor” model, implemented as a CNN. The discriminator is fed with 50% real images
and 50% artificial images (produced by the generator) with the goal of discrim-
inating between the two classes, while the goal of the generator is to maximize
the classification error of the discriminator. Because both models are end-to-end
differentiable, one can flow gradients from the beginning of the generator pipeline
until the end of the discriminator’s. The end result are two models which evolve
simultaneously through competition in a zero-sum game. Ultimately, the genera-
tor network becomes able to produce photo-realistic images of high quality, such
as in these examples. Source: images produced by the author using the Google
Colab BigGAN demo <https://colab.research.google.com/github/tensorflow/hub/
blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb>.

In the original GNN publication (GORI; MONFARDINI; SCARSELLI, 2005),
the authors instantiate the proposed model to learn A) the subgraph matching prob-
lem, B) the mutagenesis problem from bioinformatics and C) web page ranking.
The initial experiments advocate the model’s applicability to a diverse set of fields,
a prediction which has stood the test of time over the last decade. Since the early
stages of GNN research, it became clear that it held the potential for learning object
recognition tasks on images, which in many contexts can be effortlessly segmented
into regions and represented as graphs (BIANCHINI et al., 2005). The triumph
of training object recognition tasks on preprocessed graph descriptions of images
as opposed to the original images themselves is that permutation invariance among
objects in each scene is automatically enforced by the graph representation, a fea-
ture not shared by typical approaches such as CNNs (although capsule networks
take a step in this direction (SABOUR; FROSST; HINTON, 2017)). In a recent
work, (RAPOSO et al., 2017) show how GNNs can perform object-relation reason-
ing. The authors factor images into “scenes” comprised of multiple interconnected
objects and successfully train “relational networks” (a specialized GNN) to anno-
tate edges with the inferred relations between the corresponding objects. Similarly,
(SANTORO et al., 2017) show how DL models can be trained to answer complex
relational reasoning queries over images obtained from the CLEVR dataset (JOHN-

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb

70

Figure 4.14: The end-to-end differentiability of CNNs enables one to perform gradi-
ent ascent on the activation of a given neuron (or set thereof), where the parameters
considered are the pixels of the input image. Over sufficient gradient ascent itera-
tions, an input image is morphed to exaggerate the features which excite those neu-
rons, possibly yielding surreal looking images conventionally called “DeepDreams”.
Strange as it is, the DeepDream treatment is a powerful technique for feature visu-
alization, helping researchers and engineers understand which features are weighed
in the most by each neuron (SIMONYAN; VEDALDI; ZISSERMAN, 2013). Source:
Wikipedia user MartinThoma. Licenced under CC0 1.0 Universal.

SON et al., 2017). GNNs have also shown promise on symbolic domains: (LI et
al., 2015) successfully train GNN models to solve bAbI formulations (WESTON
et al., 2015) describing relational tasks such as path finding and basic deductions,
also showing how can they can achieve state-of-the-art results in program verifica-
tion tasks such as inferring program invariants, which have also been explored by
(ALLAMANIS; BROCKSCHMIDT; KHADEMI, 2017). In a similar context, GNNs
have been applied to combinatorial optimization (BELLO et al., 2016; NOWAK et
al., 2017; KHALIL et al., 2017) and constraint satisfaction (SELSAM et al., 2018),
as well as to the task of simulating varied types of automata (JOHNSON, 2017).
GNNs have found a fertile niche in chemical learning tasks, having been applied to
quantum chemistry (GILMER et al., 2017) and to learning molecular fingerprints
(DUVENAUD et al., 2015), as well as producing molecules from examples (CAO;
KIPF, 2018; LI et al., 2018a). GNNs have also been successfully applied to control
and planning on more than one occasion (WANG et al., 2018a; HAMRICK et al.,
2017; HAMRICK et al., 2018; ZAMBALDI et al., 2018; TOYER et al., 2017).

Recently an effort has been made into training generative models of graphs,
neural models which are able to reproduce and extrapolate distributions of graphs
which they have seen during training (LI et al., 2018a; CAO; KIPF, 2018; YOU
et al., 2018; BOJCHEVSKI et al., 2018). Many approaches have been taken, but

71

fundamentally such a model should be able to project input graphs into a hyperdi-
mensional real space, a task particularly suited for GNNs.

In the remainder of this section, we will explore some relevant examples of
GNNs proposed in the scientific literature, explaining how they work and how they
fit into the state of the art.

4.5.1 NeuroSAT

The boolean satisfiability problem (SAT) has occupied an important position
in theoretical and applied computer science since its inception, particularly as a re-
sult of how it fits historically in the development of computational complexity theory.

Figure 4.15: Tree of reductions between NP-
Complete problems, showing which problems
A have their NP-Completeness proof relying
on another problem B to perform polynomial-
time reduction from B to A. Source:
Wikipedia user Gian Luca Ruggero. Public
Domain.

SAT was the first problem proved
to be NP-Complete, by (COOK,
1971) and independently by (LEVIN,
1973). The Cook-Levin theorem, as
it is now known, works by showing
that for every nondeterministic Tur-
ing Machine M running on polyno-
mial time5 and for each possible in-
put string x toM , we can construct
a boolean expression B, whose num-
ber of variables is polynomial on |x|,
which is satisfiable6 if and only if
M accepts x. Because B can be
translated to the CNF, this result
ultimately describes the difficulty of
solving SAT as at least as hard as
that of every other problem solv-
able in polynomial time by a non-
deterministic Turing Machine. Or,
in computational complexity theory

5i.e. accepting or rejecting each input string of size n in time ≤ p(n) where p = nk is a
polynomial function

6i.e. admits an assignment of truth values to every variable which renders the expression >

72

parlance, one can say that SAT is at least as hard as every problem in NP7, making
it a NP-Hard problem. Because SAT itself is in NP , it additionally belongs to the
intersection NP ∩NP-Hard = NP-Complete.

For reasons which will become clear in the following chapters, the complexity
class NP-Complete plays a fundamental role in theoretical computer science. The
importance of SAT, in this context, is in its position as one of the conceptually
simplest NP-Complete problems, making it the backbone of a large number of
NP-Completeness proofs (Figure 4.15). The simplicity of SAT also enables one
to effortlessly describe more complex problems in terms of boolean expressions and
solve them indirectly using SAT solvers, the efficiency of which has been consistently
perfected over the last decades. SAT is of paramount importance to a wide range of
fields such as model checking, formal verification, automated theorem proving and
circuit design.

Most approaches to SAT solving consist on backtracking-based search, with
perhaps the most significant example being the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm (DAVIS; PUTNAM, 1960). The DPLL algorithms relies on en-
hancements to the backtracking procedure, such as unit propagation and pure literal
elimination, which prune several computation paths and on practice make the solv-
ing process more efficient, although its worst-case time complexity remains O(2n).
Over the decades, industrial SAT solvers have accumulated a collection of tricks and
heuristics, pushing the empirical complexity of SAT solving closer and closer to ac-
ceptable values (AUDEMARD; SIMON, 2018). A significant number of important
decisions which must be taken by SAT solvers is somewhat arbitrary in nature, such
as deciding which variable to branch next. From a ML perspective, this suggests
that there are aspects of SAT solving which could be learned from example. This is
an invitation to tackle SAT with deep learning, an opportunity which (SELSAM et
al., 2018) have explored in their paper.

As we have already discussed in the beginning of this chapter, training a SAT
solver with deep learning could be done by encoding CNF formulas with tensors in a
one-hot encoding fashion. This approach comes with severe limitations, however, as
there is an exponential number of equivalent encodings of the same formula which
can be obtained by permutation over clauses or literals. Ideally, we want to enforce
permutation invariance in the model, a task for which GNNs are particularly well-

7NP is defined as the class of problems solvable in polynomial time by a nondeterministic
Turing Machine

73

Figure 4.16: CNF formula F = (x1 ∨ ¬x2) ∧ (x3 ∨ x4 ∨ x5) represented as a graph:
clauses and literals correspond to nodes, edges between clauses and literals are
painted red and edges between literals and their complements are painted blue.
Source: Author.

(x1 ∨ ¬x2) ∧ (x3 ∨ x4 ∨ x5)
x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 x5 ¬x5

(4.8)

suited. In (SELSAM et al., 2018), the authors’ idea was to think about a CNF
formula in terms of both its literals and its clauses, connecting literals to clauses
to which they pertain and additionally connecting literals to their negated variants
(x2 and ¬x2). For illustration, we repeat here the same diagram from the beggining
of the chapter in Figure 4.16. Immediately, we see that a SAT instance can be
represented as a graph, allowing the problem to be instantiated into a GNN model.
However, the distinction between clauses and literals (which correspond to different
“types” of nodes in the graph) imposes a challenge for the training process: how
can we expect the model to differentiate between nodes corresponding to literals
and nodes corresponding to clauses? Without some tricks, the GNN formalization
defined in Algorithm 2 does not support this. However, we will use the “NeuroSAT”
model defined by (SELSAM et al., 2018) to show how this differentiation can be
achieved, and during the course of the explanation establish the basis of what must
be modified in the original formalization to allow for the additional expressiveness
required.

Suppose that instead of projecting nodes of a graph into hyperdimensional
real space, we separately project literal vertices into one space and clause nodes into
a separate one. Concretely, this corresponds to instantiating two different RNNs to
perform embedding updates on literals and clauses separately. In this context, we
can simply send messages between literals and clauses according to the connections
illustrated in Figure 4.16. We also wish to define a MLP µL→C to compute messages
from literals to clauses and a MLP µC→L to compute messages from clauses to
literals. Because there are now two “types” of vertices, it makes sense to define three
adjacency matrices, one between clauses and literals (MCL), one between literals and
literals (MLL) and one between clauses and clauses (MCC), although we will only
make use of the first two. If we denote by VL(t) the tensor of literal embeddings and
by VC(t) the tensor of clause embeddings, we can finally describe the model with the

74

follwing set of equations:

VL(t+1) ← φL(VL(t),MCL × µC→L(VC(t)),MLL ×VL(t))

VC(t+1) ← φC(VC(t),MCL
ᵀ × µL→C(VL(t)))

(4.9)

Equations 4.9 can be interpreted in the following way:

1. The literal update function φL updates literal embeddings given a tensor of
messages µC→L(VC) computed from clause embeddings by the message com-
puting function µC→L, which is multiplied by the adjacency matrix MCL. From
each literal’s perspective, this multiplication has the effect of “masking” mes-
sages sent by clauses for which it does not pertain. The second argument
of the update function is a tensor of (unaltered) literal embeddings, which is
multiplied by the adjacency matrix MLL. From each literal’s perspective, this
multiplication has the effect of “masking” all 2n− 2 literal embeddings which
do not correspond to its negated variant.

2. The clause update function φC updates literal embeddings given a tensor of
messages µL→C(VL) computed from clause embeddings by the message com-
puting function µL→C, which is multiplied by the (transposed) adjacency ma-
trix MCL

ᵀ. From each clause’s perspective, this multiplication has the effect
of “masking” messages sent by literals it does not contain.

The authors decided to train the model on pairs of complementary SAT /
UNSAT instances, which are engineered to differ only by the polarity of a single
literal in a single clause. The rationale behind this decision is that it should speed
up the training process, as it forces the model to distinguish even the most sim-
ilar instances with respect to their satisfiability. Instance pairs are generated by
iteratively adding clauses to an initially empty CNF formula until it becomes un-
satisfiable. At this point, the polarity of a single literal in the most recently added
clause is flipped, rendering the instance satisfiable once again. Both instances (be-
fore / after flipping) are added to the training dataset, which naturally enforces
a 50/50 distribution among positive and negative examples for the corresponding
binary classification task. Upon training, the model is able to achieve ≈ 85% test
accuracy on instances it had never seen before (Figure 4.17).

75

Figure 4.17: Loss and accuracy curves of the NeuroSAT model over 1400 gradient
descent operations on batches of 32 CNF instances with sizes n ∼ U(20, 40). Results
reproduced by the author in Tensorflow according to the description of the model
by the original authors in (SELSAM et al., 2018).

0 200 400 600 800 1000 1200 1400
Batches

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

50

60

70

80

90

100

Ac
c

(%
)

4.6 Graph Networks and Typed Graph Networks

In Section 4.5.1, we saw how some problems may require that their instances
be modelled as graphs where nodes are partitioned into more than one “type”. The
example in question, which draws from the work of (SELSAM et al., 2018), is boolean
satisfiability, where CNF formulas are represented as a bipartite graph between
literals and clauses. In that context, both literals and clauses have their own separate
update function (φL and φC respectively), and the model also incorporates “message-
computing functions” between literals and clauses and between clauses and literals
(µL→C and µC→L respectively). The formalization of GRNs in Algorithm 2, however,
does not support this. In this section, we will show how the previous definition of
GNNs can be extended to allow for the definition of models such as NeuroSAT.
Additionally, we will review the formalization recently proposed by (BATTAGLIA
et al., 2018), explaining how it fails to generalize Graph Neural Networks to allow
the definition of relatively simple models while augmenting it with unnecessary
complexity.

In their recent paper, which is part literature review, part formalization effort
and part position paper, (BATTAGLIA et al., 2018) propose the “Graph Network”
model, which according to the authors is intended to “generalize and extend various

76

approaches for neural networks which operate on graphs”. The authors’ concept
was to augment the simplest GNN formalization (defined on Algorithm 2) with edge
embeddings and a “global attribute” embedding. In their formalization, embeddings
are assigned to each vertex, to each edge and a single embedding is assigned to entire
graph. Over the course of many message-passing timesteps, vertices communicate
with edges of which they are endpoints and all edges plus all vertices communicate
with the graph, in a process which culminates in the refinement of embeddings for
all three categories (vertices / edges / graph). Their effort makes sense: assigning
embeddings to edges corresponds to promoting them to “first-class citizens” in the
GNN formalization, which enables one (for example) to train problems on graphs
with labelled edges, as their embeddings can now be initialized according to the
corresponding labels. This feature also gives for free a projection of edges into a
hyperdimensional space, which may be useful for varied reasons. Having a “graph
embedding” is also useful, as it may be used to refine some global property of the
problem instance which is intentended to be learned.

However, there are contexts in which is acceptable not to assign embeddings
to edges, and even more contexts in which it does not make sense to assign an
embedding to the entire graph. In these scenarios, the authors’ formalization forces
one to define models with “appendages” which either harm the model’s performance,
confuse the programmer, or both. Moreover, it is undesirable from the standpoint
of parsimony to define a formalization with such unnecessary complexities. This is
not the main problem with the authors’ formalization, however. Instead, the most
problematic issue is the fact that it is incomplete, as, by focusing on edges, the
authors end up removing support for richer relational structures. This brings us
back to the original example of NeuroSAT, which illustrates the issue very well. In
the context of CNF formulas, clauses are nothing more than sets of literals. They
are relational structures which link many nodes at the same time, or, in other words,
they correspond to hyperedges on an hypergraph (FENG et al., 2019) where literals
are equated with nodes. The model proposed by (BATTAGLIA et al., 2018), which
supports only regular edges, is bound to model only a special case of NeuroSAT
where all clauses contain exactly two literals (2-SAT).

One is not required, however, to explicitly augment the previous model with
support for hyperedges. Hyperedges can be simulated in a far more succint and
elegant manner by partitioning the graph’s nodes into N distinct “types” and as-

77

Algorithm 3 Graph Network Formalisation (BATTAGLIA et al., 2018) run for t
message-passing timesteps.
1: procedure GraphNetwork(G = (V, E ,u))
2: for t = 1 . . . tmax do
3: for k = 1 . . . |E| do
4: // Compute updated edge embeddings
5: ek

(t+1) ← φe(e(t)
k ,v

(t)
rk ,v

(t)
sk ,u(t))

6: for i = 1 . . . |V| do
7: // Aggregate messages sent to node i into µ
8: µ← ρe→v({e(t+1)

k | rk = i})
9: // Update vertex embedding

10: v(t+1)
i ← φv(v(t)

i , µ,u(t))
11: // Compute updated global embedding
12: u(t+1) ← φu(u, {v(t+1)

i }i=1...|V|, {e
(t+1)
i }i=1...|E|)

13: // Return refined vertex embeddings, edge embeddings and global embedding
14: return {v(tmax)

i }i=1...|V|, {e
(tmax)
i }i=1...|E|,u(tmax)

signing update functions (and eventually message-computing functions) for each of
them. This corresponds exactly to what (SELSAM et al., 2018) have done in their
paper, by assigning embeddings to hyperedges (clauses). In fact, the authors’ insight
in (BATTAGLIA et al., 2018) to project edges and the graph to hyperdimensional
space in addition to nodes can be understood as empowering these objects with a
“node treatment”. Effectively, edges are treated as if they were nodes of a dif-

ferent type, whose embeddings are updated with an “update” function different
from that used to update regular nodes. The same applies for the global attribute,
with the notable difference that there is only one “graph embedding” in contrast
to possibly many node and edge embeddings. We include here, for reference, the
authors’ formalization in Algorithm 3.

