TALITA ROELL

Uma nova era de estudos sobre os percevejos predadores: Sistemática, taxonomia e morfologia comparada de Asopinae (Hemiptera: Pentatomidae)

Tese de doutorado

Porto Alegre
2019

TALITA ROELL

Uma nova era de estudos sobre os percevejos predadores: Sistemática, taxonomia e morfologia comparada de Asopinae (Hemiptera: Pentatomidae)

Tese apresentada ao Programa de PósGraduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Doutor em Biologia Animal

Área de Concentração: Biologia Comparada Orientador: Prof. Dr. Luiz Alexandre Campos.

Uma nova era de estudos sobre os percevejos predadores: Sistemática, taxonomia e morfologia comparada de Asopinae (Hemiptera: Pentatomidae)

TALITA ROELL

Aprovada em \qquad de \qquad de 2019.

Dr. Cristiano Feldens Schwertner

Dr. Filipe Michels Bianchi

Dr. Kim Ribeiro Barão

Dedico esta tese aos meus pais,
Ivan C. Roell e Silvane L.F. Roell, minhas fontes de inspiração.

AGRADECIMENTOS

Ao meu orientador, prof. Dr. Luiz Alexandre Campos, por ter me aceitado em seu laboratório em 2012/2013 mesmo eu tendo "caído de paraquedas" após a primeira fase da seleção de mestrado. Agradeço, ainda, por todos esses anos de paciência, ensinamentos e confiança, além das inúmeras conversas sobre várias coisas da vida.

Aos meus pais, Ivan C. Roell e Silvane L.F. Roell pela paciência, apoio, amor e compreensão. A vocês dedico não só esta tese, mas todas as conquistas que eu tiver na vida. Agradeço pelas inúmeras vezes que me buscaram no aeroporto e rodoviária (mano Tiago, obrigada também!) e pelo carinho imenso que sempre tiveram comigo. Eu amo vocês mais que tudo!

À minha grande família buscapé, em especial aos meus irmãos Tiago e Taini, por todo o apoio e por todos os momentos felizes que colaboraram em deixar um pouco mais tranquilos estes últimos anos. Um beijinho pra minha pequenina afilhada, Anna Helena, por me ensinar a olhar as coisas simples da vida com inocência e alegria. Josi, Alisson, Regina, Valério, Jonathan, Ivana, vocês são nota MIL! Agradeço a toda a minha família, tios, primos, vó, oma, enfim... Gostaria de citar nomes, mas a lista é grande!

Ao meu namorado, George, por todo apoio e compreensão, e pelas vezes que conseguiu me desligar do trabalho. Agradeço também pelo carinho, dedicação, amor e por me proporcionar tanta alegria. Sem dúvida, você tornou meus últimos anos mais leves. Ainda, obrigada pelas inúmeras ajudas com o inglês. You are the best! Infinitely! Thanks! Love you, "always, evermore, and on and on..."

Aos meus anjos em Porto Alegre, Ingrid, Thereza, Jéssica, Méria, Seu João, Dona Maria, Everton, Cândida e "tia" Zenaide por me estenderem além da mão, ombros AMIGOS sempre que precisei, principalmente no período coincidente com o início do meu doutorado. Vocês são demais! Amo vocês!

A todos os meus amigos, gaúchos ou não, do PPG e fora dele, que contribuem dia-a-dia com meu desenvolvimento pessoal e desejam meu sucesso. Também gostaria de citar nomes, mas a lista é longa!

Aos meus colegas de laboratório pela paciência, amizade, discussões, ajudas, companheirismo, etc etc... Obrigada Tati (Charleston) pela amizade incrível! Pelo companheirismo, pelos ensinamentos, por tudo! Tenho um carinho enorme por ti, "véia surda", e levarei nossas histórias pra vida! Obrigada Pézinho por toda ajuda e por me enviar vários artigos quando eu não conseguia acesso. Obrigada Filipe pelas inúmeras conversas construtivas e por tentar sempre manter as discussões de artigos no lab (aliás precisamos retomar). Obrigada The por revisar meu projeto de doutorado, e por me ensinar tanto sobre os pentatomídeos. Obrigada Wanessa pelo carinho comigo, pelas ajudas com o excel e pelo script do SPR que me salvou horas de trabalho!!!. Agradeço de forma geral aos IC's, mestrandos e doutorandos que passaram pelo lab nestes últimos seis anos, com certeza aprendi coisas diferentes com cada um de vocês. Obrigada também ao "pessoal" do lab da Jô pela troca de conhecimentos, materiais e histórias.

Ao meu amigo Thiago Polizei (MZUSP) por me ensinar sobre os besouros "do banhado" e inclusive por me homenagear com o nome de um deles. Obrigada pelo carinho, paciência e companheirismo. Pelas ajudas, risadas, e episódios vividos.

À minha banca de acompanhamento, prof. Dra. Jocélia Grazia e prof. Dr. Augusto Ferrari por todas as sugestões e por estarem sempre dispostos a ajudar. Ainda, obrigada Jô pelos esclarecimentos taxonômicos e morfológicos.

Aos avaliadores do meu trabalho de qualificação Dr. Augusto Ferrari, Dr. Dimitri Forero e Dr. Gilson Moreira.

Ao Museu de História Natural de Londres (NHMUK) pelo espaço e por guardar importantes histórias, inclusive dos asopíneos.

Ao meu coorientador em Londres, Dr. David Ouvrard pela recepção e confiança, e aos meus co-autores, "orientadores" e amigos Mick Webb e Valérie Lemaître, com os quais aprendi muito sobre curadoria e taxonomia. Precision! We are, for sure, a very good team! Serious workers!

A todos os meus colegas do museu de Londres pelas discussões e cervejas de sexta-feira. Um agradecimento especial à Ana C. Araujo pelo carinho e por apresentar a feirinha de terça-feira (nossa, que saudades!). Também agradeço as minhas colegas de
apartamento em Londres, Eleonore e Simona, pelo carinho e por me ensinarem que é possível conviver com outras meninas sob o mesmo teto (sobrevivi, mas é difícil!).

A todos os curadores das coleções brasileiras e estrangeiras que me receberam e me auxiliaram na localização de material. Um agradecimento especial ao Dr. Jerome Constant (RBINS, Bruxelas) pelos cafés, pela acomodação e pelas conversas incrivelmente construtivas sobre taxonomia. Eu falei que voltaria pra organizar a coleção de Pentatomidae, um dia eu voltarei!

Ao Dr. Donald B. Thomas por ter revisado Asopinae em 1992 e 1994, facilitando o desenvolvimento desta tese.

À Universidade Federal do Rio Grande do Sul (UFRGS) pela oportunidade e espaço.

Ao pessoal do Centro de Microscopia e Microanálise da UFRGS pela receptividade e pela paciência.

Ao Programa de Pós-graduação em Biologia Animal da UFRGS, à sua coordenação e à secretária Stefânia Costa pelo apoio.

À Coordenação de Aperfeiçoamento Pessoal (CAPES) pelo suporte financeiro (2015-2019) e também pela bolsa de doutorado sanduíche no exterior PDSE -88881.133880/2016-01.

Enfim, a todos que torcem por mim, e/ou contribuíram de alguma forma para a realização deste trabalho, obrigada!

SUMÁRIO

RESUMO 10
ABSTRACT 11
INTRODUÇÃO GERAL 12
Organização da tese 16
Referências 17
CAPÍTULO 1 24
An Annotated Catalogue of the Types of Asopinae (Heteroptera: Pentatomidae) in the Collection of the Natural History Museum, London 24
Abstract 24
Introduction 25
Materials and methods 26
Results 27
Acknowledgements 111
References 111
Figures 122
Tables 154
CAPÍTULO 2 159
Revision of the African shieldbug genus Afrius Stål, 1870 (Hemiptera: Heteroptera: Pentatomidae: Asopinae) 159
Abstract 159
Introduction 159
Material and methods 160
Results 161
Key to the species of Afrius Stål, 1870 164
Concluding remarks. 181
Acknowledgements 182
References 182
Captions of tables 200
Figures 212
CAPÍTULO 3 224
Compared morphology of male genitalia traits in Asopinae (Hemiptera: Pentatomidae) with a terminology proposal 224
Abstract 224
Introduction 224
Material and methods 227
Results 228
Discussion 235
Acknowledgments 237
References 237
Figures 242
Tables 243
Supplementary material 253
CAPÍTULO 4 265
Phylogeny of the predatory stink bugs and the evolution of abdominal glandular patches (Hemiptera: Pentatomidae: Asopinae) 265
Abstract 265
Introduction 265
Material and methods 267
Taxon sampling and material preparation 267
Cladistic analysis 269
Ancestral reconstruction 270
Results and discussion 271
Morphological characters 271
Cladistic analysis 292
Evolution of the male abdominal glandular patches 297
Conclusion 299
Acknowledgements 300
References 300
Tables 309
Figures 318
Supplementary material 324
CONCLUSÃO GERAL 338

RESUMO

Asopinae inclui os percevejos predadores da família Pentatomidae que se distribuem mundialmente e apresentam, como características principais, lábio robusto inserido muito próximo ao labro, cabeça aparentemente retangular, pró-fêmures frequentemente dotados de espinhos, pigóforos contendo processos superiores do diafragma e phallus dividido em theca basal e theca apical. Além disso, machos de algumas espécies apresentam um conjunto de cerdas e modificaçães no abdômen que estão associadas à excreção de compostos feromônicos produzidos por glândulas internas na mesma região. Por apresentarem hábito predador, os asopíneos estão entre os insetos com potencial uso no controle biológico, no entanto, poucos estudos dedicaram-se à morfologia e sistemática do grupo, e nenhuma hipótese de relacionamento entre os gêneros da subfamília foi proposta até o momento. Reconhecendo que o material tipo guarda a história taxonômica e é importante para a correta identificação das espécies de Asopinae, esta tese traz um estudo dos espécimes-tipo depositados no Museu de História Natural de Londres em forma de catálogo ilustrado contendo informações históricas destes. Além disso, o gênero africano Afrius Stål, 1870 é revisado, e a genitália masculina é avaliada em um estudo de morfologia comparada. Por fim, o último capítulo apresenta a primeira hipótese filogenética para Asopinae, incluindo pelo menos uma espécie de todos os gêneros da subfamília. Este último demonstra a monofilia de Asopinae e de grupos de gêneros, além de apresentar como podem ter evoluído as estruturas que compõe as manchas glandulares abdominais nos machos de Asopinae.

Palavras chave: Heteroptera, controle biológico, filogenia, monofilético, sinapomorfia, genitalia masculina, morfologia.

Abstract

Asopinae includes the predatory stink bugs from the family Pentatomidae which are worldwide distributed and have, as main characteristics, a robust labium inserted very closed to the labrum, head apparently rectangular, profemora frequently endowed with spines, pygophores with superior processes of diaphragm, and phallus divided in basal and apical theca. Besides that, males of some species have a set of setae on abdomen, which are associated with the excretion of pheromone compounds produced by inner glands in the same region. Because they have a predatory habit, the asopines are among the insects with potential use for biological control; however, few studies have already been conducted on the morphology and systematics of the group, and no phylogenetic hypothesis of relationships among genera was proposed up to the moment. Recognizing that the type-material keeps taxonomic history and is important for the correct identification of the Asopinae species, this thesis presents a study of the type-specimens deposited in The Natural History Museum of London in an illustrated catalogue containing historical information of them. Furthermore, the African genus Afrius Stål, 1870 is revised, and the male genitalia is evaluated in a study of compared morphology. Lastly, the final chapter shows the first phylogenetic hypothesis for Asopinae, including at least one species of all known genera of the subfamily. This last demonstrates the Asopinae monophyly and the monophyly of groups of genera, further presenting how the abdominal glandular patches on males of Asopinae could have evolved.

Keywords: Heteroptera, biological control, phylogeny, monophyletic, synapomorphy, male genitalia, morphology.

INTRODUÇÃO GERAL

Os insetos estão distribuídos em todas as regiões do mundo e constituem a linhagem de sucesso dominante e mais diversa de animais no planeta. Seu sucesso evolutivo deve-se provavelmente à capacidade de adaptação a diversos ambientes que está relacionada à presença de asas, de exoesqueleto formado de cutícula quitinizada, de uma grande variedade de estruturas morfológicas e dos seus pequenos tamanhos. Além disso, os insetos tem uma grande capacidade reprodutiva e apresentam relações ecológicas com angiospermas (Grimaldi \& Engel 2005; Triplehorn \& Jonnson 2011).

Hemiptera é uma ordem de insetos hemimetábolos que possuem aparelho bucal sugador em forma de rostro (Grazia et al. 2012). Sua subordem mais diversa, Heteroptera, inclui insetos terrestres, aquáticos ou semiaquáticos caracterizados pela presença de glândulas de cheiro de defesa em ninfas e adultos (Schuh \& Slater 1995; Grimaldi \& Engel 2005) e asas anteriores modificadas em hemiélitros (Grazia \& Fernandes 2012) com venação bastante reduzida (Grimaldi \& Engel 2005). Heteroptera contém mais de 40.000 espécies descritas e sua monofilia é reconhecida e documentada com base em dados moleculares e morfológicos (Weirauch \& Schuh 2011). Pesquisas sistemáticas em Heteroptera tiveram grandes progressos nas últimas décadas. Análises filogenéticas em todos os níveis taxonômicos e o surgimento da sistemática molecular tem, cada vez mais, influenciado no entendimento das relações internas do grupo (Weirauch \& Schuh 2011). A maioria dos heterópteros são fitófagos e muitas vezes pragas agrícolas, mas também podem ser hematófagos ou predadores. Os predadores vêm sendo estudados como controladores biológicos de pragas (Grazia \& Fernandes 2012; Grazia et al. 2015).

Pentatomidae é uma das famílias mais numerosas e diversas de Heteroptera e apresenta grande distribuição mundial, com maior diversidade nos trópicos (Schuh \& Slater 1995; Grazia et al. 2015). É uma família com limites bem estabelecidos, considerada monofilética, e está organizada em nove subfamílias: Aphylinae, Asopinae, Cyrtocorinae, Discocephalinae, Edessinae, Pentatominae, Phyllocephalinae, Podopinae e Stirotarsinae (Grazia et al., 2008; Grazia \& Fernandes 2012).

Os pentatomídeos são fitófagos podendo, muitas vezes, causar danos a plantas (Hasan \& Kitching 1993), com exceção dos representantes da subfamília Asopinae que
são predadores. Estudos cladísticos para Pentatomidae foram efetuados por Gapud (1991) sobre as relações entre subfamílias e por Hasan \& Kitching (1993) sobre o relacionamento entre tribos de Pentatomidae. Além disso, ao avaliar as relações entre famílias de Pentatomoidea, Grazia et al. (2008) resgatou a monofilia da família. Outras investigações foram efetuadas para as tribos Halyini, Nezarini, Procleticini, Chlorocorini, Discocephalini, Catacanthini e Ochlerini (Wall 2004; Campos \& Grazia 2006; Ferrari 2009; Schwertner \& Grazia 2012; Greve 2013; Garbelotto 2015; Fürstenau 2016; Roell \& Campos 2018).

A subfamília Asopinae possui distribuição cosmopolita e está classificada em 64 gêneros e 295 espécies (Thomas 1992, 1994; Zhao 2013; Salini 2016; Zhao 2016; Zhao 2018; Roca-Cusachs 2018; Rider 2019; Roell et al. in press). Os asopíneos possuem uma morfologia geral muito similar aos outros pentatomídeos sendo diferenciados, principalmente, pelo lábio robusto com inserção muito próxima à base do labro, prófêmures frequentemente dotados de espinhos, numerosas cerdas no aparato tibial, pigóforos contendo processos superiores do diafragma e phallus dividido em theca basal e theca apical (ou thecal shield) (Gapud 1991; Thomas 1992, 1994; Gapon \& Konstantinov, 2006; Grazia et al. 2012; Barão et al. 2013; Brugnera et al. 2019; Roell et al. in press; Roell et al. in prep). Além disso, os asopíneos apresentam muitos padrões de coloração que podem variar intraespecificamente, e 26 gêneros possuem manchas abdominais glandulares em machos (Thomas 1992, 1994; Kochenborger 2018). Estas últimas estão associadas a comportamentos reprodutivos, uma vez que expelem feromônios que atraem fêmeas (Aldrich \& Lusby 1986). Muitos autores sugerem que Asopinae deve ser um grupo monofilético (p. ex. Schouteden 1907; McDonald 1966; Thomas 1992; Gapon \& Konstantinov 2006).

Por apresentarem hábito predador, os asopíneos estão entre os insetos com potencial uso no controle biológico e o interesse sobre estes organismos no manejo integrado de pragas vem crescendo no Brasil, seguindo uma tendência mundial (Magistrali et al. 2014, Pires et al. 2015). É especialmente relevante o emprego de asopíneos no controle de lagartas desfolhadoras em diversas culturas como dendezeiro, eucalipto, algodão, arroz, batata, crucíferas em geral, erva mate, feijão, girassol, mandioca, maracujá, soja e tomate (Zanuncio et al. 1994, 2011; De Clercq et al. 1998, 2002; Malaguido \& Panizzi 1998; Cavalcanti et al. 2000, Oliveira et al. 2002, Vivan et al. 2002; Angelini \& Boiça Jr. 2009; Ribeiro et al. 2010; Menezes et al. 2013; Zibaee et
al. 2012; Claver \& Jaiswal 2013; Vacari 2013; Magistrali et al. 2014). A ideia de que os insetos podem controlar pragas agrícolas é muito antiga, e o sucesso do controle biológico vem sendo registrado desde 1888 em diferentes países (Caltagirone 1981; McFadyen 1998; Bellows 2001; Parra et al. 2002). O controle biológico assume uma importância cada vez maior, principalmente em um momento em que se discute o uso de agrotóxicos versus o desenvolvimento de uma agricultura sustentável (Parra et al. 2002, Sampaio 2018). Além da redução do impacto ambiental, o controle biológico de populações de pragas também evita a exposição dos trabalhadores rurais a produtos tóxicos (Abreu et al. 2015).

Asopinae foi incluída por Leston (1953) em um trabalho sobre Podopinae e por Pendergrast (1957) em um estudo sobre genitália em Heteroptera que, baseado principalmente na forma das estruturas genitais masculinas, indicou um possível agrupamento entre Asopinae, Discocephalinae, Pentatominae e Phyllocephalinae. Além disso, McDonald (1966), em uma avaliação sobre genitália em Pentatomoidea, apresentou possíveis relações entre gêneros de Asopinae e indicou que a estrutura genital dos asopíneos é muito similar com Pentatominae e Podopinae. Para McDonald, Asopinae e Podopinae são muito próximos e poderiam ser tribos de Pentatominae. Esta relação de proximidade entre Asopinae e Podopinae já havia sido apontada por Leston (1953) com a avaliação de caracteres de genitália masculina.

Gapud (1991), em um estudo sobre as relações filogenéticas entre as subfamílias de Pentatomidae, discorda dos resultados de McDonald (1966) sugerindo que as amostras estudadas por este foram mal preparadas e que o uso único de características de genitália interna masculina para inferir relações filogenéticas não é válido. Além disso, Gapud aponta que McDonald utilizou apenas amostras do Neártico, sendo esta amostragem insuficiente. Em seu estudo, Gapud (1991) indicou a monofilia de Asopinae e a proximidade desta subfamília com Pentatominae, principalmente pela observação de caracteres de cabeça. Nas relaçães propostas por ele, Podopinae resultou em três grupos, sendo que o clado que ele considerou válido para a subfamília ficou separado de Asopinae. O que separou Asopinae de Podopinae, principalmente, foram as estruturas genitais masculinas em Asopinae, além das búculas paralelas, lábio robusto, base do lábio e final da búcula associados e bases do lábio e labro associadas. Pentatominae é separado em 17 grupos de conveniência por Gapud que indicou Asopinae como grupo irmão de "Penta 10 ", que inclui quatro espécies da tribo

Strachiini, Eurydema Laporte, 1833, Murgantia Stål, 1862, Stenozygum Fieber, 1860 e Strachia Hahn, 1833. Asopinae e "Penta 10", segundo ele, compartilham a base do lábio e labro associadas, base do lábio e final da búcula associados e longo peritrema ostiolar.

Além destes, Thomas $(1992,1994)$ contribuiu com dois grandes trabalhos para o conhecimento da subfamília. Em 1992 para os gêneros ocidentais e em 1994 para os gêneros do Velho Mundo. Em ambos os trabalhos ele disponibilizou uma chave de identificação para os gêneros, uma diagnose para cada gênero, chave de identificação para as espécies de cada gênero ocidental, listas sinonímicas, dados de distribuição, entre outras observações. Ainda não existem chaves de identificação para todas as espécies do hemisfério oriental.

Com base em características morfológicas quatro tribos já foram propostas para Asopinae: Discoceraria Schouteden, 1907 (= Stiretrides Amyot \& Serville, 1843), Asoparia Schoudeten, 1907 (= Asopides Amyot \& Serville, 1843), Jallini Dupuis, 1949, e Stilbotini Gapud, 2015.

Discoceraria inclui Discocera Laporte, 1833 e Stiretrus Laporte, 1833 e foi caracterizada pelo escutelo amplo que recobre grande parte do abdômen (Amyot \& Serville 1843; Schouteden 1907). Asoparia inclui os outros asopíneos que possuem escutelo triangular. Segundo Thomas (1992), as espécies de Oplomus Spinola, 1837, Perillus Stål, 1862, Heteroscelis Latreille, 1829, Coryzorhaphis Spinola, 1837, e Blachia Walker, 1867 também possuem escutelo alargado, mas não tanto como em Discocera.

Jallini foi proposta para incluir Jalla Hahn, 1832 e Zicrona Amyot \& Serville, 1843, que possuem o ápice do sétimo urosternito lobado, cobrindo as estruturas genitais (Dupuis 1949; Thomas 1992). De acordo com Thomas (1992), Jalla e Zicrona compartilham outras características, como a ausência de tubérculo abdominal e a ausência de manchas glandulares abdominais em machos, porém Dorycoris Mayr, 1864 apresenta uma condição similar do sétimo urosternito. Thomas (1992) sugeriu suspender as classificações de tribo para Asopinae por causa da falta de características bem definidas que separem grupos dentro da subfamília.

Complementando a divisão em tribos citada anteriormente, Gapon (2008) propôs em sua tese de doutorado que Asopinae seja classificada em cinco tribos: Amyoteini Schouteden, 1907, Glypsini Gapon, 2008 nomen nudum, Jallini Dupuis, 1949,

Platynopini Gapon, 2008 nomen nudum, e Stiretrini Amyot \& Serville, 1843. No entanto, estes dados não estão publicados.

Em 2015 a última proposição de tribo para a subfamília foi feita por Gapud (2015). Ele inferiu que Stilbotes semperi Stål, 1871 tem características únicas em relação à morfologia do phallus e sugeriu que esta espécie seja incluída na tribo Stilbotini Gapud, 2015.

Trabalhos sistemáticos recentes sobre Asopinae incluem a descrição de imaturos e revisões de gêneros africanos e asiáticos, incluindo algumas descrições de espécies e proposições de sinonímias (Zhao et al. 2013a, 2013b, 2016, 2018; Salini 2016; Brugnera \& Grazia 2018; Roca-Cusachs et al. 2018; Roell et al. in press), no entanto nenhum trabalho filogenético foi proposto para a subfamília até o momento.

Trabalhos sistemáticos, filogenéticos e evolutivos podem ter muitos efeitos práticos na entomologia aplicada (Simpson \& Cracraft 1995; Schaefer 1998; Nylin 2001) e a falta de estudos taxonômicos pode resultar em grandes prejuízos econômicos quando, por exemplo, as espécies controladoras e a serem controladas são mal identificadas (Zucchi 2002). A taxonomia é uma ciência que se dedica a classificar e nomear grupos de organismos e o sistema binomial para o nome de espécies proposto por Karl Linnaeus (1758) permite que os nomes científicos sirvam como uma forma de linguagem universal (Grimaldi \& Engel 2005). A sistemática visa entender a relação entre grupos de organismos vivos ou extintos. Filogenias permitem a identificação de linhagens e a interpretação de padrões de interação e evolução dos organismos (Simpson \& Cracraft 1995; Schaefer 1998; Nylin 2001; Grimaldi \& Engel 2005).

Organização da tese

Nesta tese trazemos Asopinae para uma nova era de investigações, apresentando estudos cladísticos e taxonômicos modernos que permitem um grande avanço no conhecimento sistemático do grupo.

No primeiro capítulo apresentamos um catálogo ilustrado de 233 espécimes-tipo de Asopinae depositados no museu de história natural de Londres, UK, contemplando dados históricos de 121 espécies válidas. A maior parte do material tipo de Asopinae está depositado neste museu e as informações apresentadas neste capítulo servirão para
futuros trabalhos taxonômicos e para a confirmação da identificação de diversas espécies. Este trabalho será submetido para a Zootaxa.

O segundo capítulo está em processo de publicação pelo European Journal of Taxonomy e aborda a revisão do gênero africano Afrius Stål, 1870. Neste trabalho propomos novas sinonímias, considerando válidas apenas três espécies, atualizamos os dados de distribuição e apresentamos uma chave de identificação para as espécies do gênero.

O terceiro capítulo trata de um estudo de morfologia comparada de estruturas genitais masculinas em Asopinae, isto é, parâmeros e processos superiores do pigóforo. Neste trabalho buscamos apresentar as principais variações morfológicas existentes nestas estruturas, propor caracteres para uso em estudos filogenéticos e propor uma uniformização da terminologia para as mesmas.

No quarto capítulo apresentamos a primeira hipótese filogenética para Asopinae incluindo pelo menos uma espécie de cada gênero conhecido da subfamília. Seguindo uma metodologia cladística, corroboramos a hipótese de monofilia da subfamília e recuperamos gêneros e grupos de gêneros monofiléticos. Além disso, avaliamos como podem ter evoluído as estruturas que compõe as manchas glandulares abdominais nos machos de Asopinae.

Referências

Abreu, J.A.S., Rovida, A.F.S. \& Conte, H. (2015) Controle biológico por insetos parasitoides em culturas agrícolas no Brasil: revisão de literatura. Uningá Review, 22(2), 22-25.

Aldrich, J.R. \& Lusby, W.R. (1986) Exocrine chemistry of beneficial insects: malespecific secretions from predatory stink bugs (Hemiptera: Pentatomidae). Comparative Biochemistry and Physiology Part B, 85, 639-42.

Amyot, C.J.B. \& Serville, A. (1843) Histoire Naturelle des Insectes. Hémipteres. Librairie Encyclopedique de Roret ed., Paris. pp. 675.

Angelini, M.R. \& Boiça-Júnior, A.L. (2009) Capacidade predatória e atratividade de Podisus nigrispinus (Dallas, 1851) (Hemiptera: Pentatomidae) por lagartas de Dione juno juno (Cramer, 1779) (Lepidoptera: Nymphalidae) criadas em folhas de genótipos de maracujazeiros. Revista Ceres, 56(1), 25-30.

Barão, K.R., Ferrari, A. \& Grazia, J. (2013) Comparative morphology of selected characters of the Pentatomidae foreleg (Hemiptera, Heteroptera). Arthropod Structure \& Development, 42(5), 425-435.

Bellows, T.S., 2001. Restoring population balance through natural enemy introductions. Biological Control, 21, 199-205.

Brugnera, R., Barão, K.R., Roell, T. \& Ferrari, A. (2018) Comparative morphology of selected foretibial traits of Asopinae (Hemiptera: Pentatomidae). Zoologischer Anzeiger, 278, 14-20.

Brugnera, R. \& Grazia, J. (2018) External morphology of immature of Tynacantha marginata Dallas, 1851 (Hemiptera, Heteroptera, Pentatomidae). Zootaxa, 4378 (1), 121-128.

Caltagirone, L.E. (1981) Landmark examples in classical biological control. Annual Review of Entomology, 26, 213-232.

Campos, L.A. \& Grazia J. (2006) Análise cladística e biogeografia de Ochlerini (Heteroptera, Pentatomidae, Discocephalinae). Iheringia Série Zoológica, 96(2), 147-163.

Cavalcanti, M.G., Vilela, E.F., Eiras, A.E., Zanuncio, J.C. \& Picanço, M.C. (2000) Interação tritrófica entre Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae), Eucalyptus e lagartas de Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae): I Visitação. Anais da Sociedade Entomológica do Brasil, 29(4), 697-703.

Claver, M.A. \& Jaiswal, P. (2013) Distribution and abundance of two predatory stink bugs (Pentatomidae: Hemiptera) associated with rice field. Academic Journal of Entomology, 6(1), 33-36.

De Clercq, P. (2002) Dark Clouds and Their Silver Linings: Exotic Generalist Predators in Augmentative Biological Control. Neotropical Entomology 31(2), 169-176.

De Clercq, P., Merlevede, F., Mestdagh, I., Vandendurpel, K., Mohaghegh, J. \& Degheele, D. (1998) Predation on the tomato looper Chrysodeixis chalcites (Esper) (Lep., Noctuidae) by Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae). Journal of Applied Entomology, 122, 93-98.

Dupuis, C. (1949) Les Asopinae de la faune française. [Hemiptera Pentatomidae]. Essai sommaire de synthèse morphologique, systématique et biologique. Revue française d'Entomologie, 16, 233-250.

Ferrari, A. (2009) Filogenia, biogeografia e revisão de Nezara Amyot \& Serville, análise filogenética de Nezarini e áreas endêmicas de Pentatomidae na região Neotropical (Hemiptera, Heteroptera). Tese (Doutorado em Biologia Animal). Área de concentração: Biologia comparada - Universidade Federal do Rio Grande do Sul, Porto Alegre.
Fürstenau, B.B.R.J (2016) Relações filogenéticas e biogeografia de Catacanthini Atkinson, 1888 (Hemiptera: Pentatomidae: Pentatominae) e gêneros próximos. Tese (Doutorado em Biologia Animal). Área de concentração: Biologia comparada Universidade Federal do Rio Grande do Sul, Porto Alegre.
Gapon, D.A. (2008) ТАКСОНОМИЧЕСКИЙ ОБЗОР МИРОВОЙ ФАУНЫ КЛОПОВ-ЩИТНИКОВ (HETEROPTERA: PENTATOMIDAE) ПОДСЕМЕЙСТВ ASOPINAE И PODOPINAE. Doctoral Thesis. Universitetskaya Embankment.

Gapon, D.A. \& Konstantinov, F.V. (2006) On the Structure of the Aedeagus of Shield Bugs (Heteroptera, Pentatomidae): III. Subfamily Asopinae. Entomological Review, 86(7), 806-819.
Gapud, V.P. (1991) A generic revision of the subfamily Asopinae, with consideration of its phylogenetic position in the family Pentatomidae and superfamily Pentatomoidea (Hemiptera Heteroptera). Philippines Entomology, 8(3), 865-961.
Gapud, V.P. (2015) The Philippine genus Stilbotes Stål and a new tribe of Asopinae (Hemiptera: Pentatomidae). Asia Life Sciences, 24(2), 1-5.

Garbelotto, T.A. (2015) Filogenia e classificação de Discocephalini (Hemiptera: Pentatomidae: Discocephalinae)). Tese (Doutorado em Biologia Animal). Área de concentração: Biologia comparada - Universidade Federal do Rio Grande do Sul, Porto Alegre.
Grazia, J., Cavichioli, R.R., Wolff, V.R.S., Fernandes, J.A.M. \& Takiya, D. (2012). In: Albertino, R.J., de Melo, G.A.R., de Carvalho, C.J.B.,Casari, S.A. \& de Carvalho, J.B. (ed) Insetos do Brasil: diversidade e taxonomia. Holos editora, Ribeirão Preto, Brasil, 810p.

Grazia, J. \& Fernandes, J.A.M. (2012) Subordem Heteroptera Linnaeus, 1758. In: Albertino, R.J., de Melo, G.A.R., de Carvalho, C.J.B.,Casari, S.A. \& de Carvalho, J.B. (ed) Insetos do Brasil: diversidade e taxonomia. Holos editora, 810p.

Grazia, J., Panizzi, A.R., Greve, C., Schwertner, C.F., Campos, L.A., Garbelotto, T.de A. \& Fernandes, J.A.M. (2015) Chapter 22, Stink Bugs (Pentatomidae). In: Panizzi, A.R. \& Grazia, J. (ed) True Bugs (Heteroptera) of the Neotropics, Vol. II, Springer, 904p.

Grazia, J., Schuh, R.T. \& Wheeler, W.C. (2008) Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera). Cladistics, 24, 932-976.

Greve, C., Schwertner, C.F. \& Grazia, J. (2013) Cladistic analysis and synopsis of Chloropepla Stål (Hemiptera, Heteroptera, Pentatomidae) with the description of three new species. Insect Systematics \& Evolution, 44, 1-43.

Grimaldi, D. \& Engel, M.S. (2005) Evolution of the Insects. Cambridge University Press, 755p.

Hasan, S.A. \& Kitching, I.A. (1993) A cladistic analysis of the tribes of the Pentatomidae (Heteroptera). Japanese Journal of Entomology, 61(4), 651-669.

Kochenborger, A.P.L. (2018) Morfologia comparada das estruturas externas que compõem as manchas glandulares ventrais em machos de Asopinae (Hemiptera: Pentatomidae). Trabalho de conclusão de curso - Universidade Federal do Rio Grande do Sul, Porto Alegre.

Leston, D. (1953) On the wing-venation, male genitalia and spermatheca of Podops inuncta (F.), with a note on the diagnosis of the subfamily Podopinae Dallas (Hem., Pentatomidae). Journal of the Society for British Entomology, 4(7), 129-135.

Magistrali, I.C., Costa, E.C., Machado, L.M. \& Nadai, J. (2014) Novos registros de Asopinae (Pentatomidae) predadores de lagartas Nystalea nyseus (Cramer, 1775) (Lepidoptera: Notodontidae). Biotemas, 27(2), 209-212.

Malaguido, A.B. \& Panizzi, A.R. (1998). Alcaeorrhynchus grandis (Dallas): an eventual predator of Chlosyne lacinia saundersii Doubleday \& Hewitson on sunflower in northern Paraná state. Anais da Sociedade Entomológica do Brasil, 27(4), 671-674.

McDonald, F.J.D. (1966) The genitalia of North American Pentatomoidea (Hemiptera: Heteroptera). Quaestiones Entomologicae, 2, 7-150.

McFadyen, R.E.C. (1998) Biological control of weeds. Annual Review of Entomology, 43, 369-393.

Menezes, C.W.G., Soares, M.A., Assis, S.L., Menezes, S.J.M.C., Santos, J.B. \& Zanuncio, J.C. (2013) Brontocoris tabidus (Heteroptera: Pentatomidae) preying on Podalia walkeri (Lepidoptera: Megalopygidae) on Eucalypt plants in Brazil. Florida Entomologist, 96(1), 261-263.

Nylin, S. (2001) Life history perspectives on pest insects: what's the use? Austral Ecology, 26, 507-517.

Oliveira, J.E.M., Torres, J.B., Carrano-Moreira, A.F. \& Ramalho, F.S. (2002) Biologia de Podisus nigrispinus predando lagartas de Alabama argillacea em campo. Pesquisa agropecuária braliseira, 37(1), 7-14.

Parra, J.R.P., Botelho, P.S.M., Corrêa-Ferreira, B.S. \& Bento, J.M. (2002) Controle biológico: Terminologia. In: Controle biológico no Brasil: parasitoides e predadores, Manole, 635pp.