The crux of the formalization in Algorithm 3 is that node, edge and graph em-
beddings are logically separated by the definition of three update functions φv, φe, φu.
It should be noted that the Graph Network model fixes objects into these three
types. But in theory, one could envision extensions to the Graph Network model
with additional types of objects different from nodes, edges and graph, the only
requirement being that an additional update function is defined for each additional
type. In fact, (SCARSELLI et al., 2009b) already tackled this issue with the original
Graph Neural Network model by assigning to each kind of node its own message-
computing function and update function. For didatic purposes, we initially defined
a simplified variant of the authors’ original model with a single vertex type in Al-

78

gorithm 1. But now hopefully we have made the point clear that it would be useful
to have not one but k embeddings for global attributes, with corresponding update
functions φu1 , φu2 . . . φuk

. Thus posed, we wish to emphasize the original authors’
contribution by proposing an updated terminology focused on the possibility of hav-
ing several types of objects, which is in line with more recent work (GILMER et al.,
2017) and improves understandability, removing unnecessary complexities from the
original model such as the support for multiple edge types – since the concept of
node types immediately adds the same expressiveness.

Algorithm 4 Typed Graph Network Model
1: // The input for a TGN is a graph whose vertices are partitioned into N types

2: procedure TGN(G = (V =
N⋃
i=1
Vi, E))

3: // Compute an adjacency matrix between types τi and τj
4: for i = 1 . . . n, j = 1 . . . N do
5: Mij [a, b] = 1{(va, vb) ∈ E | va ∈ Vi, vb ∈ Vj}
6: for i = 1 . . . n do
7: Init vertex embeddings X(1)

i [a] ∈ τi | ∀va ∈ Vi
8: // Run for T message-passing iterations
9: for t = 1 . . . T do
10: // For each receiving type τi
11: for i = 1 . . . N do
12: // For each message sent from type τj
13: for µk ∈M | µk : τj → τi do
14: // Accumulate messages sent to vertices of type τi by vert. of type τj
15: µk ←Mij × µ(X(t)

j)
16: // Compute updated embeddings for type #i
17: X(t+1)

i ← φi(X(t)
i , {µk | µk ∈M, µk : τi → τj})

18: // Return set of refined embeddings over T iterations
19: return {X(T)

i | i = 1 . . . n}

Our proposal is described in Algorithm 5. Note that the set of vertices is
partitioned into N “types”, corresponding to disjoint subsets: V =

N⋃
i=1
Vi. We define

an adjacency matrix for each pair of types i, j (N2 total) in the straightforward
way, by reading from the edges e ∈ E in the input graph. Vertex embeddings
can be initialized in any way imaginable: they can all be initialized with the same
value, embeddings from each type can be initialized with a different value, and
embeddings can even be initialized independently for each individual vertex, perhaps
as a function of the labels assigned to each node in the context of a labelled graph.
Then, for the message-passing loop itself, note that in order to update embeddings
for each vertex type we accumulate messages sent from all other types which send

79

communicate with it. So, for example, if type #1 receives messages from types
#2 and #5, we will reduce all messages received from types #2 and #5 separately
into two tensors µ2 and µ5, and these two tensors will correspond to two distinct
arguments for the update function φ1 as in φ1(Vi

(t){µ2, µ5}). Finally, after all
embeddings from all types are refined over the programmed number of iterations,
the algorithm returns them. Formally, a Typed Graph Network, as we named it,
can also be defined according to Definition 4.6 below.

[Typed Graph Network] A Typed Graph Network with N types is described
by

1. A set of embedding sizes n1, n2 . . . nN

2. A set of types T = {τi ∈ Rni | i = 1 . . . N}.

3. A set of K message functions
M = {µ : τ1 → τ2 | τ1, τ2 ∈ T }

OBS. Note that for each type combination (τ1, τ2) one can define many
message functions.

4. And a set of update functions
{φi : Rni+D(i) → Rni | i = 1 . . . N}, where D(i) =

∑
∀µ:τj→τi∈M

ni

Where the message functions µi→j and the update functions φi are the sole
trainable components of the model.

4.6.1 A Note on the Number of Message-Computing Functions

At this point, the reader may possibly have asked herself whether it is really
necessary to allow for the existence of more than one message-computing functions
between the same combination of types (τi, τj). Would it not suffice to instantiate
a message-computing function between each such combination? And what is the
interpretation of having two message-computing functions, say µ1 and µ2, between
the same two types?

We can answer this with an example: consider an application in which you
have graphs with directed edges and you want to differentiate between a message
sent from an incoming vertex and a message sent from an outcoming vertex.
In this context, it would make perfect sense to instantiate two message-computing

80

functions µ1, µ2, and have each learn the corresponding task.

4.6.2 Typed Graph Networks with Customizable Aggregation

In Algorithm 5 and Definition 4.6, there are two levels of aggregations per-
formed on the messages exchanged between vertices. For each combination of types
(τi, τj), any number of message-computing functions can be defined. Each of them
will be used to compute a message for every single vertex of type τj, and these
messages will be sent to adjacent vertices of type τi. Upon receiving a set of mes-
sages, a vertex of type τi must aggregate them somehow into a single tensor. In our
formalization, the model is forced to implement this aggregation as a element-wise
sum (Line 10 of Algorithm 5). But there is a second level of aggregation, because
each vertex of type τi can receive multiple sets of messages, each corresponding to a
particular message-computing function. Even though these sets are aggregated each
one into a tensor, we still have a set of tensors at the second level, which must be
aggregated somehow. In our formalization, the model is forced to implement this
aggregation by concatenating all tensors (Line 11 of Algorithm 5).

However, one could in principle generalize TGNs to leave the aggregation
functions at the first and second levels subject to the decision of the DL engineer.
To do so, it suffices to enhance our formalization with two aggregator operators ρ1

and ρ2. The updated algorithm is the following:

4.7 Typed Graph Networks Python / Tensorflow Library

Part of the contribution of this thesis is the development of a Python / Ten-
sorflow Library intended for significantly easing the implementation and prototyping
of TGN models. The TGN library was developed together with fellow graduate stu-
dent Pedro Avelar, and was used for the development of all models proposed in or
reproduced in this dissertation. Our library allows one to specify a TGN succinctly,
at a description level similar to that of the formalisation in Algorithm 5. This de-
scription is compiled into a set of Parameters that, when the model is called upon
a input, constructs a computation graph accordingly, thus yielding a module whose
inputs and outputs can be connected to any other operations at the desired point in

81

Algorithm 5 Generalized Typed Graph Network Model
1: // The input for a Generalized TGN is a graph whose vertices are partitioned into N

types

2: procedure Generalized TGN(G = (V =
N⋃
i=1
Vi, E))

3: // Compute an adjacency matrix between types τi and τj
4: for i = 1 . . . n, j = 1 . . . N do
5: Mij [a, b] = 1{(va, vb) ∈ E | va ∈ Vi, vb ∈ Vj}
6: for i = 1 . . . n do
7: Init vertex embeddings Vi

(1)[a] ∈ τi | ∀va ∈ Vi
8: // Run for T message-passing iterations
9: for t = 1 . . . T do
10: // For each receiving type τi
11: for i = 1 . . . N do
12: // For each message sent from type τj
13: for µk ∈M | µk : τj → τi do
14: // Accumulate messages sent to vertices of type τi by vert. of type τj
15: µk ← ρ1(µ(Vj

(t)))
16: // Compute updated embeddings for type #i
17: X(t+1)

i ← φi(X(t)
i , ρ2({µk | µk ∈M, µk : τi → τj}))

18: // Return set of refined embeddings over T iterations
19: return {Vi

(T) | i = 1 . . . n}

the trainable model’s pipeline. It is important to note here that our implementation,
due to practical reasons, implements the update function exclusively as a LSTM-like
RNN, which operates on both the last hidden state and output.

The TGN builder identifies each vertex type by a string, for example ’V’
for vertex vertices and ’E’ for edge vertices. Adjacency matrices are also identified
by strings, for example ’EV’ for an edge-to-vertex adjacency matrix ∈ B|E|×|V|, as
well as message functions, for example ’V_cast_E’ for a message function τV→E :
RnV → RnE mapping vertex embeddings to edge embeddings. An update function is
automatically instantiated for each type, but each of its arguments must be specified
by an adjacency matrix, a message function and the type of the sender vertices.

Concretely, the TGN builder receives 4 arguments:

1. A Python dictionary mapping type names to embedding sizes, such as {’V’:
dv, ’E’: de}. Equivalent to τV = Rdv , τE = Rde .

2. A Python dictionary mapping matrix names to 2-uples of type names, such as
{’EV’: (’E’,’V’)}. Equivalent to: EV ∈ R|E|×|V|.

3. A Python dictionary mapping message function names to 2-uples of type
names, such as

82

{’V_cast_E: (’V’,’E’), ’E_cast_V’: (’E’,’V’)}. Equivalent to: µV→E : τV →
τE , µE→V : τE → τV .

4. A Python dictionary mapping type names to lists of Python dictionaries each
specifying an aggregation of messages, such as {’E’: [{’mat’: ’EV’, ’msg’:
’V_cast_E’, ’var’: ’V’}]}. Equivalent to:
E(t+1) ← φE(E(t),MEV × µV→E(V(t)))). Note that this argument corresponds
to a list of dictionaries. This is so because the update function can receive
multiple arguments.

Then, the TGN itself is called with the desired inputs, effectively coupling it
with the rest of the model’s pipeline and producing the output of the last states of
each type of vertex. This also permits, in case of the Tensorflow implementation,
to set the builder to a specific variable scope and choose whether to make use of
parameter sharing or not. When coupling the TGN with the rest of the model, it
receives 3 dictionaries and 1 integer, with one of the dictionaries being optional,
specifying the adjacency matrices, the initial embeddings and the initial hidden-
states of the RNNs (being that the hidden state is assumed to be a zero tensor, if
missing) as well as how many time-steps of computation should be performed.

Concretely, upon calling the TGN and coupling it with the rest of the pipeline,
it receives:

1. A Python dictionary mapping matrix names to adjacency matrices between
two vertex types, such as {’EV’: M|E|×|V |}.

2. A Python dictionary mapping type names to the initial embeddings of each
vertex of that type, such as {’V’: V , ’E’: E}, with V ∈ R|V |×dv and E ∈ R|E|×de

being the tensors containing the initial embedding for each of the vertices in
the Graph.

3. A single integer tmax, defining how many timesteps of message-passing are to
be performed.

4. A Python dictionary mapping type names to the initial hidden states embed-
dings of each vertex of that type, such as {’V’: V0, ’E’: E0}, with V0 ∈ R|V|×dv

and E0 ∈ R|E|×de being the tensors containing the initial hidden-state embed-
ding for each of the vertices in the Graph.

Another, implementation-specific, note that can be raised is also that the
batching of different graphs can be done by simply concatenating different graphs,

83

without making any adjacencies between one another. In this way, information from
a node in a graph will never reach information in a node in another graph, and thus
one can make even better use of parallelism to perform faster computation on the
inputs.

On the following subsections, we will give some examples of how to imple-
ment some models using the TGN formalisation and our library, and specifically in
Subsections 4.7.2 and 4.7.5 we explain how to implement models in which the TGN
formalization works more naturally than others explained in the literature.

4.7.1 Technical Overview

The core of our TGN library is the Python file “tgn.py”, in addition to Python
file “mlp.py” which acts as a helper to build MLP blocks. Both files can be found
in Appendix A. “tgn.py” corresponds to a single Python class, TGN . Overall, TGN is
composed of four methods: __init__() , check_model() , _init_parameters() ,
__call__() and check_run() . The paragraphs which will follow explain them
in detail.

The __init__() method is assigned with processing the input dictionary
and calling check_model() to check the model for consistency and _init_parameters()

to initialize the parameters of the model’s trainable LSTM and MLP components.
The _check_model() method is assigned with checking the user-defined

model for consistency. This includes checking for vertex types in the TGN model
which are not associated to any update rule and update rules, message-computing
functions or adjacency matrices referring to undeclared vertex types.

The _init_parameters() method is assigned with initializing the parame-
ters of the trainable components of the model, corresponding to message-computing
MLPs and LSTMS implementing vertex update functions.

The __call__() method is the core of the TGN library. It is assigned
with calling check_run() to perform a runtime check of the model, after which it
essentially runs the algorithm described in Algorithm 5. This corresponds to running
a tf.while_loop() whose stopping condition relates to the maximum number of
timesteps and whose body performs one iteration of embedding refinement through
message-passing. Concretely, in Tensorflow parlance, our code implements message-
passing by feeding a tensor of vertex embeddings into the message-computing MLP

84

to yield a rank 2 tensor of messages. The columns of this tensor are then masked
by a binary mask which erases the contribution, to each vertex, of messages sent by
non-neighbors. This is done via matrix multiplication as described in Algorithm 5.
Finally, the aggregated messages for each vertex are organized into a tensor which is
fed to the layer-norm LSTMs implementing vertex updates, yielding a tensor with
the updated embeddings for this iteration.

The check_run() method performs a runtime check on the model. This is
in contrast with check_model() which performs a check at compilation time. This
process is called upon whenever the model is actually run on a Tensorflow session,
and is assigned with checking for inconsistencies between the sizes of the inputs fed
to the model at runtime (initial embeddings and adjacency matrices).

By default, as defined in “mlp.py”, all MLPs are initialized with Xavier ini-
tialization (GLOROT; BENGIO, 2010) for weights and initializes biases with zeros.
Also by default, the activation functions for both LSTMs and MLPs are ReLUs.
Batching can be naturally implemented in the TGN library by performing the dis-
joint union of a set of graphs to obtain a single disconnected graph. Message-passing
will carry out as expected and vertex embeddings will be refined normally. The fact
that subgraphs are disconnected means that no information will bleed out from one
instance to another, and at the end of the process the refined vertex embeddings for
each instance can be aggregated separately to yield outputs for each instance.

4.7.2 NeuroSAT

(SELSAM et al., 2018) have shown that neural models in the GNN family
can learn to solve the problem of boolean satisfiability with up to 85% accuracy
upon being fed with complementary (SAT/UNSAT) instances which differ by a
single literal’s polarity on a single clause. The insight behind the authors’ archi-
tecture is to assign embeddings both to literals (i.e. x1,¬x5, etc.) and clauses (i.e.
(x2 ∨ ¬x10 ∨ ¬x3)). Literals send messages to clauses to which they pertain, and
clauses send messages to literals they contain. Additionally, literals send messages
to their negated variants (i.e. x1 sends messages to ¬x1 and vice-versa). This can

85

be formalised by the following update equations:

L(t+1) ← φL(L(t),MLC
ᵀ × µC→L(C(t)),MLL × L(t)))

C(t+1) ← φC(C(t),MLC × µL→C(L(t)))
(4.10)

Where L = {x1,¬x1 . . . xi,¬xi . . . xN ,¬xN} is the set of all 2N literals,
C ∈ P(L)M is the set of allM clauses and a CNF formula can be described by an ad-
jacency matrix MLC ∈ B2N×M between literals and clauses as ML×C = 1{(l, c) ∈ L × C | l ∈ c}.
To connect literals with their negated variants, it suffices to define an adjacency ma-
trix MLL ∈ B2L×2L between literals and literals asMLL = 1{(l1, l2) ∈ L2 | l1 = ¬l2}.

Figure 4.18: Results obtained with the NeuroSAT model proposed by (SELSAM et
al., 2018) implemented in the Typed Graph Networks library (see Code Listing 4.1).

0 200 400 600 800 1000 1200 1400
Batches

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

50

60

70

80

90

100

Ac
c

(%
)

86

1 tgn = TGN(

2 {

3 # τL = Rdl

4 ’L’: dl,

5 # τC = Rdc

6 ’C’: dc

7 },

8 {

9 # MLL ∈ B2N×2N

10 ’LL’: (’L’,’C’)

11 # MLC ∈ B2N×M

12 ’LC’: (’L’,’C’)

13 },

14 {

15 # µL→C : τL → τC

16 ’L_msg_C ’: (’L’,’C’),

17 # µC→L : τC → τL

18 ’C_msg_L ’: (’C’,’L’)

19 },

20 {

21 # L(t+1),L(t+1)
h

← φL(L(t)
h
,

22 # MLCᵀ × µL→C(C(t)),MLL × L(t))
23 ’L’: [

24 {

25 ’mat’: ’LC’,

26 ’msg’: ’L_msg_V ’,

27 ’transpose?’: True ,

28 ’var’: ’L’

29 },

30 {

31 ’mat’: ’LL’,

32 ’var’: ’L’

33 }

34],

35 # C(t+1),C(t+1)
h

← φC(C(t)
h
,MLC × µL→C(L(t)))

36 ’C’: [

37 {

38 ’mat’: ’LC’,

39 ’msg’: ’L_msg_C ’,

40 ’var’: ’L’

41 }

42]

43 }

44)

Listing 4.1: TGN kernel of an end-to-end differentiable model to solve the
boolean satisfiability problem (SAT), implemented with our Python library.
Lines of code are commented with the corresponding equations in the proposed
formalisation for TGNs in Algorithm 5.

87

4.7.3 Solving the decision TSP

The TGN formalisation can be instantiated into the kernel of a end-to-end
differentiable model to solve the decision version of the Traveling Salesperson Prob-
lem (TSP), although the corresponding block could conceivably be used to learn
any graph problem with weighted edges (given an appropriate loss function). In
(PRATES et al., 2018) we were able to train a GNN model with up to 80% test
accuracy on the decision problem (i.e. “does graph G = (V , E) admit a solution
with cost no greater than C?”) by feeding it with pairs of complementary decision
instances X− = (G, 0.98C∗) and X+ = (G, 1.02C∗) where G is a random euclidean
graph with optimal TSP cost C∗. The ground truth answers for the decision prob-
lem are NO and YES respectively for X− and X+, forcing the model to learn to
solve the problem within a 2% relative deviation from the optimal cost.

Because edges are labeled with numerical information (i.e. their weights), it
is convenient to assign embeddings to edges and nodes alike, and initialise edge em-
beddings with their corresponding weights. Then a TGN model can be instantiated
in which nodes send messages to their incoming and outcoming edges, and edges
send messages to their source and target nodes over many iterations of message
passing. This model can be instantiated into the proposed TGN formalisation by
defining an adjacency matrix MEV ∈ B|E|×|V| between edges and vertices (i.e. map-
ping each edge to its source and target vertices) and having the update step for
vertex and edge embeddings be defined by:

V(t+1) ← φV(V(t),MEV
ᵀ × µE→V(E(t)))

E(t+1) ← φE(E(t),MEV × µV→E(V(t)))
(4.11)

88

Figure 4.19: Results obtained with the TSP GNN model proposed (PRATES et al.,
2018) implemented in the Typed Graph Networks library (see Code Listing 4.2).

0 500 1000 1500 2000
Batches

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Lo
ss

55

60

65

70

75

80

85

Ac
c

(%
)

89

1 tgn = TGN(

2 {

3 # τV = Rdv

4 ’V’: dv,

5 # τE = Rde

6 ’E’: de

7 },

8 {

9 # MEV ∈ B|E|×|V|

10 ’EV’: (’E’,’V’)

11 },

12 {

13 # τV→E : τV → τE

14 ’V_msg_E ’: (’V’,’E’),

15 # τE→V : τE → τV

16 ’E_msg_V ’: (’E’,’V’)

17 },

18 {

19 # V(t+1),V(t+1)
h

← φV (V(t)
h
,MEVᵀ × µE→V (E(t)))

20 ’V’: [

21 {

22 ’mat’: ’EV’,

23 ’msg’: ’E_msg_V ’,

24 ’transpose?’: True ,

25 ’var’: ’E’

26 }

27],

28 # E(t+1),E(t+1)
h

← φE(E(t)
h
,MEV × µV→E(V(t)))

29 ’E’: [

30 {

31 ’mat’: ’EV’,

32 ’msg’: ’V_msg_E ’,

33 ’var’: ’V’

34 }

35]

36 }

37)

Listing 4.2: TGN kernel of an end-to-end differentiable model to solve the
decision version of the Traveling Salesperson Problem, implemented with our
Python library. Lines of code are commented with the corresponding equations
in the proposed formalisation for TGNs in Algorithm 5.

90

4.7.4 Ranking graph vertices by their centralities

Recently in (AVELAR et al., 2018) we trained a GNN model to predict
centrality comparison on graphs (i.e. “given a graph G = (V , E), a centrality measure
c : V → R and two vertices v1, v2 ∈ V , does c(v1) < c(v2) hold?”). The authors
were able to achieve 89% test accuracy on a dataset composed by random instances
with up to 128 vertices. Additionally, we were able to distill the same refined vertex
embeddings into multiple centrality predictions, each corresponding to a different
centrality measure, by training multiple MLPs fed with these embeddings at the end
of the computation pipeline (multitask learning). This scenario can exemplify one
of the simplest TGN models possible, corresponding to an iteration of the original
Graph Neural Network model (SCARSELLI et al., 2009b) with a single vertex type.

In our model we differentiate between a message received from a source and
from a target vertex. The update function can be described by the following equa-
tion:

V(t+1) ← φV(V(t),M× µSV→V(V(t)),Mᵀ × µT V→V(V(t))) (4.12)

Figure 4.20: Results obtained with the graph centrality GNN model proposed by
(AVELAR et al., 2018) implemented with the Typed Graph Networks library (see
Code Listing 4.3).

0 5 10 15 20 25 30
Batches

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

55

60

65

70

75

80

85

90

Ac
c

(%
)

91

1 tgn = GraphNN(

2 {

3 # τV ∈ Rd

4 ’V’: d

5 },

6 {

7 # M ∈ B|V|×|V|

8 ’M’: (’V’,’V’)

9 },

10 {

11 # µS
V→C : τV → τV

12 ’Vsource ’: (’V’,’V’),

13 # µT
V→C : τV → τV

14 ’Vtarget ’: (’V’,’V’)

15 },

16 {

17 # V(t+1),V(t+1)
h

← φV (V(t)
h
,M× µS

V→V (V(t)),
18 Mᵀ×µT

C→V (V(t)))
19 ’V’: [

20 {

21 ’mat’: ’M’,

22 ’var’: ’V’,

23 ’msg’: ’Vsource ’

24 },

25 {

26 ’mat’: ’M’,

27 ’transpose?’: True ,

28 ’var’: ’V’,

29 ’msg’: ’Vtarget ’

30 }

31]

32 },

33)

Listing 4.3: TGN kernel of an end-to-end differentiable model to predict
vertices ordering according to a given centrality, note that the resulting vertices
embeddings should further be fed to cMLPs in order to compute vertex-to-vertex
comparisons

4.7.5 Solving the Vertex k-Colorability Problem

The Graph Network model does not allow multiple embeddings corresponding
to multiple global attributes for a graph. However this feature can be useful to solve
a wide range of graph problems. We exemplify this issue here with the vertex
coloring problem – in which, given a graph G = (V , E) and an integer k ∈ N, we

92

must decide whether all the vertices vV can be partitioned into k disjoint subsets
(each representing a color) such that no two vertices vi, vj from the same subset are
connected by an edge (i, j) ∈ E . In this context, it is useful to assign k embeddings,
one for each color, in addition to vertices embeddings. Color embeddings correspond
to global attributes, as they should communicate with all vertex embeddings (i.e.
each embedding is unconstrained, in principle, regarding which color it can assume).

A TGN-based algorithm to tackle this problem could be defined as follows:
initially, in addition to the vertices adjacency matrix MVV , we need to instantiate
an adjacency matrix between vertices and colors MVC, initialised with ones since a
priori any color can be assigned to any vertex (this can be changed if one wishes to
change the amount of initial information fed to the algorithm); then both vertices
and colors embeddings are initialised - the later ones can be randomly initialised
(∼ U [0, 1)) but ideally they could be placed equidistant over a hypersphere. Next,
both vertices and colors embeddings should be updated throughout tmax iterations
according to the following set of equations:

V(t+1) ← φV(V(t),MVV × (V(t)),MVC × µC→V(C(t)))

C(t+1) ← φC(C(t),MVC
ᵀ × µV→C(V(t)))

(4.13)

Finally, each vertex embedding sums up to a final vote on whether the entire
graph is k-colorable or not.

Figure 4.21: Results obtained with the implementation of a k-colorability solver in
the Typed Graph Networks library (see Code Listing 4.4).

0 1000 2000 3000 4000 5000
Batches

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Lo
ss

50

55

60

65

70

75

80

85

Ac
c

(%
)

93

1 tgn = GraphNN(

2 {

3 # τV = Rdv

4 ’V’: dv,

5 # τC = Rdc

6 ’C’: de

7 },

8 {

9 # M ∈ B|V|×|V|

10 ’VV’: (’V’,’V’),

11 # VC ∈ 1|V|×|C|

12 ’VC’: (’V’,’C’)

13 },

14 {

15 # µV→C : τV → τC

16 ’V_msg_C ’: (’V’,’C’),

17 # µC→V : τC → τV

18 ’C_msg_V ’: (’C’,’V’)

19 },

20 {

21 # V(t+1),V(t+1)
h

← φV (V(t)
h
,MVV ×V(t),

22 MVC × µC→V (C(t)))
23 ’V’: [

24 {

25 ’mat’: ’M’,

26 ’var’: ’V’

27 },

28 {

29 ’mat’: ’VC’,

30 ’var’: ’C’,

31 ’msg’: ’C_msg_V ’

32 }

33],

34 # C(t+1),C(t+1)
h

← φC(C(t)
h
,MVCᵀ × µV→C(V(t)))

35 ’C’: [

36 {

37 ’mat’: ’VC’,

38 ’msg’: ’V_msg_C ’,

39 ’transpose?’: True ,

40 ’var’: ’V’

41 }

42]

43 },

44)

Listing 4.4: TGN kernel of an end-to-end differentiable model to answer whether
or not a given graph accepts a k coloring, in this model only vertices embeddings
are taken into account to compose the final answer

94

5 TRAVELING SALESPERSON PROBLEM

The Traveling Salesperson Problem (TSP) is one of the most studied problems
in optimization, computational complexity theory and theoretical computer science
in general. In simple terms, it asks the following question: “given a set of cities and
the knowledge of all intercity distances, what is the shortest possible route that visits
each city exactly once and returns to the starting point?”1. The TSP has numerous
applications on a wide range of areas. The TSP and variations thereof are extensively
studied in the context of planning, yielding solutions to practical problems such as
vehicle routing (GENDREAU; LAPORTE; VIGO, 1999). The concepts of cities
and intercity distances are easily interchangeable with other elements such as DNA
fragments and soldering points, which renders the TSP applicable to problems as
diverse as DNA sequencing and microchip design.

5.1 Formulation

The TSP is defined over the concept of a Hamiltonian path, for which a
definition is available below.

[Hamiltonian path] An Hamiltonian path in a graph G = (V , E) is defined as
a sequence of edges P = {e1, e2 . . . e|V| | ei ∈ E} such that each vertex v ∈ V is
covered by exactly one edge in the path. In other words, a Hamiltonian path
is a path in the edges of G which visits every vertex exactly once.

Given a graph G = (V , E), the TSP can be defined as the problem occupied
with finding the Hamiltonian path of shortest length in G. Concretely, it asks for

the Hamiltonian path P = {e1, e2 . . . e|V| | ei ∈ E} which minimizes
|V|∑
i=1

wi, where

wi ∈ R is the weight of the corresponding edge.
As a combinatorial optimization problem, the TSP lends itself easily to a

integer linear programming formulation. The formulation below, which is due to
(DANTZIG; FULKERSON; JOHNSON, 1954), implements binary variables to en-
code sets of edges representing tentative solutions. The ILP formulation minimizes

1Note that, in this context, a city does not correspond necessarily to a human settlement but
rather to a generalized notion of a point in (some) space. Concretely, the TSP is defined over
graphs where cities correspond to vertices and intercity distances correspond to edge weights.

95

the sum of all such variables, weighted by the corresponding edge weights. The
weighted sum effectively computes the length of the corresponding Hamiltonian
path, which is to be optimized. Two sets of restrictions enforce that each vertex
has exactly one incoming edge and exactly one outcoming edge, respectively, while
the last set of restrictions prohibits solutions containing sub-cycles (i.e. when all
vertices are visited exactly once but the selected edges do not form a proper path).

[TSP ILP Formulation]

xij =

1 edge (i, j) is in path

0 otherwise

min
n∑
i=1

n∑
j 6=i,j=1

wijxij :

xij ∈ B
n∑

i=1,i 6=j
xij = 1 ∀j = 1 . . . n

n∑
j=1,j 6=i

xij = 1 ∀i = 1 . . . n

∑
i∈Q

∑
j∈Q

xij < |Q| − 1 ∀Q ⊂ 2 . . . n

(5.1)

5.2 Variants and Special Cases

As a intensely studied research problem, the TSP has a number of variants.
These variants directly influence the computational complexity and the practical
feasibility of solving the problem, and as such demand a brief discussion. Some
important cases are described here.

5.2.1 Asymmetric / Symmetric

TSP instances can either be asymmetric or symmetric, a property which
is inherited from the graph for which we wish to compute the optimal route. The
symmetric property, in this context, refers to when intercity distances are always
equal in opposite directions (wij = wji) (Figure 5.1). Asymmetric and symmetric

96

Figure 5.1: Example of an asymmetric (left) and symmetric (right) graph. Source:
Author.

A

B

C

D
4 5

10
3

11
4

3 3

A

B

C

D
5 5

3
3

4
4

3 3

correspond, respectively, to directed and undirected graphs. Asymmetry imposes
additional difficulties for solving TSP instances, as paths may not necessarily exist
in both directions and even on complete graphs the number of paths is duplicated
w.r.t. their symmetric counterparts.

5.2.2 Metric

TSP instances can also be classified according to whether they respect or not
the metric property. A graph is said to be metric when the set of cities, coupled
with intercity distance values, form a metric space. In order to do so, it is required
that intercity distances respect the triangle inequality. That is, it is required that
the direct route A→ B between two cities A and B is never longer than a shortcut
A→ C → B passing through a third city C (Figure 5.2).

The metric property is relevant in the context of approximation algorithms2.
Christofides’ algorithm, which produces a valid Hamiltonian path for a graph G in
polynomial time through a smart manipulation of its minimum spanning tree, was
proven to yield a 3

2 -approximation for the TSP (in the sense that the generated
paths measure no more than 1.5× the optimal tour length). Christofides’ algorithm
however requires that G have the metric property, and it is in fact known and
easy to show that any graph which does not obey the triangle inequality cannot
be approximated in polynomial time with a constant approximation factor unless
P = NP (AN; KLEINBERG; SHMOYS, 2015).

2In the context of combinatorial optimization, it is said that a problem admits an approximation
algorithm when one can prove that said algorithm ensures that its solutions, while not necessarily
optimal, are within a constant factor of the optimal value.

97

Figure 5.2: Example of a violation to the triangle inequality. The path composed
by edges D → C and C → F underestimates the length of the direct connection
D → F .

A

B

C

D

E

F

5

3

4

3

3
3

5

8

1

3

5

9

5.2.3 Euclidean

A particularly relevant type of metric space is the euclidean space, which
does not only respect the metric property but also enforces the parallel postulate,
which states that given a line L and a point p not on it, at most one line parallel
to L can be drawn passing through p (Figure 5.3). Euclidean spaces can have any
dimensionality Rd | ∀d ∈ N.

Figure 5.3: A triangle drawn on the surface of a sphere. Two vertices are laid at the
equator at 90° from each other while the third one is laid at the north pole, yielding
three right angles. This is only possible because spherical geometry violates the
parallel postulate. This is an example of a non-euclidean geometry. Source: Author.

98

5.3 Computational Complexity

Because solving the TSP includes finding a Hamiltonian path as a subprob-
lem, the complexity of intuitive decision problem formulations of the TSP naturally
inherit the NP-Complete property from the latter. The Hamiltonian path problem,
which is concerned with deciding whether a given graph contains a Hamiltonian
path, is known to be NP-Complete (by reduction from 3-SAT) for a long time,
being one of the 21 selected Karp’s NP-Complete problems in his seminal paper
(KARP, 1972). The usual decision version formulation of the TSP is concerned
with deciding whether a given graph admits a Hamiltonian path of length no longer
than a “target cost” C. In its usual (optimization) formulation, the TSP is known
to be NP-Hard. Specifically, the TSP is FPNP-Complete. As FP is the class of
function problems3 solvable in polynomial time, the TSP is at least as hard as any
function problem solvable in polynomial time given a polynomial-time oracle to a
NP-Complete problem4. This is the analogue of NP-Completeness to the realm of
function problems. From the viewpoint of optimization, the TSP isNPO-Complete,
and the viewpoint of approximation, the TSP is APX -Complete (i.e. at least as
hard as any problem which allows a constant-factor approximation in polynomial
time).

3A function problem is a computational problem in which the output expected for each instance
is expressed in terms of strings. This is in contrast with decision problems, in which the expected
output is a binary answer (YES / NO).

4In the context of computational complexity theory, the “exponentiation” operator AB expresses
a variant of class A in which the regular Turing machine is replaced by a Turing machine with
access to a polynomial-time oracle to a complete problem from class B.

99

6 TYPED GRAPH NETWORKS FOR THE DECISION TSP

6.1 Model

6.1.1 Intuitive Description

Concretely, our learning task is the following: we want to train a DL model
to predict whether a given weighted graph G = (V , E) admits a Hamiltonian cycle
with cost no larger than a given real number C ∈ R+

0 . In this context, each of our
instances consists of a pair X = (G, C) of a graph and a real number.

Immediately, the fact that we are dealing with weighted edges imposes a
difficulty in engineering a model to solve our problem using typical GNNs. At this
point, the reader should be reminded that in their simplest formulation, GNNs solely
assign embeddings to vertices and refine these embeddings iteratively. Connections
between vertices are manifest in the graph’s adjacency matrix A = B|V|×|V|, which
is also fed to the model. Because vertex embeddings are subject to initialization, if
we are dealing with labelled graphs1, one could in principle feed labels to the model
by injecting each of them into the corresponding initial vertex embedding. But in
the context of a graph with labelled edges (which is our case), this is impossible.
In a sense, this has to do with the fact that, in a typical GNN model, edges are not
treated as “first-class citizens”. Because they are not endowed with embeddings of
their own, one could say that they are somewhat removed from the models’ ontology.
Edges do not have memories of their own, nor can they “vote” at the end of the
process.

The model detailed in this section, which was developed chronologically be-
fore and served as inspiration for the formalization of Typed Graph Networks, ben-
efits from the insight of assigning embeddings to edges in addition to vertices. The
idea here is that by assigning embeddings to edges, each edge ei ∈ E embedding
can be initialized with the numerical information wi ∈ R corresponding to the edge
weight. In our setup, each edge (vi, vj) will send messages to and receive messages
from vertices vi and vj. Over many message-passing iterations, we expect that edges
and vertices’ embeddings will become refined with relational (and numerical) infor-
mation about the graph G, which we can hopefully exploit to solve the problem at

1In a labelled graph, vertices have labels associated to them.