Pendergrast, J.G. (1957) Studies on the reproductive organs of the Heteroptera with a consideration of their bearing on classification. The Transactions of the Royal Entomological Society of London, 109(1), 1-63.

Pires, E.M, Soares, M.A., Nogueira, R.M., Zanuncio, J.C., Moreira, P.S.A. \& Oliveira, M.A. (2015) Seven decades of studies with Asopinae predators in Brazil (19302014). Bioscience Journal, 31(5), 1530-1549.

Ribeiro, R.C., Lemos, W.P., Bernardino, A.S., Buecke, J. \& Müller, A.A. (2010) Primeira ocorrência de Alcaeorrhynchus grandis (Dallas) (Hemiptera: Pentatomidae) predando lagartas desfolhadoras do dendezeiro no estado do Pará. Neotropical Entomology, 39(1), 131-132.

Rider, D.A. (2019) Pentatomoidea Home Page. North Dakota: North Dakota State University. Disponível em: http://www.ndsu.nodak.edu/ndsu/rider/Pentatomoidea

Roca-Cusachs, M., Kim, J., Lee, H., Lee, G. \& J, S. (2018) Revision of genus Stilbotes Stål (Hemiptera: Pentatomoidea: Pentatomidae: Asopinae) with description of a new species. Zootaxa, 4425 (2): 385-392.

Roell, T. \& Campos, L.A (2018) Phylogeny of Ochlerini (Hemiptera: Pentatomidae: Discocephalinae) and the evolution of the apical tarsomere in hind legs. Zoological Journal of the Linnean Society, XX: 1-14.

Roell, T. \& Campos, L.A. (in prep) Compared morphology and the evolution of male genitalia traits in Asopinae (Hemiptera: Pentatomidae).

Roell, T., Lemaître, V. \& Webb, M.D. (in press) Revision of the African shieldbug genus Afrius Stål, 1870 (Hemiptera: Pentatomidae: Asopinae). European Journal of Taxonomy.

Salini, S. (2016). Redescription of a predatory stink bug, Amyotea malabarica (Fabricius, 1775) (Hemiptera: Pentatomidae: Asopinae). Journal of Biological Control, 30(4), 11-18.

Sampaio, C. (2018) Especialistas defendem incentivo público à agricultura sustentável. Rede Brasil Atual. Disponível em:
https://www.redebrasilatual.com.br/economia/2018/07/especialistas-defendem-incentivo-publico-a-agricultura-sustentavel
Schaefer, C.W. (1998) Phylogeny, systematics and practical entomology: the Heteroptera (Hemiptera). Annais da Sociedade Entomologica do Brasil, 27, 499511.

Schouteden, H. (1907) Family Pentatomidae, subfamily Asopinae (Amyoteinae). In. P. Wystman [ed.], Genera Insectorum, 52, 1-81.

Schwertner, C.F. \& Grazia, J. (2012) Review of the Neotropical Genus Aleixus McDonald (Hemiptera: Heteroptera: Pentatomidae: Procleticini), with description of a new species and cladistic of the tribe Procleticini. Entomologica America, 118, 252-262.

Schuh, R.T. \& Slater, J.A. (1995) True bugs of the world (Hemiptera: Heteroptera): classification and natural history. Cornell University Press, 336 p.

Simpson, B.B. \& Cracraft, J. (1995) Systematics: the science of biodiversity. Bioscience, 45, 670-672.

Triplehorn, C.A. \& Jonnson, N.F. (2011) Estudo dos insetos. Cengage Learning, 809p.
Thomas, D.B. (1992) Taxonomic synopsis of the Asopine Pentatomidae (Heteroptera) of the Western Hemisphere. Lanham, The Thomas Say Foundation, ESA, Monographs 16. 156 pp.

Thomas, D.B. (1994) Taxonomic synopsis of the Old World Asopine genera Pentatomidae: Heteroptera). Insecta Mundi, 8, 145-212.

Vacari, A.M., Bortoli, S.A. \& Goulart, R.M. (2013) Comparison of eggs, larvae and pupa of Plutella xylostella (Lepidoptera: Plutellidae) as prey for Podisus nigrispinus (Hemiptera: Pentatomidae). Annals of the Entomological Society of America, 106(2), 235-242.

Vivan, L.M., Torres, J.B., Veiga, S.L. \& Zanuncio, J.C. (2002) Comportamento de predação e conversão alimentar de Podisus nigrispinus sobre a traça do tomateiro. Pesquisa agropecuária brasileira, 37(5), 581-587.

Wall, M.A. (2004) Phylogenetic relationships among Halyini (Pentatomidae: Pentatominae) genera based on morphology, with emphasis on the taxonomy and morphology of the Solomonius-group. Doctoral dissertations - University of Connecticut, 281 p.

Weirauch, C. \& Schuh, R. (2011) Systematics and Evolution of Heteroptera: 25 years of progress. Annual Review of Entomology, 56, 487-510.

Zanuncio, J.C., Alves, J.B., Zanuncio, T.V. \& Garcia, J.F. (1994) Hemipterous predators of eucalypt defoliator caterpillars. Forest Ecology and Management, 65, 65-73.

Zanuncio, J.C., Ferreira, A.M.R.M, Tavares, W.S., Torres, J.B., Serrão, J.E. \& Zanuncio, T.V (2011) Rearing the predator Brontocoris tabidus (Heteroptera: Pentatomidae) with Tenebrio molitor (Coleoptera: Tenebrionidae) pupa on Eucalyptus grandis in the field. American Journal of Plant Sciences, 2, 449-465.

Zhao, Q., Bu, W. \& Liu, G. (2016) The genus Cecyrina Walker, 1867, with the description of two new species (Hemiptera: Pentatomidae: Asopinae). Zootaxa 4114 (3), 309-319.

Zhao, Q., Liu, G., \& Bu, W. (2013a) A review of the Chinese species of the genus Picromerus Amyot and Serville, with description of a new species (Hemiptera: Heteroptera: Pentatomidae: Asopinae). Zootaxa, 3613 (2), 146-164.

Zhao, Q., Rédei, D. \& B, W. (2013b) A revision of the genus Pinthaeus (Hemiptera: Heteroptera: Pentatomidae). Zootaxa, 3636 (1), 059-084.

Zhao, Q., Wei, J., Bu, W., Liu, G. \& Zhang, H. (2018) Synonymize Arma chinensis as Arma custos based on morphological, molecular and geographical data. Zootaxa, 4455 (1), 161-176

Zibaee, A., Hoda, H. \& Fazeli-Dinan, M. (2012) Role of proteases in extra-oral digestion of a predatory bug, Andrallus spinidens. Journal of Insect Science, 12(51), 1-17.

Zucchi, R.A. (2002) A taxonomia e o controle biológico de pragas. In: Parra, J.R.P. Controle biológico no Brasil: parasitoides e predadores, Manole, 635pp.

CAPÍTULO 1

An Annotated Catalogue of the Types of Asopinae (Heteroptera: Pentatomidae) in the Collection of the Natural History Museum, London.*

TALITA ROELL ${ }^{1}$, VALÉRIE A. LEMAÎTRE ${ }^{2}$ \& MICHAEL D. WEBB ${ }^{2}$
1 Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Zoologia, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil 91501-970.
2, 3 Natural History Museum London, Department of Life Sciences (Insects), Cromwell Rd, Kensington, London SW7 5BD, England.

1 Corresponding author. E-mail: tali.roell@gmail.com

Key words: Hemiptera, Pentatomoidea, taxonomy, nomenclature, type status, lectotype designation

Abstract

We present a catalogue of the type material of the subfamily Asopinae located in the collection of the Natural History Museum, London. This work involves recognising types and their status, recording their label data and providing images of both the types and their labels.

We have refrained from designating lectotypes as the International Code of Zoological Nomenclature recommends that it should be done "as part of a revisionary or other taxonomic work" (ICZN 1999: Recommendation 74G), but we have accepted that lectotypes were designated by inference of "the type" or the "holotype" (ICZN 1999: Art. 74.6) in the following circumstances: Lectotypes were designated by inference of "the type" by Thomas (1992) for the following 29 species: Apateticus halys Dallas, Arma ampla Walker, Arma fuscescens Dallas, Arma modesta Dallas, Arma nigrispina Dallas, Arma obscura Dallas, Mormidea semialba Walker, Oplomus equestris Distant, Oplomus festivus Dallas, Oplomus nigripennis Dallas, Oplomus pulcher Dallas,

Oplomus rutilus Dallas, Oplomus stellatus Distant, Oplomus ventralis Dallas, Oplomus violaceus Dallas, Podisus amulae Distant, Podisus falcatus Distant, Podisus gaumeri Distant, Podisus insignis Distant, Podisus nigriventris Distant, Podisus sculptus Distant, Podisus smithi Distant, Stiretrus annulatus Distant, Stiretrus caeruleus Dallas, Stiretrus ruficeps Dallas, Supputius typicus Distant, Tynacantha marginata Dallas, Tynacantha splendens Distant, and Zicrona marginella Dallas.

Lectotypes were designated by inference of "holotype" by Synave (1969) for the following two species: Mecosoma floridum Distant, Podisus volxemi Distant, and by Thomas (1994) for the following 3 species: Neoglypsus opulentus Distant, Incitatus primus Distant, and Jalloides versicolor Distant.

The neotype of Arma pallipes Dallas, designated by Thomas (1992), is set aside as Dallas's type was found (ICZN 1999: Art. 75.8).

Informations regarding labels used by the first four curators of Hemiptera at the Museum (Adam White, William S. Dallas, Francis Walker and William L. Distant) are provided.

Introduction

The Natural History Museum, London (NHMUK) possesses a rich collection of type specimens in the subfamily Asopinae. These types are mainly of species described by early authors, notably F. Germar, W. S. Dallas, F. Walker, F. Buchanan-White, C. Berg and W. L. Distant, while some were more recently described by E. P. Van Duzee, R. L. Usinger and D. B. Thomas.

Thomas revised the subfamily in two publications, one concerning the New World (1992) and the other, the Old World (1994). In the latter publication, he claims in different ways having seen the type of the species. He may have considered the specimen that was marked as type but we cannot be sure as he gives no details. Where he mentioned a holotype male or female and the Museum owns only one specimen of this species, which we as well recognize as a type, we accept that it could only mean that Thomas examined that specimen and that he designated this individual specimen a lectotype by inference of holotype. In the former publication, he details the labels data, specimens can therefore be easily recognized and we have admitted that he had designated lectotypes by so doing. The designation of lectotypes by inference of the
"holotype" or "the type" is regulated by the International Code of Zoological Nomenclature (ICZN 1999: Art. 74.6), which states: "Fixation of lectotype by inference of "holotype" or "the type" before 2000. When it has been accepted that a nominal species-group taxon was based on a single specimen and the original description neither implies nor requires that there were syntypes, and if it is considered subsequently that the original description was based on more than one specimen, the first author to have published before 2000 the assumption that the species-group taxon was based upon a single type specimen is deemed to have designated that specimen as the lectotype.".

We list below 233 specimens representing 156 described species or 121 currently valid species. We have noted that some types are missing; these may be found ulteriorly, when label data of all specimens will have been recorded.

Materials and methods

The type material of the Hemiptera Collection of the Natural History Museum London (NHMUK) was examined.

The type status is recorded with capital letters in accordance to the disc type labels of the museum. Data of the specimens labels are recorded verbatim in quotation marks (" ") and different labels separated by a semicolon (;). The reverse of a label is indicated after a slash $(/)$. We have added notes on the type status and the condition of the specimen.

Some more information on assessing types statuses at the Natural History Museum, London may be obtained by reading the paragraphs "Type authenticity BMNH registrations numbers", "Type status" and following in Kondorosy et al. 2006. To be thorough, we have herein included a table with registration numbers and the information they can offer (see Table 1). It seems Thomas was unaware of the significance of these numbers as he sometimes mentioned them as label data (e.g. Arma grandis) and sometimes not (e.g. Bodetria scutellaris Walker, Oplomus violaceus...).

We have pinned in the tray containing the type(s) a label with the original name of the species, the author, the year, the pagination and a disc with the type status. The same disc was also pinned with the specimen and its other labels. Specimens only bearing this type disc had not previously been recognised as types. A few specimens bearing an old type disc were found not to be types.

It is to be noted that we have also listed non-typical specimens in the following two situations: first, we have listed specimens for the varieties mentioned by Walker. The Code of Zoological Nomenclature does not recognize them as typical material (ICZN 1999: Art. 72.4.1) but we felt it was important, for historical reasons, to detail them. Secondly, we have listed specimens, which had been labelled as types but are not types (and which retain these erroneous type labels) so that all confusion could be avoided in future. Furthermore, we have listed the names of species whose types could have been expected to be in NHMUK but are not and their actual depository.

Imaging was done with the use of a Canon EOS 5D SR camera mounted with Canon Macro Lens EF 100 mm 1:2.8 L IS USM controlled with Helicon Remote software. Stacking was done with Helicon Focus software.

Results

List of species

acuta (Macrorhaphis?) Dallas 1851: 88.
Original data: Syntype(s): "m\#". "a. Congo. Presented by Sir John Richardson, M.D."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Congo / 43 56"; "2. Macrorhaphis acuta,"; "NHMUK 010592174". Carded specimen; third to fifth left antennomeres, and fourth and fifth right antennomeres missing (Fig. 1).

Current status: Macrorhaphis acuta Dallas, 1851.
Note: Walker (1867a: 129) listed a unique specimen; it is likely that Dallas just had one (especially as Dallas had stated only one measurement and noted: "Antennae pale brown, with the apex of the third and fourth joints pitchy (fifth wanting)." [emphasis ours]. Still, we cannot be certain (although G. Schmitz had determined the specimen as the holotype male for this species). Thomas (1994: 185) did not mention having seen the type under the material he examined, we therefore consider the specimen a syntype.
affinis (Podisus) Distant 1880: 38.

Original data: Syntypes. "Hab. Mexico (coll. Sign.), Oaxaca (Mus. Berol.); Guatemala, San Gerónimo (Champion). -- Colombia (coll. Dist.)."

SYNTYPE m\#: blue-margined syntype disc; "S. Geronimo, Guatemala. Champion."; "Distant Coll. 1911-383."; "NHMUK 010592313". Fourth and fifth left antennomere, and middle and posterior legs missing (Fig. 2).

SYNTYPE m\#: blue-margined syntype disc; "S. Geronimo, Guatemala. Champion."; "Distant Coll. 1911-383."; "NHMUK 010592315". Right middle leg missing (Fig. 3).

SYNTYPE f\#: blue-margined syntype disc; "S. Geronimo. Guatemala. Champion."; "affinis Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592316". Fourth and fifth left antennomeres, and right posterior leg missing (Fig. 4).

SYNTYPE m\#: blue-margined syntype disc; "Bogota"; "Distant Coll. 1911383."; "NHMUK 010592317". Fourth and fifth right and left antennomeres, and right posterior leg missing (Fig. 5).

SYNTYPE f\#: blue-margined syntype disc; "S. Geronimo. Guatemala. Champion."; "B.C.A., Hem. I. Podisus affinis."; "NHMUK 010592318". Fifth left antennomere, middle legs, and right posterior leg missing (Fig. 6).

Current status: Podisus affinis Distant, 1880.
Note: Thomas (1992: 96) remarked: "Some of Distant's specimens in the British Museum (Natural History) are incorrectly labeled as types; the species was first described by Stål." This is erroneous. The name Podisus affinis is not a replacement name for Telepta fuscescens Stål (1862: 90). Instead, Stål misidentified the specimens he saw in Signoret's collection and in Berlin as Telepta fuscescens (Dallas's Arma fuscescens). Having checked both these specimens and Dallas's specimen(s) of Arma fuscescens (there is currently just one, but we cannot rule out that there may have been others), Distant (1880) reckoned they were not conspecific. He described a new species Podisus affinis from the specimens mentioned by Stål as well as from specimens he had received from Champion and others in his own collection. Both Stål's specimens (Vienna \& Berlin) and Distant's (London) are syntypes.
aggressor (Rhaphigaster) Walker 1867b: 359.
Original data: Holotype. "a. St. Domingo. From Mr. Hearne's collection."

HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "St Domingo / 54 76"; "19. Raphigaster aggressor."; "NHMUK 010592327". Fourth and fifth antennomeres of right and left antennae, anterior legs, right middle leg, and left posterior leg missing (Fig. 7).

Current status: Tyrannocoris jole (Stå1, 1862) (synonymised by Schouteden 1907: 72; see Thomas 1992: 126).
ampla (Arma) Walker 1867a: 138.
Original data: 2 syntypes. "a. Constancia, Rio Janeiro. Presented by the Rev. H. Clark. b. Rio Janeiro."

LECTOTYPE m\# (designated by Thomas 1992: 52): purple-margined lectotype disc; green-margined type disc; "RIO JANEIRO Dec ${ }^{\text {r }}$ 1856. J. Gray. / 57. 57."; "34. Arma ampla."; "NHMUK 010592413". Fourth and fifth left antennomeres, fifth right antennomere, and left leg missing (Fig. 8).

Current status: Marmessulus nigricornis (Stål, 1865) (synonymised by Schouteden 1907: 26).

Notes: Thomas (1992: 52) explained: "I examined the male type of Arma ampla Walker, located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "57.57 Rio de Janeiro Dec 1856 J. Gray," c) "Arma ampla.'"". It is clear from the original description that Walker had two specimens. We have found just one in the collection. By giving its exact label data and calling it "the male type", Thomas designated it as the lectotype by inference of "the type". The second specimen is missing or has not been recognised.
amulae (Podisus) Distant 1889: 319.
Original data: Syntype(s). "Hab. Mexico, Amula in Guerrero (H. H. Smith)."
LECTOTYPE m\# (designated by Thomas 1992: 84): purple-margined lectotype disc; red-margined type disc; "Amula, Guerrero, 6000ft. Aug. H. H. Smith."; "Podisus amulae Dist. [Distant’s handwriting]"; "NHMUK 010592319". Specimen well preserved (Fig. 9).

Current status: Podisus congrex (Stål, 1862) (synonymised by Thomas 1992: 83-84).

Note: Thomas (1992: 84) explained: "The type of Podisus amulae, a male, was located in the British Museum (Natural History). It is labeled: a) "Type," b) "Podisus amulae Distant," c) "Amula Guat. 600 ft . Aug. H.H. Smith."" From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data (albeit unprecisely - "Guat" for "Guerrero" and " 600 " for " 6000 ") and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
annulatus (Stiretrus) Distant 1889: 317.
Original data: Syntype(s). "Hab. Mexico, Tepic (Schumann)."
LECTOTYPE f\# (designated by Thomas 1992: 110): purple-margined lectotype disc; red-margined type disc; "Tepic, Mex. July. Schumann."; "Stiretrus annulatus Dist. [Distant's handwriting]"; "NHMUK 010592389". Left antenna, fourth and fitfth right antennomeres, and right anterior leg missing (Fig. 10).

Current status: Stiretrus anchorago (Fabricius, 1775) (synonymised by Thomas 1992: 109-110).

Note: Thomas (1992: 110) explained: "The type of Stiretrus annulatus Distant was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Stiretrus annulatus," (c) "Tepic, Mex. July, Schumann." The specimen is a female and is metallic blue in color." From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
annulipes (Asopus) Germar 1838:187-188.
Original data: Syntype(s). Cape of Good Hope.
SYNTYPE f\#: blue-margined syntype disc; "C.G.H/ 42 77"; "1162"; "a";
Asopus annulipes [hw] Germar det. [pr] "; "Cape Gd. Hope. 42-77.
Ex.coll.Drège.No.[pr] 1162 [hw] "; "Zicrona [pr] pavonina [hw] Walker's catal. [pr]"; "NHMUK 010936229". Right posterior leg missing (Fig. 11).

Current status: Dorycoris pavoninus (Westwood, 1837) (synonymised by Dallas 1851: 108, to Zicrona pavonina; see Schouteden 1905: 134 for placement in Dorycoris).

Notes: The senior author did not locate any syntypes of A. annulipes in the Museum für Naturkunde Berlin (MFNB). A further four specimens, however, are deposited at the Benedict Dybowski Zoological Museum of Lviv National University (ZMD). Indeed, at the turn of the century, part of Germar's entomological collection was purchased by Count Mniszek for this museum. Ultra-high resolution images of the ten large wooden boxes are displayed on the Zoological Museum's website through the free Zoomify ${ }^{\text {TM }}$ plug-in (Anonymous 2019). Holovachov et al. (2014) documented Germar's collection and detailed their imaging procedure. From images on the website, it is difficult to assess the type status of the specimens; it may be assumed that they are syntypes.
annulipes (Canthecona) Dallas 1851: 90-91.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "a. S. Africa. Presented by the Earl of Derby."
SYNTYPE f\#: blue-margined syntype disc; "Int Africa / 4319"; "Canthecona figurata Walker's catal."; "a"; "NHMUK 010747805". Fourth and fifth right antennomeres, left antenna, and right middle and posterior legs missing. Abdomen smashed, genital plates disjointed (Fig. 12)

Current status: Afrius purpureus (Westwood, 1837) (synonymised by Roell et al. 2019: XXX).

Note: Walker (1867a: 131) listed only one specimen from the same provenance. It is likely that Dallas had just one (especially as Dallas stated only one measurement and noted: "the basal joint and the apex of the third black (rest wanting) " [emphasis ours]) but we cannot be sure. Thomas (1994) did not mention having seen the type, we therefore consider the specimen a syntype.
atitlanensis (Podisus) Distant 1893: 454-455.
Original data: Holotype ["This species, of which we possess but a single example, [...]".]. "Hab. Guatemala, Volcan de Atitlan 2500 feet (Champion)."

HOLOTYPE m\#: red-margined holotype disc; red-margined type disc; "V. de Atitlan, 25-3500 ft. Champion."; "Podisus atitlanensis Dist. [Distant handwriting]"; "NHMUK 010592320". Specimen well preserved (Fig. 13).

Current status: Podisus congrex (Stål, 1862) (synonymised by Thomas 1992: 83-84).
badius (Platynopus) Walker 1867a: 125.
Original data: Holotype. "a. Old Calabar. From Mr. John Gray's collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Old Calab / 59 37"; "12. Platynopus badius."; "NHMUK 010592451". Right antenna, fourth and fifth left antennomeres, left anterior leg, and right posterior leg missing (Fig. 14).

Current status: Platynopiellus septendecimmaculatus (Palisot de Beauvois, 1811) (synonymised to Platynopus rostratus Drury, 1782 by Distant 1900a: 63; see Schouteden 1905: 160; Schouteden 1907: 48; Due to homonymy (see "Notes" below), the name of the species became that of the next available junior synonym: Pentatoma 17-maculata Palisot de Beauvois, 1811 (see Kirkaldy 1909: 12, as Platynopus 17maculatus); Thomas (1994: 195) placed it in his new genus, Platynopiellus.).

Notes: Platynopus rostratus (Drury, 1782) was a primary homonym of Cimex rostratus DeGeer, 1773 (Pentatomidae), C. rostratus Goeze, 1778 (Coreidae) and C. rostratus Fabricius, 1781 (Pentatomidae). The next junior synonym for that species was Cimex calens Fabricius, 1803, a primary homonym of C. calens Linnaeus, 1767 (Miridae) (see Dolling et al. 1999: 18, 77). The specific epithet, originally spelled 17maculata, has been transliterated in two different ways: septendecimaculatal-us (Thomas 1994: 194-195; Maldès \& Pluot-Sigwalt 2004) and septemdecimmaculatus (Dolling et al. 1999: 18, 77; Rider 2015); we have adopted the spelling septendecimmaculatal-us as we have chosen to follow Welter-Schultes (2012: 76); the set of rules provided there is convenient and useful to achieve consistency in transliterating older names or naming new species. We note, however, that the use of "septemdecim" is not erroneous (Gaffiot 1934: 1426), only less correct (Lewis \& Short 1891: 1675). Furthermore, bearing in mind the explanations by Lewis \& Short (1891:1091), we also understand the choice not to duplicate the " m " as logical.
basalis (Oplomus) Walker 1867a: 122.
Original data: Holotype. "a. Ega. From Mr. Bates' collection."

HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; "Ega / 58 6"; "19. Oplomus basalis."; "NHMUK 010592401". Right antenna, fourth and fifth left antennomeres, and anterior legs missing (Fig. 15).

Current status: Oplomus festivus Dallas, 1851 (synonymised to Oplomus tripustulatus Fabricius by Stål 1870: 28, as Var. b; see Distant 1880: 31; Distant 1900a: 63; Schouteden 1907: 35; synonymised to Oplomus marginalis Westwood; Rider \& Rolston 1995: 845-846 replaced preoccupied O. marginalis Westwood by O. festivus Dallas).

Note: Thomas (1992: 60) erroneously reported a label as reading "Equ." and consequently listed Ecuador in the distribution of the species. The label actually reads "Ega/58 6" [Ega is now known as Tefé and is in Brazil].
biarcuatus (Oplomus) Walker 1867a: 121.
Original data: Holotype. "a. Vera Cruz. From M. Sallé’s collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Vera Cruz / 54 66"; "17. Oplomus biarcuatus."; "NHMUK 010592407". Left middle leg and right posterior leg missing. Genital plates disjointed (Fig. 16).

Current status: Oplomus mundus Stål, 1862 (synonymised to Oplomus rutilus Dallas by Distant 1880: 31; see Distant 1900a: 63; Schouteden 1907: 35; Thomas (1992: 61) synonymised Oplomus biarcuatus to Oplomus mundus, while explaining how to separate O. mundus and O. marginalis - now O.festivus - with which he had synonymised O. rutilus).
bicolor (Damarius) Distant 1912: 89.
Original data: Syntype(s). "Hab. Uganda; Mabira (C. C. Gowdey, Brit. Mus.)." SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "Mabira 17.VII.11. No. 2907"; "1912 - 186"; "Damarius bicolor type Dist. [Distant's handwriting]"; "NHMUK 010592420". Fourth and fifth right antennomeres missing (Fig. 17).

SYNTYPE m\#: blue-margined syntype disc; "Mabira 17.VII.11. No. 2905"; "1912 - 186"; "NHMUK 010747743". Specimen well preserved (Fig. 18).

SYNTYPE m\#: blue-margined syntype disc; "Mabira 17.VII.11. No. 2906"; "1912 - 186"; "NHMUK 010747806". Fourth and fifth right antennomeres missing (fig 19).

Current status: Damarius splendidulus (Fabricius, 1803) (synonymised by Thomas 1994: 173, as a colour variety; there is, however, no mention of a new synonymy in the catalogue entry).

Note: From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found one female and two males in the collection. Strangely, Thomas (1994: 173) mentioned: "Distant's holotype female and two paratype females [sic!], in BM(NH) from Uganda were examined." Thomas may have misread his notes concerning the sex of the specimens. Because he did not detail which of the three specimens was the holotype, mentioning he had three females (all three from Uganda), we do not consider this a valid lectotype designation and consider the three specimens syntypes.
bimaculatus (Platynopus) Walker 1867a: 124.
Original data: Holotype. "a. Petropolis, Rio Janeiro. Presented by the Rev. H. Clark and by J. Gray, Esq."

HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; "PETROPOLIS Feb. ${ }^{\text {y }}$ 1857. J. Gray."; "6. Platynopus bimaculatus."; "NHMUK 010592394". Specimen carded (Fig. 20).

Current status: Heteroscelis bimaculata (Walker, 1867) (see Distant 1900a: 55; Pirán 1961: 87; Thomas 1992: 49).
binotata (Canthecona) Distant 1879: 47-48.
Original data: Syntype(s). "Naga hills, 2000 to 6000 feet."
SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc;
"Naga hills 2000 to 6000 (Chennel) "; "binotata (type) Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592151". Left middle leg missing (Fig. 21).

Current status: Eocanthecona binotata (Distant, 1879) (see Thomas 1994: 175).
Note: Thomas (1994: 175) mentioned having examined determined specimens in $\mathrm{BM}(\mathrm{NH})$ but did not mention having seen the type. Because we found only one type
specimen, we cannot assume that Distant just described his species from this one. We, therefore, consider it a syntype.
binotatus (Asopus) Walker 1867a:144-145.
Original data: Holotype. "a. Brazil. From Mr. Vigors' collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc;
"Brazil."; "Brazil as a locality is erroneous. [Distant's handwriting]"; "2. Asopus binotatus."; "59.57 Vigors' Coll."; "NHMUK 010592411". Right antenna, fourth and fifth left antennomeres, and left posterior leg missing (Fig. 22).

Current status: Cermatulus nasalis nasalis (Westwood, 1837) (synonymised by Distant 1900a: 55, 63; see Schouteden 1907: 67; Woodward 1953: 317-318).

Note: Walker (1867a: 144-145) described this species from Brazil, but Distant (1900a: 55, as well as on the label) indicated that the locality mentioned by Walker was erroneous. Thomas (1994: 172) mentioned this information as well.
borneensis (Platynopus) Distant 1900b: 696.
Original data: Syntypes [range of measurements]. "Habitat. Borneo, S. E. Districts (Doherty-Coll. Dist.); Pampat (Shelford—Sarawak Mus.)."

SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc; "S. E. BORNEO, DOHERTY."; "borneensis Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592429". Left posterior leg missing (Fig. 23).

SYNTYPE m\#: blue-margined syntype disc; "S. E. BORNEO, DOHERTY."; "Distant Coll. 1911-383."; "NHMUK 010592430". Specimen well preserved (Fig. 24).

Current status: Montrouzierellus borneensis (Distant, 1900) (see Kirkaldy 1909: 11; Thomas 1994: 187).
brenthoides (Bodetria) Walker 1867a: 119.
Original data: Holotype. "a. St. Paul, Amazon Region. From Mr. Bates’ collection."

HOLOTYPE f\#: red-margined holotype disc; green-margined type disc;
"Amazon St Paul" / 60 32"; "1. Bodetria brenthoides."; "NHMUK 010592390". Fourth and fifth right and left antennomeres, and anterior legs missing (Fig. 25).

Current status: Heteroscelis servillei Laporte, 1833 (synonymised by Stål 1870: 31; see also Distant 1900a: 63).
bryani (Oechalia (Hawaiicola)) Usinger 1941: 81-82.
Original data: "Holotype, male, allotype, female, and five male and five female paratypes, Hookomo, South Slope of Mauna Kea, 8500 feet elevation, August 9, 1935, on Sophora, R. L. Usinger."

PARATYPE m\#: yellow-margined paratype disc; "Mauna Kea, Haw. S. slope, 8500 ft. Hookomo VIII-9-35 "; "Sophora"; "R.L. Usinger Collector"; "Oechalia bryani Usinger Det. by R.L. Usinger"; "PARATYPE Oechalia bryani Usinger"; "NHMUK 010592456". Specimen well preserved (Fig. 26).

Current status: Oechalia bryani Usinger, 1941.
Note: Thomas (1994) only mentioned having examined a male without data, not a paratype.
caerulea (Canthecona) Dallas 1851: 89-90.
Original data: Syntype(s): "m\#". "a. Port Natal. From Dr. Krauss's Collection."
SYNTYPE m\#: blue-margined syntype disc; red-margined type disc;
"40.6.26.329."; "Canthecona caerulea identified by Dallas."; "a"; "NHMUK 010592171 ". Left antenna, and fourth and fifth right antennomeres missing (Fig. 27).

Current status: Afrius purpureus (Westwood, 1837) (first synonymised to Canthecona Yolofa (Guérin-Méneville, 1831), as a var. by Stål 1862: 496; synonymised by Stål 1870: 44; see Roell et al. 2019: XXX).

Note: In Walker (1867a: 130), as specimen "d" under yolofa. It is likely that Dallas had only one specimen but we cannot assume this. We, therefore, consider the specimen a syntype.
caeruleus (Stiretrus) Dallas 1851: 79.
Original data: Syntype(s): "‘\#". "a. Mexico."
LECTOTYPE f\# (designated by Thomas 1992: 110): purple-margined lectotype disc; red-margined type disc; "Mexico / 48 11"; "4. Stiretrus coeruleus,"; "a"; "NHMUK 010592388". Fourth and fifth right and left antennomeres, and left middle leg (which is glued on the first label) missing (Fig. 28).

Current status: Stiretrus anchorago (Fabricius, 1775) (synonymised by Thomas 1992: 109-110).

Note: Thomas (1992: 110) explained: "The type of Stiretrus caerulaeus Dallas was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Mex." (c) "Stiretrus caerulaeus." The specimen is a female and is metallic blue in color." From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 115) listed one specimen with the same provenance ("a. Mexico") and we have found only one female specimen in the collection but cannot be sure it was the only one Dallas had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
caliginosa (Arma) Walker 1867a: 138.
Original data: Holotype. "a. Constancia, Rio Janeiro. Presented by the Rev. H. Clark."

HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "CONSTANCIA Jan ${ }^{\text {y }}$ 1857. H. Clark."; "35. Arma caliginosa"; "NHMUK 010592321". Third, fourth and fifth left antennomeres missing (Fig. 29).

Current status: Podisus distinctus (Stål, 1860) (synonymised by Thomas 1992: 90).
chrysochlora (Bodetria) Walker 1868: 528.
Original data: Holotype. "a. Amazon Region, From Mr. Bates' collection."
HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; blue square label; "Braz / 62 57"; "Bodetria chrysochlora."; "NHMUK 010592391". Specimen well preserved (Fig. 30).

Current status: Heteroscelis servillei Laporte, 1833 (synonymised by Stål 1870: 31; see also Distant 1900a: 63; Schouteden 1907: 19).

Note: It seems Thomas (1992: 46) misread one of the label; he noted: " $67 / 5$ ".
chrysomela (Oplomus) Breddin 1901: 53.
Original data: Syntypes [Range of measurements]. "Ecuador."

PARALECTOTYPE m\#: blue-margined paralectotype disc; "Santa Jnéz (Ecuad) R.Haensch S."; "1903-322."; "Co types, Breddin. Purch. of Haensch. Oplomus chrysomela Bredd."; " 6 "; "NHMUK 010592600". Fourth and fifth left antennomeres missing (Fig. 31).

Current status: Oplomus ebulinus (Herrich-Schäffer, 1844) (synonymised by Thomas 1992: 58).

Notes: Gaedike (1971: 82) designated a lectotype in DEI; its sex is not mentioned. Although Thomas (1992: 58) did not mention the synonymy as new, he justified it.
chrysomelas (Oplomus) Walker 1867a: 121-122.
Original data: Holotype. "a. Cuenca, Province of Equador. From Mr. Fraser’s collection."

HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; "Cuenca / 58 132"; "18. Oplomus chrysomelas."; "NHMUK 010592403". Third to fifth right and left antennomeres, left wings, and abdomen missing (the latter is glued on a card) (Fig. 32).

Current status: Oplomus salamandra (Burmeister, 1835) (synonymised to Oplomus tripustulatus Fabricius by Stål 1870: 28, as Var. c; see Distant 1880: 31; Distant 1900a: 63; Schouteden 1907: 35; Kirkaldy 1909: 8, as Oplomus salamandra; Thomas, 1992: 59).

Note. As shown in Thomas (1992: 59), the name tripustulatus was preoccupied and so was that of tibialis Fabricius, the next junior synonym, the name of the species therefore became salamandra Burmeister, 1835, the next non preoccupied junior synonym.
coeruleus (Hoploxys) Dallas 1851: 103.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "a. Congo. Presented by Sir John Richardson, M. D."

SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "Congo / 43 $56 " ;$ "1. Hoploxys caeruleus,"; "a"; "NHMUK 010592440". Antennae and legs (except the left middle leg and a part of the left anterior leg) missing. The specimen is also
missing its right wing, while its abdomen is partially disconnected from its thorax (Fig. 33).

Current status: Hoploxys coeruleus Dallas, 1851.
Note: Because Dallas (1851: 103) noted "Antennae with the two basal joints black (rest wanting)", it is likely that he had only one specimen. Walker (1867a: 141) listed only one specimen and we have found only one female specimen in the collection. Still, we cannot assume that Dallas just described the species from one specimen, we therefore consider it a syntype. Especially as Thomas (1994: 181) only mentioned having examined specimens from the Democratic Republic of the Congo (as Zaire), Gabon and Cameroon and not the type.
cognata (Canthecona) Distant 1882: 157.
Original data: Syntype(s). "Hab.: Sumatra (Forbes)."
SYNTYPE f\#: blue-margined syntype disc; "Sumatra (Forbes)"; "cognata Dist. [Distant's handwriting]" "Distant Coll. 1911 - 383."; "NHMUK 010592152". Left antenna, fourth and fifth right antennomeres, and right middle leg missing (Fig. 34).

Current status: Cantheconidea javana (Dallas, 1851) (see Breddin 1903: 203; Schouteden 1907: 45).

Note. The description of C. cognata was actually a comparison with C. javana, highlighting what separated the two species (differences in the lateral angles of the pronotum).
colorata (Arma) Walker 1867a: 136.
Original data: Holotype (four specimens and three varieties). "a, b. Oajaca. From M. Sallé's collection. c. Mexico. Presented by W. W. Saunders, Esq. d. Vera Cruz. Presented by W. W. Saunders, Esq."

HOLOTYPE f\#: red-margined holotype disc; "58.135 MEX. (Oajaca.)"; "Euthyrhynchus punicus. Walker’s catal."; "NHMUK 010592347". Fifth right antennomere, and fourth and fifth left antennomeres missing. Wings opened (Fig. 35).

NON TYPE m \# (Var β): "V Cruz"; "Euthyrhynchus punicus. Walker's catal."; "Saunders. 65-13."; "NHMUK 010592601 ". Right antenna ill-formed. Fourth and fifth left antennomeres, and right posterior leg missing (Fig. 36).

NON TYPE f\# (Var γ): "Mex"; "66. 12."; "Euthyrhynchus punicus. Walker’s catal."; "NHMUK 010592133". Fourth and fifth right and left antennomeres, and left posterior leg missing (Fig. 37).

NON TYPE f\# (Var δ): "58-135 MEX. (Oajaca.)"; "Euthyrhynchus punicus. Walker's catal."; "NHMUK 010592348". Third, fourth and fifth left antennomeres, and left posterior leg missing. Wings opened (Fig. 38).

Current status: Euthyrhynchus floridanus (Linnaeus, 1767) (first synonymised by Walker (1868: 533) to Euthyrhynchus punicus (Linnaeus, 1767), as a variety. Stål 1870: 54-55 synonymised E. punicus to E. floridanus; see also Distant 1880: 41; 1900a: 63; Schouteden 1907: 56).

Note: Walker (1867a: 136) mentioned three additional varieties for this species: "Var. β. - femora red, except the tips"; "Var γ. - Testaceous instead of red"; "Var. δ like Var γ. Stripes of the thorax connected near the hind border". We have found these specimens in the collection but, according to the Internationsl Code of Zoological Nomenclature (ICZN 1999: Art. 72.4.1) the varieties are not to be counted in the type series. We, therefore, consider the second specimen from Mexico (Oajaca) as the holotype.
concinna (Canthecona) Walker 1867a: 131.
Original data: Holotype. "a. Hong Kong. Presented by J. C. Bowring, Esq." HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Hong Kong / 61 49"; "9. Canthecona concinna."; "NHMUK 010592153". Posterior legs missing (Fig. 39).

Current status: Eocanthecona concinna (Walker, 1867) (see Miyamoto 1965: 229; Thomas, 1994: 175).

Note: Strangely enough, Thomas (1994: 176) mentioned having examined determined specimens " in British Museum" but not the holotype.
conspersus (Platynopus) Walker 1867a: 123-124.
Original data: 2 syntypes. "a, b. Orizaba. From M. Sallé's collection."
LECTOTYPE m\# (designated by Thomas 1992: 58): purple-margined lectotype disc; green-margined type disc; "3. Platynopus conspersus."; "NHMUK 010592398".

Fifth left antennomere, fourth and fifth right antennomeres, right middle leg, and left posterior leg missing (Fig. 40).

PARALECTOTYPE sex?: blue-margined paralectotype disc; "Mex / 56.143"; "Oplomus conspersus Walker's catal."; "NHMUK 010592400". Right antenna, third to fifth left antennomeres, middle and posterior legs, and the abdomen missing (preventing the sex determination) (Fig. 41).

Current status: Oplomus mutabilis Stål, 1862 (Platynopus conspersus Walker, 1867 was synonymised to Oplomus (Stictocnemus) proteus Stål, 1862 by Stål 1870: 30 [see also Distant 1900a: 63; Schouteden 1907: 36]; the latter species was synonymised to Oplomus mutabilis Stål, 1862 by Thomas 1992: 58).

Notes: Walker (1867a: 124) had noted: "The spines of the thorax in this species are hardly apparent, and thus it resembles Oplomus." Indeed, the species was later synonymised to Oplomus mutabilis Stål, 1862. Thomas (1992: 58) stated: "The type of Platynopus conspersus, a female, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Platynopus conspersus."". Walker (1867a: 124) described: "abdomen blackish blue, except at tip; under side with a large quadrate spot of whitish tomentum on each side of the hinder disk, which is wholly black". The "whitish tomentum" mentioned by him is a bristles set which occurs only in males of some species of Asopinae (glandular patches). Therefore, we assume that Thomas made a mistake when copying the sex of this specimen from his notes. Even so, as he detailed the labels, we consider he has designated a lectotype, by inference of "the type".
cornuta (Arma) Dallas 1851: 98-99.
Original data: Syntype(s): "f\#". "a. Columbia. From M. Goudot's Collection."
Current status: Podisus cornutus (Dallas, 1851) (see Stål 1870: 54).
Note: Thomas (1992: 82) noted: "I was unable to locate the type at the British Museum (Natural History). Distant (1880) had remarked that it was not in the "National Collection" and that Walker had not included it in his catalog. The type is therefore lost". Walker (1867a: 135, 136) only mentioned the species twice in passing. The type(s) may be lost or has/have not been recognised yet.
cuprea (Zicrona) Dallas 1851: 108.

Original data: Syntypes: "m\# f\#". "a. Hudson’s Bay. Presented by G. Barnston, Esq."

LECTOTYPE f\# (designated by Thomas 1992: 129): purple-margined lectotype disc; red-margined type disc; "Hudson’s Bay / 44 17"; "3. Zicrona cuprea,"; "NHMUK 010592443 ". Fourth and fifth right and left antennomeres, right middle and posterior legs, and left middle leg missing (Fig. 42).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Hudson's Bay / 44 17"; "Zicrona cuprea Walker's catal."; "NHMUK 010592444". Fourth and fifth right antennomeres, fifth left antennomere, right anterior and middle legs, and left anterior leg missing (Fig. 43).

PARALECTOTYPE sex?: blue-margined paralectotype disc; "Hudson's Bay / 44 17"; "Zicrona cuprea Walker's catal."; "NHMUK 010592445". Fourth and fifth right and left antennomeres, anterior and posterior legs, and abdomen missing (preventing the sex determination; it is presumably the male mentioned in the original description) (Fig. 44).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Hudson’s Bay / 44 17"; "108"; "Zicrona cuprea Walker's catal."; "NHMUK 010592446". Fourth and fifth right antennomeres missing (Fig. 45).

Current status: Zicrona caerulea (Linnaeus, 1758) (synonymised by Uhler 1872: 395; see Schouteden 1907: 74).

Notes: Walker (1867a: 145) listed four specimens from the same provenance (Hudson's Bay, Dr. Barnston). We have found them all. When Thomas (1992: 129) noted: "The type of Zicrona cuprea, a female, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Zicrona cuprea. "", he thereby designated as lectotype the female specimen bearing the red "type" label. Burks (1975: 140) precised that, although the labels read "Hudson Bay", Barnston actually collected his specimens at St Martin's Falls on the Albany River, in Ontario, Canada. This locality is mentioned in the Museum Accessions Register. At least one specimen of this species was sent to the Museum of Victoria by Francis Walker (Walker 1985: 15). Indeed, Public Library, Museums and National Gallery (Vic.), et al. (1890: 52) listed one specimen (Number 52876) coming from Hudson's Bay. It could be a specimen from the type series. This needs to be further investigated.
dallasi (Macrorhaphis) Schouteden 1905: 181-182.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "Habitat: Madagascar: Forêt Tanala. (Mus. Paris)."

NON TYPE m\#: rectangular orange allotype label; "INSTITUT SCIENTIFIQUE MADAGASCAR"; "Perinet"; "Macrorhaphis dallasi SCHOUTEDEN m\# (hw) G. Schmitz det. 19[pr]76[hw]"; "ALLOTYPUS [pr] Macrorhaphis dallasi m\# [hw]"; "Brit.Mus. 1965-338"; "NHMUK 010592177". Specimen carded, right fourth and fifth antennomeres missing (Fig. 46).

Current status: Macrorhaphis dallasi Schouteden, 1905.
Notes: This specimen was labelled by Schmitz as "ALLOTYPUS"; it cannot be a type as its data is not matching that of the original description (the species was described from the female only and Perinet is more to the north than the area that is usually thought of as the Tanala country). Furthermore, Day (1964: 559) explained that the large collection of Madagascan Pentatomidae received from Dr. P. Malzy was one of undetermined specimens specifically sent for identification; it could not have contained types. It is, however, clear that Schmitz (1976: 371) perceived the word "ALLOTYPUS" as referring not only to the type of the opposite sex designated in the original description but also as the first, ulteriorly collected, example of the opposite sex to that already known for the species. A female syntype for the species and a female holotype for its variety are reported in Paris (Maldès \& Pluot-Sigwalt 2004: 25-26).
distinctus (Oplomus) Distant 1880: 30.
Original data: Syntype(s). "Hab. Mexico (coll. Sign.)."
Current status: Oplomus catena (Drury, 1782) (synonymised by Thomas 1992: 57).

Notes: Thomas (1992: 57) noted: "Two female specimens labeled: (a) "Oplomus distinctus Distant," were located in the British Museum (Natural History). They were not labeled as types, nor could they have originated from Mexico because Oplomus catena does not occur there. However, they are the only specimens in the British Museum (Natural History) collection labeled as O. distinctus." Herbert Zettel (personnal communication) denied that the type was in Vienna, where is now located most of Signoret's collection. He explained: "I could not find a type, or any specimen labeled as such. Among our specimens of O. catena there is only a single one with a
colour pattern like the specimen illustrated in BCA, but it was collected by Natterer in Brazil." Only one measurement and "remainder wanting" could support the fact that there was only one specimen. This unique specimen may now be lost.
dollingi (Coryzorhaphis) Thomas 1992: 39-40.
Original data: "Holotype: female, labeled: (a) "Ecuador, Pichincha, Toachi, 20.I.86, Legit: A. Burieta" (deposited BMNH). Paratype: female, labeled with same data as holotype (deposited BMNH)."

HOLOTYPE f\#: red-margined holotype disc; "Ecuador Pichincha Toachi 20-I86 Legit: A. Burieta"; "HOLOTYPE Coryzorhaphis dollingi Thom."; "NHMUK 010592141 ". Specimen well preserved (Fig. 47).

PARATYPE f\#: yellow-margined paratype disc; "Ecuador Pichincha 20-I-86 Legit: A. Burieta"; "PARATYPE Coryzorhaphis dollingi THOM. "NHMUK $010747741 "$. Specimen well preserved (Fig. 48).

Current status: Coryzorhaphis dollingi Thomas, 1992.
dotatus (Platynopus) Walker 1867a: 128.
Original data: Holotype. "a. Celebes. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; "Platynopus dotatus Walker's catal."; "Saunders 6513"; "Tond"; "NHMUK 010937663" (Fig. 49).

NON TYPE [formerly marked as type] m\#: green-margined type disc; "Celebes Manado / 60 76"; "20. Platynopus dotatus."; "NHMUK 010592432". Left antenna missing (Fig. 50).

NON TYPE f\#: "Platynopus dotatus Walker's catal."; "52 68 / Batch"; "NHMUK 010937662".

NON TYPE f\#: "Platynopus dotatus Walker's catal."; "Saunders 65'13"; "Kai"; "NHMUK 010937664".

Current status: Montrouzierellus laetus (Walker, 1867) (synonymised by Distant 1900a: 58, 63; see Kirkaldy 1909: 11; Thomas 1994: 187).

Notes: Walker (1867a: 128) had noted: "Closely allied to P. laetus; the body and the spines of the thorax are a little shorter." Still it was later synonymised to laetus.

The presence in Montrouzierellus laetus box of four specimens bearing the printed square Walker's catal label (three with the name "Platynopus dotatus", as
detailed above, and one with the name "Platynopus semiscitus", see the details of its labels under that name) in addition to the three specimens marked and accepted so far as the holotypes of Platynopus dotatus, P. laetus and P. semiscitus urged us to re-examine the holotypes and further to query how this could have happened. It was found out that the holotype of P. dotatus was not the type as the register number on its label indicated that it was bought of Stevens whereas the original description stated that the specimen from Celebes (Sulawesi) had been presented by Saunders; this matched the specimen labelled "Tond" (Tondano, Sulawesi). How it could have happened, is best explained by those who studied Walker's types. Butler (1876: 402, 432) gave an insight into Walker's modus operandi while he was preparing descriptions for his manuscripts. Here we glean that, occasionally, Walker omitted to label his types but Distant (1899:30) is clear "He never labelled his specimens". Signoret (1853: 178), however, explained that the types were missing and that there was not even the hole left by a pin above the determination label. Smith (1893: 7) confirmed that: "None of the specimens were labeled until the descriptions were in type, and then, using a proof sheet, the printed names were cut out and pinned below the series of specimens, not on the insects themselves." This led to types going missing and to other numerous errors. These errors were further compounded as Walker shifted specimens after the catalogues were published and seldom recorded these changes as noted by Distant (1899: 30). We can only speculate that Walker shifted the extra specimens from other positions and placed three with the holotype of P. dotatus and one with that of P. semiscitus, above each determination label. During his curation, Distant found them and labelled them, giving the long label to the type, much as Butler had done with the Lepidoptera (Smith 1893: 8), and square labels to the others, without spotting that they were not mentioned in the catalogue. Assumedly, the specimen marked as type was chosen because one of its labels conspicuously stated "Celebes [...]" whereas the label of the actual type did not clearly state the type locality that had been published. Incidentally, both specimens were collected in June 1859 by Charles M. Allen, Alfred R. Wallace's assistant; they only reached the Museum through different channels (Baker 1995: 176-178, 193).
ducalis (Blachia) Walker 1867a: 117.
Original data: Holotype. "a. Siam. From M. Mouhot's collection."

HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Siam / 62 73"; "1. Blachia ducalis."; "NHMUK 010592144". Left wings glued on a card. Fourth and fifth right antennomeres, and left antenna missing (Fig. 51).

Current status: Blachia ducalis Walker, 1867.
Note: Referring to Blachia ducalis, Thomas (1994: 167) wrote: "The type series, one male and three females, were examined in the BM[NH]. Also, from India (1 female)." It is difficult to understand what he meant as Walker mentioned only one specimen for Blachia ducalis and we have found only one male syntype for its synonym, Sesha manifesta Distant.
egeri (Coryzorhaphis) Thomas 1992: 37-39.
Original data: "Paratypes: [...]. Male, labeled: (a) "Costa Rica, Heredia Prov." (b) "Puerto Viejo, February 1983, J.H. Martin Coll." (deposited BMNH)."

PARATYPE m\#: "COSTA RICA: N. Heredia Province, "; "Puerto Viejo. February 1983 J.H. Martin coll."; "BM 1983-478"; "PARATYPE Coryzorhaphis EGERI THOM." (Fig. 52)

Current status: Coryzorhaphis egeri Thomas, 1992.
Note: The specimen is currently still on loan to Dr Thomas and could not be barcoded.
elongatus (Oplomus) Dallas 1852: 6-7.
Original data: Syntype(s): "m\#". "Hab. in Brasilia? In Mr. Westwood’s collection."

Current status: Damarius splendidulus (Fabricius, 1803). (synonymised by Distant 1900a: 58; see Schouteden 1905: 154; Schouteden 1907: 49, placed in Damarius).

Note: The type(s) may have been in Mr. Westwood's collection but none is to be found nowadays in the Oxford Museum nor is it at the Natural History Museum, London.
equestris (Oplomus) Distant 1911a: 253.
Original data: Syntype(s). "Hab. Centr. Brazil; Chapada (A. Robert, Brit. Mus.)."

LECTOTYPE f\# (designated by Thomas, 1992: 60): purple-margined lectotype disc; red-margined type disc; "Cent. Brazil. Chapada. 2600. ft. Nov, 1902. A. Robert. 1903-96"; "Oplomus equestris type Dist. [Distant's handwriting]"; "NHMUK 010592396". Right antenna and fifth left antennomere missing (Fig. 53).

Current status: Oplomus festivus Dallas, 1851 (Oplomus equestris Distant, 1911 was synonymised to Oplomus marginalis (Westwood, 1837) by Thomas 1992: 60; Rider \& Rolston 1995: 845 chose the junior synonym Oplomus festivus Dallas, 1851, after assessing that the name of the species Oplomus marginalis was preoccupied).

Notes: Thomas (1992: 60) explained: "The type of Oplomus equestris was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Oplomus equestris Dist." (c) "Cent. Brazil, Chapada, 2600 ft. Nov. 1902, A. Robert 1903-96." The specimen is a female and is red dorsally with a black head and black blotches on the pronotum, scutellum and corium." From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data, describing it and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type". Interestingly, the variety, also a female, was labelled by Distant as "Oplomus equestris var Dist. type", showing that, in those days, for each variety, a type was to be chosen as well (at least in the collection). Other labels: "Distant Coll. 1911-383."; "NHMUK 013585588".
erubescens (Glypsus) Distant 1890c: Lv.
Original data: Syntypes. "Hab. Niam-Niam (Bohndorff)." "National Museum of Brussels".

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Niam-Niam Bohndorff"; "Distant Coll. 1911-383."; "NHMUK 010592305". Third to fifth right antennomeres, fourth and fifth left antennomeres, and right anterior leg missing (Fig. 54).

PARALECTOTYPE f\#: blue-margined paralectotype disc; red-margined type disc; "Niam-Niam Bohndorff"; "erubescens Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "Distant Coll. 1911-383."; "NHMUK 010592306". Fourth and fifth right antennomeres, left anterior leg, and right posterior leg missing (Fig. 55).

Current status: Glypsus erubescens Distant, 1890.

Notes: Clearly, having identified and named the specimens from "the National Museum of Brussels", Distant was able to retain some specimens for his own collection. These, in turn, were received by the British Museum (Natural History) as the first of the instalments from Distant's collection (presented in late October 1911, despite the fact that the register mentions only moths and Cicadidae in this instalment). Synave (1969: 10) recorded two further typical specimens in the Brussels Museum (the lectotype and a paratype [sic!]). Linnavuori (1975: 125) designated the lectotype but it may be argued that Synave (1969: 10) actually published the designation first; all other typical specimens are to be considered paralectotypes.
erythromela(Strachia) Walker 1867b: 339.
Original data: Holotype. "a. Kaisaa. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Kai" "Asopus erythromelas." Saunders. 65*13."; "NHMUK 010592372". Fourth and fifth left antennomeres missing (Fig. 56).

Current status: Amyotea erythromela (Walker, 1867) (see Schouteden 1907: 54; Kirkaldy 1909: 23).

Note: The long label from Walker's catalogue reads: "Asopus erythromelas.". While this is not the original combination, this is the one used by Walker (1868: 534).
falcatus (Podisus) Distant 1889: 318.
Original data: Syntype(s). "Hab. Guatemala, San Gerónimo (Champion)."
LECTOTYPE f\# (designated by Thomas 1992: 80): purple-margined lectotype disc; red-margined type disc; "S. Geronimo, Guatemala, Champion."; "B. C. A., Hem. I. Podisus falcatus."; "NHMUK 010592322". Specimen well preserved (Fig. 57).

Current status: Podisus falcatus Distant, 1889.
Note: Thomas (1992: 80) explained: "The type of Podisus falcatus, a female, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "S. Geronimo, Guatemala, Champion," (c) "B.C.A. Hem. I. Podisus falcatus."." From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but we cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
festivus (Oplomus) Dallas 1851: 85.
Original data: Syntype(s): "m\#". "a. Columbia. From M. Goudot's Collection."
LECTOTYPE m\# (designated by Thomas 1992: 60): purple-margined lectotype disc; red-margined type disc; "Columbia / 46 20"; "Magdelain, Janv -"; "13. Oplomus festivus,"; "a"; "NHMUK 010592397". Fifth right and left antennomeres, and middle and posterior legs missing (Fig. 58).

Current status: Oplomus festivus Dallas, 1851.
Notes: Thomas (1992: 60) explained: "The type of Oplomus festivus is a male, also located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Magdalain, Jande [sic!]," (c) "Oplomus festivus." The specimen is metallic blue with red spots at the basal angles of the scutellum and on the midline of the pronotum." From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: male. Walker (1867a: 121) listed one specimen and we have found only one specimen in the collection but cannot be sure it was the only one Dallas had. By giving its labels data, describing it and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
florida (Mecosoma) Distant 1890c: Liv.
Original data: Syntype(s). "Hab. Niam-Niam (Bohndorff)." "belonging to the National Museum of Brussels".

Current status: Mecosoma floridum Distant, 1890 (see Schouteden 1905: 185; Schouteden 1907: 63; Schouteden 1909: 66; Villiers 1954: 230; Thomas 1994: 186).

Note: Synave (1969: 11) recorded the presence of the holotype in the Brussels Museum. As nothing in the original description indicates that there was only one specimen, we accept Synave's mention of the holotype published before 2000 as a lectotype designation by inference of "holotype" (ICZN 1999: Art. 74.6).
frontalis (Strachia) Walker 1867b: 338-339.
Original data: 2 syntypes. "a. Batchian. Presented by W. W. Saunders, Esq. b. Batchian. From Mr. Wallace's collection." and two varieties: "Var. β.: c, d. Kaisaa. Presented by W. W. Saunders, Esq. Var. $\gamma .:$ e. Batchian. Presented by W. W. Saunders, Esq."

SYNTYPE f\#: blue-margined syntype disc; "Batch"; "Strachia frontalis Walker’s catal."; "NHMUK 010592376". Specimen well preserved (Fig. 59).

SYNTYPE f\#: blue-margined syntype disc; "Bac."; "Strachia frontalis Walker's catal."; "Saunders 65•13."; "NHMUK 010592378". Fourth and fifth right antennomere, and fifth left antennomere missing (Fig. 60).

Current status: Amyotea frontalis (Walker, 1867) (see Schouteden 1907: 54; Thomas 1994: 155).

Notes: Walker (1867b: 338-339) mentioned two varieties for this species: "Var. β. - "Thorax more completely pale yellow in front; the purple spots very small or quite wanting. c, d Kaisaa. Presented by W.W. Saunders, Esq" and "Var γ. - The purple spots of the thorax connected and forming a large patch. e. Batchian. Presented by W.W. Saunders, Esq.". We have found these two male specimens in the collection, respectively with the barcodes number 1052377 and 1052375 (one specimen of Var. β. is missing), but according to the Zoological Code of Nomenclature (ICZN 1999: Art. 72.4) "the varieties are not considered types", so we just considered the females listed above as syntypes. Thomas (1994: 155) wrote: "Material Examined. Walker's type specimen was examined in the BM(NH).". Strangely, he mentioned just one specimen. As he did not give any details to recognize the specimen, we do not consider he designated a lectotype. The specimen of var. γ is the one that was marked as type with the long label: "ASOPUS FRONTALIS." and the green-margined type label. While "Asopus frontalis." is not the original combination, this is the one used by Walker (1868: 533).
funebris (Anasida) Distant 1900a: 59.
Original data: Syntype(s). "Hab. Natal (Gueinzius: Brit. Mus.)."
SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Pt Natal / 58 13"; "Anasida funebris Distant [Distant's handwriting]"; "NHMUK 010592343". Right antennae, fourth and fifth left antennomeres, and anterior legs missing (Fig. 61).

Current status: Anasida funebris Distant, 1900.
Note: Thomas (1994: 160) wrote: "Distant's male type specimen was examined in $\mathrm{BM}(\mathrm{NH})$." Because he did not clearly distinguish the type from other specimens, we do not consider this a valid lectotype designation.
fuscescens (Arma) Dallas 1851: 102.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "a. Mexico."
LECTOTYPE f\# (designated by Thomas 1992: 88): purple-margined lectotype disc; red-margined type disc; "Mexico / 48 11"; "7. Arma fuscescens,"; "a"; "NHMUK 010592323 ". Right hemelytra, fourth and fifth right and left antennomeres, left legs, and posterior right leg missing (Fig. 62).

Current status: Podisus sagitta (Fabricius, 1794) (synonymised by Thomas 1992: 87).

Note: Thomas (1992: 88) explained: "I also examined the type of Arma fuscescens. The specimen, a female, was located in the British Museum (Natural History). It is labeled: a) "Type," b) "Mexico," c) "a," d) "7. Arma fuscescens. "" From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 134) listed one specimen from Mexico, from Mr. Argent's collection, Dallas had not mentioned the donor. We have found only one specimen in the collection but cannot be sure it was the only one Dallas had (although it is likely as Dallas stated only one measurement and noted: "Antennae slender, testaceous, with apex of the fourth joint dusky (fifth wanting)." [emphasis ours]). By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
gaumeri (Podisus) Distant 1889: 320.
Original data: Syntype(s). "Hab. Mexico, Temax in North Yucatan (Gaumer)."
LECTOTYPE f\# (designated by Thomas 1992: 126): purple-margined lectotype disc; red-margined type disc; "Temax, N. Yucatan, Gaumer."; "Podisus gaumeri Dist. [Distant's handwriting]"; "NHMUK 010592477". Right antenna, fourth and fifth left antennomeres, right anterior and middle legs missing (Fig. 63).

Current status: Tyrannocoris jole (Stål, 1862) (synonymised by Thomas 1992: 126).

Note: Thomas (1992: 126) explained: "I examined the type of Podisus gaumeri, a female, located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Podisus gaumeri Dist." (c) "Temex, N. Yucatan, Gaumer." It differs from other specimens of T. jole by being pale above." From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only
one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
grandis (Arma) Dallas 1851: 96-97.
Original data: Syntypes: "m\# f\#". "a. Trenton Falls. Presented by E. Doubleday, Esq. b.

LECTOTYPE f\# (designated by Thomas 1992: 27): purple-margined lectotype disc; red-margined type disc; "41. 5. 17 90."; "E. Doubleday."; "3. Arma grandis"; "a"; "NHMUK 010592478 ". Second to fifth right antennomeres, fourth and fifth left antennomeres, and anterior legs missing. Wings partially displaced (Fig. 65).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "41. 5. 17. 91."; "E. Doubleday"; "Arma grandis Walker’s catal."; "a"; "NHMUK 010747385".

Fifth right antennomere, fourth and fifth left antennomeres, and left middle leg missing (Fig. 66).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "41 5. 17. 89."; "E. Doubleday"; "Arma grandis Walker's catal."; "a"; "NHMUK 010747386". Right antenna, fourth and fifth left antennomeres, and right anterior leg missing. Wings disjointed (Fig. 67).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Arma grandis Walker's catal."; "93a"; "b"; "NHMUK 010935520". Second to fifth antennomeres, and middle and posterior legs missing (Fig. 68).

Current status: Apoecilus cynicus (Say, 1831) (synonymised by Uhler 1886: 4 ; see Distant 1900a: 59; Schouteden 1907: 71; Thomas 1992: 27).

Notes: Dallas had at least two specimens, since he listed male and female; Walker (1867a: 134) listed four specimens from Trenton Falls, presented by Doubleday. We have found four, all females (which matches the fact that Dallas had given a range of measurements for the female, " $\mathrm{f} \# \mathrm{lin} .9-10$ "). One of our four specimens, however, is not from Trenton Falls but is the specimen for which Dallas gave no provenance. Walker (1867a: 134) did not mention under Arma grandis any specimens from an unknown provenance. The male reported by Dallas must have been the fourth specimen from Trenton Falls. The label " 93 a " refers to the first specimen on page 93 in White's unpublished "Catalogue of Hemiptera". There reference is made to Samouelle's

Register: "Reg. 999". However, on page 174 of that register, no provenance is recorded for records 995 to 1001. Genus Pentatoma is dittoed for all specimens on this page. The provenance for record 994 ("New Holland" [Australia]) can certainly not be dittoed. For further informations on White's Catalogue of Hemiptera and other early catalogues at the Museum, see Wheeler (1996). Did Walker know that "93a" meant "Trenton Falls" or was there another specimen labelled similarly to the three from Trenton Falls, which is missing now? According to Burks (1975: 139), the specimens Doubleday collected at St John's Bluff may be variously labelled: "St John's Bluff", "East Florida, Doubleday" and "North America, Doubleday". The same may be true with "Trenton Falls" for which labels could also read: "New York, Doubleday" and "North America, Doubleday. We know that, at least, one specimen of that species was sent to Melbourne by Francis Walker (Walker 1985: 11). Public Library, Museums and National Gallery (Vic.), et al. (1890: 52) listed two specimens (numbers 52827 and 52828). They, however, cannot be from the type series as they come from Lake Huron. Thomas (1992: 27) stated: "I examined the female type of Arma grandis, located in the British Museum (Natural History). It is labeled (a) "Type," (b) "E. Meday." (c) "5-49 90.17," (d) "3. Arma grandis.'"' He thereby designated that specimen a lectotype (although the data of labels (b) and (c) are erroneous).
grandis (Canthecona) Dallas 1851: 91-92.
Original data: 4 syntypes: 2 males, 2 females ["Of the four specimens in the Collection, two are males and two females"]. "a. Columbia. From M. Goudot's Collection. b. Mexico. Presented by E. P. Coffin, esq. \qquad ."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Columbia / 46 20"; "Canthecona grandis identified by Dallas"; "NHMUK 010592339". Right and left antennae missing (Fig. 69).

SYNTYPE f\#: blue-margined syntype disc; "Mexico / 43 13"; "Mutyca phymatophora Walker’s catal.; "b"; "NHMUK 010747381". Fifth left antennomere missing (Fig. 70).

SYNTYPE f\#: blue-margined syntype disc; "Mexico"; "Mutyca phymatophora Walker's catal."; "b"; "NHMUK 010747382" Fourth and fifth right antennomeres, and fifth left antennomere missing. The abdomen is smashed (Fig. 71).

Current status: Alcaeorrhynchus grandis (Dallas, 1851) (see Bergroth 1891: 235, who gave a new name to preoccupied Mutyca Stål, 1862; Schouteden 1907: 32; Kirkaldy 1909: 9).

Notes: Dallas had stated he had four specimens, 2 males and 2 females. Walker (1867a: 131) had placed the species under Mutyca phymatophora Beauvois, 1811 and listed 3 specimens with the provenances mentioned by Dallas ("a. Columbia. From M. Goudot's collection. b, c. Mexico. Presented by E. P. Coffin, Esq.") as well as a specimen with no data, just like Dallas had ("h. -_?"). We have found three specimens; the specimen bearing the letter "c" is missing or was not recognised. Thomas (1992: 21) explained: "I examined a male specimen in the British Museum (Natural History) labeled: (a) "Type," (b) "Canthecona grandis, identified by Dallas."". We do not consider this a valid lectotype designation as Thomas just stated having examined a male specimen, one label of which read "Type".
grisea (Canthecona) Dallas 1851: 92-93.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "a. __ Presented by General Hardwicke."
SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "Hardwicke Bequest"; "10. Canthecona grisea,"; "178a"; "a"; "NHMUK 010592293". Third to fifth right antennomeres, fifth left antennomere, right anterior leg, and left middle leg missing (Fig. 72).

Current status: Picromerus griseus (Dallas, 1851) (see Schouteden 1907: 25; Thomas 1994: 192).

Notes: Walker (1867a: 131) listed only one specimen; it is likely that Dallas just had one but we cannot be sure and therefore consider the specimen a syntype. The label " 178 a " refers to the first specimen on page 178 in White's unpublished "Catalogue of Hemiptera", more information is given there: White had determined the specimen as belonging to genus Halys and stated it was part of Hardwicke's bequest. For further informations on White's Catalogue of Hemiptera and other early catalogues at the Museum, see Wheeler (1996).
halys (Apateticus) Dallas 1851: 105-106.
Original data: Syntypes: " $\mathrm{f} \#$ ". "a. Venezuela. From Mr. Dyson's Collection."

LECTOTYPE f\# (designated by Thomas 1992: 25): purple-margined lectotype disc; red-margined type disc; "Venezuela / 47 26"; "1. Apateticus halys,"; "a"; "NHMUK 010592340". Fifth right antennomere, and fourth and fifth left antennomeres missing; abdomen smashed; genital plates disjointed (Fig. 73).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Venezu / 46 75"; "Arma Apateticus halys Walker’s catal."; "a"; "NHMUK 010747384".

Fourth and fifth right and left antennomeres missing (Fig. 74).
Current status: Apateticus lineolatus (Herrich-Schäffer, 1840) (first synonymised to Podisus punctipennis Herrich-Schäffer by Stål 1867: 498, then synonymised to Podisus (Apateticus) lineolatus Herrich-Schäffer by Stål 1872: 129; see Schouteden 1907: 70, who pointed out the priority of Apateticus Dallas, 1851 over Podisus Herrich-Schäffer, 1853).

Note: Dallas did not state the number of specimens from which he described the species (although we can assume he had at least two since he gave a range of measurements, "Long. Lin. $6 ½-7 . ")$, only the sex: female. Walker (1867a: 143) listed 2 specimens from the same provenance (Venezuela, Mr Dyson). We have found 2 female specimens in the collection, with matching data. Thomas (1992: 25) explained: "I examined the female type of Apateticus halys located in the British Museum (Natural History). It is labeled (a) "Type," (b) "Venezuela," (c) "1. Apateticus halys."" In so doing, he designated that specimen as the lectotype for this species.
hamata (Strachia) Walker 1867b: 342.
Original data: Holotype and Var. β. "a, b. New Guinea. Presented by W. W. Saunders, Esq."

HOLOTYPE m\#: red-margined holotype disc; "S"; "Strachia hamata Walker's catal."; "Saunders. 65*13."; "NHMUK 010592380". Fourth and fifth right and left antennomeres missing; left hemelytra disjointed; left membranous wing deteriorated (Fig. 75).