100

hand.
Of course, in order for the proposed TGN to be able to learn to refine edges

and vertices’ embeddings with valuable information (in contrast to garbage), we need
to design a proper loss function and train our model on it using gradient descent. In
our case, the loss function is fairly straightforward: after the decided upon number
of iterations of message-passing, we extract a “vote” from each edge embedding.
These votes are computed by a MLP which receives edge embeddings as input and
produces a logit probability as output. With all votes in hand, we compute their
average and the resulting scalar is the logit probability with which the model thinks
that a Hamiltonian cycle with the appropriate length exists in G. Having access to
the (binary) correct labels for each training instance, we can now define our loss as
the binary cross entropy between the predicted probability and the ground-truth,
and gradient descent is applied over this loss.

6.1.2 Concrete Definition

6.1.2.1 Embeddings and Embedding Initialization

Given a weighted graph G = (V , E), our model is structured in the following
way. Each vertex v ∈ V is assigned a “memory” (idiomatically called an “embed-
ding”), which corresponds to a multidimensional vector Vi ∈ Rd (the dimensionality
d is a hyper-parameter of our model). This memory unit will accompany the vertex
throughout all iterations of message-passing, a process during which it will have its
content updated step by step. Each edge e ∈ E will also be assigned an embed-
ding, corresponding to a multidimensional2 vector Ei : Rd. Both vertex and edge
embeddings are subject to an initialization. In the case of vertex embeddings, our
choice was to make the initial embedding equal for all vertices. This is line with
the fact that, in our task, vertices do not have labels associated to them, and thus
it makes sense not to differentiate between them in this initial stage. The initial
embedding which is shared by all vertices is conceptualized as a parameter of our
model (i.e. the model learns this initial embedding as it would learn the weights
and biases of a feedforward network). In the context of edge embeddings, because
we need to “inject” edge weights into them, our choice was to define a MLP Einit

2Note that the dimensionality d is shared between vertex and edge embeddings, but this must
not be necessarily so. This was decided for simplicity.

101

which receives a scalar edge weight w ∈ R and expands it into the dimensionality
of an edge embedding (Rd). We also realized that this MLP can be used to inject
C, the “target cost” of the TSP instance X = (G, C) into each initial embedding.
This way, edge embeddings will initially retain all numerical information relating to
our problem. In this context, our MLP is a function Einit ∈ R2 → Rd (i.e. it maps
from ordered pairs of an edge weight and a target cost to initial edge embeddings).
In our implementation, Einit is implemented as a MLP with fully-connected hidden
layer containing d/8, d/4, d/2 neurons respectively and output size = d. A diagram
representation of the architecture of Einit is offered in Figure 6.1.

Figure 6.1: Diagram representation of the MLP Einit : R2 → Rd mapping ordered
pairs of an edge weight an a target cost to an initial edge embedding. The curly
braces at the bottom indicate the size (in number of neurons) of each layer.

wi

C

..
.

..
.

..
.

..
.

Input
layer

1st Hidden
layer

2nd Hidden
layer

3rd Hidden
layer

Output
layer

2 d/8 d/4 d/2 d

The reader should be reminded that embedding initialization can be visual-
ized in two different paradigms. Programatically, we can think of initial embeddings
as multidimensional vectors which are learned (in the case of vertices) or computed
by a MLP (in the case of edges). But mathematically, we can think of initial embed-
dings as the image of a map, or a projection V → Rd or E → Rd between vertices
or edges respectively and a multidimensional real space. Being able to interchange
between these two paradigms is useful as it helps one to visualize the way that TGNs
solve problems, which is qualitatively different from typical iterative computation.
Instead of accessing and updating memory positions in a discrete manner, what
TGNs do instead is to iteratively refine projections of vertices into multidimensional

102

real space.

6.1.2.2 Message-Computing Functions

In our setup, vertices will send messages to edges and vice-versa. Part of
the insight behind TGNs is that the computation which produces these messages
is parameterized by a neural network. These messages are computed from edge or
vertex embeddings. The reasoning here is that we want to read the memory (or the
“state”) associated with each object and from this information compute a message
that this object wishes to send to its neighbors. Concretely, we instantiate two
MLPs: Vmsg : Rd → Rd, to compute messages to send from vertices to edges, and
Emsg : Rd → Rd, to compute messages to send from edges to vertices. Because
the embedding size of both vertices and edges is the same and also equal to the
dimensionality of the computed messages (Rd), both MLPs have been designed with
the same architecture (although naturally we expect them to fit different roles and
learn different relationships upon training), consisting of three fully-connected layers
each with d neurons each, with an output layer of the same size. A diagram for the
architecture of Vmsg and Emsg is offered in Figure 6.2.

Figure 6.2: Diagram for the architecture of the message-computing functions Vmsg
and Emsg.

..
.

..
.

..
.

..
.

..
.

x1

x2

xn

Input
layer

1st Hidden
layer

2nd Hidden
layer

3rd Hidden
layer

Output
layer

d d d d d

103

6.1.2.3 Update Functions

Crucially, vertices and edges should be able to update their embeddings upon
receiving a set of messages. In our model, this update operation is parameterized
by a recurrent neural network (specifically a LSTM). It should be noted however
that because vertices and edges are treated as different “types” in our model, each
of them is assigned a different RNN: Vu for vertices and Eu for edges.

Each vertex and each edge receives, at each iteration, a set of messages of
variable size. RNN cannot be fed with a number of inputs which varies at execution
time. Additionally, because each message is a vector of considerable size (Rd), even
if we had a fixed number K of messages received at each iteration, the layer size
of our RNN would have to be = K × d, which rapidly becomes prohibiting as K
grows to moderate proportions. Here it should be briefly noted that the parameter
space of a neural network grows exponentially with the size of its layers. As a result,
each additional message received imposes a multiplicative overhead in the size of the
parameter space, which severely hinders the learning capability of the model. This
difficulty can be overcome quite simply, however, by performing a reduction, or an
“aggregation”, on the set of received messages. In our case, each vertex performs
an element-wise addition of all of its received ∈ Rd message tensors, yielding an
aggregated tensor which is also ∈ Rd. This tensor is then fed to the RNN to yield
an updated embedding for the vertex. The exact same reduction is peformed by
edges.

Figure 6.3: Pictorial representation of the unrolling of a recurrent unit f into six
iterations. Because the parameters of all six blocks are shared, the resulting network
can be thought of as iterating the same operation over the hidden state H(t) and
the input observations X(t) that many times. Inputs X(t) are colored red, outputs
Y(t) are colored blue and hidden states H(t) are colored green. Repeated here for
clarity. Source: Author.

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

f
(H

(t
) ,
X

(t
))

H
(1

)

H
(2

)

H
(3

)

H
(4

)

H
(5

)

H
(0

)

H
(6

)

X(1) X(2) X(3) X(4) X(5) X(6)

Y(1) Y(2) Y(3) Y(4) Y(5) Y(6)

104

Further explanation is warranted here, as this mechanism is possibly the least
straightforward part of the model. The reader will remember that a RNN receives
inputs and produces outputs as any other neural network, but additionally keeps
record of an internal “hidden state” which is updated at each iteration. Conven-
tionally, the process of training a RNN is fairly straightforward: the engineer has
access to a list of training examples, each one of them being a sequence of feature
/ label pairs, and the RNN is unrolled and trained in order to receive a feature at
each timestep and output the corresponding label at the same timestep (Figure 6.3).
The main difference between training a RNN in the traditional fashion and training
it in the context of a TGN is that, in the traditional case, the source of the features
fed to the network is entirely external: they come from a training dataset. On the
other hand, in the context of a TGN, the features fed to the network are indirectly
produced by the same network on previous timesteps, because each feature is an ag-
gregation of messages (which have been produced from the embeddings of vertices
/ edges which have in turn been updated by the RNN at hand).

In equations, the process of updating a vertex embedding and an edge em-
bedding can be described as follows:

V(t+1) ← Vu(V(t),EVT × Emsg(E(t)))

E(t+1) ← Eu(E(t),EV× Vmsg(V(t)))
(6.1)

These equations can be read like this: the RNN Vu, upon receiving (via
self-loop) its own previous hidden state V(t)

h and the aggregation of all messages
received from edge embeddings, will produce a new hidden state V(t+1)

h and a new
vertex embedding V(t+1) (the reading of the second equation is analogous). At this
point the reader is possibly confused by the fact that instead of a proper aggregation
of messages we have the expession EVᵀ × Emsg(E(t)). This is due to the fact that
these equations are performing embedding updates for all vertices / edges in parallel
with tensor operations. E(t) is not a single edge embedding but a |E| × d tensor

of edge embeddings. Accordingly, Emsg(E(t)) corresponds to a tensor of messages
computed from edge embeddings. When we multiply this tensor at the left by the
adjacency matrix between edges and vertices EVᵀ, the resulting value corresponds
to a |V| × d tensor where each i-th line is the aggregation over all messages received
by the corresponding vertex vi.

105

6.1.2.4 Voting Multilayer Perceptron

The final trainable component of our model is a MLP Evote : Rd → R which
“distills” an edge embedding into a logit probability, here referred to as a “vote”
because it represents the probability with which that edge “thinks” that the problem
instance at hand is solvable (i.e. that there exists a Hamiltonian route with the
appropriate lenght in G). The MLP is implemented with three hidden layer of sizes
d, d, d and output size = 1, and a diagram of its architecture is offered in Figure 6.4.

Figure 6.4: Diagram for the architecture of the voting function Evote.

..
.

..
.

..
.

..
.

x1

x2

xn

Input
layer

1st Hidden
layer

2nd Hidden
layer

3rd Hidden
layer

Output
layer

d d d d 1

6.1.2.5 Complete Model

Having defined all trained parameters of our model, we can now describe the
entire algorithm. A single initial vertex embedding (which is a learnable parameter)
is shared among all vertices and a different edge embedding is computed for each edge
by a MLP Einit : R2 → Rd which expands ordered pairs (wi, C) of an edge weight
and a route target cost into the dimensionality of edge embeddings. Then, for tmax
iterations, we run the following process: vertex embeddings are updated by feeding
the RNN Vu : R2×d → R2×d with the aggregation (element-wise addition) over all
messages received by that vertex from its neighbor edges (each of which is computed
by the MLP Emsg fed with an edge embedding). Analogously, edge embeddings are
updated by feeding the RNN Eu : R2×d → R2×d with the aggregation (element-wise
addition) over all messages received by that edge from its neighbor vertices (each of

106

which is computed by the MLP Vmsg fed with a vertex embedding). Finally, after
all iterations, the refined set of edge embeddings is fed into the voting MLP Evote to
compute a logit probability from each edge embedding. These logits are averaged
together to produce a final prediction. This process is also available as a pseudocode
in Algorithm 6.

Algorithm 6 Typed Graph Network TSP Solver
1: procedure GNN-TSP(G = (V , E), C)
2: // Compute binary adjacency matrix from edges to source & target vertices

3: EV[i, j]← 1 iff (∃v′|ei = (vj, v′, w))| ∀ei ∈ E , vj ∈ V
4: // Compute initial edge embeddings

5: E(1)[i]← Einit(w,C) | ∀ei = (s, t, w) ∈ E
6: // Run tmax message-passing iterations
7: for t = 1 . . . tmax do
8: // Refine each vertex embedding with messages received from edges in which

it appears either as a source target vertex

9: V(t+1) ← Vu(V(t),EVT × Emsg(E(t)))
10: // Refine each edge embedding with messages received from its source and its

target vertex

11: E(t+1) ← Eu(E(t),EV× Vmsg(V(t)))

12: // Translate edge embeddings into logit probabilities

13: Elogits ← Evote
(
E(tmax)

)
14: // Average logits and translate to probability (the operator 〈〉 indicates arithmetic

mean)

15: prediction← sigmoid(〈Elogits〉)

Note that even though we were able to provide diagrams for all sub-modules,
the task of drawing a diagram for the entire model is prohibitively difficult, for many
reasons. The most important of them is the fact that a TGN exploits a huge number
of shared parameters. The sub-modules drawn in the last subsections are “cloned”
multiple times in the complete model (i.e. once for each vertex or edge in G).

107

6.2 Adversarial Training Concept

Having defined the model, we are left with the task of deciding how to train
it. There are many approaches possible, the most intuitive of all being simply
generating pairs of random graphs and random target costs C ∈ R+

0 , solving the
decision TSP on these instances and feeding the corresponding feature / label pairs
to the model. However, we can do better than this. Because we have the power
of generating our own instances (which is usually not the case in the context of
deep learning), we can force the model to develop a sensitivity to even the slightest
changes. Our idea is the following: generate a random graph G, compute the cost
C∗ of its optimal solution and then present the model with two examples containing
G, one with a target cost slightly smaller than the optimal (for which the correct
prediction would be NO as there is no route cheaper than the optimal) and one
with a target cost slightly greater than the optimal (for which the correct prediction
would be YES as there is in fact routes more expensive or equal to the optimal).

6.2.1 A Note on Adversarial Instances

Adversarial machine learning is one of the greatest developments of the last
decade in artificial intelligence. Generative Adversarial Networks (GANs) now pro-
duce photorrealistic images capable of fooling the human eye, but for all their im-
pressiveness, the fundamental insight behind the technique is rather simple (yet
ingenious). The base idea behind adversarial machine learning as a whole, metaphor-
ically speaking, is to remove a classification model from its comfort zone by engi-
neering “adversarial instances” – instances whose generation is trained to reduce
the classification accuracy of the model. In the context of GANs, these adversarial
instances are produced by a “generator” network, which is trained to fool the classi-
ficator. By training both the generator and a “discriminator” (which differentiates
real from fake images) in parallel, the adversarial setup imposed yields improved
performance for both. The generator ultimately learns to produce images which
are difficult to distinguish from real ones, while the discriminator ultimately sees its
performance enhanced after being forced to distinguish even the slightest artifacts
in fake images in order to correctly classify them.

An important note about the typical type of work GANs are trained to do,

108

such as generating realistic-looking human faces, is that we do not have access to an
exact solution for verifying whether a RGB image contains a face or not: this task
is better suited to a neural network model. But consider our case: we can verify
exactly whether a given graph G admits a route shorter than a given length. So in a
sense, the training setup we propose is very similar to regular adversarial training,
with an important twist: we replace the discriminator network by a non-neural,
exact solver.

6.3 Experimental Setup

6.3.1 A Note on Hyperparameters, Reproducibility and Deep Learning

“Alchemy”

As it is the case with virtually every modern deep learning architecture, our
model sports a substantial number of hyperparameters. It is generally unfeasible
to perform parameter tuning on such a large hyperparameter space. This is a well-
known and largely discussed Achilles heel in modern DL research, which is often
compared to alchemy for the lack of a structured approach to selecting hyperpa-
rameters (HUTSON, 2018). The models discussed in this thesis are by no means an
exception to this problem. In this context, however, the reader should be reminded
that the lack of such an approach – which we fully acknowledge – is not a caveat of
this study specifically, but rather reflects a structural problem which permeates the
entire field. Deep learning, in its modern formulation, is a fairly recent field with
a largely disruptive effect on computer science, and the scientific community has
not yet been able to agree upon the best practices on carrying out experiments and
designing models. We also face an additional difficulty in the fact that training DL
models is computationally costly, and not every research team – certainly not ours
– has the resources to perform exhaustive searches on the space of hyperparameters.
That being said, we are keenly interested in enabling the full reproducibility of our
results. As DL researchers ourselves, we are particularly aware of the damage that
the lack of reproducibility poses to our field. Papers are often very hard or impos-
sible to reproduce, and this partially stems from the fact that even the most acute
hyperparameter decisions can have a decisive impact in the behavior of the trained
model. For this reason, we went out of our way to report our hyperparameters

109

exhaustively. The reader can consult them on Table 6.1. Also, for reproducibility
purposes, the training setup parameters are equally important. For this reason we
also report them on Table 6.2.

6.3.2 Hyperparameters of our Model

Our model sports four MLPs and two RNNs. Each of these neural modules
can be expanded into a large number of hyperparameters. The complete collection
of hyperparameters in the entire model is described in Table 6.2, below.

Table 6.1: Hyperparameters of the model
Vertex embedding size (d) 64
Edge embedding size (d) 64

Vertex-to-edge message embedding size (d) 64
Edge-to-vertex message embedding size (d) 64

Edge initialization MLP (Einit)

Input size 2
Hidden layers 3

Hidden layer sizes 8,16,32
Output size 64

Non-linearities ReLU

Vertex-to-edge message-computing MLP (Vmsg)

Input size 64
Hidden layers 3

Hidden layer sizes 64,64,64
Output size 64

Non-linearities ReLU

Edge-to-vertex message-computing MLP (Emsg)

Input size 64
Hidden layers 3

Hidden layer sizes 64,64,64
Output size 64

Non-linearities ReLU

Vertex embedding update RNN (Vu)

Input size 64
Hidden state size 64

Output size 64
Non-linearities ReLU

Edge embedding update RNN (Eu)

Input size 64
Hidden state size 64

Output size 64
Non-linearities ReLU

Voting MLP (Evote)

Input size 64
Hidden layers 3

Hidden layer sizes 64,64,64
Output size 1

Non-linearities ReLU

110

6.3.3 Training Setup Parameters

In our experiments, the model is trained for 2000 epochs, each one sporting
128 batches of 16 instances each. Overall, the training setup is also parameterized
by a series of other decisions, such as the optimizer used, L2 normalization, clipping,
among others. All such decisions are exhaustively described in Table 6.2.

Table 6.2: Training setup parameters
Epochs 2000

Batches per epoch 128
Batch size 16
Time steps 32

MLP Kernel Initializer Xavier Initializer
MLP Bias Initializer Zeros Initializer

Vertex Embeddings Initialization Random Normal
Optimizer Adam Optimizer

Learning rate 2× 10−5

L2 Normalization? Yes
L2 norm scaling 10−10

Clip by global norm? Yes
Global norm gradient clipping ratio 0.65

6.3.4 Training Instances

We have decided to train our model with complete, 2D Euclidean instances.
They are generated in the following way: initially, we sample n points in the

√
1
2×
√

1
2

square3. We then use the Concorde TSP (exact) solver (HAHSLER; HORNIK, 2007)
to compute the optimal route (and associated route length) for each instance. As
described in Section 6.2, we employ an adversarial training concept which consists
in producing two training instances from each generated graph G. Having computed
the optimal TSP cost C∗ for G, we produce two instances X− = (G, (1−∆)C∗) and
X+ = (G, (1 + ∆)C∗). The reader will realize that a correct binary classfier for the
decision TSP should answer NO for X−, as it asks whether G admits a route shorter
than the optimal, and YES for X+, as it asks whether G admits a route longer than
the optimal. In this context, ∆ is the “deviation” parameter, defining by how much

3The reason for this is that we want, for simplicity, that the distance Dij between any two
points pi, pj is 0 < Dij < 1. The choice of a square of side length

√
1
2 gives us this for free as it

yields a diagonal of length = 1.

111

Figure 6.5: Examples of 2D Euclidean graphs sampled from the distribution used to
train our model, with the associated optimal TSP routes drawn in red, green, blue
and black.

these two instances deviate from the optimal. In our experiments, we used ∆ = 2%.
This and all other parameters for instance generation are described in Table 6.3,
and four examples of graphs, as well as their optimal TSP tours, are presented in
Figure 6.5.

Table 6.3: Training instances generation parameters
Random distribution 2D Euclidean

Edge density 100% (complete)
Sizes (n) n ∼ U(20, 40)

Deviation (∆) 2%

6.4 Results and Analyzes

Upon 2000 training epochs, the model achieved 80.16% accuracy averaged
over the 221 instances of the training set, having also obtained 80% accuracy on a
testing set of 2048 instances it had never seen before. Instances from training and
test datasets were produced with the same configuration (n ∼ U(20, 40) and 2%

112

percentage deviation). Figure 6.6 shows the evolution of the binary cross entropy
loss and accuracy throughout the training process.

Figure 6.6: Evolution of the binary cross entropy loss (downward curve in red) and
accuracy (upward curve in blue) throughout a total of 2000 training epochs on a
dataset of 220 graphs with n ∼ U(20, 40). Each graph with optimal TSP route cost
C∗ is used to produce two instances to the TSP decision problem – “is there a route
with cost < 1.02C∗?” and “is there a route with cost < 0.98C∗?”, which are to be
answered with YES and NO respectively. Each epoch is composed of 128 batches
of 16 instances each (please note that at each epoch the network sees only a small
sample of the dataset, and the accuracy here is computed relative to it).

6.4.1 Stochastic Gradient Descent and Accuracy Variation for the Same

Training Setup

The reader should be reminded that DL models are conventionally trained
using Stochastic Gradient Descent, or SGD for short. In this setup, each individual
gradient descent operation is applied w.r.t. a gradient computed on a batch of
possibly many instances, sampled at random from the training set. For this reason,
two subsequent trainings of the same exact model with the same exact training
setup can – and will – yield different parameterizations due to the fact that there is
randomness inherent to the choice of each batch of instances. Unfortunately, there
are often not enough compute resources to run the same model multiple times and
evaluate the variation in its overall accuracy. Our resources are limited, but we were
able to repeat the training process ten times in order to analyze this variation and

113

report the corresponding averages.

6.5 Generalization at Test Time

One of the conventional approaches to validating a DL model is to promote a
division in the set of available examples in which part of them are used to train the
model while the remaining is used to test it. The rationale is that, by evaluating
the model’s accuracy on a set of instances it has never seen during training, we
can be more confident that the good accuracy seen on the training set is not a
result of overfitting. In this context, we have substantially more flexibility than the
conventional DL researcher, because we are enabled to produce our our training and
test instances. For this reason, we have chosen to go a step ahead and test the
accuracy of our model not only on instances it has never seen before but also on
distributions of instances it has never seen before.

6.5.1 Different Sizes

An aspect in which our work deviates from what is conventional in DL re-
search is that we have the ability to evaluate the accuracy of our model on varying
instance sizes, regardless of whether it has seen any of them during training. This
is due to the fact that TGNs operate on the level of the nodes of a graph, and in
this context are naturally applicable to graphs of any size. This presents us with a
perfect opportunity to evaluate how the accuracy of our model changes with larger
instance sizes. Naturally, we expect that the model will be either unable to general-
ize to larger instances than those seen at training time or that its performance will
degrade for increasing sizes (as their search spaces increasingly become exponentially
larger). Upon testing, what we actually observe is the second scenario: the model is
in fact able to generalize to larger sizes, but with diminishing results as their sizes
grow beyond is “comfort zone” (between 20 and 40 nodes). Figure 6.7 illustrates this
behavior, showing how the trained model is able to mantain the accuracy approx-
imately constant inside its comfort zone, but sees it drop progressively for larger
sizes. As well as plotting the varying accuracy for the distribution of −2%,+2%
instances for which training examples are sampled, we also show the same curves

114

for different deviation values either smaller or larger than 2% (−1%, 5%, 10%). In
this setup, it becomes clear that while the model’s accuracy decreases for increasing
sizes, it also increases for incresing deviations. This result, albeit not necessarily an
expected finding, makes sense: larger instances have larger search spaces, and larger
deviations yield more relaxed constraints.

Figure 6.7: Accuracy of the trained model evaluated on datasets of 1024 instances
with varying numbers of cities (n). The model is able to obtain > 80% accuracy for
−2%,+2% deviation on the range of sizes it was trained on (painted in pink), but
its performance degenerates progressively for larger instance sizes before reaching
the baseline of 50% at n ≈ 75. Larger deviations yield higher accuracy curves, with
the model obtaining > 95% accuracy for −10%,+10% deviation even for the largest
instance sizes.

20 30 40 50 60 70 80
n

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

1% Dev.
2% Dev.
5% Dev.
10% Dev.

6.5.2 Different Deviations

Another generalization test we can perform without effectively changing the
underlying random graph distribution is to evaluate how the trained model’s per-
formance changes with the deviation ∆ from the optimal tour cost. As commented

115

in Section 6.5.1, we expect larger and smaller deviations to yield easier and harder
instances, respectively, because the smaller the deviation the more constrained our
decision instances become. This is in fact what we observe in this experiment, as
Figure 6.8 illustrates and Table 6.4 reports. In this context, we can see that one
must not raise ∆ too much in order to obtain almost perfect accuracy: at ∆ = 5%
the model is already at 2% from no mistakes whatsoever.

Table 6.4: Test accuracy averaged over 1024 n-city instances with n ∼ U(20, 40) for
varying percentage deviations from the optimal route cost.

Deviation (∆) Accuracy (%)
1% 66
2% 80
5% 98
10% 100

Figure 6.8: Accuracy of the trained model evaluated on the same test dataset of
1024 n-city instances with n ∼ U(20, 40) for varying deviations from the optimal
tour cost. Although it was trained with target costs −2%,+2% from the optimal
(dashed line), the model can generalize for larger deviations with increasing accuracy.
Additionally, it could still obtain accuracies above the baseline (50%) for instances
more constrained than those it was trained on, with 65% accuracy at −1%,+1%.

6.5.3 Different Graph Distributions

A particularly interesting experimentation is to evaluate whether the model
– which, the reader will recall, was trained solely on complete 2D Euclidean graphs
– is capable of generalizing to extraneous graph distributions. Naturally, there is

116

an insurmountable number of graph distributions to experiment with, rendering an
exhaustive analysis unfeasible. In this context, probably the most important set of
graphs to initially experiment with is that where edge weights are drawn from an
uniform distribution. We justify this by pointing out that every weighted graph is
equiprobable in this context, in contrast with (for example) Euclidean distributions
in which some weight matrices are improbable and some even impossible. This is
further explained in Appendix ??.

We averaged accuracy results over 1024 n-city instances defined over uni-
formly random weight matrices, with n ∼ U(20, 40) as conventional. To our surprise,
the model experienced the worst performance possible, consistently yielding 50% ac-
curacies. Note that the model produces 50% accuracy regardless of how relaxed
we choose the deviation ∆ to be. As we enforce a 50/50 divide between positive and
negative labels, the model’s accuracy in this context is equivalent to that of a coin
toss. However, it is known that TSP instances which do not conform to the met-
ric property pose a significant difficulty to heuristic methods (AN; KLEINBERG;
SHMOYS, 2015). In this light, we experimented with producing metric variants of
the same random weight matrices, which can be done straightforwardly by replacing
each intercity distance Dij by the corresponding shortest path length between cities
pi, pj. Upon performing this modification, we were surprised once again to see that
the model’s performance not only raises above the 50% baseline but also resumes
the typical behavior of yielding better accuracies the larger the deviation ∆ is (Table
6.5).

Table 6.5: Test accuracy averaged over 1024 n-city instances with n ∼ U(20, 40) for
varying percentage deviations from the optimal route cost for differing random graph
distributions: two-dimensional euclidean distances, “random metric” distances and
random distances.

Deviation Accuracy (%)
Euc. 2D Rand. Metric Rand.

1 66 57 50
2 80 64 50
5 98 82 50
10 100 96 50

117

6.5.4 Comparing with Classical Baselines

This work would not be complete without performing a comparison between
the performance of the trained model and some kind of baseline. However, this is not
as simple as it would seem, mostly because training DL models to solve relational
problems is a fairly recent research effort. In this context, we chose to perform
an admittedly modest comparison with two classical baselines: a Nearest Neighbor
(NN) and a Simulated Annealing (SA) search. Nevertheless, we face an additional
difficulty in the fact that the TSP problem is not usually solved in its decision
problem formulation, as we are frequently interested in obtaining a Hamiltonian
path. Because of this, we were forced to adapt the NN and SA heuristics to produce
predictors for the decision TSP. This was done by measuring, for a given decision
instance X = (G, C) the frequency with which either of these algorithms produced
a solution with cost no greater than C.

Figure 6.9: Nearest Neighbor (NN) and Simulated Annealing (SA) do not yield a
prediction for the decision variant of the TSP but rather a feasible route. To compare
their performance with our model’s, we evaluate the frequency in which they yield
solutions below a given deviation from the optimal route cost and plot alongside
with the True Positive Rate (TPR) of our model for the same test instances (1024
n-city graphs with n ∼ U(20, 40)).

1 2 3 4 5 6 7 8 9 10
Deviation (%)

0

20

40

60

80

100

Tr
ue

 P
os
iti
ve

 R
at
e
(%

)

GNN
SA
NN

This frequency can be directly compared with the True Positive Rate (TPR)
of our trained model. The TPR was chosen instead of the accuracy because NN

118

and SA cannot ever decide that a route shorter than a given length does not exist,
as they are forced to produce a valid (yet not provably optimal) Hamiltonian path.
Our experiments show that the trained model outperforms both SA and NN in this
setup. This result can be alternatively read as: our model is able to decide that a
given graph G admits a route shorter than a given length C more frequently than
either SA or NN can produce a route shorter than C. One can immediately see that
the comparison is not fair, as deciding that a route exists is obviously easier than
producing said route. Nevertheless, up until this point we cannot be completely
sure that the trained model does not effectively search for a valid Hamiltonian
route before producing its prediction, eventually finding it and projecting it into the
hyperdimensional space of vertex and edge embeddings. For this reason, we believe
this particular experiment is important.

6.6 Interpretability

6.7 Training

One of the most interesting, yet costly, aspects to experiment with in our
setup is training. In a way, the model proposed in this thesis is an object of study
in itself, and its importance is justified by the answers it provides concerning the
applicability of TGNs in particular and ANNs in general on routing problems. Nev-
ertheless, in a very real sense, the work developed here can also turn the tables
around and use the TSP as a case study to try and crack open the black box of
TGNs, as it is of significant interest to the DL community to understand how ex-
actly they work. In this context, experimenting with different training setups can
possibly help us understand what effects the training data and some selected hyper-
parameters can have on the algorithm learned by the model.

6.8 Training with Varying Deviations

An initial simple experiment, in the light of what was observed at test time,
is to evaluate whether training the model with larger deviations has an effect. By
training the same model with 2%, 5%, 10% deviations we can clearly see that more

119

relaxed deviations yield close to perfect accuracy much sooner, with 10% for example
yielding approximately 100% accuracy upon 400 training epochs. This is in contrast
to the 2000 training epochs required for the original model to achieve 80% accuracy
(Figure 6.10).

Figure 6.10: The larger the deviation from the optimal cost, the faster the model
learns: we were able to obtain > 95% accuracy for 10% deviation in 200 epochs. For
5%, that performance requires double the time. For 2% deviation, two thousand
epochs are required to achieve 85% accuracy.

6.9 Training with Sparse Graphs

Another important experiment to assess the model’s potential for generaliza-
tion is to train it under multiple different edge densities. The initial experiment,
the reader will remember, was performed on a dataset of complete graphs. In this
experiment we produce 10 datasets with edge densities 10%, 20%, . . . , 100%. This
is done by initially generating a complete graph and then sampling a fraction of its
edges uniformly at random.

Upon training, as Figure 6.11 shows, one can see that smaller edge densities
are generally associated with faster learning curves. It should be noted, however,
that this plot is potentially misleading as the accuracies reported are computed on
the training set under consideration (i.e. the accuracies for the 20% regime are
computed for instances which themselves contain only 20% of the total edges).

120

Figure 6.11: The result of training the same model with graphs of varying edge
densities is shown. To ease visualization and make the plot smoother, we report the
average accuracy at each 10 epoch interval.

A more insightful analysis, in this context, is to examine the generalization
potential of each trained model, or, in other words, to examine the accuracy of a
model trained with (for example) instances of 20% edge density for test datasets of
instances of 10%, 30%, . . . 100% edge density. We performed such an experiment on
test datasets of 1024 instances for each edge density. The corresponding results are
detailed in Table 6.6 and can also be visualized on Figure 6.12.

121

Table 6.6: Exhaustive evaluation of the accuracies computed for all combinations
of train and test datasets. In other words: cell (i, j) reports the accuracy of the
model trained with the i-th train dataset w.r.t. the j-th test dataset. Train datasets
consist of 220 instances as usual, while test datasets consist of 215 instances. All
accuracies are reported in percentages, but the % symbol is removed due to space
limitations. The average accuracy, computed over all test datasets, is reported at
the last column. This table can also be visualized as a heatmap in Figure 6.12.

Tested on Average
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Tr
ai
ne
d
on

10% 90 86 71 60 54 52 51 52 54 54 62
20% 89 88 81 74 67 61 56 53 52 51 67
30% 77 92 93 87 73 62 56 53 51 50 69
40% 73 89 93 92 88 83 78 73 70 67 80
50% 69 82 88 88 85 80 76 73 70 67 78
60% 59 74 79 83 86 86 82 77 72 68 77
70% 52 64 75 81 83 82 80 76 73 70 74
80% 54 68 74 74 72 73 76 80 82 81 73
90% 51 52 57 64 69 73 78 82 84 81 69
100% 50 50 57 59 59 58 58 60 66 87 60

Figure 6.12: Visual representation of the data reported in Table 6.6. For more
details of how this data was collected refer the original Table.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

56

64

72

80

88

Ac
cu

ra
cy

 (%
)

Table 6.6 shows that models trained at different edge distributions

122

6.10 Training with General Graphs

Up until now, we have only examined our model under a fairly limited family
of graphs: Euclidean 2D graphs. In Section 6.9 we show that the same model can
be trained on complete and sparse graphs. In this section, we examine our model’s
capability of predicting the decision TSP on non-Euclidean graphs (i.e. graphs with
random edge weights). To render the training dataset as general as possible, we
also generate graphs with variable edge densities. To generate a n-vertex graph
G = (N , E) in our proposed random distribution, one must do as follows:

1. Choose an edge density d ∼ U(0.2, 1) between 20% and 100% uniformly at
random.

2. Sample dn2 edges from the complete n-vertex graph uniformly at random.

3. For each edge eij ∈ E , choose its edge weight wij ∼ U(0, 1) uniformly at
random.

4. Sample a random sequence of π = N n of n nodes ∈ N and add the edges of
the corresponding path to the graph, if inexistent, to enforce the existence of
at least one Hamiltonian tour.

5. Enforce the metric property by replacing each edge weight wij by the shortest
path distance between vertices vi and vj.

We generate 215 such graphs. The size n ∼ U(20, 40) of each graph is chosen
uniformly at random between 20 and 40 vertices.

Figure 6.13: Loss and accuracy curves corresponding to the training setup of general
graphs described above. Although training was significantly slower, we were able to
achieve over 70% accuracy on this dataset.

123

6.11 Acceptance Curves & Extracting Route Costs

6.11.1 Acceptance Curves

More interesting than the results obtained by the trained model is how it
effectively works. Understanding this is a challenge, as TGNs learn, upon training,
a distributed algorithm which is not only “messy” in terms of the number of param-
eters involved in linear algebra operations but also conceptually very different from
the algorithms we humans are familiar with. Thus, as a first step, it is profitable
to start with a modest experiment and assess how the model’s prediction changes
w.r.t. the target cost.

We propose the concept of an “acceptance curve”, which measures the average
prediction of the model (i.e. the % of times it guesses YES for a test sample) as a
function of the relative deviation of the target cost fed to the model from the ground
truth. Such acceptance curves can be seen on Figure 6.14, in which a number of
interesting phenomena can be observed.