Current status: Amyotea hamata (Walker, 1867) (see Schouteden 1907: 54).
Notes: Walker (1867b: 342) mentioned another variety of this species: "Var. β.Scutellum with a cruciform pale luteous stripe". We have found this female specimen in the collection (barcode number NHMUK 010592379) but according to the International Code of Zoological Nomenclature (ICZN 1999: Art. 72.4. 1) the varieties are not to be
counted as part of the type series, therefore we consider only the specimen with the uniform coloured scutellum as the holotype. This specimen, presented by William W. Saunders to the Museum in 1865, was collected early in 1861 by Charles M. Allen, Alfred R. Wallace's assistant; the handwritten " S " on the disc label may stand for Sorong or "Saylee" [Sele] (Baker, 1995: 195). The female specimen, var. β, was the one marked as type with both the long label: "ASOPUS HAMATUS" and the greenmargined type label. It also bears three other labels: "Wallace"; "Saunders 65 . 13 ." and "N.Guin. S.W.". While "ASOPUS HAMATUS." is not the original combination, this is one used by Walker (1868: 533).
humeralis (Canthecona) Distant 1908: 452.
Original data: Syntype(s): "m\#". "Hab. Tenasserim; Mergui (Coll. Dist.)."
SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc; "Tenasserim Mergui"; "Canthecona humeralis type Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592154". Left hemelytra and right anterior leg missing, abdomen and scutellum disjointed from pronotum (Fig. 76).

Current status: Cantheconidea humeralis (Distant, 1908) (see Schouteden 1907: 44).

Note: Distant did not state the number of his specimens. Thomas (1994: 168) mentioned "Type specimens in BMNH". We have found only one specimen in the collection, a female.
indecora (Bodetria) Walker 1868: 528.
Original data: Holotype. "a. Amazon Region, From Mr. Bates' collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Braz /62 57"; "Bodetria indecora."; "NHMUK 010592393". Specimen in double mounting; fourth and fifth right and left antennomeres, left anterior leg, and posterior legs missing (Fig. 77).

Current status: Heteroscelis servillei Laporte, 1833 (synonymised by Stål 1870: 31; see also Distant 1900a: 63; Schouteden 1907: 19).
indicus (Platynopus) Chatterjee 1934: 24-26.

Original data: Holotype. "Described from eight examples. Type in British Museum, Natural History, London. Locality: COORG: Fraserpet, IX-30 (1 ex.), on spiked sandal (N.C.C.); plot 1, IX, XI-30 (2 ex.); plot 2, VII, IX-30 (2 ex.); plot 3, VIII30 (1 ex.); plot 4, VIII, IX-30 (2 ex.)."

Current status: Platynopus indicus Chatterjee, 1934
Note: Although Chatterjee (1934: 25) noted that the type of this species was deposited at the "British Museum, Natural History, London", we failed to find the specimen in the collection. It is possible that it has been misplaced and will be found ulteriorly. Alternatively, the whole type series may be deposited at the Forest Research Institute (FRI, which had organised the survey reported by Chatterjee 1934) or at the Northern Regional Centre (NRC) of the Zoological Survey of India (ZSI), both located in Dehradun, Uttarakhand. Because Chatterjee did not state which of the eight specimens was the type in the original description, if the whole type series is to be found in the same depository, all specimens should be regarded as syntypes unless they each clearly bear a label stating either "Holotype" or "Paratype".
infuscata (Macrorhaphis) Walker 1868: 531.
Original data: Holotype. "a. Whydah. From Mr. Fraser’s collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "53
74"; "Macrorhaphis infuscata. f\# sp. n. F. Walker 1868"; "G. Schmitz det. 1976 Macrorhaphis acuta DALLAS"; "NHMUK 010592176". Specimen carded; antennae and left legs missing; abdomen loose; genital plates inside a vial glass (Fig. 78).

Current status: Macrorhaphis acuta Dallas, 1851 (synonymised by Schouteden 1905: 177; see Schouteden 1907: 39).

Note: Walker (1868) had noted: "This may be a variety of M. acuta, from which it is distinguished by the longer ventral spine." Indeed, the species was later synonymised to M. acuta by Schouteden.
insignis (Moyara) Distant 1898: 314-315.
Original data: Syntype(s). "Hab. Nyasaland, Zomba (Dr. P. Rendall)."
SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc;
"Zomba Brit. Centr Afr. (P. Rendall)"; "insignis Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592142". Specimen well preserved (Fig. 79).

Current status: Leptolobus insignis (Distant, 1898) (see Schouteden 1905: 172; Schouteden 1907: 17; Bergroth 1908 : 181; Kirkaldy 1909 : 29; Thomas 1994 : 183).

Note: Thomas (1994: 183) stated "Type specimen in BM(NH)". Similarly, we have found only one.
insignis (Podisus) Distant 1880: 39.
Original data: Syntype(s). "Hab. Guatemala, San Gerónimo (Champion)."
LECTOTYPE m\# (designated by Thomas 1992: 98): purple-margined lectotype disc; red-margined type disc; "San Geronimo Verapaz"; "insignis Dist. (type) [Distant’s handwriting]"; "NHMUK 010592324". Fourth and fifth left antennomeres, and right posterior leg missing (Fig. 80).

Current status: Podisus insignis Distant, 1880.
Notes: Thomas (1992: 98) explained: "I examined the male type of Podisus insignis. It is located in the British Museum (Natural History) and is labeled: a) "Type," b) "insignis Dist. (type)," c) "San Geronimo, Verapaz.'"" From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
insularis (Canthecona) Kirby 1891: 79.
Original data: Syntype(s). "Ceylon": "Pundaloya"("E. Ernest Green").
SYNTYPE f\#: blue-margined syntype disc; "Pundalova [sic, with "y" handwritten in blue after "Ceylon."] Ceylon."; "Ceylon. Green Coll. 91-29"; "Canthecona insularis Kb. cotype"; "L//1"; "NHMUK 010592157". Fourth and fifth right and left antennomeres, and middle and posterior left legs missing (Fig. 81).

SYNTYPE f\#: blue-margined syntype disc; "Pundaloya Ceylon."; "Ceylon. Green Coll 91-26"; "Canthecona insularis Kb. type figd."; "NHMUK 010592158". Specimen well preserved (Fig. 82).

Current status: Cantheconidea javana (Dallas, 1851) (synonymised to Canthecona cognata Distant, 1882 by Distant 1900a: 58, which itself was synonymised to C. javana Dallas, 1851 by Breddin 1903: 203; see Schouteden 1907: 45).
internexa (Cazira) Walker 1867a: 118.
Original data: Holotype. "a. Cambodia. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc;
"Cambo"; "4. Cazira internexa."; "Saunders 65.13."; "NHMUK 010592146". Right antenna missing; wings disjointed (Fig. 83).

Current status: Cazira internexa Walker, 1867.
invaria (Arma) Walker 1867a: 135.
Original data: Holotype. "a. Oajaca. From M. Sallé's collection."
HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; "58.135 MEX. (Oajaca.)"; "15. Arma invaria."; "NHMUK 010592325". Fourth and fifth left antennomeres missing (Fig. 84).

Current status: Apoecilus invarius (Walker, 1867) (see Thomas 1992: 28).
javanus (Glypsus?) Dallas 1851: 94.
Original data: Syntype(s): "m\#". "a. Java. From the East India Company's Collection."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Java"; " 6. Glypsus javanus,"; "a"; "NHMUK 010592156". Antennae missing (Fig. 85).

Current status: Cantheconidea javana (Dallas, 1851) (see Schouteden 1907: 45).
Note: Walker (1867a: 132) listed one specimen. It is likely that Dallas only had the one for his description yet we cannot be sure of this, we therefore consider the specimen a syntype.
laetus (Platynopus) Walker 1867a: 127-128.
Original data: Holotype. "a. New Guinea. Presented by W. W. Saunders, Esq."
HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; " N "; "19. Platynopus laetus."; "Saunders 65•13."; "NHMUK 010592431". Fourth and fifth right antennomeres, and right anterior and left middle legs missing. The legs are glued on the first label (Fig. 86).

Current status: Montrouzierellus laetus (Walker, 1867) (see Kirkaldy 1909: 11; Thomas 1994: 187).
lateralis (Arma) Walker 1867a: 138-139.
Original data: 2 syntypes. "a. Constancia. Presented by the Rev. H. Clark and by J. Gray, Esq. b. Petropolis. Presented by the Rev. H. Clark and by J. Gray, Esq."

LECTOTYPE f\# (designated by Thomas 1992: 114): purple-margined lectotype disc; green-margined type disc; "CONSTANCIA Jan." 1857 J. Gray."; "36. Arma lateralis"; "NHMUK 010592364". Fourth and fifth right antennomeres, second to fifth left antennomeres, right anterior leg, and middle legs missing (Fig. 87).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Arma lateralis lurida Walker's catal."; "PETROPOLIS Feb.' ${ }^{\text {y }}$ 1857. J. Gray. / 57. 57"; "NHMUK 010939179". Specimen carded (Fig. 88).

Current status: Supputius cincticeps (Stål, 1860) (synonymised to Tynacantha cincticeps Stål by Distant 1887: Lix; see Distant 1900a: 63; Schouteden 1907: 59, placed in Supputius Distant).

Note: Thomas (1992: 114) explained: "The type of Arma lateralis Walker was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Constancia, Jan 1857, J. Gray," (c) "36. Arma lateralis." The specimen is a female." We know from the original description that Walker described the species from two specimens. By distinguishing the syntype from Constancia as "The type", Thomas has designated it as lectotype by inference of "the type".
leprosus (Asopus) Germar 1838: 186.
Original data: Syntype(s). Cape of Good Hope.
SYNTYPE sex unknown: blue-margined syntype disc; faded red-margined type disc; "C.G.H/ 42 77"; "1165. "; " ""; "Asopus leprosus [hw] Germar det. [pr] "; "Cape Gd. Hope. 42-77. Ex.coll.Drège.No.[pr] 1165 [hw] "; "1. MACRORHAPHIS TRISTIS. [pr] "; "NHMUK 010937295". Antennae, anterior legs, left middle and posterior legs, and abdomen missing (Fig. 89).

Current status: Macrorhaphis (Macrorhaphis) leprosa (Germar, 1838) (see
Dallas 1851: 88, who first placed the species in his newly described genus Macrorhaphis and Thomas 1994: 184-185, for the subgeneric placement).

Notes: The senior author located a male syntype of A. leprosus in MFNB. None is to be found in Lviv. Walker (1867a: 129) recorded two specimens of Macrorhaphis tristis (Herrich-Schäffer, 1844) coming from the Cape and Drège's collection. The

Accessions register does not record any specimen of Asopus tristis under number 4277 nor the count of specimens for Asopus leprosus as it does for other species. We have found one specimen of Asopus leprosus in the collection. Walker (1867a: 129) was obviously unaware that the two specimens he had recorded under Macrorhaphis tristis were Germar's syntypes of Asopus leprosus (or, at least, one of them is). He must have interpreted both species from Herrich-Schäffer's (1844) figures and held that the true Asopus leprosus (a species for which he listed no specimens) possibly belonged in Platynopus (see Walker 1867a: 126). Stål (1870: 44) had noted that the type series was not conspecific. The male specimen examined in Berlin belongs in Macrorhaphis as does the specimen examined in London.
lewisi (Picromerus) Scott 1874: 293-294.
Original data: Syntype(s). Japan (George Lewis).
SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc; "Type. Scott Coll. 88-11."; "Picromerus Lewisi, n. sp."; "NHMUK 010592297". Specimen well preserved (Fig. 90).

Current status: Picromerus lewisi Scott, 1874.
lineatus (Oplomus) Walker 1867a: 122.
Original data: Holotype. "a. Abyssinia. Presented by the Secretary for Indian Affairs."

HOLOTYPE f\#: red-margined holotype disc; red-margined type disc; greenmargined type disc; "Abyss"; "5 19 [sic!]"; "20. Oplomus lineatus." "PERILLUS near CONFLUENS (H.-S.) Det. V. Gapud 1972"; "NHMUK 010592423". Second to fifth right antennomeres, fourth and fifth left antennomeres, left middle leg, and posterior legs missing (Fig. 91).

Current status: Perillus confluens (Herrich-Schäffer, 1840) (synonymised by Thomas 1992: 70).

Notes: Walker (1867a: 122) had noted: "It differs much in aspect from the American species of the genus." and indeed the specimen was found not to belong in Oplomus. The Accessions Register number on the label was erroneously reproduced on the card; the reverse of the original label should not read " 519 " but " 619 ".
luridus (Cimex) Fabricius 1775: 701.
Original data: Syntype(s). "Habitat in Anglia. Mus. Banks."
SYNTYPE m\#: red-margined type disc; "England"; "BRIT. MUS. TYPE No.
HEM. 393"; "Cimex luridus Fab. Entom. n. 701.25 "; "BMNH(E) \#668923". Specimen well preserved (Fig. 92).

Current status: Troilus luridus (Fabricius, 1775) (see Reuter 1881: 156; Thomas 1994: 199).

Note: The specimen may be found in the Banks collection at the Natural History Museum, London.
luridus (Glypsus) Dallas 1851: 93-94.
Original data: Syntype(s): "m\#". "a. Corea. Presented by Capt. Sir Edward Belcher."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Corea / 47 21"; "5. Glypsus luridus,"; "Glypsus erubescens Distant Det. V. Gapud 1973"; "a"; "NHMUK 010592307". Fourth and fifth right antennomeres, and third to fifth left antennomeres missing (Fig. 93).

Current status: Glypsus luridus Dallas, 1851.
Note: Walker (1867a: 132) listed one specimen. Thomas (1994: 180) stated: "I was unable to locate the type at the $\mathrm{BM}(\mathrm{NH})$." We have found one male specimen. It is likely that Dallas described the species from this unique specimen (especially as he stated one measurement and noted: "Antennae black? (the two apical joints wanting)." [emphasis ours]), but we cannot be sure, therefore we consider it a syntype.
manifesta (Sesha) Distant 1887a: 343-344.
Original data: Syntype(s). "Hab. Sikkim (Calc. Mus. and coll. Dist.)."
SYNTYPE m\#: blue-margined syntype disc; "Sikkim."; "manifesta Dist. [Distant's handwriting]"; "NHMUK 010592140". Fourth and fifth right and left antennomeres, left anterior leg, and right posterior leg missing. There are two antennomeres and two legs glued on a card pinned below the specimen (Fig. 94).
?SYNTYPE m\#: blue-margined syntype disc; "Sikkim"; "Atkinson Coll. 92-6."; "NHMUK 010592145 ". Second to fifth right and left antennomeres missing (Fig. 95).

Current status: Blachia ducalis Walker, 1867 (synonymised by Atkinson 1888: 171; see Distant 1902: 247; Schouteden 1907: 29).

Notes: Referring to Blachia ducalis, Thomas (1994: 167) wrote: "The type series, one male and three females, were examined in the $\mathrm{BM}[\mathrm{NH}]$. Also, from India (1 female)." It is difficult to understand what he meant as Walker mentioned only one specimen for Blachia ducalis and we have found only one male syntype for its synonym, Sesha manifesta Distant. The specimen from Atkinson's collection was accessioned in 1892 but was reported by Atkinson (1888); Distant may have used it when he described his species.
marginata (Tynacantha) Dallas 1851: 107.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "a. Venezuela. From Mr. Dyson's Collection."
LECTOTYPE f\# (designated by Thomas 1992: 122): purple-margined lectotype disc; red-margined type disc; "Venezuela / 47 1"; "1. Tynacantha marginata,"; "a"; "NHMUK $010592371 "$. Second to fifth right antennomeres, fourth and fifth left antennomeres, and right posterior leg missing (Fig. 96).

Current status: Tynacantha marginata Dallas, 1851.
Note: Thomas (1992: 122) explained: "I examined the type of Tynacantha marginata, a female, located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "61 Venezuela," (c) "a," (d) "Tynacantha marginata."" From Dallas’s original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 147) listed one specimen and we have found only one specimen in the collection but cannot be sure it was the only one Dallas had. By giving its labels data (albeit somewhat erroneously) and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
marginella (Canthecona) Dallas 1851: 89.
Original data: Syntype(S): male. a. Sierra Leone. Presented by the Rev. D.F. Morgan."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "87 a"; "Canthecona marginella identified by Dallas."; "a"; "NHMUK 010592170". Fourth and fifth right antennomeres, second to fifth left antennomeres, and left posterior leg missing (Fig. 97).

Current status: Afrius purpureus (Westwood, 1837) (first synonymised to Canthecona Yolofa (Guérin-Méneville, 1831), as a var. by Stål 1862: 496; synonymised by Stål, 1870: 44; see Roell et al., 2019: XXX).

Notes: Walker (1867a: 130) listed one specimen from Sierra Leone under the name Canthecona yolofa. It is likely that Dallas only described the species from this unique specimen (especially as he stated only one measurement and noted: "Antennae black (two apical joints wanting)." [emphasis ours]), but we cannot be sure, we therefore consider it a syntype. The label " 87 a " refers to the first specimen on page 87 in White's unpublished "Catalogue of Hemiptera" There, reference is made to a record in Samouelle's Register: "Reg. 1224". On page 182 of Samouelle's Register, we can find information on the determination of the specimen: "Pentatoma" and on its provenance: "Sierra Leone Rvd Morgan". A cross-reference to White's Catalogue of Hemiptera is as well noted: "Cat. Hem. II 87a". For further informations on White's Catalogue of Hemiptera and other early catalogues at the Museum, see Wheeler (1996).
marginella (Zicrona) Dallas 1851: 109.
Original data: Syntypes: "m\# f\#". "a. Hudson's Bay. Presented by G. Barnston, Esq."

LECTOTYPE f\# (designated by Thomas 1992: 70): purple-margined lectotype disc; red-margined type disc; "Hudson’s Bay / 44 17"; "4. Zicrona marginella,"; "NHMUK 010592410". Right middle leg missing (Fig. 98).

PARALECTOTYPE m\#: blue-margined paralectotype disc; "Hudson’s Bay / 44 17"; "Zicrona marginella Walker's catal."; "NHMUK 010747388". Second to fifth left antennomeres missing (Fig. 99).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Hudson's Bay / 44 17"; "Zicrona marginella Walker’s catal."; "NHMUK 010747389". Antennae and left anterior leg missing (Fig. 100).

Current status: Perillus exaptus (Say, 1825) (synonymised by Uhler 1861: 23, to Zicrona exapta; see Stål 1870: 32; Uhler 1876: 281, placed in Perillus).

Notes: Walker (1867a: 146) listed five specimens from the same provenance. (Hudson's Bay, Dr. Barnston). Thomas (1992: 70) stated: "The female type of Zicrona marginella Dallas was located in the British Museum (Natural Museum). It is labeled:
(a) "Type," (b) "Zicrona marginella."". With these words, he designated the specimen
marked as type as the lectotype by inference of "the type". Burks (1975: 140) precised that, although the labels read "Hudson Bay", Barnston actually collected his specimens at St Martin's Falls on the Albany River, in Ontario, Canada. This locality is mentioned in the Museum Accessions Register. Walker (1985: 15) listed the name Zicrona marginella among those of named species sent by Francis Walker to the Museum of Victoria. Public Library, Museums and National Gallery (Vic.), et al. (1890: 52) listed one specimen (Number 52875) of this species coming from Hudson's Bay. It could be one of the two missing paralectotypes. This needs to be further investigated.
marmorata (Canthecona) Dallas 1851: 90.
Original data: Syntype(s): "m\#". "a. S. Africa. Presented by the Earl of Derby." SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Int. S. Africa / 43 19"; "3. Canthecona marmorata,"; "a"; "NHMUK 010592164". Right middle and posterior legs missing (Fig. 101).

Current status: Afrius purpureus (Westwood, 1837) (synonymised by Roell et al. 2019: XXX).

Notes: Walker (1867a: 130) listed only one specimen from the same provenance (South Africa, Earl of Derby); it is likely that Dallas described the species from this unique specimen but we cannot be totally sure, we therefore consider the specimen a syntype. Strangely, Thomas (1994: 151) wrote "the Holotype female of Canthecona marmorata Dallas was located in the $\mathrm{BM}(\mathrm{NH})$ ". Dallas described the species from one (or more) male, and we have also found a male in the collection.

Marshalli (Mecosoma) Distant 1898: 308-309.
Original data: Syntype(s). "Hab. Mashonaland, near Salisbury (G. A. K.

Marshall)."

SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc; "Salisbury Mashonaland (S Marshall)"; "Marshalli Dist. [Distant's handwriting]"; "66"; "Distant coll. 1911-383."; "NHMUK 010592414". Fifth right antennomere, fourth and fifth left antennomere, right legs, and left middle leg missing (Fig. 102).

Current status: Mecosoma mensor (Germar, 1838) (synonymised by Schouteden 1905: 183, 185 ; see Schouteden 1907: 63; Kirkaldy 1909: 25).
megaspila (Strachia) Walker 1867b: 341.
Original data: Holotype. "a. Mysol. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc;
"Saunders 65.13."; "M"; "Asopus megaspilus."; "NHMUK 010592385". Fifth right and left antennomeres missing (Fig. 103).

Current status: Amyotea reciproca (Walker, 1867) (synonymised by Stål 1870: 57; see Schouteden 1907: 54)

Notes: Walker (1867b: 341) had noted: "This may be a mere variety of S. reciproca." And, indeed, the species was later synonymised to reciproca. The handwritten " M " on the disc label was the way Charles M. Allen, Alfred R. Wallace's assistant recorded "Mysol" (Baker, 1995: 173). The long label from Walker's catalogue reads: "Asopus megaspilus.". While this is not the original combination, this is the one used by Walker (1868: 534).
megaspilus (Hoploxys) Walker 1867a: 141.
Original data: Holotype. "a. Santarem. From Mr. Bates’ collection."
HOLOTYPE m\#: red-margined holotype disc; green-margined type disc;
"Santarem / 53 72"; "2. Hoploxys megaspilus."; "NHMUK 010592365". Specimen well preserved (Fig. 104).

Current status: Tylospilus megaspilus (Walker, 1867) (see Distant 1900a: 59).
Note: Walker (1867a: 141) had noted: "This species will form a distinct section in the genus."; Distant (1900a: 59) referred it to Tylospilus Stål, 1870
mexicanus (Podisus) Distant 1880: 38.
Original data: Syntype(s). "Hab. Mexico (coll. Sign.)."
Current status: Podisus mexicanus Distant, 1880.
Note: Thomas (1992: 96) explained: "A female specimen located in the British Museum (Natural History) is labeled: (a) "Type," (b) "Omilteme Guerrero 800 ft July H.H. Smith." (c) "Mexicanus Dist." As with some of the other specimens labeled as types in the British Museum (Natural History), this is not the specimen referred to by Distant (1880) in his original description. My colleague William Dolling, curator of Hemiptera at the British Museum, informs me that these type labels were added early in the twentieth century at the direction of the museum management." Indeed, the original
description stating that the type(s) was/were in "coll. Sign[oret]", we contacted Dr Herbert Zettel, who informed us (personnal communication) that a female specimen, unique type, was under his care in NHMW, Vienna. We regard this Viennese specimen as a syntype.
micans (Asopus) Distant 1888: 476.
Original data: Syntype(s). "Received from Baron von Müller, and collected by Mr. Sayer in New Guinea during Mr. Cuthbertson's Expedition."

SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc; "L1 N. GUINEA COLL. SAYER"; "micans Dist. [Distant's handwriting]"; "Distant Coll. 1911-383"; "NHMUK 010592382". Left antenna and left posterior leg missing (Fig. 105).

Current status: Amyotea micans (Distant, 1888) (see Schouteden 1907: 54; Thomas 1994: 157).

Notes: Thomas (1994: 158) mentioned: "Distant's type specimen was examined in $\mathrm{BM}(\mathrm{NH})$ ". We do not deem that Thomas (1994) gave enough detail to recognise the specimen and do not consider his having mentioned examining "Distant's type specimen" as a valid lectotype designation.
migratoria (Cantheconidea) Distant 1913: 144-145.
Original data: Syntype(s). "Loc. Aldabra, 1907 (Thomasset)."
SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "Aldabra. APT. 1907."; "Percy Sladen Trust Expedition. 1911-497."; "Canthecona migratoria type Dist. [Distant’s handwriting]"; "NHMUK 010592166". Carded specimen. Fifth left antennomere, right antenna, and right posterior leg missing (Fig. 106).

Current status: Afrius (Subafrius) flavirostrum (Signoret, 1861) (synonymised by Roell et al., 2019: XXX).

Note: Thomas (1994: 151) explained: "I am convinced that the specimen labeled "Afrius nigritarsis Distant," "Type," and, "Aldabra," is actually the lost type of C. migratoria Distant. The specimen from Aldabra is markedly similar to Afrius flavirostrum, a Madagascan species, but I hesitate to synonymize Distant's name because of the uncertainty attending the true identity of the specimen, it's [sic!] exotic geographic origin, and the paucity of material for study. With those provisos in mind I
am transferring Cantheconidea migratoria Distant to the genus Afrius, subgenus Subafrius." It seems clear to us that he misread the specific epithet migratoria for nigritarsis and we do not doubt the identity of the specimen.
minax (Ealda) Walker 1867b: 409.
Original data: 2 syntypes. "a, b. New Caledonia. From Mr. Macgillivray's collection."

SYNTYPE f\#: blue-margined syntype disc; green-margined type disc; "New Caled. / 59 63"; "1. Ealda minax."; "NHMUK 010592421". Second to fifth left antennomeres, and right legs missing (Fig. 107).

SYNTYPE f\#: blue-margined syntype disc; "New Caled / 59 63"; "Ealda minax Walker's catal."; "NHMUK 010592422". Wings opened (Fig. 108).

Current status: Ealda minax Walker, 1867.
Note: Thomas (1994: 175) also mentioned having examined two female syntypes.
modesta (Arma) Dallas 1851: 101-102.
Original data: Syntypes: "m\# f\#". "a. N. America. From Lieut. Redman's Collection. b. Cincinnati. Presented by G. Lea, Esq. c. Trenton Falls. Presented by E. Doubleday, Esq. d. N. America. From Mr. Children's Collection."

LECTOTYPE m\# (designated by Thomas 1992: 92): purple-margined lectotype disc; red-margined type disc; "5. Arma modesta,"; "698"; "a"; "NHMUK 010592326". Second to fifth right and left antennomeres, left legs, and abdomen missing. The abdomen is inside a vial (Fig. 109).

PARALECTOTYPE m\#: blue-margined paralectotype disc; "Cincinnati / 44 76"; "Arma modesta Walker's catal."; "b"; "NHMUK 010747390". Double mounted; Fourth and fifth left antennomeres, and right middle leg missing (Fig. 110).

PARALECTOTYPE f\#: blue-margined paralectotype disc; " 688 "; "a"; "R"; "NHMUK 010747391". Second to fifth right antennomeres, fourth and fifth left antennomeres, anterior legs, and posterior legs missing (Fig. 111).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "E. Doubleday. Trenton Falls, New York"; "Arma modesta Walker’s catal."; "41.5.17.87"; "c";
"NHMUK 010747392". Double mounted. Fourth and fifth right antennomeres, and right hemelytra missing (Fig. 112).

Current status: Podisus maculiventris (Say, 1831) (synonymised by Phillips 1983: 136; see Thomas 1992: 93; Rider 2012: 324).

Notes: Dallas listed four different provenances. Walker (1867a: 134) listed one specimen per provenance. It is likely that Dallas had, at least four specimens when he described the species. We have found four in the collection but the North American specimen from Children's collection ("d") is missing or has not been recognised (these little labels with the first letters of the alphabet are in Dallas's handwriting and still mark on most of his specimens the provenances listed in his catalogue). Thomas (1992: 92) explained: "The type of Arma modesta, a male, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "5. Arma modesta," (c) "a."." By giving its labels data and sex and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type". Phillips's (1983) thesis remained unpublished; her new synonymies, however, were validated by Thomas as was her new species Podisus brevispinus, which as Rider (2012: 324) noted, should carry the following authorship: Phillips, 1992.
moesta (Edessa) Germar 1838: 161-162.
Original data: Syntypes. Cape of Good Hope.
NON TYPE m\#: red-margined type disc; "Cape Gd. Hope. 42--77. Ex. coll. Drège. No. 1126."; "C.GH 42 77"; "Edessa moesta type [with the latter word added in red ink, in a different hand] Germar det."; "3. Glypsus moestus,"; "a"; "NHMUK 010592304 ". Fourth and fifth right antennomeres, and third to fifth left antennomeres missing (Fig. 113).

Current status: Glypsus conspicuus (Westwood, 1837) (synonymised by Schouteden 1905: 206; see Schouteden 1907: 31, as a variety).

Note: Edessa moesta was described from the female. Thomas examined three female syntypes in MFNB and so did the senior author. Nevertheless, our specimen is mentioned by Germar in the original description ("Specimen possideo, reliquis simillimum, sed antennae rufae, articulis apice nigris, ventris spina usque ad pede [sic!] anticos porrecta, compressa, apice falcata; an hujus mas?"). Although it was marked as
type, we do not consider it a syntype as it was only dubiously associated to the type series. The reply to Germar's question is positive; it is the male of the species.
monospila (Arma) Walker 1867a: 136.
Original data: Holotype. "a. Mexico. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "66. 12."; "16. Arma monospila."; "NHMUK 010592455". Third to fifth right and left antennomeres, right middle and posterior legs, and left posterior leg missing (Fig. 114).

Current status: Podisus sagitta (Fabricius, 1794) (synonymised by Distant 1880: 37; see Distant 1900a: 63; Schouteden 1907: 72).
nigripennis (Oplomus) Dallas 1851: 83.
Original data: Syntype(s): " $\mathrm{f} \#$ ", "a. Mexico. Presented by E. P. Coffin, Esq."
LECTOTYPE f\# (designated by Thomas 1992: 62): purple-margined lectotype disc; red-margined type disc; "Mexico / 43 13"; "2. Oplomus nigripennis,"; "a"; "NHMUK 010592405". Right antenna, and right anterior and posterior legs missing (Fig. 115).

Current status: Oplomus pulcher Dallas, 1851 (synonymised by Stål 1870: 29, as Var. f).

Note: Thomas (1992: 62) explained: "The type of Oplomus nigripennis is also a female and was also located at the British Museum (Natural History). It is labeled: (a) "Type," (b) "Mexico," (c) "Oplomus nigripennis." It is yellow with a black head and black blotches on the thoracic dorsum." From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 120) only listed one specimen with the same provenance as Dallas and we have found only one specimen in the collection but cannot be sure it was the only one Dallas had (although it is likely). By giving its labels data, describing it and calling the specimen "The type", Thomas designated it as the lectotype by inference of "the type".
nigrispina (Arma) Dallas 1851: 99.
Original data: Syntypes: "m\# f\#". "a. Brazil. Presented by E. Doubleday, Esq."
LECTOTYPE f\# (designated by Thomas 1992: 89): purple-margined lectotype disc; red-margined type disc; "Brazil / 45 67"; "19. Arma nigrispina,"; "NHMUK

010592328". Left hemelytra, fourth and fifth right and left antennomeres, anterior legs, left middle leg, and posterior legs missing (Fig. 116).

PARALECTOTYPE m\#: blue-margined paralectotype disc; "Brazil / 45 67"; "Arma nigrispina Walker's catal."; "NHMUK 010747393". Second to fifth right and left antennomeres, and right anterior leg missing (Fig. 117).

Current status: Podisus nigrispinus (Dallas, 1851) (see Stål 1867: 497).
Note: Dallas had at least two specimens since he mentioned male and female. Indeed, Walker (1867a: 137) listed two specimens from the same provenance. Yet Thomas (1992: 89) only reported one: "The type of Arma nigrispina, a female, was located in the British Museum (Natural History). It is labeled: (a) "Brazil," (b) "Type," (c) 19. Arma nigrispina."" By giving its labels data and calling the specimen "The type", Thomas designated it as the lectotype by inference of "the type".
nigriventris (Podisus) Distant 1880: 39.
Original data: Syntype(s). Hab. Guatemala, San Gerónimo (Champion).
LECTOTYPE f\# (designated by Thomas 1992: 97): purple-margined lectotype disc; red-margined type disc; "S. Geronimo, Guatemala. Champion."; "nigriventris Dist. (type) [Distant's handwriting]" "Distant Coll. 1911-383."; "NHMUK 010592330". Specimen well preserved (Fig. 118).

Current status: Podisus nigriventris Distant, 1880.
Note: Thomas (1992: 97) explained: "The type of Podisus nigriventris, a male, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "(Type) nigriventris Dist." (c) "S. geronimo [sic!] Guatemala Champion," (d) "Distant Coll. 1911-383."" From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had, despite the fact that it matches Distant's description and illustration. By giving its labels data and calling the specimen "the type", Thomas designated it as lectotype by inference of "the type" although he erroneously recorded its sex.
nigrivitta (Picromerus) Walker 1867a: 133-134.
Original data: Holotype. "a. Silhet. Presented by J. C. Bowring, Esq."

HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; "Sylhet"; "7. Picromerus nigrivitta."; "Bowring 63•47*"; "NHMUK 010592295". Fifth right and left antennomeres, and left posterior leg missing (Fig. 119).

Current status: Picromerus griseus (Dallas, 1851) (synonymised by Distant 1900a: 58, to Picromerus obtusus Walker; Schouteden 1907: 25 synonymised the latter to P. griseus).
nigro-binotata (Mormidea) Berg 1879: 279-280.
Original data: Syntypes: " $\mathrm{m} \#$ et $\mathrm{f} \#$ ". "Patria: Buenos Aires."
TYPE f\#: "Buenos Aires"; "nigrobinotata Berg."; "Distant Coll. 1911-383."; "NHMUK 010592366". Specimen well preserved (Fig. 120).

TYPE m\#: "Buenos Aires"; "Tylospilus nigrolimbatus [sic!] 199 Berg"; "Distant Coll. 1911-383."; "NHMUK 010592367". Specimen carded; Fourth and fifth right antennomeres missing (Fig. 121).

TYPE f\#: "Buenos Aires"; "nigrobinotata Berg."; "Distant Coll. 1911-383."; "NHMUK 010592368". Specimen carded; well preserved (Fig. 122).

Current status: Tylospilus nigrobinotatus (Berg, 1879) (see Thomas 1992: 117). [Berg considered Tylospilus a subgenus of Podisus]

Note: The senior author examined and imaged two female specimens labeled as types in La Plata Museum. While Berg (1879: 279-280) did describe the species from two specimens ("Los dos individuos que poseo, fueron recojidos en Buenos Aires, por los Sres. Guenther y Lynch."), he however noted that he had male and female. Although he later (Berg 1883: 203) explained that he had made an "equivocacion inexplicable" when he described the species in Mormidea instead of Podisus, subgenus Tylospilus, he could not have made a mistake concerning the sex of his specimens. There could have been an error in the typesetting of the sex symbols but it seems unlikely as Berg gave a wide range of measurements, which would support the fact that there was a male and a female (females are usually much larger than males). The male type thus would appear to be missing in MLPA La Plata. Bachmann $(1999,2012)$ did not mention any type of the species in MACN Buenos Aires where some more of Berg's typical material can be found. Three specimens were found in NHMUK, one male and two females collected in Buenos Aires. Because these three specimens came from Distant's collection, it is difficult to assess how he obtained them. Berg did make donations to the NHMUK in
the mid 1880s, it could well be that he donated specimens to Distant or exchanged some with him. With so little data, it would be preposterous to claim that the male specimen in NHMUK is the male that Berg had before him when he described the species. That specimen may be lost. We chose to call "TYPE" each specimen held by NHMUK as, according to Oldfield Thomas (1893: 242)'s definitions, also repeated by Charles Schuchert (1897: 637-638), the male could be a SYNTYPE if Berg had offered it to Distant and it was from the type series, all specimens could be METATYPES if Berg had offered them to Distant, they were not part of the type series but Berg himself had identified them as his species and finally, because whichever was the way they came into Distant's possession, they definitely are TOPOTYPES and specimens of historical value.