Firstly, one can see that the curve undergoes a transition as the deviation
increases. The model’s prediction seemingly exhibits two phases, one in which it
(generally) predicts NO and one in which it (generally) predicts YES. The transition
between these phases occurs (as expected) in the vicinity of ∆ = 0. Furthermore,
one can see that larger instances yield sharper curves. We can even observe a
phenomenon reminiscent of finite size scaling, in which smaller instances deviate
more from the true critical point (which in theory happens at lim

n→∞
) than larger

ones. Note that the average optimal route length for n-city 2D Euclidean instances
is proportional to

√
n (BEARDWOOD; HALTON; HAMMERSLEY, 1959), so it

makes sense as an heuristic for the model to guess, at ∆ = 0, that routes exist with
more probability for larger instances.

6.11.2 Binary Search

Considering the findings described in Section 6.11.1, we can safely suggest
that we are closest to the optimal route cost (i.e. ∆ = 0) when the model performs
most poorly. In an idealized scenario, we could say that when the model exhibits
absolute uncertainty (guessing with 50% probability), this is a symptom that the

124

Figure 6.14: Average prediction obtained from the model as a function of the devi-
ation between the target cost and the optimal cost for varying instance sizes (the
pink band indicates the [−2%,+2%] interval). As expected, the curve is S-shaped,
signalling that the model is very confident that routes with sufficiently large/small
costs do/do not exist. The average prediction undergoes a phase transition as we
traverse from negative to positive deviations. Larger instances exhibit smaller criti-
cal points, as evidenced by the left shifts on the derivatives of the acceptance curves
in the bottom subfigure. The prediction for each deviation is averaged over 1024
instances.

0

20

40

60

80

100

Pr
ed

ic
tio

n(
%
)

n=20
n=25
n=30
n=35
n=40

−0.10 −0.05 0.00 0.05 0.10
Deviation

0

500

1000

∂ ∂x
Pr
ed

ic
tio

n(
%
)

target cost fed is the optimal TSP cost for the instance under consideration.
This line of reasoning suggests that it may be possible to exploit our trained

binary classified to yield predictions for the optimal TSP cost, even though it was
never trained to do so. In this context, we propose performing a simple binary
search on the target cost, with the goal of maximizing the model’s uncertainty. The
procedure is described in detail in Algorithm 7.

125

Algorithm 7 Binary Search
1: procedure Binary-Search(G = (V , E), p, δ)
2: // Choose an initial guess for the optimal route cost. wn− and wn+ are the

sets of the costs of the n edges ∈ E with smallest / largest costs respectively.
3: Cmin ←

∑
wn−i

4: Cmax ←
∑
wn+
i

5: C ∼ U(Cmin, Cmax)
6: while Cmin < C(1− δ) ∨ C(1 + δ) < Cmax do
7: if GNN-TSP(G, C) < p then
8: Cmin ← C
9: else

10: Cmax ← C

11: C ← (Cmin + Cmax)/2
return C

Table 6.7: The relative deviations from the optimal route cost are compared for
the prediction obtained from the trained model with Algorithm 7 (GNN) and the
Simulated Annealing heuristic (SA). Lines referring to instances in which the trained
model outperformed and underperformed the SA heuristic are colored blue and red
respectively. Note that deviations obtained from the trained model are negative in
general, as expected given the discussion in the subsection about Extracting route
costs above.

Instance Size Relative Deviation (%)
GNN SA

ulysses16∗ 16 −22.80 +1.94
ulysses22∗ 22 −27.20 +1.91

eil51 51 −18.37 +18.07
berlin52 52 −8.73 +21.45
st70 70 −11.87 +14.47
eil76 76 −13.91 +19.24

kroA100 100 −2.00 +30.73
eil101 101 −9.93 +20.46
lin105 105 +6.37 +17.77

* These instances had their distance matrix computed according to Haversine formula

(great-circle distance).

Upon running the binary search procedure on the test dataset (1024 Com-
plete, 2D Euclidean n-city instances with n ∼ U(20, 40)), we were able to obtain
predictions within 1.5% of the ground truth with on average 8.9 iterations. We also
compare the absolute value of the relative deviation from the optimal cost of our

126

method with that of a simulated annealing routine, the results of which are reported
in Table 6.7. Our method outperforms SA for six out of the seven Euclidean in-
stances tested, but underperforms SA substantially on the non-Euclidean instances
ulysses161 and ulysses221.

127

7 RECENT DEVELOPMENTS

7.1 Pytorch Geometric Library

Pytorch Geometric is a recent extension library for geometric deep learning
in Pytorch. It has been officially presented in a workshop paper at ICRL 2019
(FEY; LENSSEN, 2019). Pytorch geometric encapsulates and simplifies the code
behind graph convolutions, message-passing neural networks and other families of
graph-based deep learning modules. In this context, it cares about the same goal as
our Typed Graph Networks library, although it is generally more flexible than ours.
In a sense, Pytorch Geometric operates at a slightly lower level than our library,
which allows for more flexibility but requires comparatively more code. Nevertheless,
because Pytorch is substantially less verbose than Tensorflow, codes in Pytorch
Geometric are expected to be smaller on practice.

Overall, Pytorch Geometric allows for a high level of expressivity in terms
of graph-based deep learning models, whilst keeping the code relatively short and
simple. This is a virtue of both Pytorch Geometric and Pytorch itself, which is sub-
stantially less verbose than Tensorflow. Additionally, Pytorch Geometric’s meth-
ods are optimized for performance by leveraging dedicated CUDA kernels (FEY;
LENSSEN, 2019). For these reasons, we feel that this thesis would be incomplete
without an acknowledgement of the excellent work the Pytorch Geometric team has
done. We do this not despite the fact that Pytorch Geometric and our library are in
a sense adversaries, but rather because of it. Nevertheless, it should be noted that
although the development of both libraries started at approximately the same time
(October 2017), we would not become aware of the latter until very near the end
of the writing of this thesis, as the original paper describing it was published as a
workshop paper at ICRL 2019. Keeping up with the fast pace of advancements in
deep learning is no easy task.

7.1.1 Our Model in Pytorch Geometric

To demonstrate the differences between our proposed Typed Graph Networks
library and the Pytorch Geometric library, we provide below some code snippets
showing how our TSP solving module could be implemented in it.

128

Pytorch Geometric encapsulates the message-passing operation in a Python
class which implements a Pytorch module. You can define a message-passing module
by extending the Pytorch Geometric class “MessagePassing”. Pytorch Geometric
provides a method named “propagate” which takes care of computing a message
from each vertex embedding and aggregating all messages sent to a given vertex. In
order to define how messages should be computed or aggregated, the programmer
must override the “message” and “update” methods of the “MessagePassing” class.
We can define the vertices-to-edges message-computing module of our proposed TSP
GNN model in the following way:
1 # Define vertices -to -edges message passing module

2 class Vertices2Edges(MessagePassing):

3 def __init__(self ,d):

4 # Aggregate messages by adding them up

5 super(Vertices2EdgesMsg ,self).__init__(aggr=’add’)

6 # Define message -computing MLP

7 self.msg = Sequential(Linear(d,d), ReLU(), Linear(d,d), ReLU(), Linear(d

,d), ReLU(), Linear(d,d))

8 self.updater = LSTM(d,d)

9
10 def forward(self , x, connections):

11 return self.updater(self.propagate(connections , x=self.msg(x)))

12
13 def message(self , x_i , connections):

14 return x_i

15
16 def update(self , aggregation):

17 return aggregation

18
19 # Since the vertices -to -edges and edges -to-vertices architectures are equal

20 Edges2VerticesMsg = Vertices2EdgesMsg

Conceptually, it would make sense to compute a message from each vertex
embedding separately in the overriden “message” function. However it is much faster
to apply the transformation to the entire tensor of vertex embeddings at once, which
is why we do it in the “forward” method.

The entire model now can be defined in a straigtforward way. The crux of the
model is in lines 42-46, in which we use the vertices-to-edges and edges-to-vertices
message-passing modules jointly with the recurrent modules to update embeddings
for edges and vertices, for many iterations.

129

1 class TSP_GNN(torch.nn.Module):

2 def __init__(self.d):

3 super(TSP_GNN , self).__init__ ()

4 # Create vertices -to -edges and edges -to-vertices message passing layers

5 self.V2E = Vertices2EdgesMsg(d)

6 self.E2V = Edges2VerticesMsg(d)

7 # Create initial vertex embedding

8 self.Vinit = Variable(torch.randn(1,d), requires_grad=True)

9 # Create edge embedding initializer

10 self.Einitializer = Sequential(Linear(2,d//8), ReLU(), Linear(d//8,d//4)

, ReLU(), Linear(d//4,d//2), ReLU(), Linear(d//2,d))

11 # Create edge ’voter ’

12 self.voter = Sequential(Linear(d,d), ReLU(), Linear(d,d), ReLU(), Linear

(d,d), ReLU(), Linear(d,1))

13
14 def forward(self , batch , timesteps):

15 # Get:

16 # n_vertices: N of vertices for each instance

17 # n_edges: N of edges for each instance

18 # edges: list of all edges in the batch

19 # W: edge weights , in order

20 # C: Vector of target costs (one for each instance)

21 n_vertices , n_edges , VE, W, C = batch

22 n_instances = len(n_vertices)

23 total_vertices , total_edges = sum(n_vertices), sum(n_edges)

24
25 # Init tensor of vertex embeddings V

26 V = self.Vinit.repeat(total_vertices ,1)

27
28 # Repeat each instance ’s target cost for the No of edges in it

29 # (This is done so that we can feed each initial edge embedding with its

instance ’s target cost)

30 C_expanded = torch.cat([c.unsqueeze (0).repeat(n) for n,c in zip(n_edges ,

C)], axis =0)]

31 # Init tensor of edge embeddings E

32 E = self.Einitializer(torch.cat([W,C_expanded], axis =1))

33
34 # Precompute vertices -to -edges and edges -to-vertices communication masks

35 conn_VE = [(i,total_vertices+e) for e,(i,j) in enumerate(edges)] + [(j,

total_vertices+e) for e,(i,j) in enumerate(edges)]

36 conn_EV = [(y,x) for (x,y) in connections]

37
38 # Run many message -passing iterations

39 for t in range(timesteps):

40 # Concat V and E into a single tensor

41 VE = torch.cat([V,E], axis =0)

42 # Send messages from vertices to edges

43 E = self.V2E(x=VE, connections=conn_VE)[total_vertices :,:]

44 # Send messages from edges to vertices

45 V = self.E2V(x=VE, connections=conn_EV)[: total_vertices ,:]

46

130

47 # Compute votes from edges’ embeddings

48 votes = self.voter(E)

49
50 # Average votes for each instance

51 n_edges_acc = n_edges.copy()

52 n_edges_acc.append(n_edges_acc [-1])

53 for i in range(1, n_instances +1): n_edges_acc[i] += n_edges_acc[i-1];

54 preds = torch.cat([votes[n_edges_acc[i]: n_edges_acc[i+1]]. mean() for i

in range(n_instances)], axis =0)

55 # Convert from logits to probabilities

56 preds = torch.sigmoid(preds)

57
58 # Return predictions

59 return preds

7.2 Other Applications of Geometric Deep Learning to the Traveling

Salesman Problem

Since our paper was published, there have been other attempts at using
models in the graph neural network family to solve variants of the TSP. A notable
example is the paper “An Efficient Graph Convolutional Network Technique for the
Travelling Salesman Problem” (JOSHI; LAURENT; BRESSON, 2019), which uses
a technique very similar to ours. The authors also focus on Euclidean instances
and also embed both vertices and edges in multidimensional spaces (using graph
convolution layers). They additionally train a MLP which computes a probability
for each edge, which is architecturally similar to our approach. These probabilities
are interpreted differently from ours, however: while our probabilities are averaged
in order to produce a prediction for the decision problem, in their approach the
probability that each edge will feature in the optimal TSP route is approximated.
The same approach was attempted by us in an earlier version of the TSP-GNN
model, but was discarded because, as the authors of the new paper argue, “directly
converting the probabilistic heat-map to an adjacency matrix representation of the
predicted TSP tour π̂ via an argmax function will generally yield invalid tours with
extra or not enough edges in π̂”. However, by starting with a given node and
iteratively building a route with beam-search, they were able to train the model to
solve the optimization problem, in an unsupervised way (the loss function is defined
the length of the reconstructed TSP route).

131

8 DISCUSSION AND FUTURE WORK

In the recent years, the deep learning community has devoted a growing
amount of interest to relational, or graph-structured, learning tasks. This interest is
motivated by the necessity of extending traditional DL approaches to non-euclidean
domains, in which the topology of problem instances can only be described in terms
of graphs. This incipient field of DL, dubbed “geometric deep learning”, has ad-
vanced at a vary fast pace in the last two years. Due to the velocity of such devel-
opments, the state-of-the-art has advanced past some of the techniques and tools
developed for this thesis. Nevertheless, this thesis occupies a relevant position in
the chronology of GNN models. Along with NeuroSAT (SELSAM et al., 2018), we
were one of the first to show that GNNs can learn to solve NP-Complete problems
from data in a supervised way. In particular, we were able to show that GNNs can
be trained to solve TSP instances, which are conceptually more complex than CNF
formulas as they combine relational and numerical information. This was achieved
with a GNN architecture which assigns hyperdimensional embeddings not only to
graph vertices but also to edges, which enables one to feed them with their cor-
responding weights. This allows one to effectively feed an weighted graph to an
end-to-end differentiable DL model. We train our model with a distribution of TSP
instances defined over random Euclidean fully-connected 2D graphs. For each graph
G = (V , E), we compute the optimal Hamiltonian tour cost C∗ and train the model
to solve two decision problem instances: 1) “does graph G admit a route with cost
< C−?” and 2) “does graph G admit a route with cost < C+?”, where C− = 0.98C∗

and C+ = 1.02C∗. In doing that, we effectively train the model to solve the decision
problem within a −2%,+2% deviation from the optimal tour cost. Our experiments
show that, upon training, the model achieves 80% test accuracy and can generalize
to some extent to larger instances and different graph distributions, although with
reduced accuracy.

Another key contribution of this thesis is the formalization of a new archi-
tecture in the GNN family, named “Typed Graph Networks”. While simpler GNN
architectures employ a single type of graph convolution operation to all vertices in
the graph and more recent reformulations suggest training convolution layers for
vertices, edges and graphs separately, we go a step further and propose partitioning
graph vertices intoN “types”. This formalization naturally allows one to define mod-

132

els which differentiate between different types of elements in the problem domain
(nodes / edges / graphs / cliques / colors / literals / clauses). This formalization
is accompanied by a Python / Tensorflow library which enables one to prototype
a TGN model in a succint way. As of 2019, our library has since been rivalled by
other projects, but it has nevertheless fulfilled an important role and served as the
basis for a number of publications before alternative libraries were readily available.

133

REFERENCES

ALLAMANIS, M.; BROCKSCHMIDT, M.; KHADEMI, M. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

ALLEN-ZHU, Z.; LI, Y.; SONG, Z. A convergence theory for deep learning via
over-parameterization. arXiv preprint arXiv:1811.03962, 2018.

AN, H.-C.; KLEINBERG, R.; SHMOYS, D. B. Improving christofides’ algorithm
for the st path tsp. Journal of the ACM (JACM), ACM, v. 62, n. 5, p. 34,
2015.

ATWOOD, J.; TOWSLEY, D. Diffusion-convolutional neural networks. In:
Advances in Neural Information Processing Systems. [S.l.: s.n.], 2016. p.
1993–2001.

AUDEMARD, G.; SIMON, L. On the glucose sat solver. International Journal
on Artificial Intelligence Tools, World Scientific, v. 27, n. 01, p. 1840001, 2018.

AVELAR, P. H. et al. Multitask learning on graph neural networks-learning
multiple graph centrality measures with a unified network. arXiv preprint
arXiv:1809.07695, 2018.

BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

BANDINELLI, N.; BIANCHINI, M.; SCARSELLI, F. Learning long-term
dependencies using layered graph neural networks. In: IEEE. Neural Networks
(IJCNN), The 2010 International Joint Conference on. [S.l.], 2010. p. 1–8.

BATTAGLIA, P. et al. Interaction networks for learning about objects, relations
and physics. In: Advances in neural information processing systems. [S.l.:
s.n.], 2016. p. 4502–4510.

BATTAGLIA, P. W. et al. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261, 2018.

BEARDWOOD, J.; HALTON, J. H.; HAMMERSLEY, J. M. The shortest path
through many points. In: CAMBRIDGE UNIVERSITY PRESS. Mathematical
Proceedings of the Cambridge Philosophical Society. [S.l.], 1959. v. 55,
n. 4, p. 299–327.

BELLO, I. et al. Neural combinatorial optimization with reinforcement learning.
arXiv preprint arXiv:1611.09940, 2016.

BELLOMARINI, L.; SALLINGER, E.; GOTTLOB, G. The vadalog system:
datalog-based reasoning for knowledge graphs. Proceedings of the VLDB
Endowment, VLDB Endowment, v. 11, n. 9, p. 975–987, 2018.

BENGIO, Y.; LODI, A.; PROUVOST, A. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. arXiv preprint arXiv:1811.06128,
2018.

134

BIANCHINI, M. et al. Recursive neural networks for processing graphs with
labelled edges: Theory and applications. Neural Networks, Elsevier, v. 18, n. 8,
p. 1040–1050, 2005.

BOJCHEVSKI, A. et al. Netgan: Generating graphs via random walks. arXiv
preprint arXiv:1803.00816, 2018.