A specimen of Acanalonia chloris (Berg, 1879) found at the Natural History Museum, London would seem to invalidate our theory that the male specimen could be the missing syntype or that any of the specimens could be metatypes. Indeed, this specimen bears the following labels "Acanonia chloris Berg. [hw]"; "Scott Coll. 8811."; "Cum typo comparat"; "Ex Coll. Bergiana". The last two labels are typical of Berg's collection: white rectangles with border and text printed in red. If Berg always labelled his specimens so clearly as coming from his collection ("Ex Coll. Bergiana") and as metatypes ("Cum typo comparat"), then our theory is de facto invalidated. Nevertheless, this specimen and its labels are the proof that Berg sent specimens to his colleagues. Another proof may also be found in Berg (1879: 44). Similarly, the missing type could have been sent to a colleague or even exchanged or, if it were not conspecific with the other, it could have been ulteriorly described as another species. Indeed, one of the syntypes of Myrmecalydus celeripes Berg, 1879 became a paratype.of Cydamus delpontei Kormilev, 1953.
obscura (Arma) Dallas 1851: 100.
Original data: Syntype(s): " $\ddagger \# "$ ". "a. Brazil. Presented by E. Doubleday, Esq."
LECTOTYPE f\# (designated by Thomas 1992: 89): purple-margined lectotype disc; red-margined type disc; "Brazil / 45 67; "20. Arma obscura,"; "a"; "NHMUK 010592329 ". Fifth right antennomere, third to fifth left antennomere, and right anterior and posterior legs missing; genital plates disjointed (Fig. 123).

Current status: Podisus nigrispinus (Dallas, 1851) (synonymised by Thomas 1992: 88).

Note: Thomas (1992: 89) explained: "The type of Arma obscura, a female, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Brazil," (c) "a," (d) "20. Arma obscura.'"" From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 137) listed one specimen from the same provenance and we have found only one female specimen in the collection but cannot be sure it was the only one Dallas had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
obtusus (Picromerus) Walker 1867a: 133.
Original data: Holotype. "a. North Hindostan. From Capt. Reid's collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; " n Ind / 55 76"; "6. Picromerus obtusus."; "NHMUK 010592294". Fifth left antennomere missing (Fig. 124).

Current status: Picromerus griseus (Dallas, 1851) (synonymised by Schouteden 1907: 25; see Distant 1908: 453; Zhao, Liu and Bu 2013: 149).
optabilis (Platynopus) Walker 1867a: 126.
Original data: Holotype. "a. West Africa. From M. du Chaillu's collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "64 75"; "W. Africa."; "13. PLATYNOPUS OPTABILIS"; "NHMUK 010592452". Fourth and fifth right antennomeres missing (Fig. 125).

Current status: Platynopiellus septendecimmaculatus (Palisot de Beauvois, 1811) (Platynopus optabilis was synonymised to Platynopus rostratus (Drury, 1782) by Distant 1900a: 56, as a variety; see Schouteden 1905: 160; Schouteden 1907: 48; Due to homonymy (see "Notes" below), the name of the species became that of the next available junior synonym: Pentatoma 17-maculata Palisot de Beauvois, 1811 (see Kirkaldy 1909: 12, as Platynopus 17-maculatus); Thomas (1994: 195) placed it in his new genus, Platynopiellus.).

Notes: Platynopus rostratus (Drury, 1782) was a primary homonym of Cimex rostratus DeGeer, 1773 (Pentatomidae), C. rostratus Goeze, 1778 (Coreidae) and C.
rostratus Fabricius, 1781 (Pentatomidae). The next junior synonym for that species was Cimex calens Fabricius, 1803, a primary homonym of C. calens Linnaeus, 1767 (Miridae) (see Dolling et al. 1999: 18, 77). The specific epithet, originally spelled 17maculata, has been transliterated in two different ways: septendecimaculatal-us (Thomas 1994: 194-195; Maldès \& Pluot-Sigwalt 2004) and septemdecimmaculatus (Dolling et al. 1999: 18, 77; Rider 2015); we have adopted the spelling septendecimmaculatal-us as we have chosen to follow Welter-Schultes (2012: 76); the set of rules provided there is convenient and useful to achieve consistency in transliterating older names or naming new species. We note, however, that the use of "septemdecim" is not erroneous (Gaffiot 1934: 1426), only less correct (Lewis \& Short 1891: 1675). Furthermore, bearing in mind the explanations by Lewis \& Short (1891:1091), we also understand the choice not to duplicate the " m " as logical.
opulentus (Jalloides) Distant 1911b: 349-350.
Original data: Syntype(s). "Hab.: N. Queensland (Kelsall, Brit. Mus.): Cairns (Coll. Dist.); near Port Moresby (Coll. Dist.)."

SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "N. Queensland. (Kelsall Coll.) 1910-168."; "Jalloides opulentus type Dist. [Distant's handwriting]"; "NHMUK 010592180". Fifth left antennomere missing (Fig. 126).

Current status: Jalloides opulentus Distant, 1911.
Note: Distant described this species from specimens having "head and pronotum testaceous" or "Var. a.- Pronotum with a prominent, central, oblong, bluish-black spot.", and "Var. b. - Resembling var. a, but pronotum with an additional bluish-black spot on each lateral margin.". Because Distant had two varieties and three provenances, he had, at least three specimens. These may not be all the specimens Distant had. We have found three specimens in the collection. According to the International Code of Zoological Nomenclature, varieties are not to be counted as part of the type series (ICZN 1999: Art 72.4.1), therefore we are considering only the specimen with the general characteristics as a syntype. Thomas (1994: 183) simply wrote "holotype in $\mathrm{BM}(\mathrm{NH})$ was examined", without giving any details about the labels. We consequently do not accept this as a valid lectotype designation. The specimen marked as type by Distant has no markings on the pronotum but a specimen from Cairns marked "co-
type", also by Distant, clearly belong to Var. a. as do two other specimens from Port Moresby.
opulentus (Neoglypsus) Distant 1890a: 159.
Original data: Syntype(s). China: "Hab. Chang Yang. (Pratt.)".
LECTOTYPE f\# (designated by Thomas 1994: 174): purple-margined lectotype disc; red-margined type [H. T.] disc; "Chang Yang (Pratt)"; "opulentus Dist. [Distant’s handwriting]" "Distant Coll. 1911-383."; "NHMUK 010592303". Genital plates disjointed (Fig. 127).

Current status: Dinorhynchus opulentus (Distant, 1890) (see Schouteden 1907: 64).

Note: Thomas (1994: 174) stated: "Holotype female of Neoglypsus opulentus was examined in $\mathrm{BM}(\mathrm{NH})$." It is clear that Thomas examined the specimen labelled as type that we have found. There is no evidence that this was the only specimen Distant used to describe the species, but this is the only specimen of this species in the collection and we therefore accept that, by calling the specimen "Holotype", Thomas has designated a lectotype by inference of "holotype".
orientalis (Anasida) Distant 1910: 195-196.
Original data: Syntypes: "m\#", "f\#". "Hab. Bombay Province; Dharwar. [...] found by Dr. Harold Mann among stones in a railway cutting."

SYNTYPE m\#: blue-margined syntype disc; red-margined type [H. T.] disc; "Dharwar (Mann)"; "Anasida orientalis type Dist. [Distant's handwriting]"; "Distant coll 1911-383."; "NHMUK 010592344". Fifth right antennomere missing (Fig. 128).

SYNTYPE f\#: blue-margined syntype disc; "Dharwar (Mann)"; "Distant coll 1911-383."; "NHMUK 010592345". Antennae missing (Fig. 129).

SYNTYPE m\#: blue-margined syntype disc; "Dharwar (Mann)"; "Anasida orientalis Dist. [Distant’s handwriting]"; "NHMUK 010592346". Fourth and fifth right antennomeres, and second to fifth left antennomeres missing (Fig. 130).

Current status: Anasida orientalis Distant, 1910.
Note: Thomas (1994: 160) stated: "Distant's male Holotype in BM[NH] was examined." We know that Distant had at least two specimens as he mentions male and female. The mention of "Distant's male Holotype in BM[NH]" can therefore not
constitute a valid designation of lectotype by inference of holotype (see ICZN 1999: Art. 74.5). We have found three specimens, 2 males and 1 female; we consider them all syntypes.
ornatula (Canthecona) Distant 1908: 451.
Original data: Holotype or holotype and paratype(s): "m\#". "Hab. Darjeeling (Coll. Dist.)."

HOLOTYPE m\#: red-margined holotype disc; red-margined type disc; "Pussumhug Darjeeling 4700 ft . 13/11/06"; "Canthecona ornatula type Dist. [Distant's handwriting]"; "Distant Coll. 1911-383"; "NHMUK 010592159". Fifth right antennomere, second to fifth left antennomeres, anterior legs, and left middle leg missing (Fig. 131).

Current status: Eocanthecona ornatula (Distant, 1908) (see Thomas 1994: 177).
Note: Strangely, Thomas (1994: 177) mentioned "Type specimens in BM(NH)." We have only found one male specimen in the collection. Mentions such as "fifth joint mutilated in type" and "anterior legs mutilated in typical specimen" in the original description could support either the fact that Distant had other specimens but designated one as the type (holotype) or that he just had one (only one measurement). Whether Distant had many specimens or not, this specimen matches the description and Distant labelled it as type. We therefore consider it the holotype.
ornatus (Stiretrus) Dallas 1851: 80-81.
Original data: Syntype(s): "f\#". "a. Mexico."
SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "Mexico / 48 11"; "6. Stiretrus ornatus,"; "a"; "NHMUK 010592386". Fourth and fifth right and left antennomeres, and legs (except the right anterior one) missing (Fig. 132).

Current status: Stiretrus anchorago (Fabricius, 1775). (First synonymised by Stål 1870: 25 to S. (Oncogaster) personatus Germ.; then synonymised by Distant 1880: 28 to Siretrus anchorago (Fabricius); see Schouteden 1907: 9; yet Thomas 1992: 109110 listed a new synonymy.).

Note: From Dallas's original description, it is impossible to know how many specimens he had, but we know that they were female. Walker (1867a: 115) listed one specimen from Mexico, adding a precision: it came from Mr Argent's collection. We
have found one female specimen matching these details. It is likely that Dallas just had this unique specimen when he described the species, but we cannot be sure about it. Thomas (1992: 110) did not mention any type material for the species. We, therefore, consider this female specimen a syntype.
pallipes (Arma) Dallas 1851: 101.
Original data: Syntype(s): "m\#". "a. Venezuela. From Mr. Dyson's Collection." SYNTYPE m\#: blue-margined syntype disc; "29. ARMA CRASSIMARGO."; "a"; "Venezuela/ 47 26"; "Podisus sp. 1-198"; "BRIT. MUS."; "NHMUK 010938912". Right third to fifth antennomeres missing (Fig. 133).

NEOTYPE [hereby set aside] m\#: red-margined neotype disc; "VENEZUELA: Mérida Las Cruces 9 July 1986 R.S. Miller colr."; "B.M. 1991-55"; "J. E. Eger collection"; "NEOTYPE ARMA PALLIPES (DALLAS 1851) Desig. D. B. Thomas."; "NHMUK 010592332". Specimen well preserved (Fig. 134).

Current status: Podisus pallipes (Dallas, 1851) (see Stål 1870: 54).
Notes: Dallas did not mention the number of specimens he had when he described the species, only the sex: male. Walker (1867a: 137) listed one specimen. It is likely that there was just one. This specimen could not be found and Thomas (1992: 101-102) designated a neotype: "I was unable to locate the type specimen in the British Museum (Natural History) and it must be presumed lost. In the interest of fixing the identity of this species I am designating the following specimen as neotype: Male, labeled: (a) "VENEZUELA, Merida Las Cruces, 9 July 1986, R.S. Miller Colr.," (b) "NEOTYPE Arma pallipes Dallas 1851, designated by D. B. Thomas." I am depositing the specimen in the British Museum (Natural History)." Among the undetermined specimens of Podisus in the collection, we have however found a male specimen with the following labels: "29. ARMA CRASSIMARGO."; "a"; "Venezuela/ 47 26"; "Podisus sp. 1-198"; "BRIT. MUS."; "NHMUK 010938912". The specimens of only three Arma species (now in Podisus), listed both by Dallas and Walker, were collected in Venezuela by Dyson: Arma ventralis Dallas, Arma pallipes Dallas and Arma didyma Stål (now Podisus sagitta (Fabricius, 1794). Walker listed one for each of these species; it is likely that there were three specimens, one for each species. We have found a female type for Arma ventralis and a male non-type among the specimens of Podisus sagitta (bearing the following labels: " 8 . Arma didyma. "; "Venezuela / 47 52"; "a";
"NHMUK 010938788", with a leg glued on the label.), the specimen labelled "29. Arma crassimargo" is the only other one coming from Venezuela. It perfectly matches the description of Arma pallipes given by Dallas. Dallas did not mention the cordate ivory spot, a character that Thomas (1992: 99) used to separate Podisus pallipes Dallas from the four other species of Podisus in the ventralis group. Dallas's description is so detailed that had the specimen had that spot, he would undoubtedly have mentioned it. Our specimen has no spot. Furthermore, Walker (1867a: 137) reported no specimens of Arma crassimargo (Stål) in his catalogue. We therefore believe that Distant made an error in using the label " 29 . Arma Crassimargo." (it may also have been Walker who had determined it as such after his catalogue had been published and shifted it without recording this shift, as he was wont, according to Distant, 1899: 30) and that this specimen is the type of Dallas's Arma pallipes. As a consequence, Thomas's neotype is hereby set aside (ICZN 1999: Art. 75.8). The latter is thought to be the specimen of a different species whereas Dallas's syntype of A. pallipes would seem to be the male of Dallas's female syntype of A. ventralis.
parva (Canthecona) Distant 1902: 250-251.
Original data: Syntypes [Range of measurements]. "Hab. Bengal. Mysore (Coll. Dist.)."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Ranchi; Irvine."; "parva Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK $010592179^{\prime \prime}$. Carded specimen. Second to fifth left antennomeres, and legs (except the left middle one) missing (Fig. 135).

SYNTYPE m\#: blue-margined syntype disc; "Bangalore Cameron."; "Distant Coll. 1911-383."; "NHMUK 010592299". Fourth and fifth left antennomeres, and right anterior leg missing (Fig. 136).

Current status: Eocanthecona parva (Distant, 1902) (see Thomas 1994: 177).
Note: Thomas (1994: 177) did not mention any type in the material he examined.
parvus (Platynopus) Distant 1900a: 56-57.
Original data: Syntypes [Range of measurements and two countries]. "Hab. Sierra Leone (Brit. Mus.); Congo (Coll. Dist.)."

SYNTYPE m\#: blue-margined syntype disc; "Popocabacca F. Loos"; "parvus Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592424". Fourth and fifth right antennomeres, second to fifth left antennomeres, and left posterior leg missing (Fig. 137).

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Sierra Leone / 42 31"; "parvus Dist. [Distant’s handwriting]"; "a"; "NHMUK 010592450". Second to fifth right antennomeres, fourth and fifth left antennomeres, anterior legs, left middle leg, and right posterior leg missing (Fig. 138).

Current status: Platynopiellus septendecimmaculatus (Palisot de Beauvois, 1811) (synonymised by Schouteden 1905 : 160, 162; see Schouteden 1907: 48, as P. rostratus. Due to homonymy (see "Notes" below), the name of the species became that of the next available junior synonym: Pentatoma 17-maculata Palisot de Beauvois, 1811 (see Kirkaldy 1909: 12, as Platynopus 17-maculatus); Thomas (1994: 195) placed it in his new genus, Platynopiellus.).

Notes: Compared to P. rostratus in the original description and said to be much smaller, later synonymised to it. Platynopus rostratus (Drury, 1782) was a primary homonym of Cimex rostratus DeGeer, 1773 (Pentatomidae), C. rostratus Goeze, 1778 (Coreidae) and C. rostratus Fabricius, 1781 (Pentatomidae). The next junior synonym for that species was Cimex calens Fabricius, 1803, a primary homonym of C. calens Linnaeus, 1767 (Miridae) (see Dolling et al. 1999: 18, 77). The specific epithet, originally spelled 17-maculata, has been transliterated in two different ways: septendecimaculatal-us (Thomas 1994: 194-195; Maldès \& Pluot-Sigwalt 2004) and septemdecimmaculatus (Dolling et al. 1999: 18, 77; Rider 2015); we have adopted the spelling septendecimmaculatal-us as we have chosen to follow Welter-Schultes (2012: 76); the set of rules provided there is convenient and useful to achieve consistency in transliterating older names or naming new species. We note, however, that the use of "septemdecim" is not erroneous (Gaffiot 1934: 1426), only less correct (Lewis \& Short 1891: 1675). Furthermore, bearing in mind the explanations by Lewis \& Short (1891:1091), we also understand the choice not to duplicate the " m " as logical. Thomas (1994: 195) mentions having examined 151 African specimens ("Material examined: Ghana (3), Zaire (6), Cameroon (140), Kenya (1), Uganda (1).") but not the types.

Original data: 4 syntypes. "a. Australia. From Mr. Damel's collection. b. Moreton Bay. From Mr. Diggles' collection. c. Tasmania. Presented by W. W. Saunders, Esq. d. New Zealand. Presented by Col. Bolton."

SYNTYPE f\#: blue-margined syntype disc; green-margined type disc; " 58.124 Australia."; "Rhaphigaster pentatomoides, (Type) Walker"; "81. Rhaphigaster pentatomoides."; "NHMUK 010592412". Fourth and fifth left antennomeres missing. Wings opened (Fig. 139).

SYNTYPE f\#: blue-margined syntype disc; "Rhaphigaster pentatomoides Walker’s Catal." "Saunders 65•13."; "VDL"; "NHMUK 010592447". Fourth and fifth right and left antennomeres missing (Fig. 140).

SYNTYPE f\#: blue-margined syntype disc; "Moreton Bay / 57 130"; "Rhaphigaster pentatomoides Walker’s Catal."; "NHMUK 010592448". Fifth right and left antennomeres missing (Fig. 141).

SYNTYPE f\#: blue-margined syntype disc; "N. Zeal, / 54.4."; "Rhaphigaster pentatomoides Walker’s Catal."; "NHMUK 010592449". Second to fifth left antennomeres, right medium leg, and left posterior leg missing (Fig. 142).

Current status: Cermatulus nasalis nasalis (Westwood, 1837) (synonymised by Butler 1874: 25; see Schouteden 1907: 67; Woodward 1953: 317-318).

Note: Thomas (1994: 173) did not mention any types in the material he examined.
perfectus (Rhaphigaster) Walker 1867b: 371.
Original data: 4 syntypes. "a, b. Australia. From Mr. Damel's collection. c. Moreton Bay. From Mr. Diggles' collection. d. New Zealand. Presented by Col. Bolton."

SYNTYPE f\#: blue-margined syntype disc; green-margined type disc; "Moretn Bay"; "83. Raphigaster perfectus."; "NHMUK 010592341". Right antenna, fourth and fifth left antennomeres, and posterior legs missing (Fig. 143).

SYNTYPE f\#: blue-margined syntype disc; "N. Zeal. 54.4."; "Rhaphigaster perfectus Walker's catal."; "NHMUK 010592479". Fourth and fifth right antennomeres, and left middle and posterior legs missing (Fig. 144).

SYNTYPE f\#: blue-margined syntype disc; "58-124 Australia"; "Rhaphigaster perfectus Walker’s catal."; "NHMUK 010592480". Fourth and fifth right antennomeres, and fifth left antennomere missing. Wings opened (Fig. 145).

SYNTYPE m\#: blue-margined syntype disc; "Cazira Rhaphigaster perfectus [Distant's handwriting] Walker's catal."; "58.124 Australia."; "NHMUK 010937718". Wings opened, left hemelytra missing (Fig. 146).

Current status: Oechalia schellenbergii (Guérin Menéville, 1831). (synonymised by Butler 1874: 25, to Oechalia consocialis (Boisduval) ; see Usinger 1941: 74; Woodward 1953: 317; Woodward 1956: 429-430, with O. schellembergii (GuérinMeneville) as the valid name).

Notes: Thomas (1994: 189) did not mention any type in the material examined ("Material examined: Australia (34), New Zealand (2), Marshall Is. (7), Polynesia (8), Christmas Id. (7), Wake Is. (2), Marquesas (3)."). Woodward (1956: 429-430) demonstrated the priority of Oechalia schellembergii (Guérin-Meneville) over Oechalia consocialis (Boisduval) and noted that the specific epithet should certainly be schellenbergi although he retained the spelling schellembergii. It was ultimately changed to schellenbergi (see Thomas 1994: 189; Aldrich et al. 1996; Cassis \& Gross 2002: 436, 648; Rider 2015, as schellenbergii).
perornatus (Rhaphigaster) Walker 1868: 567.
Original data: Holotype. "a. Whydah. From Mr. Fraser’s collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Whydah / 53 74"; "Rhaphigaster perornatus."; "NHMUK 010592442". Right middle and posterior legs missing; part of abdomen disjointed from thorax; right hemelytra opened (Fig. 147).

Current status: Dorycoris pavoninus (Westwood, 1837) (synonymised by Schouteden 1905: 135, as personatus [sic!] Walker; see Schouteden 1907: 58).
platyrhinoides (Cecyrina) Walker 1867a: 119.
Original data: 3 syntypes. "a-c. Hindostan. From Mr. Stevens’ collection."
SYNTYPE m\#: blue-margined syntype disc; green-margined type disc; "1. CECYRINA PLATYRHINOIDES."; "E. Ind / 52 109"; "LECTOTYPUS CECYRINA

PLATYRHINOIDES Walker, 1867 des. Salini \& P. Kment 2016"; . Wings opened (Fig. 148).

SYNTYPE f\#: blue-margined syntype disc; "Stiretrus Cecyrina platyrhinoides"; "E. Ind / 52 109"; "PARALECTOTYPUS CECYRINA PLATYRHINOIDES Walker, 1867 des. Salini \& P. Kment 2016"; Left antenna missing (Fig. 149).

SYNTYPE f\#: blue-margined syntype disc; "Stiretrus Cecyrina platyrhinoides"; "PARALECTOTYPUS CECYRINA PLATYRHINOIDES Walker, 1867 des. Salini \& P. Kment 2016". Wings opened (Fig. 150).

Current status: Cecyrina platyrhinoides Walker, 1867.
Notes: Thomas (1994: 172) mentioned having examined "Type specimen in $\mathrm{BM}(\mathrm{NH})$ ". Although, we believe he examined the specimen marked as type, there is no sufficient evidence. His statement does not constitute a valid lectotype designation. No barcodes could be added as the specimens were on loan to Petr Kment.
polygraphus (Platynopus) Walker 1867a: 126-127.
Original data: Holotype. "a. Ceram. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Cer."; "17. Platynopus polygraphus."; "Saunders 65•13."; "NHMUK 010592434". Right middle leg missing (Fig. 151).

Current status: Platynopus melanoleucus (Westwood, 1837) (synonymised by Distant 1900a: 57, 63, see Schouteden 1907: 47).

Note: Walker (1867a: 127) had noted: "The markings of this species and the longer spines of the thorax distinguish it from P. melanoleucus.", the species was nevertheless synonymised to P. melanoleucus by Distant, 33 years later.
praecipua (Strachia) Walker 1867b: 339-340.
Original data: Holotype. "a. Batchian. Presented by W. W. Saunders, Esq." HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Bac"; "Asopus praecipuus."; "Saunders 65•13."; "NHMUK 010592373". Fourth and fifth right antennomeres missing; pronotum disjointed; left hemelytra opened (Fig. 152).

Current status: Amyotea erythromela (Walker, 1867) (synonymised by Schouteden 1907: 54, as a variety).

Note: The long label from Walker's catalogue reads: "Asopus praecipuus.". While this is not the original combination, this is the one used by Walker (1868: 533).
primus (Incitatus) Distant 1908: 453-454.
Original data: Syntype(s): "m\#". India, Assam, Dikrum: "Hab. Dikran Valley (Coll. Dist.)."

LECTOTYPE f\# (designated by Thomas 1994: 186): purple-margined lectotype disc; red-margined type [H. T.] disc; "Assam."; "Incitatus primus type Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592155". Fourth and fifth right antennomeres, left middle leg, and posterior legs missing (one leg glued on the first label) (Fig. 153).

Current status: Martinina prima (Distant, 1908) (see Thomas 1994: 186).
Note: Strangely, Distant (1908: 454) indicated that he was describing (a) male specimen(s), yet the specimen that he marked as type in the collection is a female. Nevertheless, it matches the one in Distant's description. Moreover, it is lacking its posterior legs and Distant had figured them in dotted lines. Finally, it measures 15 mm as mentioned by Distant. Females are usually bigger than males and we think that had he had a male, it would have been smaller. Thomas (1994: 186) concurred with us concerning the sex of the only specimen when he mentioned: "holotype, female (BM[NH])." Either Distant made an error when stating the sex of the specimen or the wrong symbol was used in the typesetting process. By referring to this very specimen as the holotype, Thomas actually designated it as lectotype by inference of "the holotype".
pulcher (Oplomus) Dallas 1851: 84-85.
Original data: Syntypes: " f "', "a. Mexico."
LECTOTYPE f\# (designated by Thomas 1992: 62): purple-margined lectotype disc; red-margined type disc; "Mexico / 48 11"; "3. Oplomus pulcher,"; "a"; "NHMUK 010592406". Right posterior leg missing (Fig. 154).

PARALECTOTYPE f\#: blue-margined paralectotype disc; "Mexico / 48 11"; "Oplomus pulcher Walker’s catal."; "a"; "NHMUK 010747387". Fourth and fifth right antennomeres missing (Fig. 155).

Current status: Oplomus pulcher Dallas, 1851.

Note: From Walker (1867a: 120), we know that Dallas had, at least, two specimens from Mexico, from Mr Argent (this is corroborated by the fact that Dallas gave a range of measurements: "Long. lin. $61 / 2-71 / 2$ "). We have found them both. Thomas (1992: 62) explained: "The type of Oplomus pulcher is a female and was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "a," (c) "Oplomus pulcher" The specimen is metallic blue with humeral angles and tip of the scutellum red." By giving its labels data, describing it and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
purpurascens (Platynopus) Walker 1868: 530.
Original data: Holotype. "a. Ceram. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Cer."; "Saunders 65*13."; "Platynopus purparascens."; "NHMUK 010592435". Fourth and fifth right antennomeres, and second to fifth left antennomeres missing (Fig. 156).

Current status: Montrouzierellus purpurascens (Walker, 1868) (see Kirkaldy 1909: 12; Thomas 1994: 187).
pyrophila (Strachia) Walker 1867b: 340.
Original data: Holotype. "a. Batchian. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Bac"; "Asopus pyrophilus."; "Saunders 65•13.; "NHMUK 010592374". Fourth and fifth right antennomeres missing (Fig. 157).

Current status: Amyotea erythromela (Walker, 1867) (synonymised by Schouteden 1907: 54, as a variety).

Notes: Walker (1867b: 340) had noted: "Very closely allied to the preceding species [Strachia praecipua Walker, 1867]." Indeed, Schouteden later synonymised both Strachia praecipua and Strachia pyrophila to Strachia erythromela Walker, 1867, while as well placing them in the genus Amyotea. The long label from Walker's catalogue reads: "Asopus pyrophilus.". While this is not the original combination, this is the one used by Walker (1868: 534).
reciproca (Strachia) Walker 1867b: 340-341.

Original data: 2 syntypes. "a. New Guinea. Presented by W. W. Saunders, Esq. b. New Guinea. From Mr. Wallace's collection."

SYNTYPE f\#: blue-margined syntype disc; green-margined type disc; "New Guin / 62 91"; "Asopus reciprocus."; "N"; "NHMUK 010592383". Specimen well preserved (Fig. 158).

SYNTYPE f\#: blue-margined syntype disc; "Strachia reciproca Walker's catal." "Saunders 65*13."; "S"; "NHMUK 010592384". Fourth and fifth right and left antennomeres missing; genital plates disjointed (Fig. 159).

Current status: Amyotea reciproca (Walker, 1867) (see Schouteden 1907: 54).
Notes: Thomas (1994: 158) mentioned "Walker's material was examined in the $\mathrm{BM}(\mathrm{NH}) . "$, without further detail. The long label from Walker's catalogue reads: "Asopus reciprocus.". While this is not the original combination, this is the one used by Walker (1868: 534). The handwritten " N " on the disc label was the way Charles M. Allen, Alfred R. Wallace's assistant recorded "New Guinea" (Baker, 1995: 173).
robustus (Picromerus) Distant 1879: 48.
Original data: Syntypes: "m\# f\#". India: "Sadia ["north of Brahmaputra", 350 feet." "collected by Mr. A. W. Chennell, of the Indian Topographical Survey".

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Sadia 350 ft."; "robustus (type) Dist. [Distant’s handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592160 ". Fourth and fifth right and left antennomeres, anterior legs, and posterior legs missing (Fig. 160).

SYNTYPE f\#: blue-margined syntype disc; "Sadia 350 ft ."; "Distant Coll. 1911-383."; "NHMUK 010592162". Right antenna, fourth and fifth left antennomeres, right middle and posterior legs, and left anterior and posterior legs missing (Fig. 161).

Current status: Eocanthecona robusta (Distant, 1879) (see Thomas 1994: 177).
Note: Thomas (1994: 177) did not mention having examined types, only "Determined specimens in BM(NH)."
rubro-maculatus (Podisus) Distant 1880: 41.
Original data: Syntype(s). "Hab. Mexico (Belimek; Mus. Vind. Caes.)."
Current status: Tylospilus acutissimus (Stål, 1870) (synonymised by Phillips 1983: 136; see Thomas 1992: 118).

Notes: The types are not deposited in the Natural History Museum, London but, as the original description stated in NHMW, Vienna (historically referred to as "Mus. Vind. Caes."). In a personal communication, Dr Herbert Zettel (NHMW, Vienna) informed us of the following: "There are five specimens in the collection which were collected by Bilimex [sic!] in Mexico in 1871, three with identical locality labels, the two others with slightly expanded information (Orizaba and Cuernavacca). Only one specimen, the photographed male, has an identification label, and it is the one illustrated in BCA (unique colour pattern). If the five specimens are regarded as syntypes, this specimen is the candidate for a lectotype." Phillips (1983:73) further detailed the specimen and its labels. Phillips's (1983) thesis remained unpublished; her new synonymies, however, were validated by Thomas as was her new species Podisus brevispinus, which as Rider (2012: 324) noted, should carry the following authorship: Phillips, 1992.
ruficeps (Stiretrus) Dallas 1851: 79-80.
Original data: Syntype(s): "f\#". "a. Honduras. From Mr. Dyson's Collection."
LECTOTYPE f\# (designated by Thomas 1992: 110): purple-margined lectotype disc; red-margined type disc; "Honduras / 45 123"; "13. Stiretrus ruficeps,"; "a"; "NHMUK 010592387 ". Fourth and fifth right and left antennomeres, and legs (except the left anterior leg) missing. Abdomen partially disjointed from thorax (Fig. 162).

Current status: Stiretrus anchorago (Fabricius, 1775) (synonymised by Thomas 1992: 110, although there is no mention of a new synonymy.).DO YOU KNOW? I have found S. ruficeps still used in the 1950s!

Note: Thomas (1992: 110) explained: "The type of Stiretrus ruficeps Dallas was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "a," (c) "Honduras," (d) "Stiretrus ruficeps." The specimen is a female with a red head and metallic blue body." From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 115) listed one specimen from the same provenance and we have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data, its sex, describing it and calling the specimen "The type", Thomas designated it as the lectotype by inference of "the type".
rutherfordi (Dolycoris) Distant 1892: 187-188.
Original data: Holotype ["Body beneath (imperfectly seen, owing to specimen being carded) bluish-black"]. "Hab., Old Calabar (Rutherford)."

HOLOTYPE f\#: red-margined holotype disc; red-margined type [H. T.] disc; "Old Calabar (Rutherford)"; "rutherfordi Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592441". Specimen carded (Fig. 163).

Current status: Dorycoris pavoninus (Westwood, 1837) (synonymised by Schouteden 1905: 135; see Schouteden 1907: 58).
rutilus (Oplomus) Dallas 1851: 83-84.
Original data: ST(S): "f\#". "a. Columbia. From M. Goudot's Collection."
LECTOTYPE f\# (designated by Thomas 1992: 60-61): purple-margined lectotype disc; red-margined type disc; "Columbia / 4620 "; "Magd. Avril"; "12. Oplomus rutilus,", "a"; "NHMUK 010592399". Second to fifth right and left antennomeres, and legs missing; right hemelytra broken (Fig. 164).

Current status: Oplomus festivus Dallas, 1851 (Synonymised to Oplomus marginalis (Westwood, 1837) by Thomas 1992: 60 but see Rider \& Rolston, 1995: 845).

Notes: Thomas (1992: 60-61) explained: "The type of Oplomus rutilus was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "MayoAbril," (c) "46 20," (d) "Oplomus rutilus." The specimen is a female and is missing the legs. It is orange dorsally with dark brown blotches on the pronotum and scutellum." From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 121) listed only one specimen with the same data and we have found only one specimen in the collection but cannot be sure it was the only one Dallas had (although it is likely he had just this one). By giving its labels data, describing it and calling the specimen "The type", Thomas designated it as the lectotype by inference of "the type". Thomas misread one of the labels as "MayoAbril", it actually reads "Magd. Avril". "Magd." refers to the Colombian Department of Magdalena, while "Avril" is the French for "April". "M. Goudot" can only refer to Justin Goudot, the French naturalist who collected in Colombia between 1822 and 1842 and died there around 1850 (see Lasègue 1845: 471-472 and Palmer 1918: 240-241).
saturata (Strachia) Walker 1867b: 342-343.
Original data: Holotype. "a. Ceram. From Madame Ida Pfeiffer's collection."
HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Ceram / 55 8"; "Asopus saturatus."; "NHMUK 010592381". Fourth and fifth right antennomeres, third to fifth left antennomeres, and right anterior leg missing. Wings partially disjointed (Fig. 165).

Current status: Amyotea hamata (Walker, 1867) (synonymised by Stål 1870: 57; see Schouteden 1907: 54).

Note: The long label from Walker's catalogue reads: "Asopus saturatus.". While this is not the original combination, this is the one used by Walker (1868: 534). There, Walker also suspected that Asopus saturatus was a variety of Asopus hamatus.
sculptus (Podisus) Distant 1889: 320.
Original data: Syntype(s). "Hab. Panama, Bugaba (Champion)."
LECTOTYPE f\# (designated by Thomas 1992: 78): purple-margined lectotype disc; red-margined type disc; "Bugaba, 800-1500 ft. Champion."; "Podisus sculptus Dist. [Distant's handwriting]"; "NHMUK 010592369". Specimen well preserved (Fig. 166).

PARALECTOTYPE m\#: blue-margined paralectotype disc; "Bugaba, Panama. Champion."; "sculptus Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592370". Fourth and fifth left antennomeres missing (Fig. 167).

Current status: Podisus sculptus Distant, 1889.
Note: Thomas (1992: 78) explained: "The type of Podisus sculptus, a female, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) Podisus sculptus Dist.," (c) "Bugaba 800-1590 ft Champion."" From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "The type", Thomas designated it as the lectotype by inference of "the type".
scutellaris (Bodetria) Walker 1868: 529.
Original data: Holotype. "a. Vera Cruz. From M. Sallé's collection."

HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; "Vera Cruz / 54 66"; "Bodetria scutellaris."; "NHMUK 010592395". Legs missing (Fig. 168).

Current status: Heteroscelis lepida (Stål, 1862) (synonymised by Stål 1870: 31; see also Distant 1900a: 63; Thomas 1992: 48).
scutellatus (Platynopus) Distant 1900a: 57.
Original data: Syntype(s). "Hab. Upper Congo, Bopoto (Coll. Dist)."
SYNTYPE f\#: blue-margined syntype disc; "Bopoto Upper Congo"; "scutellatus Dist. [Distant's handwriting]; "Distant Coll. 1911-383."; "NHMUK 010592436". Fifth right and left antennomeres missing (Fig. 169).

Current status: Platynopiellus scutellatus (Distant, 1900) (see Thomas 1994: 194-195).

Note: Thomas (1994: 195) did not mention any type in the material examined; it may be because the specimen was not marked as type prior to this study. Possibly because Distant had not distinguished it as such by writing the word "type" on its label. This urged us to query at what point Distant had added this indication on his determination labels. Since our set was wide-ranging (1879-1882, 1887-1890, 18921893, 1898, 1902-1902, 1908, 1910-1913), we could determine that Distant started adding the word "type" on his labels in 1908 (see herein Canthecona humeralis, Canthecona ornatula and Incitatus primus, all Distant, 1908). The year was later refined to sometime between 1904 and 1906 after examination of our Lygaeoidea and Coreoidea images (see, for example, Aphanus raja Distant, 1906 but not Kennetus alces Distant, 1904; Dellapé \& Henry, 2018 and CoreoideaSF Team, 2018, respectively). This range was shortened to 1904-1905 after having studied images of Cicadidae from Distant's (1905) paper (see Platylomia assamensis Distant, 1905, Anonymous, 2018a). We further noticed that Distant also went back to earlier types (1878-1880) and added "(type)" to their determination labels. Examples in this catalogue are the following: Canthecona binotata, Canthecona tibialis and Picromerus robustus, all Distant, 1879 and Podisus insignis and Podisus nigriventris but not Podisus affinis, all Distant, 1880. Types from Distant's (1878) Cicadidae paper are the first to bear the indication "(type)" (see Platypleura andamana Distant, 1878, Anonymous, 2018b). The implications of this study being that when Distant has mentioned the type in the original description and
given a specimen a type label in the collection, it may be claimed that Distant has designated a holotype in the original description.
semialba (Mormidea) Walker 1868: 553.
Original data: 2 syntypes. "a, b. Constancia, Rio Janeiro. Presented by the Rev. H. Clark."

LECTOTYPE m\# (designated by Thomas 1992: 80): purple-margined lectotype disc; green-margined type disc; "CONSTANCIA Jan 1857. H. Clark."; "Mormidea semialba."; "NHMUK 010592333". Fourth and fifth right and left antennomeres missing (Fig. 170).

PARALECTOTYPE m\#: blue-margined paralectotype disc; "CONSTANCIA Jan 1857. H. Clark."; "Mormidea semialba Walker's catal"; "Asopinae 198 Podisus semialbus Walk"; "NHMUK 010592334". Specimen carded; third to fifth right antennomeres missing (Fig. 171).

Current status: Podisus semialbus (Walker, 1868) (see Distant 1900a: 58).
Note: Thomas (1992: 80) explained: "The type, a male, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Constancia, Jan 1857, H. Clark," (c) "Mormidea semialba."" Walker lists two specimens and we have found two. By giving the labels data for one of them and calling it "the type", Thomas designated it as the lectotype by inference of "the type".
semiscitus (Platynopus) Walker 1867a: 129.
Original data: Holotype. "a. Gilolo. Presented by W. W. Saunders, Esq."
HOLOTYPE f\#: red-margined disc; green-margined type disc; "Gil."; "21. Platynopus semiscitus."; "NHMUK 010592433". Left antenna missing; left humeral angle broken (Fig. 172).

NON TYPE f\#: "Platynopus semiscitus Walker's catal."; "Saunders 65 13"; "Bac"; "NHMUK 010937665".

Current status: Montrouzierellus laetus (Walker, 1867) (synonymised by Distant 1900a: 63; see Kirkaldy 1909: 11; Thomas 1994: 187).

Notes: Walker had noted: "It has more affinity to P. dotatus than to P. laetus, and the three may perhaps be considered as varieties of one species." Indeed, Distant (1900a: 63) synonymised Walker's three species. For explanations concerning the extra
specimen listed above, not mentioned in Walker's catalogue, see above under P. dotatus).
silvaticus (Platynopus) Distant 1890b: 475.
Original data: Syntype(s). Democratic Republic of the Congo: "Collection of Rhynchota made at Yambuya on the River Aruwimi, by Mr. W. Bonny of the Emin Pasha Relief expedition under Mr. H. M. Stanley."

SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "Yambuya R. Aruwimi (Bonny)"; "silvaticus Dist. [Distant's handwriting]"; "Distant Coll. 1911383."; "NHMUK 010592150". Third to fifth right antennomeres, second to fifth left antennomeres, and legs (except the right middle leg) missing; abdomen partially disjointed from thorax (Fig. 173).

Current status: Planopsis silvatica (Distant, 1890) (see Schouteden 1907: 50; Bergroth 1908 : 182; Thomas 1994 : 194).

Note: In the original description, the words "antennae mutilated" may mean that Distant just described the species from this single specimen, but we cannot be sure; there may have been many, all with antennae mutilated; we therefore consider the specimen a syntype.
similis (Cazira) Distant 1902: 245-246.
Original data: Syntypes [Range of measurements]. "Hab. Naga Hills (Doherty)."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Naga Hills (Doherty)"; "similis Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592147 ". Fourth and fifth right antennomeres, second to fifth left antennomeres, left middle leg, and posterior legs missing (Fig. 174).

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Naga Hills (Doherty)"; "Distant Coll. 1911-383."; "NHMUK 010592148". Fourth and fifth right antennomeres, third to fifth left antennomeres, and left anterior leg missing (Fig. 175).

SYNTYPE m\#: blue-margined syntype disc; "Naga Hills (Doherty)"; "Distant Coll. 1911-383."; "NHMUK 010592149". Fifth right and left antennomeres, and left middle leg missing (Fig. 176).

Current status: Cazira similis Distant, 1902.
similis (Picromerus) Distant 1883: 421.
Original data: Syntype(s). "Hab. Hakodatè."
SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "Japan (Lewis)"; "similis (Dist.) [Distant’s handwriting]"; "Ha Ko"; "NHMUK 010592296". Specimen well preserved (Fig. 177).

SYNTYPE f\#: blue-margined syntype disc; "Hakodatè / 8831"; "NHMUK 010592298". Specimen well preserved (Fig. 178). NOT SURE ABOUT THE STATUS OF THIS SPECIMEN; IT ARRIVED AT THE MUSEUM AFTER THE DATE OF THE DESCRIPTION!... AND ALSO, WHICH IS WORSE, MAY HAVE BEEN COLLECTED IN 1887!

Current status: Picromerus lewisi Scott, 1874 (synonymised by Josifov \& Kerzhner 1978: 180).

Note: Distant had noted "In colour, markings, and general appearance almost undistinguishable from P. lewisi Scott, [...]" and indeed Picromerus similis Distant was synonymised to P. lewisi Scott by Josifov \& Kerzhner (1978).
smithi (Podisus) Distant 1889: 319.
Original data: Syntype(s). "Hab. Mexico, Orizaba (H. H. Smith \& F. D. G.)."
LECTOTYPE f\# (designated by Thomas 1992: 97): purple-margined lectotype disc; red-margined type disc; "Orizaba. H. H. S. \& F. D. G. Dec 1887."; "B.C.A., Hem. I. Podisus smithi Dist."; "NHMUK 010592331". Fourth and fifth right and left antennomeres missing (Fig. 179).

Current status: Podisus nigriventris Distant, 1880 (synonymised by Thomas 1992: 97).

Note: Thomas (1992: 97) explained: "The type of Podisus smithi, a female, was located in the BMNH. It is labeled: (a) "Type," (b) "Orizaba HHS + FDG Dec 1887 BCA Hem. Podisus smithi Dist.'"' From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "The type", Thomas designated it as the lectotype by inference of "the type".
spinosa (Arma) Dallas 1851: 98.
Original data: Syntype(s): "m\#". "a. Trenton Falls. Presented by E. Doubleday, Esq."

SYNTYPE m\#: blue-margined syntype disc; red-margined type disc; "E. Doubleday. Trenton Falls, New York."; "41. 5. 17. 86."; "4. Arma spinosa,"; "NHMUK 010592454 ". Left hemelytra, third to fifth right antennomeres, second to fifth left antennomeres, and right posterior leg missing (Fig. 180).

Current status: Podisus maculiventris (Say, 1831) (synonymised by Uhler in Scudder 1899: 307; see Van Duzee 1904: 71; Schouteden 1907: 72).

Notes: From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: male. Walker (1867a: 134) listed only one specimen with the right data. We have found it. Because we cannot be sure that it was the only one Dallas had when he described the species (although it is likely as Dallas stated only one measurement and noted: "Antennae with the two basal joints dusky ferrugineous, the rest wanting" [emphasis ours]), we consider it a syntype. This, especially as Thomas (1992: 92) did not mention having examined any type for this species, although he thoroughly detailed those he did examine for other species. According to Burks (1975: 139), the specimens Doubleday collected at St John's Bluff may be variously labelled: "St John's Bluff", "East Florida, Doubleday" and "North America, Doubleday". The species Arma spinosa is reported by Walker (1985: 11) as having been sent to Museum Victoria by Francis Walker. Therefore the specimen (number 52829) of this species from N. America listed by Public Library, Museums and National Gallery (Vic.), et al. (1890:52) may be from the type series. This needs to be further investigated.
splendens (Tynacantha) Distant 1889: 321.
Original data: Syntype(s). "Hab. Panama, Bugaba (Champion)."
LECTOTYPE m\# (designated by Thomas 1992: 123): purple-margined lectotype disc; red-margined type disc; "Bugaba, 800-1500ft. Champion."; "B.C.A., Hem. I. Tynacantha splendens Dist."; "NHMUK 010592342". Right middle leg, and left posterior leg missing (Fig. 181).

Current status: Tynacantha splendens Distant, 1889.

Note: Thomas (1992: 123) explained: "I examined the type of Tynacantha splendens, a male, located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "B.C.A. Hem. I. Tynacantha splendens Dist.," "c) "Bugaba, 800-1500 ft. Champion.'"' From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
spurcata (Macrorhaphis) Walker 1868: 531-532.
Original data: 2 syntypes. "a, b. Natal. From M. Gueinzius' collection."
SYNTYPE m\#: blue-margined syntype disc; green-margined type disc; " P^{t} Natal 55.96."; "Macrorhaphis spurcata. sp. n. F. WALKER 1868"; "G. Schmitz det. 1976 Macrorhaphis acuta m\# DALLAS"; "NHMUK 010592175". Specimen carded; fourth and fifth right antennomeres, fifth left antennomere missing. Pygophore kept inside a glass vial (Fig. 182).

Current status: Macrorhaphis acuta Dallas, 1851 (synonymised by Schouteden 1905: 177; see Schouteden 1907: 39).

Notes: Strangely enough, Walker had noted "The spines of the thorax are more acute than those of M. tristis" [emphasis ours], but he did not think it could be M. acuta Dallas to which Schouteden later synonymised it. One syntype is missing or was not recognised.
stellatus (Oplomus) Distant 1911a: 252-253.
Original data: Syntype(s). "Hab. Argentina; Tucuman Prov. (Brit. Mus.)."
LECTOTYPE m\# (designated by Thomas 1992: 65): purple-margined lectotype disc; red-margined type disc; "Argentina. Tucuman Prov. 1902-288."; "Oplomus stellatus type Dist. [Distant’s handwriting]"; "NHMUK 010592408". Fifth right antennomere, and right posterior leg missing (Fig. 183).

Current status: Oplomus punctatus Montandon, 1895 (synonymised by Horváth, 1911: 430; Horváth noted that Oplomus stellatus Distant was merely the male of O. punctatus Montandon: "Oplomus stellatus DIST. est tantum mas O. punctati MONTD.")

Note: Thomas (1992: 65) explained: "The male type of Oplomus stellatus was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Oplomus stellatus Dist.," (c) "Argentina, Tucuman 1902-288."" From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "The [...] type", Thomas designated it as the lectotype by inference of "the type".
submarginata (Arna [sic!]) Walker 1867a: 139.
Original data: Holotype. "a. Tejuca, Rio Janeiro. Presented by the Rev. H. Clark."

HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "TEJUCA, Jan ${ }^{y}$ 1857. H. Clark."; "37. Arna [sic!] submarginata."; "NHMUK 010592338 ". Fifth right antennomere, and fourth and fifth left antennomeres missing (Fig. 184).

Current status: Podisus ventralis (Dallas, 1851) (synonymised by Thomas 1992: 99).

Note: Walker saw the difference with A. obscura ("The longer thoracic spines distinguish it from A. obscura"), now a synonym of Podisus nigrispinus, but did not think the specimen could be one of the species A. ventralis.
tabida (Arma) Signoret 1863: 544.
Original data: ST(S): Chile.
NON TYPE m\#: "Balzapamba (Ecuad.) R. Haensch S."; "1903-322"; "NHMUK 010939527". Left fourth and fifth antennomeres missing (Fig. 185).

NON TYPE f\#: "Balzapamba (Ecuad.) R. Haensch S."; "Co-types Breddin. Purch. of Haensch Podisus tabidus Sign."; "1903-322"; NHMUK 010939525". Left fourth and fifth antennomeres, and right fifth antennomere missing (Fig. 186).

NON TYPE f\#: "Balzapamba (Ecuad.) R. Haensch S."; "BRIT. MUS."; "Podisus sp. (1-198)"; "Label 4"; "Label 5"; "NHMUK 010939526". Left fourth and fifth antennomeres, right fifth antennomere, and left middle leg missing (Fig. 187).

Current status: Brontocoris tabidus (Signoret, 1863) (see Thomas 1992: 31) However, see "Note".

Note: Thomas (1992: 84-85) noted that the had located in the collection a pair of Ecuadorian specimens labeled as "cotypes" of Podisus tabidus (Signoret, 1863), a male and a female which he identified as P. crassimargo (Stål, 1860). We have actually found three such specimens in the collection, one male and two females. The senior author identified the male as P. congrex (Stål, 1862) and the females as P. pallipes (Dallas, 1851). We, however, share Thomas's puzzlement as to the meaning of "cotypes" and also believe that these specimens could have explained Breddin's erroneous concept of P. tabidus.
tenellus (Platynopus) Walker 1867a: 127.
Original data: 3 syntypes. "a. New Guinea. Presented by W. W. Saunders, Esq. b. New Guinea. From Mr. Wallace's collection. c. New Guinea. Presented by Sir John Liddell."

SYNTYPE m\#: blue-margined syntype disc; green-margined type disc; "Dor."; "18. Platynopus tenellus." "Dorey Wallace"; "Saunders 65•13."; "NHMUK 010592425 ". Right middle leg missing (Fig. 188).

SYNTYPE m\#: blue-margined syntype disc; "Platynopus tenellus Walker's catal. "; "M"; "Saunders. 65"13."; "NHMUK 010592427". Fourth and fifth right and left antennomeres, and right anterior leg missing (Fig. 189).

SYNTYPE f\#: blue-margined syntype disc; "56 85"; "258"; "Platynopus tenellus Walker's catal."; "NHMUK 010592428". Antennae missing (Fig. 190).

Current status: Montrouzierellus falleni (Guérin-Méneville, 1831) (synonymised to Platynopus melacanthus Boisduval, 1835 by Distant (1900a: 63), Dupuis (1952: 453) demonstrated the priority of Pentatoma Fallenii Guérin, 1831 over Pentatoma melacanthum Boisduval, 1835.).
thomsoni (Cantheconidea) Distant 1911b: 351.
Original data: Holotype or holotype and paratype(s): "m\#". "Hab. N.E. China; Shan-hai-kwan (F.M. Thomson, Brit. Mus.)."

HOLOTYPE m\#: red-margined holotype disc; red-margined type disc; "Shan-hai-Kwan. In Mountains. I.IX.06. F.M. Thomson. 1907-200."; "Cantheconidea thomsoni type Dist. [Distant’s handwriting]"; "NHMUK 010592161". Fifth right, and fourth and fifth left antennomeres missing (Fig. 191).

Current status: Eocanthecona thomsoni (Distant, 1911) (see Thomas 1994: 178).
Note: We have only found one male specimen in the collection. Mentions such as "fifth mutilated in type" in the original description could support either the fact that Distant had other specimens but designated one as the type (holotype) or that he just had one (only one measurement). Whether Distant had many specimens or not, this specimen matches the description and Distant labelled it as type. We therefore consider it the holotype.
thoracata (Mecosoma) Distant 1901: 61-62.
Original data: Syntype(s). "Hab. Mashonaland, near Salisbury (G. A. K. Marshall)."

SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc; "Salisbury (Marshall)"; "thoracata Dist. [Distant’s handwriting]"; "Distant Coll. 1911383."; "NHMUK 010592415". Antennae, second to fourth labial segments, and right anterior and posterior legs missing (Fig. 192).

SYNTYPE f\#: blue-margined syntype disc; "Salisbury (Marshall)"; "Distant Coll. 1911-383."; "NHMUK 010592416". Antennae missing (Fig. 193).

SYNTYPE f\#: blue-margined syntype disc; "Salisbury (Marshall)"; "Distant Coll. 1911-383."; "NHMUK 010592417". Antennae, second to fourth labial segments, and left posterior leg missing (Fig. 194).

SYNTYPE f\#: blue-margined syntype disc; "Salisbury Mashonaland (G A K Marshall)"; "Distant Coll. 1911-383."; "NHMUK 010592418". Second to fifth right antennomeres, fourth and fifth left antennomeres, and left anterior and middle legs missing (Fig. 195).

SYNTYPE m\#: blue-margined syntype disc; "Salisbury (Marshall)"; "Distant Coll. 1911-383."; "NHMUK 010592419". Antennae missing (Fig. 196).

Current status: Mecosoma mensor (Germar, 1838) (synonymised by Schouteden 1905: 183, 185 ; see Schouteden 1907: 63; Kirkaldy 1909: 25).

Note: A proof, if ever one was needed, that "Antennae missing" in an original description does not obligatorily mean that the author of the species was facing a single specimen!
tibialis (Canthecona) Distant 1879: 46-47.

Original data: Syntype(s). "North Khasia hills, 1500 to 3000 feet."
SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "N. Khasia 1500 to 3000"; "tibialis Dist. (type) [Distant's handwriting]"; "Distant Coll. 1911383."; "NHMUK 010592163". Right middle leg missing; left wings disjointed (Fig. 197).

NON TYPE (Var. a.): "N. Khasia 1500 to 3000 (Chennel) "; "Distant Coll. 1911-383."; "NHMUK 010936562".

Current status: Eocanthecona tibialis (Distant, 1879) (see Thomas 1994: 178).
Note: Thomas (1994: 178) noted: "Material examined: Determined specimens in BMNH. Also, India (1 male)." but did not mention our syntype.
tincta (Arma) Dallas 1851: 97.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "a. Columbia. From M. Goudot's Collection."
SYNTYPE f\#: blue-margined syntype disc; red-margined type disc; "Columbia / 46 20"; "Bogota"; "18. Arma tincta,"; "a"; "NHMUK 010592335". Specimen well preserved (Fig. 198).

Current status: Podisus tinctus (Dallas, 1851) (see Distant 1880: 37).
Note: Walker (1867a: 137) listed only one specimen, but it does not mean that Dallas just had one (although it is likely). Thomas (1992: 86) mentioned "A female type specimen was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Bogata," [sic!] (c) "49 [sic!] 20," (d) "18. Arma tincta."" He used the indefinite article and does not imply having seen "the" type. Taking the foregoing remarks into account, we consider the specimen a syntype.
trijunctus (Platynopus) Walker 1867a: 125.
Original data: Holotype and var. β. "a, b. Whydah, West Africa. From Mr. Fraser's collection."

HOLOTYPE f\#: blue-margined syntype disc; green-margined type disc; "Whydah / 53 74"; "11. Platynopus trijunctus."; "NHMUK 010592453". Right hemelytra, fourth and fifth right antennomeres, third to fifth left antennomeres, and right posterior leg missing; abdomen partially disjointed from thorax (Fig. 199).

Current status: Platynopiellus septendecimmaculatus (Palisot de Beauvois, 1811) (synonymised to Platynopus rostratus Drury, 1782 by Distant 1900a: 56, as a
variety; see Schouteden 1905: 160; Schouteden 1907: 48; Due to homonymy (see "Notes" below), the name of the species became that of the next available junior synonym: Pentatoma 17-maculata Palisot de Beauvois, 1811 (see Kirkaldy, 1909: 12, as Platynopus 17-maculatus); Thomas (1994: 195) placed it in his new genus, Platynopiellus.).

Notes: Platynopus rostratus (Drury, 1782) was a primary homonym of Cimex rostratus DeGeer, 1773 (Pentatomidae), C. rostratus Goeze, 1778 (Coreidae) and C. rostratus Fabricius, 1781 (Pentatomidae). The next junior synonym for that species was Cimex calens Fabricius, 1803, a primary homonym of C. calens Linnaeus, 1767 (Miridae) (see Dolling et al. 1999: 18, 77). The specific epithet, originally spelled 17maculata, has been transliterated in two different ways: septendecimaculatal-us (Thomas 1994: 194-195; Maldès \& Pluot-Sigwalt 2004) and septemdecimmaculatus (Dolling et al. 1999: 18, 77; Rider 2015); we have adopted the spelling septendecimmaculatal-us as we have chosen to follow Welter-Schultes (2012: 76); the set of rules provided there is convenient and useful to achieve consistency in transliterating older names or naming new species. We note, however, that the use of "septemdecim" is not erroneous (Gaffiot 1934: 1426), only less correct (Lewis \& Short, 1891: 1675). Furthermore, bearing in mind the explanations by Lewis \& Short (1891:1091), we also understand the choice not to duplicate the " m " as logical. In the collection, we have also found the specimen representing var. β. It is a female bearing the following labels "Platynopus trijunctus Walker's catal."; "Whydah / 53 74"; "NHMUK 010938345".
truculentus (Glypsus) Walker 1867a: 132.
Original data: Holotype. "a. Madagascar. From Madame Ida Pfeiffer's collection."

HOLOTYPE m\#: red-margined holotype disc; green-margined type disc; "Madagascar / 58 85"; "4. Glypsus truculentus."; "NHMUK 010592312". Fourth and fifth right and left antennomeres missing (Fig. 200).

Current status: Glypsus truculentus Walker, 1867.
turbida (Arma) Walker 1867a: 140-141.
Original data: Holotype. "a. ——? Presented by W. W. Saunders, Esq."

HOLOTYPE f\#: red-margined holotype disc; green-margined type disc; "Saunders 65 13."; "43. Arma turbida."; "NHMUK 010592336". Left hemelytra, fourth and fifth right and left antennomeres, and posterior legs missing. The legs are glued on the first label (Fig. 201).

Current status: Podisus distinctus (Stål, 1860) (synonymised by Thomas 1992: 90).
turneri (Platynopus) Distant 1911b: 351-352.
Original data: Syntypes: "m\# f\#". "Hab. Queensland; Mackay (R. E. Turner, Brit. Mus.); Townsville (F. P. Dodd, Brit. Mus.)."

SYNTYPE f\#: blue-margined syntype disc; red-margined type disc;
"Queensland. A.J Turner. 1905-125."; "Mackay 2.99"; "Platynopus turneri type Dist. [Distant's handwriting]"; "NHMUK 010592437". Fourth and fifth left antennomeres missing (Fig. 202).

SYNTYPE m\#: blue-margined syntype disc; "Queensland F. P. Dodd. 190754."; "NHMUK 010592438". Second to fifth right antennomeres, fourth and fifth left antennomeres missing; wings opened (Fig. 203).

SYNTYPE f\#: blue-margined syntype disc; "Queensland F. P. Dodd. 1907-54."; "NHMUK $010592439 "$. Specimen well preserved (Fig. 204).

SYNTYPE sex?: blue-margined syntype disc; "Queensland F. P. Dodd. 190754."; "NHMUK 010747742". Fifth left antennomere, anterior legs, and abdomen missing (preventing the sex determination) (Fig. 205).

Current status: Montrouzierellus turneri (Distant, 1911) (see Thomas 1994: 188).
typicus (Supputius) Distant 1889: 321-322.
Original data: Syntype(s). "Hab. Panama, Bugaba (Champion)."
LECTOTYPE f\# (designated by Thomas 1992: 113): purple-margined lectotype disc; red-margined type disc; "Bugaba, 800-1,500 ft. Champion."; "Supputius typicus Dist. [Distant's handwriting]"; "NHMUK 010592349". Second to fifth right and left antennomeres, and right middle leg missing (Fig. 206).

Current status: Supputius typicus Distant, 1889.

Note: Thomas (1992: 113) explained: "The type of Supputius typicus Distant, a female, was located in the British Museum (Natural History). It is labeled: (a) "Type," (b) "Supputius typicus Distant," (c) "Bugaba 800-1500 ft, Champion."" From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. By giving its labels data and calling the specimen "The type", Thomas designated it as the lectotype by inference of "the type".
varipes (Gilva) Walker 1867a: 239.
Original data: Holotype and var. β. "a, b. Amazon Region. From Mr. Bates’ collection."

HOLOTYPE f\#: red-margined holotype disc; "Braz 62 57"; "Cazira Gilva varipes Walker’s catal."; "NHMUK 010592169". Specimen well reserved (Fig. 207).

NON TYPE m\# ("Holotype" of the first description) : "Braz/ 62 57"; "Cazira Gilva varipes Walker's catal."; "NHMUK 010592167". Specimen well preserved (Fig. 208).

NON TYPE m\# (var. β of the first description): "Santarem/ 53 72"; "Cazira Gilva varipes Walker's catal."; "NHMUK 010592143". Fourth and fifth right and left antennomeres missing, also right middle and left posterior legs missing (Fig. 209).

NON TYPE m\# (var. β of the second description): green-margined type label; "Braz/ 62 57"; "1. Gilva varipes."; "NHMUK 010592168". Fourth and fifth left antennomeres missing (Fig. 210).

Current status: Coryzorhaphis carneola Erichson, 1848 (Gilva varipes was synonymised to Coryzorhaphis spinolae Signoret, 1862 by Stål 1870: 38 [see also Distant 1900a: 63; Schouteden 1907: 61]; C. spinolae Signoret was synonymised to C. carneola [as C. carneolus] by Thomas 1992: 36).

Notes: Austen (1907: 326) and others of Walker's detractors have maintained that Walker was describing specimens and not species. On this occasion it is averred. Indeed, Walker proposed two descriptions for this species; it seems he did not understand what features were the most important ones to fix its concept (black spots on the hemelytra were counted as important in the first description and dropped in the second; the pale edged apex of the scutellum is counted as important in the second description but was also a feature in the specimens that we have determined as those of
the first description). As the saying goes: "Every cloud has a silver lining". Walker did indeed describe specimens and this proved pivotal to identify varieties of other species in this catalogue as well as to identify which, of four specimens, was the holotype of this species. Walker (1867a: 142) described the species from one specimen from the Amazon Region and one variety ("Var. β - Head wirth shorter stripes. Thorax with a black dot on each side in front. Scutellum testaceous. Fore wings with a black spot on the base of the costa.") from Santarem. Later, in the same volume (1867a: 239), he redescribed the genus and species, explaining: "the description of this genus in page 141 is defective, and the following may be substituted." As Walker published this correction in the same volume, it invalidates the first description and the second description only is valid. There, two specimens from the Amazon Region (a, b) are mentioned, with one of them being variety ("Var. β - Spots on the thorax and on the scutellum almost obsolete. Scutellum with a black point on each angle at the base, bordered with white at the tip."). We have identified that:

1/ Walker had made the mistake in the Latin of the first description to mention "thorax" twice, first meaning "pronotum" and second, in its wider sense, including the scutellum.

2/ In the English description, he did use the word "scutellum" but counted the spots on the pronotal angles as part of it. So, he stated two and four.

3/ The second description is truer to the reality: "Thorax [pronotum] with two black spots near the hind border; hind angles black. Scutellum with two black spots near the fore border and with a short black streak on each side towards tip."

4/ There is a discrepancy in the lengths given in both descriptions; all specimens are the same size. Walker may have measured the whole specimen from head to apex of hemelytra in the first description but only the body in the second.

5/ The specimen whose barcode number end in "168" matches var. β of the second description: its spots are almost invisible, it does have black points at the top angles of the scutellum and its scutellum is bordered with white at the tip (this latter feature appears in male specimen " 143 " and male specimen " 167 " but not in female specimen " 169 "; it may be a male characteristic).

5/ The variety from Santarem ("143") can easily be determined not only thanks to its labels but also because it has a black spot on the costal margin whereas var. α ("Holotype") of the first description has it in the discal cell. This is a feature of
specimen " 167 " only. Specimen " 169 " does not present it. We have thus determined the latter as the holotype of Gilva varipes and considered the three other specimens as nontypes.

6/ The "type" that Thomas (1992:36) examined was, in fact, the variety of the second description (Specimen "168"), which had been erroneously marked as a type with the green -margined type label and the long label taken from the heading for the species in Walker's catalogue: "1. Gilva varipes."
velata (Arma) Walker 1868: 532.
Original data: "Hindostan. In the National Museum at Melbourne."
Current status: Arma velata Walker, 1868.
Notes: Walker (1868: 532) had separated Arma velata from Arma turbida thus:
"Allied to A. turbida, but the spines of the thorax are longer and more acute." Under the following heading "Species the types of which are not to be found in the British Museum.", Distant (1900a: 64) placed Arma velata Walker, 1868, declaring that it should be treated as non existent. Walker (1985) does not list Arma velata in his "List of Hemiptera sent to the Museum of Victoria by F. Walker". Even so, Distant's remark should, obviously, not apply if the type(s) were to be found in Melbourne.
ventralis (Arma) Dallas 1851: 100-101.
Original data: Syntype(s): " $\mathrm{f} \#$ ", "a. Venezuela. From Mr. Dyson’s Collection."
SYNTYPE f\#: blue-margined syntype disc; red-margined type label; "Venezuela / 47 26"; "21. Arma ventralis,"; "a"; "NHMUK 010592337". Fourth and fifth right antennomeres, and second to fifth left antennomeres missing (Fig. 211).

Current status: Podisus ventralis (Dallas, 1851) (see Stål 1870: 51; Thomas 1992: 99).

Note: Walker (1867a: 137) listed only one specimen, but it does not mean that Dallas just had one (although it is likely). Thomas (1992: 100) mentioned: "A female specimen was located in the British Museum (Natural History). It is labeled: a) "Type," b) "Venezuela," c) "21. "Arma ventralis."". He used the indefinite article and does not imply having seen "the" type. Taking the foregoing remarks into account, we consider the specimen a syntype.
ventralis (Oplomus) Dallas 1851: 86.
Original data: Syntype(s): " $\mathrm{f} \#$ ". "a. ——. From Mr. Children’s Collection."
LECTOTYPE f\# (designated by Thomas 1992: 62): purple-margined lectotype disc; "40 330 821."; "21. Oplomus ventralis,"; "a"; "NHMUK 010592404". Second to fifth right and left atennomeres, and right anterior and posterior legs missing (Fig. 212).

Current status: Oplomus pulcher Dallas, 1851 (synonymised by Thomas 1992: 62).

Note: Thomas (1992: 62) explained: "The type of Oplomus ventralis is a female and was located at the British Museum (Natural History). It is labeled: (a) "Type," (b) "a," (c) "Oplomus ventralis." The specimen is metallic blue dorsally with a red abdomen." From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex: female. Walker (1867a: 122) listed only one specimen with corresponding data and we have found only one specimen in the collection but cannot be sure it was the only one Dallas had. By giving its labels data and calling the specimen "the type", Thomas designated it as the lectotype by inference of "the type".
versicolor (Jalloides) Distant 1911b: 350.
Original data: Syntype(s). "Hab. Queensland; Kuranda (F. P. Dodd, Brit. Mus.)."

LECTOTYPE f\# (designated by Thomas 1994: 166): purple-margined lectotype disc; red-margined type disc; "Queensland. F. P. Dodd. 1907-54."; "Kuranda F. P. Dodd. Mch 04"; "Jalloides versicolor type Dist. [Distant's handwriting]"; "NHMUK 010592292". Doubled mounted specimen; second to fifth right antennomeres; and fourth and fifth left antennomeres missing (Fig. 213).

Current status: Australojalla versicolor (Distant, 1911) (see Thomas 1994: 166).
Note: From Distant's original description, we do not know whether Distant had one or more specimens, nor the sex. We have found only one specimen in the collection but cannot be sure it was the only one Distant had. Thomas (1994: 166) stated: "Material examined: Holotype female BM(NH).". We suspect he may have meant the specimen marked as type and this is the only specimen of the species in the collection (as Thomas noted: "Unfortunately, specimens seem quite rare."), we therefore accept Thomas's mention of the "Holotype female" as a valid lectotype designation.
violaceus (Oplomus) Dallas 1851: 85-86.
Original data: Syntype(s): "f\#". "a. Columbia. From M. Goudot's Collection." LECTOTYPE f\# (designated by Thomas 1992: 59): purple-margined lectotype disc; red-margined type disc; "Columbia / 46 20"; "14. Oplomus violaceus,"; "a"; "NHMUK 010592402". Fourth and fifth right antennomeres, second to fifth left antennomeres, and right posterior leg missing (Fig. 214).

Current status: Oplomus salamandra (Burmeister, 1835) (synonymised to Oplomus tripustulatus Fabricius by Stål 1870: 29, as Var. n; see Distant 1880: 31; Thomas 1992: 59, with valid current name as O. salamandra (Burmeister)).

Notes: Thomas (1992: 59) explained: "The female type of Oplomus violaceus Dallas was located in BMNH. It is labeled: (a) "Type," (b) "Colombia," (c) "Oplomus violaceus." The specimen is metallic purplish in color.". From Dallas's original description, we do not know whether Dallas had one or more specimens, only the sex. Walker (1867a: 121) listed only one specimen with corresponding data and we have found only one specimen in the collection but cannot be sure it was the only one Dallas had. By giving its labels data, describing it and calling the specimen "The [...] type", Thomas designated it as the lectotype by inference of "the type". As shown in Thomas (1992: 59), the name tripustulatus was preoccupied and so was that of tibialis, the next junior synonym, the name of the species therefore became salamandra Burmeister, 1835, the next non preoccupied junior synonym.
virescens (Oechalia (Hawaiicola)) Usinger 1941: 77-78.
Original data: "Holotype, male, Kokee, Kauai, August 21, 1921, O. H. Swezey. Allotype, female, Kaheluamanu, Kauai, April 22, 1920, J. A. Kusche, from the collection of W. M. Giffard. Eleven paratypes as follows: males, Kumuwela, Kauai, August 28, 1921, on Straussia; Halemanu, Kauai, August 18, 1921; and trail from Kokee to Kalalau, Kauai, August 5, 1925, on Scaevola, all collected by O. H. Swezey; Kokee, Kauai, February 1919, J. A, Kusche collector; and Alakai Swamp, Kauai, July 10, 1928, A. M. Adamson collector; females, two specimens, Kauaikinana, Kauai, August 2, 1925, O. H. Swezey collector; Kokee, Kauai, January, 1919, J. A. Kusche; Wahiawa, Kauai, June 1914, C. M. Cooke collector; Waialae River, Kauai, 4000 feet, April 14, 1920, J. A. Kusche collector, from the collection of W. M. Giffard; and

Makaweli, Kauai, 2000 ft., R. C. L. Perkins. Five additional specimens from the Kusche collection are labeled "Honolulu, Oahu, June 4, 1919"."