BORDES, A. et al. Translating embeddings for modeling multi-relational data. In:
Advances in neural information processing systems. [S.l.: s.n.], 2013. p.
2787–2795.

BRONSTEIN, M. M. et al. Geometric deep learning: going beyond euclidean data.
IEEE Signal Processing Magazine, IEEE, v. 34, n. 4, p. 18–42, 2017.

BRUNA, J. et al. Spectral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

CAO, N. D.; KIPF, T. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

CASTELVECCHI, D. Can we open the black box of ai? Nature News, v. 538,
n. 7623, p. 20, 2016.

CHANG, M. B. et al. A compositional object-based approach to learning physical
dynamics. arXiv preprint arXiv:1612.00341, 2016.

CHEN, T. Q. et al. Neural ordinary differential equations. In: Advances in
Neural Information Processing Systems. [S.l.: s.n.], 2018. p. 6572–6583.

CHEN, X. et al. Iterative visual reasoning beyond convolutions. arXiv preprint
arXiv:1803.11189, 2018.

COOK, S. A. The complexity of theorem-proving procedures. In: ACM.
Proceedings of the third annual ACM symposium on Theory of
computing. [S.l.], 1971. p. 151–158.

CUI, Z. et al. High-order graph convolutional recurrent neural network: A deep
learning framework for network-scale traffic learning and forecasting. arXiv
preprint arXiv:1802.07007, 2018.

CYBENKO, G. Approximations by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, v. 2, p. 183–192, 1989.

DANTZIG, G.; FULKERSON, R.; JOHNSON, S. Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of
America, INFORMS, v. 2, n. 4, p. 393–410, 1954.

DAVIS, M.; PUTNAM, H. A computing procedure for quantification theory.
Journal of the ACM (JACM), ACM, v. 7, n. 3, p. 201–215, 1960.

DEFFERRARD, M.; BRESSON, X.; VANDERGHEYNST, P. Convolutional
neural networks on graphs with fast localized spectral filtering. In: Advances in
Neural Information Processing Systems. [S.l.: s.n.], 2016. p. 3844–3852.

135

DENG, J. et al. Imagenet: A large-scale hierarchical image database. In: IEEE.
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. [S.l.], 2009. p. 248–255.

DURAN, A. G.; NIEPERT, M. Learning graph representations with embedding
propagation. In: Advances in Neural Information Processing Systems. [S.l.:
s.n.], 2017. p. 5119–5130.

DUVENAUD, D. K. et al. Convolutional networks on graphs for learning molecular
fingerprints. In: Advances in neural information processing systems. [S.l.:
s.n.], 2015. p. 2224–2232.

FENG, Y. et al. Hypergraph neural networks. In: Proceedings of the AAAI
Conference on Artificial Intelligence. [S.l.: s.n.], 2019. v. 33, p. 3558–3565.

FEY, M.; LENSSEN, J. E. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019.

GARCIA, V.; BRUNA, J. Few-shot learning with graph neural networks. arXiv
preprint arXiv:1711.04043, 2017.

GENDREAU, M.; LAPORTE, G.; VIGO, D. Heuristics for the traveling salesman
problem with pickup and delivery. Computers & Operations Research,
Elsevier, v. 26, n. 7, p. 699–714, 1999.

GILMER, J. et al. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212, 2017.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep
feedforward neural networks. In: TEH, Y. W.; TITTERINGTON, D. M. (Ed.).
Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, May 13-15, 2010. JMLR.org, 2010. (JMLR Proceedings, v. 9), p. 249–256.
Disponível em: <http://www.jmlr.org/proceedings/papers/v9/glorot10a.html>.

GOODFELLOW, I. et al. Generative adversarial nets. In: Advances in neural
information processing systems. [S.l.: s.n.], 2014. p. 2672–2680.

GORI, M.; MONFARDINI, G.; SCARSELLI, F. A new model for learning in graph
domains. In: IEEE. Neural Networks, 2005. IJCNN’05. Proceedings. 2005
IEEE International Joint Conference on. [S.l.], 2005. v. 2, p. 729–734.

GRAVES, A. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013.

GRAVES, A. et al. A novel connectionist system for unconstrained handwriting
recognition. IEEE transactions on pattern analysis and machine
intelligence, IEEE, v. 31, n. 5, p. 855–868, 2009.

GRAVES, A.; MOHAMED, A.-r.; HINTON, G. Speech recognition with deep
recurrent neural networks. In: IEEE. 2013 IEEE international conference on
acoustics, speech and signal processing. [S.l.], 2013. p. 6645–6649.

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

136

GROVER, A.; LESKOVEC, J. node2vec: Scalable feature learning for networks. In:
ACM. Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining. [S.l.], 2016. p. 855–864.

GULCEHRE, C. et al. Hyperbolic attention networks. arXiv preprint
arXiv:1805.09786, 2018.

HAHSLER, M.; HORNIK, K. Tsp-infrastructure for the traveling salesperson
problem. Journal of Statistical Software, American Statistical Association,
v. 23, n. 2, p. 1–21, 2007.

HAMAGUCHI, T. et al. Knowledge transfer for out-of-knowledge-base entities: a
graph neural network approach. arXiv preprint arXiv:1706.05674, 2017.

HAMRICK, J. B. et al. Relational inductive bias for physical construction in
humans and machines. arXiv preprint arXiv:1806.01203, 2018.

HAMRICK, J. B. et al. Metacontrol for adaptive imagination-based optimization.
arXiv preprint arXiv:1705.02670, 2017.

HE, K. et al. Deep residual learning for image recognition. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. [S.l.:
s.n.], 2016. p. 770–778.

HENAFF, M.; BRUNA, J.; LECUN, Y. Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

HORNIK, K. Approximation capabilities of multilayer feedforward networks.
Neural networks, Elsevier, v. 4, n. 2, p. 251–257, 1991.

HOSHEN, Y. Vain: Attentional multi-agent predictive modeling. In: Advances in
Neural Information Processing Systems. [S.l.: s.n.], 2017. p. 2701–2711.

HU, H. et al. Relation networks for object detection. In: Computer Vision and
Pattern Recognition (CVPR). [S.l.: s.n.], 2018. v. 2, n. 3.

HUTSON, M. Blog, AI researchers allege that machine learn-
ing is alchemy. 2018. <https://www.sciencemag.org/news/2018/05/
ai-researchers-allege-machine-learning-alchemy>.

JOHNSON, D. D. Learning graphical state transitions. In: 5th International
Conference on Learning Representations. [S.l.: s.n.], 2017.

JOHNSON, J. et al. Clevr: A diagnostic dataset for compositional language
and elementary visual reasoning. In: IEEE. Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on. [S.l.], 2017. p. 1988–1997.

JOSHI, C. K.; LAURENT, T.; BRESSON, X. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint
arXiv:1906.01227, 2019.

KARP, R. M. Reducibility among combinatorial problems. In: Complexity of
computer computations. [S.l.]: Springer, 1972. p. 85–103.

https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy

137

KHALIL, E. et al. Learning combinatorial optimization algorithms over graphs. In:
Advances in Neural Information Processing Systems. [S.l.: s.n.], 2017. p.
6348–6358.

KIPF, T. et al. Neural relational inference for interacting systems. arXiv preprint
arXiv:1802.04687, 2018.

KIPF, T. N.; WELLING, M. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

KURZWEIL, R. The singularity is near. [S.l.]: Gerald Duckworth & Co, 2010.

LEMOS, H. et al. Graph colouring meets deep learning: Effective graph neural
network models for combinatorial problems. arXiv preprint arXiv:1903.04598,
2019.

LEVIN, L. A. Universal sequential search problems. Problemy Peredachi
Informatsii, Russian Academy of Sciences, Branch of Informatics, Computer
Equipment and . . . , v. 9, n. 3, p. 115–116, 1973.

LI, Y. et al. Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

LI, Y. et al. Learning deep generative models of graphs. arXiv preprint
arXiv:1803.03324, 2018.

LI, Y. et al. Diffusion convolutional recurrent neural network: Data-driven traffic
forecasting. 2018.

LU, L. et al. Ranking attack graphs with graph neural networks. In: SPRINGER.
International Conference on Information Security Practice and
Experience. [S.l.], 2009. p. 345–359.

MARCUS, G. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631, 2018.

MARCUS, G. Innateness, alphazero, and artificial intelligence. arXiv preprint
arXiv:1801.05667, 2018.

MARCUS, G. Why Robot Brains Need Symbols. 2018. [Online; accessed
19-December-2018]. Disponível em: <http://nautil.us/issue/67/reboot/
why-robot-brains-need-symbols>.

MASSA, V. D. et al. A comparison between recursive neural networks and graph
neural networks. In: IEEE. Neural Networks, 2006. IJCNN’06. International
Joint Conference on. [S.l.], 2006. p. 778–785.

MICHELI, A. Neural network for graphs: A contextual constructive approach.
IEEE Transactions on Neural Networks, IEEE, v. 20, n. 3, p. 498–511, 2009.

MNIH, V. et al. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

http://nautil.us/issue/67/reboot/why-robot-brains-need-symbols
http://nautil.us/issue/67/reboot/why-robot-brains-need-symbols

138

MONFARDINI, G. et al. Graph neural networks for object localization. In:
IOS PRESS. Proceedings of the 2006 conference on ECAI 2006: 17th
European Conference on Artificial Intelligence August 29–September 1,
2006, Riva del Garda, Italy. [S.l.], 2006. p. 665–669.

MORAVČÍK, M. et al. Deepstack: Expert-level artificial intelligence in heads-up
no-limit poker. Science, American Association for the Advancement of Science,
v. 356, n. 6337, p. 508–513, 2017.

MURATORE, D. et al. Sentence extraction by graph neural networks. In:
SPRINGER. International Conference on Artificial Neural Networks. [S.l.],
2010. p. 237–246.

NIEPERT, M.; AHMED, M.; KUTZKOV, K. Learning convolutional neural
networks for graphs. In: International conference on machine learning. [S.l.:
s.n.], 2016. p. 2014–2023.

NOI, L. D. et al. Web spam detection by probability mapping graphsoms and graph
neural networks. In: SPRINGER. International Conference on Artificial
Neural Networks. [S.l.], 2010. p. 372–381.

NOWAK, A. et al. A note on learning algorithms for quadratic assignment with
graph neural networks. arXiv preprint arXiv:1706.07450, 2017.

OÑORO-RUBIO, D. et al. Representation learning for visual-relational knowledge
graphs. arXiv preprint arXiv:1709.02314, 2017.

PASCANU, R. et al. Learning model-based planning from scratch. arXiv preprint
arXiv:1707.06170, 2017.

PRATES, M.; AVELAR, P.; LAMB, L. C. On quantifying and understanding
the role of ethics in ai research: A historical account of flagship conferences and
journals. arXiv preprint arXiv:1809.08328, 2018.

PRATES, M.; LAMB, L. Problem solving at the edge of chaos: Entropy, puzzles
and the sudoku freezing transition. In: IEEE. 2018 IEEE 30th International
Conference on Tools with Artificial Intelligence (ICTAI). [S.l.], 2018. p.
686–693.

PRATES, M.; LAMB, L. Problem solving at the edge of chaos: Entropy, puzzles
and the sudoku freezing transition. arXiv preprint arXiv:1810.03742, 2018.

PRATES, M. O.; AVELAR, P. H.; LAMB, L. C. Assessing gender bias in machine
translation: a case study with google translate. Neural Computing and
Applications, Springer, p. 1–19.

PRATES, M. O. et al. Learning to solve np-complete problems-a graph neural
network for the decision tsp. arXiv preprint arXiv:1809.02721, 2018.

PRATES, M. O. et al. Typed graph networks. arXiv preprint arXiv:1901.07984,
2019.

139

PRATES, M. O. R.; AVELAR, P. H. C.; LAMB, L. C. On quantifying and
understanding the role of ethics in AI research: A historical account of flagship
conferences and journals. In: GCAI-2018, 4th Global Conference on
Artificial Intelligence, Luxembourg, September 18-21, 2018. [s.n.], 2018. p.
188–201. Disponível em: <http://www.easychair.org/publications/paper/Z7D4>.

PUCCI, A. et al. Applications of graph neural networks to large-scale recommender
systems some results. In: Proceedings of the International Multiconference
on Computer Science and Information Technology. [S.l.: s.n.], 2006. v. 1, p.
189–195.

QUEK, A. et al. Structural image classification with graph neural networks. In:
IEEE. Digital Image Computing Techniques and Applications (DICTA),
2011 International Conference on. [S.l.], 2011. p. 416–421.

RAPOSO, D. et al. Discovering objects and their relations from entangled scene
representations. arXiv preprint arXiv:1702.05068, 2017.

SABOUR, S.; FROSST, N.; HINTON, G. E. Dynamic routing between capsules.
In: Advances in Neural Information Processing Systems. [S.l.: s.n.], 2017.
p. 3856–3866.

SANCHEZ-GONZALEZ, A. et al. Graph networks as learnable physics engines for
inference and control. arXiv preprint arXiv:1806.01242, 2018.

SANTORO, A. et al. A simple neural network module for relational reasoning. In:
Advances in neural information processing systems. [S.l.: s.n.], 2017. p.
4967–4976.

SCARSELLI, F. et al. Computational capabilities of graph neural networks. IEEE
Transactions on Neural Networks, IEEE, v. 20, n. 1, p. 81–102, 2009.

SCARSELLI, F. et al. The graph neural network model. IEEE Transactions on
Neural Networks, IEEE, v. 20, n. 1, p. 61–80, 2009.

SCARSELLI, F. et al. Graph neural networks for ranking web pages. In: IEEE
COMPUTER SOCIETY. Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence. [S.l.], 2005. p. 666–672.

SELSAM, D. et al. Learning a sat solver from single-bit supervision. arXiv
preprint arXiv:1802.03685, 2018.

SHAW, P.; USZKOREIT, J.; VASWANI, A. Self-attention with relative position
representations. arXiv preprint arXiv:1803.02155, 2018.

SILVER, D. et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, American Association for the
Advancement of Science, v. 362, n. 6419, p. 1140–1144, 2018.

SIMONYAN, K.; VEDALDI, A.; ZISSERMAN, A. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034, 2013.

http://www.easychair.org/publications/paper/Z7D4

140

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

STEENKISTE, S. van et al. Relational neural expectation maximization:
Unsupervised discovery of objects and their interactions. arXiv preprint
arXiv:1802.10353, 2018.

TANG, J. et al. Line: Large-scale information network embedding. In:
INTERNATIONAL WORLD WIDE WEB CONFERENCES STEERING
COMMITTEE. Proceedings of the 24th International Conference on
World Wide Web. [S.l.], 2015. p. 1067–1077.

TOYER, S. et al. Action schema networks: Generalised policies with deep learning.
arXiv preprint arXiv:1709.04271, 2017.

UWENTS, W. et al. Neural networks for relational learning: an experimental
comparison. Machine Learning, Springer, v. 82, n. 3, p. 315–349, 2011.

VASWANI, A. et al. Attention is all you need. In: Advances in Neural
Information Processing Systems. [S.l.: s.n.], 2017. p. 5998–6008.

VELIČKOVIĆ, P. et al. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

VELICKOVIC, P. et al. Graph attention networks. arXiv preprint
arXiv:1710.10903, v. 1, n. 2, 2017.

WANG, T. et al. Nervenet: Learning structured policy with graph neural networks.
2018.

WANG, X. et al. Non-local neural networks. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2018. v. 1,
n. 3, p. 4.

WANG, Y. et al. Dynamic graph cnn for learning on point clouds. arXiv preprint
arXiv:1801.07829, 2018.

WATTERS, N. et al. Visual interaction networks: Learning a physics simulator
from video. In: Advances in Neural Information Processing Systems. [S.l.:
s.n.], 2017. p. 4539–4547.

WESTON, J. et al. Towards ai-complete question answering: A set of
prerequisite toy tasks. CoRR, abs/1502.05698, 2015. Disponível em: <http:
//arxiv.org/abs/1502.05698>.

WU, J. et al. Learning to see physics via visual de-animation. In: Advances in
Neural Information Processing Systems. [S.l.: s.n.], 2017. p. 153–164.

XIA, X.; XU, C.; NAN, B. Inception-v3 for flower classification. In: IEEE. Image,
Vision and Computing (ICIVC), 2017 2nd International Conference on.
[S.l.], 2017. p. 783–787.

http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698

141

YONG, S. L. et al. Document mining using graph neural network. In: SPRINGER.
International Workshop of the Initiative for the Evaluation of XML
Retrieval. [S.l.], 2006. p. 458–472.

YOON, K. et al. Inference in probabilistic graphical models by graph neural
networks. arXiv preprint arXiv:1803.07710, 2018.

YOU, J. et al. Graphrnn: A deep generative model for graphs. arXiv preprint
arXiv:1802.08773, 2018.

ZAMBALDI, V. et al. Relational deep reinforcement learning. arXiv preprint
arXiv:1806.01830, 2018.

ZILIO, F.; PRATES, M.; LAMB, L. Neural networks models for analyzing magic:
the gathering cards. In: SPRINGER. International Conference on Neural
Information Processing. [S.l.], 2018. p. 227–239.