PARATYPE f\#: yellow-margined paratype disc; "Waialae River 4000 ft . Kauai"; "J. A. Kusche Coll 4-14-1920"; "W. M. Giffard"; "Brit. Mus. 1947-80"; "PARATYPE Oechalia virescens Usinger"; "NHMUK 010592457". Specimen well preserved (Fig. 215).

PARATYPE m\#: yellow-margined paratype disc; "Alakai Swamp VII-10-28 Kauai"; "A. M. Adamson Collector"; "Oechalia virescens Usinger Det. by R.L. Usinger"; "PARATYPE Oechalia virescens Usinger"; "Brit. Mus. 1947-80"; "NHMUK $010592458 "$. Specimen well preserved (Fig. 216).

Current status: Oechalia virescens Usinger, 1941.
virgula (Oechalia) Van Duzee 1936: 220.
Original data: "Paratypes, 3 males taken with the holotype, six males taken at Kilauea, Hawaii, at 4,000 ft., Jan. 19, 1917 (W. M. Giffard), and one female taken at same place Aug. 5, 1919 (O. H. Swezey) ; two dark males taken in the Dry Forest, Hawaii, Jan. 1917 (Muir and Giffard) ; one female from Mt. Tantalus at 1,300 ft. (W. M. Giffard) ; one female from Alakai Swamp, Kauai, July 1917 (C. N. Forbes) ; one female from Kahuku, Kau, Hawaii, on "a-a" flows at 1,800 ft., May 29, 1918 (W. M. Giffard)."

PARATYPE m\#: yellow-margined paratype disc; "Kilauea, Haw. 19-I-17 4000 ft."; "W. M. Giffard Coll."; "Coll. F. Muir"; "Oechalia virgula Van D. Det. by R.L. Usinger"; "PARATYPE virgula EP Van Duzee"; "Brit. Mus. 1947-80"; "NHMUK 010592459 ". Right middle and posterior legs missing; abdomen partially disjointed from thorax (Fig. 217).

Current status: Oechalia virgula Van Duzee, 1936.
Note: Van Duzee had noted: "The types of the new species here described have been placed in the Bishop Museum." Our paratype was presented to the Museum on 3/1/1947 by Dr. R. L. Usinger. It is one of the four male paratypes with similar data that Usinger (1941: 84) mentioned to be at hand (out of the six in the original description).
viridicatus (Neoglypsus) Distant 1881: 27-28.

Original data: Syntype(s). "Tokei, Japan."
SYNTYPE f\#: blue-margined syntype disc; red-margined type [H. T.] disc; "Tokei Japan"; " viridicatus Dist. [Distant's handwriting]"; "Distant Coll. 1911-383."; "NHMUK 010592300". Fifth right antennomere, fourth and fifth left antennomere missing (Fig. 218).

SYNTYPE f\#: blue-margined syntype disc; "Tokei Japan"; "Distant Coll. 1911383"; "BRITISH MUSEUM"; "DYNORHYNCHUS DYBOWSKYI Jakov. Det. V. Gapud 1980"; "NHMUK 010592301". Fourth and fifth right and left antennomeres, and right posterior leg missing (Fig. 219).

SYNTYPE f\#: blue-margined syntype disc; "Japan (Lewis)"; "Distant Coll. 1911-383."; "Chosenji"; "BRITISH MUSEUM"; "NHMUK 010592302". Fourth and fifth right and left antennomeres missing (Fig. 220).

Current status: Dinorhynchus dybowskyi Jakovlev, 1876 (synonymised by Horváth 1889: 326).

Notes: Although Thomas (1994: 174) stated: "holotype female of Neoglypsus viridicatus was examined in $\mathrm{BM}(\mathrm{NH})$ ", we do not consider this a valid lectotype designation by inference of holotype as we have more than one female specimen in the collection and Thomas did not make an individual designation (see ICZN 1999: Art. 74.6.1.2.). I QUERY TYPE 302....
volxemi (Podisus) Distant 1887b: Lviii-Lix.
Original data: Syntype(s). "Hab. Brazil. Therezopolis." "Brussels’ Museum" "Van Volxem Collection".

Current status: Podisus volxemi Distant, 1887.
Notes: Thomas (1992: 86) remarked: "Schouteden (1907b) provides a figure of this species (as Apateticus volxemi). I was unable to locate Distant's specimens of Podisus volxemi in the collection of the British Museum (Natural History)." If Schouteden could provide a figure of the species, it is because, as per Distant's original description, a type is in Brussels. Synave (1969: 20) recorded the presence of the holotype in the Brussels Museum. As nothing in the original description indicates that there was only one specimen, we accept Synave's mention of the holotype before 2000 as a lectotype designation by inference of holotype (ICZN 1999: Art. 74.6).
williamsi (Afrius) Miller 1951: 183-184.
Original data: "MAURITIUS: $3 \mathrm{~m} \#$ (including the type), 9 f\#, 1948-49 (J. R. Williams). The type is deposited in the British Museum (Natural History)."

HOLOTYPE m\#: red-margined holotype disc; "MAURITIUS. Coll. J.R. Williams 1.1949."; "182"; "Pres by Com Inst Ent BM 1950 - 262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010592172". Specimen carded; fifth right antennomere, and fourth and fifth left antennomeres missing (Fig. 221).

PARATYPE f\#: yellow-margined paratype disc; "MAURITIUS Reduit. Xii. 1948 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950-262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010592173 Specimen well preserved (Fig. 222).

PARATYPE f\#: yellow-margined paratype disc; "MAURITIUS Reduit. Xii. 1948 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950-262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747732". Specimen well preserved (Fig. 223).

PARATYPE f\# yellow-margined paratype disc; "MAURITIUS Reduit. Xii. 1949 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950 - 262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747733". Fourth and fifth left antennomeres missing (Fig. 224).

PARATYPE f\#: yellow-margined paratype disc; "MAURITIUS Reduit. Xii. 1949 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950-262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM. INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747734". Specimen well preserved (Fig. 225).

PARATYPE f\#: yellow-margined paratype disc; "Dept. of Agric.
MAURITIUS"; "Pres by Com. Inst. Ent. B.M.1948-38"; "COM. INST. ENT. COLL. NO. 10958"; "182"; "NHMUK 010747735". Specimen carded; fifth right antennomere, second to fifth left antennomere, and right middle and posterior legs missing (Fig. 226).

PARATYPE m\#: yellow-margined paratype disc; "MAURITIUS Reduit. Xii. 1949 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950-262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747736". Second to fifth right antennomeres, fifth left antennomere, and right posterior leg missing; wings opened (Fig. 227).

PARATYPE m\#: yellow-margined paratype disc; "MAURITIUS Reduit A. Moutia II.v.1948"; "Pres by Com. Inst. Ent. B.M.1948-38"; "COM. INST. ENT. COLL. NO. 10958"; "Preying on Schematiza cordiae"; "182"; "NHMUK 010747737". Specimen well preserved (Fig. 228).

PARATYPE f\#: yellow-margined paratype disc; "MAURITIUS Reduit. i. 1949 Coll. J.R. Williams"; "Afrius williamsi sp.n. det. N.C.E. Miller. 1950."; "Press by Com Inst Ent B M 1950-262"; "COM INST. ENT. COLL. NO. 11607"; "182"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747738". Specimen well preserved (Fig. 229).

PARATYPE f\#: yellow-margined paratype disc; "MAURITIUS Reduit. i. 1949 Coll. J.R. Williams"; "Afrius williamsi sp.n. det. N.C.E. Miller. 1950."; "Press by Com Inst Ent B M 1950-262"; "182"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK $010747739 "$. Specimen well preserved (Fig. 230).

PARATYPE f\#: yellow-margined paratype disc; "Dept. of Agric. MAURITIUS Reduit 19.IV.1948"; "J.R. Williams"; "Pres by Com. Inst. Ent. B.M.1948-38"; "COM. INST. ENT. COLL. NO. 10958"; "182"; "NHMUK 010747740". Specimen well preserved (Fig. 231).

Current status: Afrius (Subafrius) flavirostrum (Signoret, 1861) (synonymised by Roell et al. 2019: XXX).

Note: Apparently, one female paratype is missing.
wollastoni (Megarhaphis) Buchanan-White 1878: 463-464.
Original data: Holotype ["exemplar unicum"]: male ["m\#"]. "Santa Helena: "West Lodge"".

HOLOTYPE m\#: red-margined holotype disc; red-margined type disc; "St Helena I; West Lodge I. St Helena Wollaston. 1875-76"; "1. Megarhaphis wollastoni BW."; "MEGARHAPHIS WOLLASTONI g.n. sp.n F. Buchanan - White - 1878";
"Macrorhaphis wollastoni (BUCH-WHITE) G. Schmitz det. 1972"; "Holotypus m\#"; "Type I"; "BMNH(E) \#1005995"; "NHMUK 010592178". Specimen carded; fourth and fifth right antennomeres, fifth left antennomere, and left middle leg missing. Some parts are glued to the card in front and on the side of the specimen (Fig. 232).

Current status: Macrorhaphis wollastoni (Buchanan White, 1878) (see Schouteden 1905: 179; Schouteden 1907: 39).

Notes: Schouteden (1905: 181) observed: "Il se pourrait même que M.
Wollastoni soit en réalité synonyme de M. acuta. Il serait intéressant de savoir ce que White entend par "angulos posticos pronoti sat productos", ces angles n'étant que peu saillants chez M. acuta."; this may need to be investigated. Strangely enough, Thomas (1994: 185) noted: "Material examined: Type specimens in BM(NH)." [emphasis ours], yet Buchanan-White had stated that he had a unique example.

Acknowledgements

Herbert Zettel and Harald Bruckner (NHMW, Vienna), Petr Kment (NMPC, Prague), and Donald B. Thomas (USDA-ARS, Weslaco) kindly imaged types and their labels. Stuart Cole, Ken Merrifield and Fernley Symons took images of additional types in NHMUK. Donald B. Thomas revised the subfamily, thus allowing further studies on it. We thank them all. We are particularly grateful to CAPES (Brazil) for having funded the research of TR under fellowship grant PDSE - 88881.133880/2016-01.

References*

Aldrich, J.R (1996) Identification of presumed pheromone blend from Australasian predaceous bug, Oechalia schellenbergi (Heteroptera: Pentatomidae). Journal of Chemical Ecology, 22 (4): 729-738.

Anonymous (2018a) Macrosemia assamensis Distant, 1905. Marathe, K., V. Sarkar, B. W. Price, P. Roy, and K. Kunte. Cicadas of India, v. 1. Indian Foundation for Butterflies. Available from:
http://www.indiancicadas.org/sp/299/Macrosemia-assamensis (accessed 17 December 2018).

Anonymous (2018b) Platypleura andamana Distant, 1878. Marathe, K., V. Sarkar, B. W. Price, P. Roy, and K. Kunte. Cicadas of India, v. 1. Indian Foundation for Butterflies. Available from:
http://www.indiancicadas.org/sp/325/Platypleura-andamana (accessed 17 December 2018).

Anonymous (2019) Germar Collection, Public Zoological Museum, Lviv, Ukraine. Available from: http://zoomus.lviv.ua/en/germar_collection/ (accessed 26 January 2019).

Atkinson, E. T. (1888) Notes on Indian Rhynchota; Heteroptera, No. 4. Journal of the Asiatic Society of Bengal, 57 (2), 118-184.

Austen, E.E. (1907) The Synonymy and Generic Position of certain species of Muscidae (sens. lat.) in the Collection of the British Museum, described by the late Francis Walker. The Annals and Magazine of Natural History, Series 7, 19 (112), 326347.

Bachmann, A. O. (1999) Catalogo de los tipos de Heteroptera (Insecta) conservados en el Museo Argentino de Ciencias Naturales. Revista del Museo Argentino de Ciencias Naturales, n.s., 1 (2), 191-230. Available from:
http://revista.macn.gob.ar/ojs/index.php/RevMus/article/view/135 (accessed 29 December 2018)

Bachmann, A. O. (2012) A catalog of the types of Heteroptera (Insecta) deposited in the Museo Argentino de Ciencias Naturales, Buenos Aires 2. Addenda et corrigendum. Revista del Museo Argentino de Ciencias Naturales, n.s., 14 (1), 83-96.

Baker, D. B. (1995) Pfeiffer, Wallace, Allen and Smith: the discovery of the Hymenoptera of the Malay Archipelago. Archives of Natural History, 23 (2), 153-200.

Berg, C. (1879) Hemiptera Argentina enumeravit speciesque novas descripsit. Pauli E. Coni, Bonariae [Bueos Aires], viii; 316 pp.

Berg, C. (1883) Addenda et emendanda ad Hemiptera Argentina. Anales de la Sociedad Cientifica Argentina, 15(5), 193-217.

Bergroth, E. (1891) Contributions à l'étude des pentatomides. Revue d'Entomologie, 10, 200-235.

Bergroth, E. (1908) Enumeratio Pentatomidarum post Catalogum bruxellensem descriptarum. Mémoires de la Société Entomologique de Belgique, 15 (10), 131-200.

Breddin, G. (1901) Neue neotropische Wanzen (fortsetzung). Societas Entomologica, 16 (7), 52-53.

Breddin. (1903) Missdeutete und neue Hemipteren-Arten der indo-australischen Fauna. Sitzungs- Berichte der Gesellschaft Naturforschender Freunde zu Berlin, 1903, 195-223.

Breddin, G. (1908) Rhynchotographische Beiträge (Fünftes Stück). Wiener Entomologische Zeitung, 27 (2-3): 67-70.

Buchanan-White, F. (1878) Contributions to a knowledge of the Hemipterous fauna of St. Helena, and speculations on its origin. Proceedings of the Zoological Society of London, 1878, 444-477, pl. 31.

Burks, B.D. (1975) The Species of Chalcidoidea described from North America north of Mexico by Francis Walker (Hymenoptera). Bulletin of the British Museum (Natural History), 32, 139-170.

Butler, A.G. (1874) Insects. In: Richardson, J. \& Gray, J.E. (Eds.), The zoology of the voyage of H.M.S. Erebus \& Terror, under the command of Captain Sir James Clark Ross, R.N., F.R.S., during the years 1839 to 1843. Vol. II. Reptiles, Fishes, Crustacea, Insects, Mollusca. E. W. Janson, London, pp. 25-51.

Butler, A.G. (1876) On the subfamilies Antichlorinae and Charideinae of the Lepidopterous Families Zygaenidae abd Arctiidae. The Journal of the Linnean Society of London, 12, 408-433, plate 29.

Cassis, G. \& Gross, G.F. (2002) Hemiptera: Heteroptera (Pentatomomorpha). In: Houston, W.W.K. \& Wells, A. (Eds.), Zoological Catalogue of Australia. Vol. 27.3B. CSIRO Publishing, Melbourne, Australia, xiv; 737 pp.

Chatterjee, N. C. (1934) Entomological Investigations on the Spike Disease of Sandal Pentatomidae (Hemipt.). Indian Forest Records, 20 (9), 1-31.

CoreoideaSF Team. (2018) Coreoidea Species File Online. Version 5.0/5.0. [17 December 2018]. http://Coreoidea.SpeciesFile.org.

Dallas, W. S. (1851) List of the specimens of hemipterous insects in the collection of the British Museum. Part 1. Trustees of the British Museum, London, 368 pp. [plates 1-11.]

Dallas, W. S. (1852) Descriptions of some new species of hemipterous insects belonging to the tribe Scutata. Transactions of the Entomological Society of London, Series 2, 2, 6-17.

Day, G. M. (1964) Revision of Acrosternum auctt. nec Fieber from Madagascar, Annals and Magazine of Natural History, 7: 81, 559-565. https://doi.org/10.1080/00222936408651499

Dellapé, P.M. \& Henry, T.J. (2018) Lygaeoidea Species File. Version 5.0/5.0. [17 December 2018]. http://Lygaeoidea.SpeciesFile.org.

Distant, W.L. (1878) Notes on some Hemiptera-Homoptera with descriptions of new species. Transactions of the Entomological Society of London. 1878 (2), 173-179.

Distant, W. L. (1879) Hemiptera from the North-eastern Frontier of India. Annals and Magazine of Natural History, Series 5, 3 (13-14), 44-53, 127-137.

Distant, W. L. (1880) Insecta. Rhynchota, Hemiptera-Heteroptera. In: Godman, F.D. \& Salvin, O. (Eds.), Biologia Centrali - Americana. Vol. 1. R.H. Porter, London, pp. 1-88,

Distant, W. L. (1881) Notes on a small collection of Rhynchota from Tokei, Japan. Annals and Magazine of Natural History, Series 5, 8 (43), 27-29.

Distant, W. L. (1882) Contributions to a knowledge of the rhynchotal fauna of Sumatra. Entomologist's Monthly Magazine, 19 (223), 156-160.

Distant, W. L. (1883) First report on the Rhynchota collected in Japan by Mr. George Lewis. Transactions of the Entomological Society of London, 1883 (3), 413443, pls 19, 20.

Distant, W. L. (1887a) Contributions to a knowledge of Oriental Rhynchota. Part I. Fam. Pentatomidae. Transactions of the Entomological Society of London, 1887 (3), 341-359, pl. 12.

Distant, W. L. (1887b) Enumeration of the Van Volxem collection of Rhynchota contained in the Brussels Museum. Part I. Annales de la Société Entomologique de Belgique, Series 3, 31 (88), lvi-lxvi.

Distant, W. L. (1888) An enumeration of the Rhynchota received from Baron von Müller, and collected by Mr. Sayer in New Guinea during Mr. Cuthbertson’s expedition. Transactions of the Entomological Society of London, 1888 (4), 475-489, pl. 13.

Distant, W. L. (1889) Insecta. Rhynchota, Hemiptera-Heteroptera. In: Godman, F.D. \& Salvin, O. (Eds.), Biologia Centrali - Americana. Vol. 1. R.H. Porter, London, pp. 305-328,

Distant, W. L. (1890a) Descriptions of some new species of Chinese Rhynchota. Entomologist, 23 (324), 159-160.

Distant, W. L. (1890b) Report on a Collection of Rhynchota made at Yambuya, on the River Aruwimi, by Mr. W. Bonny of the Emin Pasha Relief Expedition under Mr. H.M. Stanley. Proceedings of the Zoological Society of London, 1890 (3), 473-479

Distant, W. L. (1890c) Ethiopian Rhynchota in the collection of the Brussels Museum. Annales de la Société Entomologique de Belgique, Series 4, 34 (5), li-lxi.

Distant, W. L. (1892) Notes on Ethiopian Rhynchota. Entomologist's Monthly Magazine, Series 2, 3 (31), 187-189.

Distant, W. L. (1893) Insecta. Rhynchota, Hemiptera-Heteroptera. In: Godman, F.D. \& Salvin, O. (Eds.), Biologia Centrali-Americana. Vol. 1. R.H. Porter, London, pp. 369-462

Distant, W. L. (1898) Rhynchota from the Transvaal, Mashonaland, and British Nyasaland. Annals and Magazine of Natural History, Series 7, 2 (10), 294-316.

Distant, W.L. (1899) Rhynchotal notes. - Heteroptera: Scutellerinae and Graphosominae. Annals and Magazine of Natural History, Series 7, 4 (19), 29-52.

Distant, W. L. (1900a) Rhynchotal notes. - V. Heteroptera: Asopinae and Tessaratominae. Annals and Magazine of Natural History, Series 7, 6 (31), 55-64.

Distant, W. L. (1900b) Contributions to a knowledge of the Rhynchota. III. Heteroptera from Borneo. Transactions of the Entomological Society of London, 1900 (4), 695-697, pl. 9 .

Distant, W. L. (1901) On a few undescribed Rhynchota. Fam. Pentatomidae. Annals and Magazine of Natural History, Series 7, 8 (43), 60-62.

Distant, W. L. (1902) Rhynchotal miscellanea. Part II. Rhynchota from the Transvaal Mashonaland, and British Nyasaland. Annals of the South African Museum, 2 (9), 244-251, pl. 15.

Distant, W.L. (1905) Rhynchotal notes. - XXIX. Subfam. Cicadinae (continued). Annals and Magazine of Natural History. London, Series 7, 15 (85), 5870.

Distant, W. L. (1908) Rhynchota. - Vol. IV. Part 2. Homoptera and Appendix (pt.). In: Bingham, C.T. (Ed.), The Fauna of British India, including Ceylon and Burma. Secretary of State for India; Taylor \& Francis, London, pp. i-xv; 265-501; figs 171282.

Distant, W. L. (1910) Descriptions of three new species of Indian Rhynchota. Entomologist, 43 (566), 195-196.

Distant, W. L. (1911a) Rhynchotal notes. - LIII. Neotropical Pentatomidae. Annals and Magazine of Natural History, Series 8, 7 (39), 242-258.

Distant, W. L. (1911b) Rhynchotal notes. - LIV. Pentatomidae from various regions. Annals and Magazine of Natural History, Series 8, 7 (40), 338-354; 1 Fig.

Distant, W. L. (1912) Descriptions of Ethiopian Rhynchota (Heteroptera). Annals and Magazine of Natural History, Series 8, 10 (55), 87-90.

Distant, W. L. (1913) Rhynchota. Part I: Suborder Heteroptera. In: Gardiner, J.S. (Ed.), The Percy Sladen Trust Expedition to the Indian Ocean in 1905, under the leadership of Mr J. Stanley Gardiner, M.A. Transactions of the Linnean Society of London. Series 2 (Zoology), 16 (2), 139-191, plates 11-13.

Dolling, W. R., Rider, D. A. \& Rolston, L. H. (1999) Catalog of the names of Cimex Linnaeus, with comments on early works concerning the Heteroptera. Thomas Say Publications in Entomology: Monographs. Entomological Society of America, Lanham, Maryland, 154 pp.

Dupuis C. (1952) Priorité de quelques noms d'Hétéroptères de Guérin Méneville (1831). Bulletin de la Société Zoologique de France, 77, 447-454.

Fabricius, J. C. (1775) Systema Entomologiae sistens Insectorum classes, ordines, genera, species, adjectis synonymis, locis, descriptionibus, observationibus. Korte, Flensburgi [Flensburg] et Lipsiae [Leipzig], [30]+832 pp.

Gaedike, H. (1971) Katalog der in den Sammlungen des chemaligen Deutschen Entomologischen Institutes aufbewahrten Typen.-V. Beiträge zur Entomologie, 21 (12), 79-159.

Gaffiot, F. (1934) Dictionnaire illustré latin-français. Hachette, Paris, 1720 pp.
Germar, E. F. (1838) Hemiptera Heteroptera promontorii bonae spei, nondum descripta, quae collegit C.F. Drège. Revue Entomologique (Silbermann), 5, 121-192.

Grazia J., Panizzi A. R., Greve C., Schwertner C. F., Campos L. A., Garbelotto T. A. \& Fernandes J. A. M. (2015) Stink Bugs (Pentatomidae). In: Panizzi A. \& Grazia J. (Eds) True Bugs (Heteroptera) of the Neotropics. Entomology in Focus 2. Springer, Dordrecht, pp. 681-756.
https://doi.org/10.1007/978-94-017-9861-7_22

Holovachov, O., Zatushevsky, A. \& Shydlovsky, I. (2014) Whole-Drawer Imaging of Entomological Collections: Benefits, Limitations and Alternative Applications. Journal of Conservation and Museum Studies, 12 (1), 1-13. http://dx.doi.org/10.5334/jcms. 1021218

Horváth, G. (1889) Notes synonymiques et géographiques sur les Hémiptères paléarctiques. Revue d'Entomologie, 8, 325-331.

Horváth, G. (1911) Miscellanea hemipterologica. VI. Asopinae novae. Annales Musei Nationalis Hungarici, 9, 423-435.

ICZN. (1999) International Code of Zoological Nomenclature. Fourth edition. International Trust for Zoological Nomenclature, London, 306 pp.

Josifov, M. V. \& Kerzhner, I. M. (1978) Heteroptera aus Korea. II. Teil (Aradidae, Berytidae, Lygaeidae, Pyrrhocoridae, Rhopalidae, Alydidae, Coreidae, Urostylidae, Acanthosomatidae, Scutelleridae, Pentatomidae, Cydnidae, Plataspidae). Fragmenta Faunistica, 23(9), 137-196.

Kirby, W. F. (1891) Catalogue of the described Hemiptera, Heteroptera and Homoptera of Ceylon, based on the collection formed (chiefly at Pundaloya) by Mr. E. Ernest Green. Journal of the Linnean Society, Zoology, 24 (149-150), 72-176, plates IV-VI.

Kirkaldy, G. W. (1909) Catalogue of the Hemiptera (Heteroptera) with biological and anatomical references, lists of foodplants and parasites, etc. Vol. I. Cimicidae. F.L. Dames, Berlin, xl + 392 pp.

Kondorosy, E., Lyal, C. H. C. \& Webb, M. D. (2006) Nomenclatorial changes in Oriental Lygaeinae seed bugs (Hemiptera: Heteroptera: Lygaeidae). Zootaxa, 1383, 4546.

Lasègue, A. (1845) Musée botanique de M. Benjamin Delessert: Notices sur les collections de plantes et la bibliothèque qui le composent; contenant en outre des documents sur les principaux herbiers d'Europe et l'exposé des voyages entrepris dans l'intérêt de la botanique. Librairie de Fortin, Masson et Cie. Paris, 588 pp.
https://doi.org/10.5962/bhl.title. 134793
Lewis, C. T. \& Short, C. (1891) A new Latin Dictionary. Harper \& Brothers, New York / Clarendon Press, Oxford, 2019 pp.

Linnavuori, R. (1975) Hemiptera Heteroptera of the Sudan with remarks on some species of the adjacent countries. Part 5. Pentatomidae. Boletim da Sociedade Portuguesa de Ciências Naturais, Series 2, 15, 5-128.

Maldès J.M. \& Pluot-Sigwalt D. (2004) Les Asopinae afrotropicaux et malgaches conservés au MNHN à Paris: Liste des spécimens types et des espèces représentées [Heteroptera: Pentatomidae]. Revue française d'Entomologie, 26 (1), 1928.

Miyamoto, S. (1965) Heteropterous insects of Formosa collected by Dr. Shirozu and others, 1961. Special Bulletin of the Lepidopterological Society of Japan, 1, 227238.

Miller, N. C. E. (1951) A new species of Afrius (Hem., Pentatomidae) predacious on Schematiza cordiae Barb., in Mauritius. Bulletin of Entomological Research, 42 (1), 183-184.

Palmer, T.S. (1918). Goudot's Explorations in Colombia. Auk, 35 (2), 240-241.
https://doi.org/10.2307/4072880
Phillips, K.A. (1983) A taxonomic revision of the nearctic species of Apateticus Dallas and Podisus Herrich-Schaeffer (Heteroptera: Pentatomidae: Asopinae). Ph.D. Dissertation, Oregon State University, 275 pp.

Pirán, A.A. (1961) Sinopsis del género Heteroscelis Latreille 1829 (Hem. Pentatomidae) con la descripción de cinco especies nuevas. Revista de Investigaciones Agrícolas, 15, 83-99.

Public Library, Museums and National Gallery (Vic.), Berry, G., Dobson, F.S., Duffy, C.G., Ellery, R.L.J., Folingsby, G.F., Gagliarchi, F., Harper, A., Irving, M.H., Langton, E., Leeper, A., MacBain, J., McCoy, F., McCubbin, F., McCulloch, J., MacMahon, C., Morris, Edward E., Nanson, E.J., Newbery, J.C., O'Loghlen, B., Pearson, C.H., Rule, O.R., Smith, J., Syme, D., Turner, H.G., Vale, W.M.K., Verdon, G.F., Wallen, R.E., Way, A.S. (1890). Report of the Trustees of the Public Library, Museums, \& National Gallery of Victoria, for 1889: With a statement of income and expenditure for the financial year 1888-9. Robt. S. Brain, Government Printer, Melbourne, 58 pp. Available from:
https://www.parliament.vic.gov.au/papers/govpub/VPARL1890No29.pdf (accessed 4 December 2018)

Reuter, O.M. (1881) Analecta hemipterologica. Zur Artenkenntniss, Synonymie und geographischen Verbreitung palaearktischer Heteropteren. Berliner Entomologische Zeitschrift, 25 (1-2), 155-196.

Rider, D.A. (2012) The Heteroptera (Hemiptera) of North Dakota I: Pentatomomorpha: Pentatomoidea. Great Lakes Entomologist, 45 (3-4), 312-380.

Rider, D.A. (2015) Pentatomoidea Home Page. North Dakota State University. Available from: https://www.ndsu.edu/pubweb/~rider/Pentatomoidea/index.htm (accessed 8 December 2018)

Rider, D.A. \& Rolston, L.H. (1995) Nomenclatural changes in the Pentatomidae (Hemiptera-Heteroptera). Proceedings of the Entomological Society of Washington, 97 (4), 845-855.

Roell, T., Lemaître, V.A. \& Webb, M.D. (2019) Revision of the African shieldbug genus Afrius Stål, 1870 (Hemiptera: Heteroptera: Pentatomidae: Asopinae). European Journal of Taxonomy, XX, XXX-XXX.

Schmitz, G. (1976) La faune terrestre de l'İle de Sainte-Hélène. Troisième partie. 2. Insectes (suite et fin). 20. Heteroptera. 4. Fam. Pentatomidae. Annales du Musée Royal de l'Afrique Centrale (Sciences Zoologiques), Series 8, 215, 367-391.

Schouteden H. (1905) Rhynchota Aethiopica II. Arminae et Tessaratominae. Faune entomologique de l'Afrique tropicale. Annales du Musée du Congo Belge (Zoologie), 3 (1), 133-277.
https://doi.org/10.5962/bhl.title. 12601
Schouteden, H. 1907. Heteroptera, Fam. Pentatomidae, Subfam. Asopinae (Amyoteinae). Genera Insectorum 52, P. Wytsman, Bruxelles.

Schouteden, H. (1909) Catalogues raisonnés de la faune entomologique du Congo Belge. I. Hémiptères-Hétéroptères, Fam. Pentatomidae. Annales du Musée du Congo Belge (Zoologie), (3) sect. 2, 1, 1-85.

Schuchert, C. (1897) What is a type in natural history? Science, 5 (121), 636640. Also available online from: http://www.jstor.org/stable/1624022. (accessed 18 December 2018).

Scott, J. (1874) On a collection of Hemiptera Heteroptera from Japan. Descriptions of various new genera and species. Annals \& Magazine of Natural History, Series 4, 14 (82), 289-304, 360-365, 426-452.

Scudder, S.H. (1899) An unknown tract on American insects by Thomas Say. Psyche, 8: 306-308.

Signoret, V. (1853) Revue critique du groupe des Tettigonides et de la tribu des Cercopides. Revue et magasin de zoologie pure et appliquée, Series 2, 5, 173-184.

Signoret, V. (1863) Révision des Hémiptères du Chili. Annales de la Société Entomologique de France, Series 4, 3, 541-588, pls 11-13.

Smith, J.B. (1893) A catalogue, bibliographical and synonymical, of the species of moths of the Lepidopterous superfamily Noctuidae, found in boreal America, with critical notes. Bulletin of the United States National Museum, 44, 1-424.

Stål, C. (1862) Synonymiska och systematiska anteckningar öfver Hemiptera. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, 19 (9), 479-504.

Stål, C. (1868) Bidrag till Hemipterernas systematik. Conspectus generum Asopidum Europae et Americae. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, 24 (7) [1867], 495-499.

Stål, C. (1870) Enumeratio Hemipterorum. Bidrag till en förteckning öfver alla hittills kända Hemiptera, jemte systematiska meddelanden. 1. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 9 (1), 1-232.

Stål, C. (1872) Enumeratio Hemipterorum. Bidrag till en förteckning öfver alla hittills kända Hemiptera, Jemte Systematiska meddelanden. 2. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 10 (4), 1-159.

Synave, H. (1969) Liste du matériel typique conservé dans les collections entomologiques de l'Institut Royal des Sciences Naturelles de Belgique. Hemiptera - 2325 - Cydnidae, Pentatomidae, Gelastocoridae. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 45(37), 1-21.

Thomas, D. B. (1992) Taxonomic synopsis of the asopine Pentatomidae (Heteroptera) of the Western Hemisphere. Thomas Say Foundation Monographs. Volume XVI. Entomological Society of America, Lanham, Maryland, iv; 156 pp.

Thomas, D. B. (1994) Taxonomic synopsis of the Old World asopine genera (Heteroptera: Pentatomidae). Insecta Mundi, 8(3-4),145-212.

Thomas, O. (1893) Suggestions for the more definitive use of the word "Type" and its compounds, as denoting Specimens of a greater or less degree of Authenticity. Proceedings of the Zoological Society of London, 1893 (2), 241-242. Also available
online from: https://biodiversitylibrary.org/page/30981256 (accessed 18 December 2018).

Uhler, P. R. (1861) Descriptions of a few new species of Hemiptera, and observations upon some already described. Proceedings of the Entomological Society of Philadelphia, 1(1), 21-24.

Uhler. 1872[1871]. Notices of the Hemiptera of the western territories of the United States, chiefly from the surveys of Dr F.V. Hayden. Hayden, F.V., Preliminary Report of the United States Geological Survey of Montana and portions of adjacent territories. 5: 392-423.

Uhler, P. R. (1876) List of the Hemiptera of the region west of the Mississippi River, including those collected during the Hayden explorations of 1873. Bulletin of the United States Geological and Geographical Survey of the Territories, 1, 267-361.

Uhler, P. R. (1886) Check-List of the Hemiptera Heteroptera of North America. Brooklyn Entomological Society, Henry H. Kahrs, Steam Printer, Brooklyn, N.Y., i; 32 pp.

Usinger, R. L. (1941) The genus Oechalia (Pentatomidae, Hemiptera). Proceedings of the Hawaiian Entomological Society, 11, 59-93.

Van Duzee, E. P. (1904) Annotated list of the Pentatomidae recorded from America, North of Mexico, with descriptions of some new species. Transactions of the American Entomological Society, 30(1), 1-80.

Van Duzee, E. P. (1936) A report on some Heteroptera from the Hawaiian Islands, with descriptions of new species. Proceedings of the Hawaiian Entomological Society, 9(2), 219-229.

Villiers, A. (1954) Contribution B l'étude du peuplement de la zone d'inondation du Niger (Mission G. Remaudière). X. - Hémiptères Hétéroptères. Bulletin de l'Institut Français d'Afrique Noire, 16(1), 219-231.