142

APPENDIX A — TYPED GRAPH NETWORKS LIBRARY CODE

A.1 tgn.py

1 import tensorflow as tf

2 from mlp import Mlp

3
4 class TGN(object):

5 def __init__(

6 self ,

7 var ,

8 mat ,

9 msg ,

10 loop ,

11 MLP_depth = 3,

12 MLP_weight_initializer = tf.contrib.layers.xavier_initializer ,

13 MLP_bias_initializer = tf.zeros_initializer ,

14 RNN_cell = tf.contrib.rnn.LayerNormBasicLSTMCell ,

15 Cell_activation = tf.nn.relu ,

16 Msg_activation = tf.nn.relu ,

17 Msg_last_activation = None ,

18 float_dtype = tf.float32 ,

19 name = ’TGN’

20):

21 """

22 Receives three dictionaries: var , mat and msg.

23
24 * var is a dictionary from variable names to embedding sizes.

25 That is: an entry var["V1"] = 10 means that the variable "V1" will have an

embedding size of 10.

26
27 * mat is a dictionary from matrix names to variable pairs.

28 That is: an entry mat["M"] = ("V1","V2") means that the matrix "M" can be

used to mask messages from "V1" to "V2".

29
30 * msg is a dictionary from function names to variable pairs.

31 That is: an entry msg["cast"] = ("V1","V2") means that one can apply "cast

" to convert messages from "V1" to "V2".

32
33 * loop is a dictionary from variable names to lists of dictionaries:

34 {

35 "mat": the matrix name which will be used ,

36 "transpose ?": if true then the matrix M will be transposed ,

37 "fun": transfer function (python function built using tensorflow

operations ,

38 "msg": message name ,

39 "var": variable name

40 }

41 If "mat" is None , it will be the identity matrix ,

42 If "transpose ?" is None , it will default to false ,

143

43 if "fun" is None , no function will be applied ,

44 If "msg" is false , no message conversion function will be applied ,

45 If "var" is false , then [1] will be supplied as a surrogate.

46
47 That is: an entry loop["V2"] = [{"mat":None ,"fun":f,"var ":"V2"}, {"mat ":"

M","transpose ?":true ,"msg ":" cast","var":"V1"}] enforces the following

update rule for every timestep:

48 V2 <- tf.append([f(V2), transpose(T) x cast(V1)])

49 """

50 self.var , self.mat , self.msg , self.loop , self.name = var , mat , msg , loop ,

name

51
52 self.MLP_depth = MLP_depth

53 self.MLP_weight_initializer = MLP_weight_initializer

54 self.MLP_bias_initializer = MLP_bias_initializer

55 self.RNN_cell = RNN_cell

56 self.Cell_activation = Cell_activation

57 self.Msg_activation = Msg_activation

58 self.Msg_last_activation = Msg_last_activation

59 self.float_dtype = float_dtype

60
61 # Check model for inconsistencies

62 self.check_model ()

63
64 # Initialize the parameters

65 with tf.variable_scope(self.name):

66 with tf.variable_scope(’parameters ’):

67 self._init_parameters ()

68 #end parameter scope

69 #end TGN scope

70 #end __init__

71
72 def check_model(self):

73 # Procedure to check model for inconsistencies

74 for v in self.var:

75 if v not in self.loop:

76 raise Warning(’Variable␣{v}␣is␣not␣updated␣anywhere!␣Consider␣removing␣

it␣from␣the␣model’.format(v=v))

77 #end if

78 #end for

79
80 for v in self.loop:

81 if v not in self.var:

82 raise Exception(’Updating␣variable␣{v},␣which␣has␣not␣been␣declared!’.

format(v=v))

83 #end if

84 #end for

85
86 for mat , (v1 ,v2) in self.mat.items():

87 if v1 not in self.var:

88 raise Exception(’Matrix␣{mat}␣definition␣depends␣on␣undeclared␣variable␣

{v}’.format(mat=mat , v=v1))

144

89 #end if

90 if v2 not in self.var and type(v2) is not int:

91 raise Exception(’Matrix␣{mat}␣definition␣depends␣on␣undeclared␣variable␣

{v}’.format(mat=mat , v=v2))

92 #end if

93 #end for

94
95 for msg , (v1 ,v2) in self.msg.items():

96 if v1 not in self.var:

97 raise Exception(’Message␣{msg}␣maps␣from␣undeclared␣variable␣{v}’.format

(msg=msg , v=v1))

98 #end if

99 if v2 not in self.var:

100 raise Exception(’Message␣{msg}␣maps␣to␣undeclared␣variable␣{v}’.format(

msg=msg , v=v2))

101 #end if

102 #end for

103 #end check_model

104
105 def _init_parameters(self):

106 # Init LSTM cells

107 self._RNN_cells = {

108 v: self.RNN_cell(

109 d,

110 activation = self.Cell_activation

111) for (v,d) in self.var.items()

112 }

113 # Init message -computing MLPs

114 self._msg_MLPs = {

115 msg: Mlp(

116 layer_sizes = [self.var[vin] for _ in range(self.MLP_depth)

],

117 output_size = self.var[vout],

118 activations = [self.Msg_activation for _ in range(self.

MLP_depth)],

119 output_activation = self.Msg_last_activation ,

120 kernel_initializer = self.MLP_weight_initializer (),

121 bias_initializer = self.MLP_weight_initializer (),

122 name = msg ,

123 name_internal_layers = True

124) for msg , (vin ,vout) in self.msg.items()

125 }

126 #end _init_parameters

127
128 def __call__(self , adjacency_matrices , initial_embeddings , time_steps ,

LSTM_initial_states = {}):

129 with tf.variable_scope(self.name):

130 with tf.variable_scope("assertions"):

131 assertions = self.check_run(adjacency_matrices , initial_embeddings ,

time_steps , LSTM_initial_states)

132 #end assertion variable scope

133 with tf.control_dependencies(assertions):

145

134 states = {}

135 for v, init in initial_embeddings.items():

136 h0 = init

137 c0 = tf.zeros_like(h0, dtype=self.float_dtype) if v not in

LSTM_initial_states else LSTM_initial_states[v]

138 states[v] = tf.contrib.rnn.LSTMStateTuple(h=h0, c=c0)

139 #end

140
141 # Build while loop body function

142 def while_body(t, states):

143 new_states = {}

144 for v in self.var:

145 inputs = []

146 for update in self.loop[v]:

147 if ’var’ in update:

148 y = states[update[’var’]].h

149 if ’fun’ in update:

150 y = update[’fun’](y)

151 #end if

152 if ’msg’ in update:

153 y = self._msg_MLPs[update[’msg’]](y)

154 #end if

155 if ’mat’ in update:

156 y = tf.matmul(

157 adjacency_matrices[update[’mat’]],

158 y,

159 adjoint_a = update[’transpose?’] if ’transpose?’ in update

else False

160)

161 #end if

162 inputs.append(y)

163 else:

164 inputs.append(adjacency_matrices[update[’mat’]])

165 #end if var in update

166 #end for update in loop

167 inputs = tf.concat(inputs , axis = 1)

168 with tf.variable_scope(’{v}_cell’.format(v = v)):

169 _, new_states[v] = self._RNN_cells[v](inputs = inputs , state =

states[v])

170 #end cell scope

171 #end for v in var

172 return (t+1), new_states

173 #end while_body

174
175 _, last_states = tf.while_loop(

176 lambda t, states: tf.less(t, time_steps),

177 while_body ,

178 [0,states]

179)

180 #end assertions

181 #end Graph scope

182 return last_states

146

183 #end __call__

184
185 def check_run(self , adjacency_matrices , initial_embeddings , time_steps ,

LSTM_initial_states):

186 assertions = []

187 # Procedure to check model for inconsistencies

188 num_vars = {}

189 for v, d in self.var.items ():

190 init_shape = tf.shape(initial_embeddings[v])

191 num_vars[v] = init_shape [0]

192 assertions.append(

193 tf.assert_equal(

194 init_shape [1],

195 d,

196 data = [init_shape [1]],

197 message = "Initial␣embedding␣of␣variable␣{v}␣doesn ’t␣have␣the␣same␣

dimensionality␣{d}␣as␣declared".format(

198 v = v,

199 d = d

200)

201)

202)

203 if v in LSTM_initial_states:

204 lstm_init_shape = tf.shape(LSTM_initial_states[v])

205 assertions.append(

206 tf.assert_equal(

207 lstm_init_shape [1],

208 d,

209 data = [lstm_init_shape [1]],

210 message = "Initial␣hidden␣state␣of␣variable␣{v}’s␣LSTM␣doesn’t␣have␣

the␣same␣dimensionality␣{d}␣as␣declared".format(

211 v = v,

212 d = d

213)

214)

215)

216
217 assertions.append(

218 tf.assert_equal(

219 lstm_init_shape ,

220 init_shape ,

221 data = [init_shape , lstm_init_shape],

222 message = "Initial␣embeddings␣of␣variable␣{v}␣don’t␣have␣the␣same␣

shape␣as␣the␣its␣LSTM’s␣initial␣hidden␣state".format(

223 v = v,

224 d = d

225)

226)

227)

228 #end if

229 #end for v

230

147

231 for mat , (v1 ,v2) in self.mat.items():

232 mat_shape = tf.shape(adjacency_matrices[mat])

233 assertions.append(

234 tf.assert_equal(

235 mat_shape [0],

236 num_vars[v1],

237 data = [mat_shape [0], num_vars[v1]],

238 message = "Matrix␣{m}␣doesn’t␣have␣the␣same␣number␣of␣nodes␣as␣the␣

initial␣embeddings␣of␣its␣variable␣{v}".format(

239 v = v1,

240 m = mat

241)

242)

243)

244 if type(v2) is int:

245 assertions.append(

246 tf.assert_equal(

247 mat_shape [1],

248 v2,

249 data = [mat_shape [1], v2],

250 message = "Matrix␣{m}␣doesn’t␣have␣the␣same␣dimensionality␣{d}␣on␣

the␣second␣variable␣as␣declared".format(

251 m = mat ,

252 d = v2

253)

254)

255)

256 else:

257 assertions.append(

258 tf.assert_equal(

259 mat_shape [1],

260 num_vars[v2],

261 data = [mat_shape [1], num_vars[v2]],

262 message = "Matrix␣{m}␣doesn’t␣have␣the␣same␣number␣of␣nodes␣as␣the␣

initial␣embeddings␣of␣its␣variable␣{v}".format(

263 v = v2,

264 m = mat

265)

266)

267)

268 #end if -else

269 #end for mat , (v1,v2)

270 return assertions

271 #end check_run

272 #end TGN

A.2 mlp.py

1 import tensorflow as tf

148

2
3 class Mlp(object):

4 def __init__(

5 self ,

6 layer_sizes ,

7 output_size = None ,

8 activations = None ,

9 output_activation = None ,

10 use_bias = True ,

11 kernel_initializer = None ,

12 bias_initializer = tf.zeros_initializer (),

13 kernel_regularizer = None ,

14 bias_regularizer = None ,

15 activity_regularizer = None ,

16 kernel_constraint = None ,

17 bias_constraint = None ,

18 trainable = True ,

19 name = None ,

20 name_internal_layers = True

21):

22 """ Stacks len(layer_sizes) dense layers on top of each other , with an

additional layer with output_size neurons , if specified."""

23 self.layers = []

24 internal_name = None

25 # If object isn’t a list , assume it is a single value that will be repeated

for all values

26 if not isinstance(activations , list):

27 activations = [activations for _ in layer_sizes]

28 #end if

29 # If there is one specifically for the output , add it to the list of layers to

be built

30 if output_size is not None:

31 layer_sizes = layer_sizes + [output_size]

32 activations = activations + [output_activation]

33 #end if

34 for i, params in enumerate(zip(layer_sizes , activations)):

35 size , activation = params

36 if name_internal_layers:

37 internal_name = name + "_MLP_layer_ {}".format(i + 1)

38 #end if

39 new_layer = tf.layers.Dense(

40 size ,

41 activation = activation ,

42 use_bias = use_bias ,

43 kernel_initializer = kernel_initializer ,

44 bias_initializer = bias_initializer ,

45 kernel_regularizer = kernel_regularizer ,

46 bias_regularizer = bias_regularizer ,

47 activity_regularizer = activity_regularizer ,

48 kernel_constraint = kernel_constraint ,

49 bias_constraint = bias_constraint ,

50 trainable = trainable ,

149

51 name = internal_name

52)

53 self.layers.append(new_layer)

54 #end for

55 #end __init__

56
57 def __call__(self , inputs , *args , ** kwargs):

58 outputs = [inputs]

59 for layer in self.layers:

60 outputs.append(layer(outputs [-1]))

61 #end for

62 return outputs [-1]

63 #end __call__

64 #end Mlp

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Research Questions
	1.1.1 Specific Goals

	1.2 Our Contributions
	1.2.1 Problem Solving at the Edge of Chaos: Entropy, Puzzles and the Sudoku Freezing Transition – Marcelo Prates, Luis Lamb
	1.2.2 Neural Networks Models for Analyzing Magic: the Gathering Cards – Felipe Zilio, Marcelo Prates, Luis Lamb
	1.2.3 On Quantifying and Understanding the Role of Ethics in AI Research: A Historical Account of Flagship Conferences and Journals – Marcelo Prates, Pedro Avelar, Luis Lamb
	1.2.4 Assessing Gender Bias in Machine Translation – A Case Study with Google Translate – Marcelo Prates, Pedro Avelar, Luis Lamb
	1.2.5 Multitask Learning on Graph Neural Networks – Learning Multiple Graph Centrality Measures with a Unified Network – Pedro Avelar, Marcelo Prates, Henrique Lemos, Luis Lamb
	1.2.6 Learning to Solve NP-Complete Problems – A Graph Neural Network for the Decision TSP – Marcelo Prates, Pedro Avelar, Henrique Lemos, Luis Lamb and Moshe Vardi
	1.2.7 Typed Graph Networks – Marcelo Prates, Pedro Avelar, Henrique Lemos, Luis Lamb, Marco Gori
	1.2.8 Graph Colouring Meets Deep Learning: Effective Graph Neural Network Models for Combinatorial Problems – Henrique Lemos, Marcelo Prates, Pedro H.C. Avelar and Luis C. Lamb
	1.2.9 Graph Neural Networks Improve Link Prediction on Knowledge Graphs – Henrique Lemos, Marcelo Prates, Pedro H.C. Avelar and Luis C. Lamb

	2 Machine Learning Basics
	3 Deep Learning Basics
	3.1 Multilayer Perceptron
	3.2 Expressiveness of Artificial Neural Networks
	3.3 Feasibility of Training Artificial Neural Networks
	3.4 Vectors, Matrices and Tensors
	3.5 Parameter Space and Gradient Descent
	3.6 Batch Training and Stochastic Gradient Descent
	3.7 Artificial Neural Network Building Blocks
	3.8 Convolutional Neural Networks
	3.9 Parameter Sharing in Convolutional Neural Networks
	3.10 Recurrent Neural Networks
	3.11 Parameter Sharing in Recurrent Neural Networks
	3.12 Exploding / Vanishing Gradients and Long Short-Term Memory
	3.13 Recurrent Learning Beyond Neural Networks

	4 Graph Neural Networks
	4.1 Graph Convolutions
	4.2 Graph Recurrent Neural Networks
	4.3 Graph Neural Networks in General
	4.4 Mechanics of Graph Neural Networks
	4.5 Motivations for Graph Neural Network Research and Recent Advances in the GNN Family
	4.5.1 NeuroSAT

	4.6 Graph Networks and Typed Graph Networks
	4.6.1 A Note on the Number of Message-Computing Functions
	4.6.2 Typed Graph Networks with Customizable Aggregation

	4.7 Typed Graph Networks Python / Tensorflow Library
	4.7.1 Technical Overview
	4.7.2 NeuroSAT
	4.7.3 Solving the decision TSP
	4.7.4 Ranking graph vertices by their centralities
	4.7.5 Solving the Vertex k-Colorability Problem

	5 Traveling Salesperson Problem
	5.1 Formulation
	5.2 Variants and Special Cases
	5.2.1 Asymmetric / Symmetric
	5.2.2 Metric
	5.2.3 Euclidean

	5.3 Computational Complexity

	6 Typed Graph Networks for the Decision TSP
	6.1 Model
	6.1.1 Intuitive Description
	6.1.2 Concrete Definition
	6.1.2.1 Embeddings and Embedding Initialization
	6.1.2.2 Message-Computing Functions
	6.1.2.3 Update Functions
	6.1.2.4 Voting Multilayer Perceptron
	6.1.2.5 Complete Model

	6.2 Adversarial Training Concept
	6.2.1 A Note on Adversarial Instances

	6.3 Experimental Setup
	6.3.1 A Note on Hyperparameters, Reproducibility and Deep Learning ``Alchemy''
	6.3.2 Hyperparameters of our Model
	6.3.3 Training Setup Parameters
	6.3.4 Training Instances

	6.4 Results and Analyzes
	6.4.1 Stochastic Gradient Descent and Accuracy Variation for the Same Training Setup

	6.5 Generalization at Test Time
	6.5.1 Different Sizes
	6.5.2 Different Deviations
	6.5.3 Different Graph Distributions
	6.5.4 Comparing with Classical Baselines

	6.6 Interpretability
	6.7 Training
	6.8 Training with Varying Deviations
	6.9 Training with Sparse Graphs
	6.10 Training with General Graphs
	6.11 Acceptance Curves & Extracting Route Costs
	6.11.1 Acceptance Curves
	6.11.2 Binary Search

	7 Recent Developments
	7.1 Pytorch Geometric Library
	7.1.1 Our Model in Pytorch Geometric

	7.2 Other Applications of Geometric Deep Learning to the Traveling Salesman Problem

	8 Discussion and Future Work
	References
	Appendix A — Typed Graph Networks Library Code
	A.1 tgn.py
	A.2 mlp.py