Walker, F. (1867a) Catalogue of the specimens of Hemiptera Heteroptera in the collection of the British Museum. Part I. E. Newman, London, pp. 1-240.

Walker, F. (1867b) Catalogue of the specimens of heteropterous Hemiptera in the collection of the British Museum. Part II. Scutata. E. Newman, London, pp. 241417.

Walker, F. (1868) Catalogue of the specimens of Hemiptera Heteroptera in the collection of the British Museum. Part III. E. Newman, London, pp. 418-599.

Walker, K. L. (1985) Mystery of Francis Walker specimens solved. Tymbal, 5, 9-15.

Welter-Schultes, F.W. (2012) Guidelines for the capture and management of digital zoological names information. Version 1.1, released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5. Available from: http://www.gbif.org/document/80625 (accessed 8 December 2018).

Wheeler, A. (1996) Zoological collections in the early British Museumdocumentation of the collection. Archives of Natural History, 23 (3), 399-427.

Woodward, T. E. (1953) The Heteroptera of New Zealand. Part I. Introduction; Cydnidae; Pentatomidae. Transactions of the Royal Society of New Zealand, 80 (3-4), 299-321, pls. 62-71.

Woodward, T. E. (1956) The Heteroptera of New Zealand. Part II. The Enicocephalidae, with a supplement to Part I (Cydnidae and Pentatomidae).

Transactions of the Royal Society of New Zealand, 84 (2), 391-430.
Zhao, Q., G-q. Liu, \& W-j. Bu. (2013) A review of the Chinese species of the genus Picromerus Amyot and Serville, with description of a new species (Hemiptera: Heteroptera: Pentatomidae: Asopinae). Zootaxa, 3613 (2), 146-164.

Figures

FIGURES 1-8. Type-specimens deposited in the NHMUK. 1, Macrorhaphis acuta; 26, Podisus affinis; 7, Rhaphigaster aggressor; 8, Arma ampla. Scale bars: 4 mm .

FIGURES 9-16. Type-specimens deposited in the NHMUK. 9, Podisus amulae; 10, Stiretrus annulatus; 11, Asopus annulipes; 12, Canthecona annulipes; 13, Podisus atitlanensis; 14, Platynopus badius; 15, Oplomus basalis; 16, Oplomus biarcuatus. Scale bars: 4 mm .

FIGURES 17-24. Type-specimens deposited in the NHMUK. 17-19, Damarius
bicolor; 20, Platynopus bimaculatus; 21, Canthecona binotata; 22, Asopus binotatus;
23, 24 Platynopus borneensis. Scale bars: 4 mm .

FIGURES 25-32. Type-specimens deposited in the NHMUK. 25, Bodetria brenthoides; 26, Oechalia bryani; 27, Canthecona caerulea; 28, Stiretrus caeruleus; 29, Arma caliginosa; 30, Bodetria chrysochlora; 31, Oplomus chrysomela; 32, Oplomus chrysomelas. Scale bars: 4 mm .

FIGURES 33-40. Type and historical specimens deposited in the NHMUK. 33, Hoploxys coeruleus; 34, Canthecona cognata; 35-38, Arma colorata; 39, Canthecona concinna; 40, Platynopus conspersus. Scale bars: 4 mm .

FIGURES 41-48. Type-specimens deposited in the NHMUK. 41, Platynopus conspersus; 42-45, Zicrona cuprea; 46, Macrorhaphis dallasi; 47, 48, Coryzorhaphis dolligni 13, Podisus. Scale bars: 4 mm.

FIGURES 49-66. Type and historical specimens deposited in the NHMUK. 49, 50,
Platynopus dotatus; 51, Blachia ducalis; 52, Coryzorhaphis egeri; 53, Oplomus equestris; 54, 55, Glypsus erubescens; 56, Strachia erythromela. Scale bars: 4 mm .

FIGURES 57-64. Type-specimens deposited in the NHMUK. 57, Podisus falcatus; 58, Oplomus festivus; 59 60, Strachia frontalis; 61, Anasida funebris; 62, Arma fuscecens; 63, Glypsus erubescens; 64, Podisus gaumeri. Scale bars: 4 mm.

FIGURES 65-72. Type-specimens deposited in the NHMUK. 65-68, Arma grandis; 69-71, Canthecona grandis; 72, Cantecona grisea. Scale bars: 4 mm .

FIGURES 73-80. Type-specimens deposited in the NHMUK. 73, 74, Apateticus halys; 75, Strachia hamata; 76, Canthecona humeralis; 77, Bodetria indecora; 78,
Macrorhaphis infuscata; 79, Moyara insignis; 80, Podisus insignis. Scale bars: 4 mm .

FIGURES 81-88. Type-specimens deposited in the NHMUK. 81, 82, Canthecona insularis; 83, Cazira internexa; 84, Arma invaria; 85, Glypsus javanus; 86, Platynopus laetus; 87, 88, Arma lateralis.Scale bars: 4 mm .

FIGURES 89-96. Type-specimens deposited in the NHMUK. 89, Asopus leprosus; 90, Picromerus lewisi; 91, Oplomus lineatus; 92, Cimex luridus; 93, Glypsus luridus; 94, 95, Sesha manifesta; 96, Tynacantha marginata. Scale bars: 4 mm .

FIGURES 97-104. Type-specimens deposited in the NHMUK. 97, Canthecona marginella; 98-100, Zicrona marginella; 101, Canthecona marmorata; 102, Mecosoma marshalli; 103, Strachia megaspila; 104, Hoploxys megaspilus.Scale bars: 4 mm .

FIGURES 105-112. Type-specimens deposited in the NHMUK. 105, Asopus micans; 106, Cantheconidea migratoria; 107, 108 Ealda minax; 109-112, Arma modesta.Scale bars: 4 mm .

FIGURES 113-120. Type-specimens deposited in the NHMUK. 113, Edessa moesta;

114, Arma monospila; 115, Oplomus nigripennis; 116, 117, Arma nigrispina; 118,
Podisus nigriventris; 119, Picromerus nigrivitta; 120, Mormidea nigro-binotata. Scale bars: 4 mm .

FIGURES 121-128. Type and historical specimens deposited in the NHMUK. 121, 122 Mormidea nigro-binotata; 123, Arma obscura; 124, Picromerus obtusus; 125, Platynopus optabilis; 126, Jalloides opulentus; 127, Neoglypsus opulentus; 128, Anasida orientalis. Scale bars: 4 mm.

FIGURES 129-136. Type-specimens deposited in the NHMUK. 129, 130, Anasida orientalis; 131, Canthecona ornatula; 132, Stiretrus ornatus; 133, 134, Arma pallipes; 135, 136, Canthecona parva. Scale bars: 4 mm .

FIGURES 137-144. Type-specimens deposited in the NHMUK. 137, 138, Platynopus parvus; 139-142, Raphigaster pentatomoides; 143, 144, Raphigaster perfectus.Scale bars: 4 mm .

FIGURES 145-152. Type-specimens deposited in the NHMUK. 145, 146,
platyrhynoides; 151, Platynopus polygraphus; 152, Strachia praecipua.Scale bars: 4 mm .

FIGURES 135-160. Type-specimens deposited in the NHMUK. 153, Incitatus primus; 154, 155, Oplomus pulcher; 156, Platynopus purparascens; 157, Strachia pyrophila; 158, 159, Strachia reciproca; 160, Picromerus robustus.Scale bars: 4 mm .

FIGURES 161-168. Type-specimens deposited in the NHMUK. 161, Picromerus robustus; 162, Stiretrus ruficceps; 163, Dolycoris rutherfordi; 164, Oplomus rutilus; 165, Strachia saturata; 166, 167 Podisus sculptus; 168, Bodetria scutellaris.Scale bars: 4 mm .

FIGURES 169-176. Type-specimens deposited in the NHMUK. 169, Platynopus scutellatus; 170, 171 Arma semialba; 172, Platynopus semiscitus; 173, Platynopus silvaticus; 174-176. Scale bars: 4 mm .

FIGURES 177-184. Type-specimens deposited in the NHMUK. 177, 178, Picromerus similis; 179, Podisus smithi; 180, Arma spinosa; 181, Tynacantha splendens; 182, Macrorhaphis spurcata; 183, Oplomus stellatus; 184, Arma submarginata. Scale bars: 4 mm .

FIGURES 185-192. Type and historical specimens deposited in the NHMUK. 185,
Podisus congrex; 186, 187, Podisus pallipes; 188-190, Platynopus tenellus; 191,
Canthconidea thomsoni; 192, Mecosoma thoracata.Scale bars: 4 mm .

FIGURES 193-200. Type-specimens deposited in the NHMUK. 193-196, Mecosoma thoracata; 197, Canthecona tibialis; 198, Arma tincta; 199, Platynopus trijunctus; 200, Glypsus truculentus. Scale bars: 4 mm .

FIGURES 201-208. Type and historical specimens deposited in the NHMUK. 201, Arma turbida; 202-205, Platynopus turneri; 206, Supputius typicus; 207, 208, Gilva varipes. Scale bars: 4 mm .

FIGURES 209-216. Type and historical specimens deposited in the NHMUK. 209, 210, Gilva varipes; 211, Arma ventralis; 212, Oplomus ventralis; 213, Jalloides versicolor; 214, Oplomus violaceus; 215, 216, Oechalia virescens. Scale bars: 4 mm .

FIGURES 217-224. Type-specimens deposited in the NHMUK. 217, Oechalia virgula; 218-220, Neoglypsus viridicatus; 221-224, Afrius williamsi.Scale bars: 4 mm .

FIGURES 225-132. Type-specimens deposited in the NHMUK. 225-231, Afrius williamsi; 232, Megarhaphis wollastoni. Scale bars: 4 mm .

Tables

Table 1. List of NHMUK (then BMNH) registration numbers on the labels of the specimens examined and the information they hold.

Registration numbers	Country/Locality	Additional information 40303821 40626329
4151786	Various localities	Specimen 821 identified as "Stiretrus?" was purchased at Mr. Children's sale on 30th March 1840
4151787	Trenton Falls	Specimen 329 identified as "Asopus" was purchased from Dr Krauss on 26th June 1840.
4151789	Unecimen 86 identified as "Pentatoma" was	
presented by Edward Doubleday on 17th May		
1841.		

4620	Columbia (N. Grenada)	Collection containing 118 Hemiptera purchased from M. Goudot.
4675	Venezuela	Collection containing 9 Hemiptera purchased from Dyson.
471	Venezuela	Collection containing 16 Hemiptera purchased from Dyson (Bill 193).
4721	Corea	Collection containing 22 Hemiptera and Homoptera presented by Capt. Sir E. Belcher and collected by Arthur Adams Esq. during the Voyage of HMS Samarang.
4726	Venezuela	Collection containing 27 Rhynchota purchased from Dyson (Bill 193).
4811	Mexico	Collection containing 35 Rhynchota purchased from Argent (Bill 198).
52109	E. Indies	Collection containing 88 Rhynchota purchased from S. Stevens
5372	Santarem on Amazon	Collection containing 40 Rhynchota purchased from Stevens and collected by Mr Bates.
5374	Whydah	Collection containing 17 Rhynchota purchased from Stevens and collected by Mr Louis Fraser.
544	New Zealand (Auckland)	Collection containing 108 Rhynchota presented by Colonel Bolton.
5466	Mexico, Vera Cruz	Collection containing 30 Rhynchota purchased from Cuming and collected by M. Sallé.
5476	Various localities	Collection containing 100 Rhynchota purchased from Stevens. Formerly belonged to Zool. Soc. //S.R. belonged to Sir Stamford Raffles \& are chiefly from Sumatra. //L.M. Dr Lyall Madagascar //J.H. St Domingo (Hearne) //F.C. Columbia Friend //T. Trebizond (Abbott)
558	Ceram \& Amboina	Collection containing 31 Rhynchota purchased from S. Stevens for $£ 30$. They were collected by Madame Ida Pfeiffer during her recent travels. They are ticketed «Ceram».
5576	Northern India	Collection containing 18 Rhynchota purchased from Stevens and collected by Capt. Reid.
5596	Port Natal	Collection containing 64 Rhynchota purchased from Stevens and collected by Gueinzius.
5685	No localities on specimens, 213 to 239 «Isld. Of Moala. Sept. 1854 »	Collection containing 75 Rhynchota presented by Sir John Liddell MD. From Voyage of HMS Herald (Capt Denham RN) Solomon Islands, New Hebrides, Australia etc. S. America (see 55-69). N. Zealand etc.
56143	Mexico	Collection containing 289 Rhynchota purchased from Cuming and collected by M. Salle on \& around the volcano of Orizaba; two or three are from St Thomas in the W. Indies.
5757	Brazil (Province of Rio)	Collection containing 229 Rhynchota presented on 8 June 1857 by Rev. Hamlet Clark \& J. Gray Esq. Wheatfield House, Bolton le Moors, Lancashire. Harmston Vicarage, Lincoln. Collected at Petropolis, Constancia \& other localities near Rio, indicated on each ticket. There are a few specimens collected at Bahia \& St. Vincent.
57130	Australia (Moreton Bay)	Collection containing 49 Rhynchota purchased from Stevens and collected by TR Diggles.

586	Amazon (Ega on the Riv.), Rio Javari (or Olivença)	Collection containing 40 Rhynchota purchased from Stevens.
5813	Port Natal.	Collection containing 148 Rhynchota purchased from Stevens and collected by Gueinzius.
5885	Madagascar	Collection containing 26 Rhynchota purchased from S. Stevens and collected by Madame Ida Pfeiffer.
58124	Australia. Sydney \& Moreton Bay ; The localities are Maitland «Partinston». Moreton Bay, Wollanggong, Paramatta. Sydney.	Collection containing 131 Rhynchota collected by Edward Damel and bought of Samuel Stevens on Oct. 11 1858. *58-124* Insects so marked are Mr Marsdens 59.18. a few of the Celebes Insects 58.142* were marked 58.124* by transposition. The name of the country will indicate what the number should be. 58 142* : this collection containing 63 Rhynchota from Celebes (within 50 miles of Macassar) reached the Museum on 4 December 1858.
58132	Cuenca (Province of Equador)	Collection containing 47 Rhynchota purchased from Cuming and collected by Fraser.
58135	Mexico, Oajaca	In this collection, the specimens of Rhynchota were not counted. They were purchased from Sallé through Cuming.
5937	Old Calabar, Brazil (chiefly), Ceylon etc.	Collection containing 83 Rhynchota purchased from Mr John Gray.
5957	Various countries. British Islands	In this collection, the specimens of Rhynchota were not counted [Coleoptera, Orthoptera, Neuroptera, Hymenoptera and Lepidoptera were received in June 1859, Diptera and Rhynchota were not obtained until 27 September]. They were presented to the Museum by the Zoological Society of London. Originally part of Vigorsian Collection, including the types described by Mr Vigors in the Zoological Journal, Sumatra Insects collected by Sir Stamford Raffles. Barbary Insects collected by Capt. Lyon etc. They were selected on account of their scientific value. N. B. The British Insects originally belonged to Mr Wilkins of Costessey. There are many types of Kirby, Spencer \& other entomologists of the time in Wilkins Coll.
5963	New Caledonia	Collection containing 15 Rhynchota purchased from Cuming and collected by John Macgillwray FRGS.
6032	Brazil, St. Paul	Collection containing 38 Rhynchota purchased from Stevens and collected by Bates.
6076	Celebes (Manado)	Collection containing 12 Rhynchota purchased from Stevens and collected by A. Wallace.
619	Abyssinia	Collected on the mission of Sir W. C. Harris to Shoa in Abyssinia and presented by the Secretary for Indian Affairs.
6149	Hong Kong	Collection containing 198 Rhynchota collected and presented by J. C. Bowring.
6257	Brazil, on the banks of the Amazon	Collection containing 214 Hemiptera purchased from Stevens. These specimens were selected from Mr Bates' private collection.
6258	Batchian	Collection containing 14 Hemiptera purchased from Stevens.

6273	Siam (Camboya [Cambodia])	Collection of 14 Hemiptera purchased from Stevens and collected by Mouhot in the interior of Siam from the Laos Mountains - near Cochin China
6291	Salwatty \& New Guinea	Strangely neither the register nor, obviously, Baker (1995: 177) mention any Hemiptera for this date.
6347^{*} [This is different from 63 47, which are the insects presented by The Linnaean Society.]	Various countries	The Collection of Coleoptera presented to the British Museum by J. C. Bowring, including Chevrolat's collection of Longicornes [ca. 11 000 specimens]. The many cabinets, drawers and boxes presented by Bowring to the Museum contained a couple of collections with specimens from Sylhet but there are no mentions of Hemiptera, even in Bowring's letter to J.E. Gray where he detailed what he was donating. This letter is bound in the register as page 828 .
6475	Fernand Vaz River, West Africa	Collection containing 10 Hemiptera collected by Du Chaillu [Paul Belloni] and purchased of Stevens.
6513	Various localities	Collection containing 3207 Hemiptera presented by William Wilson Saunders Esq. This constitutes the entire collection of Hemiptera from the saundersian cabinet containing the whole of the species collected by Mr. Wallace and Bates.
6612	Cape Mexico Burmah Brazil	Collection containing 206 Hemiptera presented by William Wilson Saunders Esq.
8811^{*} [This is different from 88 11 , which are the insects from the "Challenger Expedition"]	Various localities, chiefly British.	Collection containing 3600 Hemiptera. Purchased of Mrs Sarah Scott, being a selection from Mr John Scott's collection, containing 43 types of British species, 24 types of European species, 56 types of exotic species.
8831	Kirkiang, Hakodate, Kashmir (Baltistan)	Collection containing 326 Hemiptera purchased from H. Leech Esq. [12, Princes St., Hanover Sq., W.]. Collected by Mr. Pratt. Collected by a native. Collected by J.H. Leech Esq. June 1887.
9126	Ceylon, Pundaloya	Collection collected and presented by E. E. Green Esq. No Hemiptera are listed but a note refers to 90 115: a lot of insect from Ceylon presented by E. E. Green Esq. [10 Observatory Gardens Campden Hill, W (Till February 1892)] and containing a total of 600 Hemiptera. Another note reads : « The whole of the specimens were collected by the donor, and most of them bear labels with the locality [Rep. 13.XII.90] See also 91.26 , which number is borne by several of the Hemiptera here registered. »
9129	Cape Town, Port Elizabeth, Delagoa Bay, Durban	Collection containing 33 Rhynchota collected and presented by H. A. Spencer, Esq.
926	India	Collection containing 8000 Rhynchota purchased from Colonel C. Swinhoe. Selected from the collection of the late Mr E.T. Atkinson.
1902-288	Ecuador, Peru \& Argentina (Tucuman Prov.)	Collection containing 242 Rhynchota purchased from W.F.H. Rosenberg.

1903-96	Brazil, Sta Anna de Chapada, Centr. Brazil	Collection containing 75 Hemiptera presented by Mrs Percy Sladen [Northbrook Park, Exeter]. Collected by Alphonse Robert. See "Insect Room Lists" p 19.
1903-322	Various Localities	Collection containing 220 Rhynchota purchased from R. Haensch.
1905-125	Queensland	Collection containing 92 Rhynchota presented by A. E. [A. J. is crossed out] Turner.
1907-54	Australia, Queensland	Collection containing 1050 Rhynchota purchased from F. P. Dodd.
1907-200	China, Tientsin and Shan-hai-Kwan, N. China	Collection containing 287 Rhynchota presented on $29 / 04 / 1907$ by F. M. Thomson Esq.
1910-168	Australia (N. Queensland) Probably Tambourin Mountains.	Collection containing 200 Rhynchota presented by Mr Rosenberg.
1911-383	Various localities	Collection containing 5000 specimens (incl. 2260 Cicadidae) purchased from Mr W. L. Distant.
1911-497	Seychelles Islands	Collection presented by Professor J. Stanley Gardiner. No Hemiptera are mentioned in the register under this registration number, however, other orders are at other reg. numbers and some of the specimens bear the label 1911-497. For instance, Dragonflies are at 1912-295, other Diptera at 1911-43 \& 99; 1912-299...
1912-186	Africa	Collection containing 11 Rhynchota presented by The African Entomological Research Committee.
1947-80	Hawaii \& Central America	Collection containing 126 Hemiptera presented on 3/1/1947 by Dr. R. L. Usinger and collected by donor \& HE Hinton
1948-38	Various localities	Collection containing 50 Rhynchota collected by various collectors and presented by the Commonwealth Institute of Entomology in 1948.
1950-262	Mauritius and Tanganyika	Collection containing 34 Hemiptera (including 1 type of n.sp.) presented by Com. Inst. Entom. on 15/05/1950 and collected by J.R. Williams, and Dr E. Burtt respectively.
1965-338:	Madagascar	Collection containing 489 Pentatomidae presented by Dr P. Malzy and collected by various collectors.
1983478	Costa Rica, Panama	Collection of 962 Hemiptera collected by Jon H. Martin and donated by the same to the Museum in December 1983.
1991-55	Venezuela	Neotype of Arma pallipes Dallas, 1851; desig. D.B. Thomas and presented by the same on 20/03/1991.

CAPÍTULO 2

Revision of the African shieldbug genus Afrius Stål, 1870 (Hemiptera: Heteroptera: Pentatomidae: Asopinae)*

TALITA ROELL ${ }^{1}$, VALÉRIE A. LEMAÎTRE ${ }^{2}$ \& MICHAEL D. WEBB ${ }^{3}$
${ }^{1}$ Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Zoologia, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil 91501-970, tali.roell@gmail.com
${ }^{2,3}$ Natural History Museum London, Department of Life Sciences (Insects), Cromwell Rd, Kensington, London SW7 5BD, England

Abstract

The African shieldbug genus Afrius Stål, 1870 is revised. Afrius migratorius Distant, 1913 and A. williamsi Miller, 1952 are proposed as junior synonyms of A. (Subafrius) flavirostrum (Signoret, 1861) and Canthecona marmorata Dallas, 1851, Canthecona annulipes Dallas, 1851 and A. rubromarginatus Bergroth, 1903 are proposed as junior synonyms of A. (Afrius) purpureus (Westwood, 1837) based on general morphology and genitalia of the species. The three valid species, viz. A. (Subafrius) flavirostrum, A. (Afrius) kolleri Schouteden, 1911 and A. (Afrius) purpureus, are redescribed with details of male and female genitalia morphology, and a lectotype is designated for A. (Afrius) kolleri. A key to identify the species and an update of the geographical distribution for each species are provided, including new records for A. (Afrius) purpureus.

Key words: stink bugs, predation, taxonomy, polymorphism, Ethiopian

Introduction

Subfamily Asopinae is the only predatory subfamily of Pentatomidae. It is an important economic group containing many species used as biological control agents for pest management (Grazia et al. 2015). The asopines have a worldwide distribution and are

[^0]recognized mainly by the robust labium and, in the male genitalia, by the presence of genital plates and a thecal shield (Thomas 1992, 1994). The asopine genus Afrius Stål, 1870 is distributed throughout Africa and its species have been considered potential biological control agents for insects injurious to plantations in different regions of Africa (Miller 1952, Sileshi et al. 2004). Afrius was created as a subgenus of Cimex Linnaeus, 1758 by Stål (1870) with three species, Cimex (Afrius) figuratus (Germar, 1838), C. (Afrius) purpureus (Westwood, 1837) and C. (Afrius) flavirostris Stål, 1864, characterized within the inclusive genus by abdominal lateral margins convex and anterior femora armed with spines. In his synopsis of the Old World asopine genera, Thomas (1994) presented a diagnosis of the genus and mentioned the lack of a species identification key and the necessity for revisionary studies on the genus. After examining type and other material of all species, we provide here a revision of the genus, with habitus and genitalia figures and descriptions of each species, new synonymies and new records

Material and methods

Type and other material were examined and photographed at The Natural History Museum, London, UK (NHMUK), the Musée Royal de l'Afrique Centrale, Belgium (RMCA), the Museum für Naturkunde Berlin, Germany (MFNB), the Muséum National d'Histoire Naturelle in Paris, France (MNHN), the University Museum of Natural History in Oxford, UK (OUMNH), and the Federal University of Rio Grande do Sul, Brazil (UFRG). Extra material was received from the American Museum of Natural History, USA (AMNH), David A. Rider Collection, USA (DARC), the

Entomologisches Museum - Insekten Dauerausstellung Geyer, Germany, and the National Museum of Prague, Czech Republic (NMPC). Photographs were received from the Naturhistorisches Museum Wien, Austria (NHMW) and the Naturhistoriska Riksmuseet, Stockholm, Sweden (NHRS). The examined material is listed in Table 1, and the geographic coordinates in decimal degrees were taken from the software Google Earth (version 7: https://www.google.com/earth/) and from the "GeoNames" website (http://www.geonames.org) when the labels or literature information had sufficient data. The map for the distributional records of Afrius species (Fig. 1) was made using the software ArcGIS Desktop (version 10.4.1: http:// desktop.arcgis.com). To understand
how the old regions of Africa overlapped with current countries, we consulted the "rare maps" website (https://www.raremaps.com).

Measurements in millimeters [mean \pm standard deviation (minimum and maximum values found among all specimens measured)] are given for the total length; length and width of the head, pronotum, scutellum and abdomen; and length of the antennal and labial segments. Genitalia were prepared with heated $10 \% \mathrm{KOH}$ aqueous solution. The terminology of Singh-Pruthi (1925), Baker (1931), Dupuis $(1955,1970)$, Konstantinov and Gapon (2005) and Gapon and Konstantinov (2006) was adopted for genitalic structures; a correspondence between different terms used for the male genitalia by these authors is given in Table 2. We follow the terminology of Kment \& Vilímová (2010) for the external scent efferent system of the metathoracic gland. Drawings were carried out under a stereomicroscope coupled with a camera lucida and edited with a vectorial image processor.

Results

Order Hemiptera Linnaeus, 1758
Suborder Heteroptera Latreille, 1810
Family Pentatomidae Leach, 1815
Subfamily Asopinae Spinola, 1850

Afrius Stål, 1870

Cimex (Afrius) Stål, 1870: 44. Type species by subsequent designation (Schouteden 1907: 51): Asopus figuratus Germar, 1838 (= Afrius purpureus (Westwood, 1837)).

Afrius - Lethierry \& Severin 1893: 214. - Schouteden 1907: 50-52. - Kirkaldy 1909: 10. - Schouteden 1909: 64. - Cachan 1952: 305. - Villiers 1952b: 81. - Mamet 1957:
34. - Gillon 1972: 351-352. - Schouteden 1972: 106. - Thomas 1994: 150-152. Maldès \& Pluot-Sigwalt 2004: 20. - Rider 2006: 234. - Robertson 2009: 20-23.

Diagnosis. Lateral pronotal margins sinuous and crenulated on anterior half; frenal margin of scutellum longer than postfrenal part; abdominal basal tubercle short, not
extending beyond metacoxae; profemur with a preapical spine; protibia very slightly expanded; male abdomen with or without ventral setose patches on segments V and VI ; posterior angles of the seventh abdominal segment obtuse (Fig. 8C, paVII); metapleural evaporatorium thinly surrounding peritreme.
Redescription. Body length: 8.70-13.22 mm (females) and 9.00-11.00 (males). Body oval or pentagonal, with variable colour patterns. Head uniformly punctured, mandibular plates varying from equal to a little shorter or little longer than clypeus, with margins straight to slightly sinuous; ocelli placed close to an imaginary line connecting posterior margin of eyes; antenna with five antennomeres bearing thin setae, denser on fourth and fifth antennomeres; antennal tubercles partially visible from above, acute apically; bucculae rounded; labium robust, extending to posterior margin of metasternum.

Pronotum hexagonal, uniformly punctured except on cicatrices; anterior margin concave; lateral margins sinuous, crenulated on anterior half; posterior angles with a prominent small spine; a thin central line without punctures forms a weak longitudinal medial carina that extends from anterior to posterior margin. Scutellum reaching an imaginary line connecting middle of each connexival segment V ; a thin central line without punctures also forms a weak longitudinal medial carina, connected with a similar line on pronotum from anterior to posterior margins. Frenal margins longer than postfrenal margins. Corium longer than scutellum, uniformly punctured, membrane surpassing apex of abdomen. Pro- meso- and metasterna covered by small thin setae; prosternum lighter, with a weak median carina; mesosternum black between pro- and mesocoxae, slightly punctured, with central parallel horizontal stripes, and with a median light wide, rectangular and elevated carina, wider anteriorly; metasternum flat or slightly elevated. Metapleural evaporatorium narrowly surrounding peritreme, narrowly extending on posterior meso- and anterior metapleural margins, also extending to anterior angle of mesopleura. Peritreme groove; ostiolar opening laterally directed. Profemur with anteapical spine, protibia slightly expanded, meso- and metatibiae prismatic.

Abdomen sparsely punctured, punctures less dense on disc, short basal tubercle anteriorly directed. Trichobothria aligned to an imaginary line connecting middle of spiracles. Posterolateral angles of abdominal sternites rounded.

Male. Abdomen with or without ventral setose patches on segments V and VI. Pygophore bowl-shaped, with setae on all surface, denser between ventral border and inferior layer of ventral border, and on apex of posterolateral angles (Figs 3, 6, $10 \mathrm{~A}-\mathrm{F}$); dorsal border concave, weakly medially elevated (Figs 3, 6, 10 A, D, db); ventral border slightly concave (Figs 3, 6, 10, B, E, vb), medially emarginated in posterior view (Figs 3, 6, 10, C, F, vb), inferior layer slightly excavated (Figs 3, 6, 10, B, C, E, F, il). Posterolateral angles rounded, setose on apex (Figs 3, 6, 10, A-F, pa). Segment X tubular, ventrally directed, dorsally sclerotized, medially carinated, setose, setae denser on apex (Figs 3, 6, 10, A, C, D, F, X). Genital plates between the lateral walls of capsule and parameres (Figs 3, 6, 10, A, C, D, F, I, gp). Phallus. Phallotheca divided in a globose basal theca and a cup-like thecal shield (Figs $3 \mathrm{~J}-\mathrm{Q}, 6 \mathrm{~J}-\mathrm{R}, 10 \mathrm{~J}-\mathrm{R}$, ph, bt, ts). Ejaculatory reservoir contained inside basal theca (Figs $3 \mathrm{~J}-\mathrm{N}, 6 \mathrm{~J}-\mathrm{O}, 10 \mathrm{~J}-\mathrm{O}$, er). Basal foramen circular, reinforced by the basal plates (Figs $3 \mathrm{~L}, \mathrm{~N}, 6 \mathrm{~L}, \mathrm{O}, 10 \mathrm{~L}, \mathrm{O}, \mathrm{bf}, \mathrm{bp}$). Vesica partially inserted in phallotheca, golf club-shaped in lateral view, bearing two elongated filaments and a central elevated portion with microsculptures (Figs 3 J-Q, 6 $\mathrm{J}-\mathrm{R}, 10 \mathrm{~J}-\mathrm{R}, \mathrm{v}$); ductus seminis running between the filaments of vesica, ending on a secondary gonopore, dorsally directed (Figs $3 \mathrm{~J}-\mathrm{Q}, 6 \mathrm{~J}-\mathrm{R}, 10 \mathrm{~J}-\mathrm{R}$, ds, sg). Conjunctival lobes paired, posteriorly directed, globose, with apices endowed with a set of small sculptured processes (Figs $3 \mathrm{~J}-\mathrm{P}, 6 \mathrm{~J}-\mathrm{P}, 10 \mathrm{~J}-\mathrm{Q}, \mathrm{cl}, \mathrm{sp}$).

Female. Gonocoxites VIII subtriangular, posterior margins sinuous, sutural margins straight, juxtaposed, setae on posterior and sutural margins (Figs 4, 7, 11, A, B, $\mathrm{gcVIII})$. Laterotergites VIII triangular, longer than wide, with spiracles on basal angle (Figs 4, 7, 11, A, B, laVIII). Exposed portion of gonocoxites IX rectangular, wider than long, slightly covering the proximal lateral margins of laterotergites IX (Figs 4, 7, 11, A, B, gcIX). Exposed portion of laterotergites IX digitiform, setose on apex, not attaining band uniting laterotergites VIII, separated from each other by gonocoxites IX and segment X (Figs 4, 7, 11, A, B, laIX). Segment X trapezoidal (Figs 4, 7, 11, A, B, X). Inner portion of gonocoxites IX projected in $1+1$ straight elongated arms, variable in extension, and with apices rounded or acute (Figs 4, 7, 11, C, D, gcIX). Gonapophyses IX with $1+1$ variable secondary thickenings (Figs 4, 7, 11, C, D, gpIX). Ring sclerites absent. Thickening of vaginal intima elongated (Figs 4, 7, 11, C, D, vi). Pars intermedialis small (Figs 4, 7, 11, C, D, pi), narrower than the median duct of vesicular
area. Capsula seminalis oval, longer and wider than pars intermedialis (Figs 4, 7, 11, C, D, cs).

Distribution. Throughout Africa and adjacent islands (Fig. 1).
Remarks: Afrius was created as a subgenus of Cimex Linnaeus, 1758 by Stål (1870) but not within the present sense of Cimex, since Cimex currently corresponds to a genus of Cimicidae. At the time of the description, three species of Afrius were recognized, viz. Cimex (Afrius) figuratus (Germar, 1838), C. (Afrius) purpureus (Westwood, 1837) and C. (Afrius) flavirostris Stål, 1864, while two others (Canthecona marmorata Dallas, 1851 and C. annulipes Dallas) were mentioned as species incertae sedis. Lethierry \& Severin (1893) included all the above five species in Afrius. Schouteden (1907) divided the genus into two subgenera (Afrius s. str. and Subafrius Schouteden, 1907), separating them by the size of the scutellum and by the presence of abdominal silky patches in the male of the subgenus Afrius.

Afrius can be differentiated from most African genera of Asopinae by the following combined characteristics: lateral pronotal margins crenulated on anterior half, presence of a well developed spine on profemora, and abdominal basal tubercle short, not extending beyond metacoxae. The genus shares these features only with Canthecona Amyot \& Serville, 1843, Glypsus Dallas, 1851, and Picromerus Amyot \& Serville, 1843, however, the posterior abdominal segment of Canthecona is acuminate, not obtuse as in Afrius; the abdominal tubercle is bifid in Glypsus, not single as in Afrius; and the metapleural evaporatorium is more developed in Picromerus in comparison with Afrius.

We consider Afrius divided in two subgenera by the presence or absence of abdominal glandular patches (Thomas 1994) and by morphological differences of the male genitalia, described below. We do not consider, however, the subgenera as two distinct genera because the presence or absence of abdominal glandular patches can be interspecifically variable in other genera of Asopinae, as in Macrorhaphis Dallas, 1851 (Thomas 1994). Besides, the species of Afrius present many similarities of general morphology, of female genitalia, and of pygophore, mainly the genital plates. Perhaps a phylogenetic study can better elucidate the Afrius classification in future.

Key to the species of Afrius Stål, 1870

1. Scutellum wider than long, humeral pronotal angles laterally well projected to an acute angle (Fig. 2 B, D, F, H, J). Male abdomen without setose patches on segments V and VI (Fig. $2 \mathrm{C}, \mathrm{L}$), parameres with two evident rami (Fig. $3 \mathrm{G}, \mathrm{H}$) ... A. (Subafrius) flavirostrum (Signoret, 1861)

1'. Scutellum longer than wide (Figs 5 B, D; 8 B, D, F, H, J, L, N, P), humeral pronotal angles slightly projected to an acute (Figs 5 B; 9 B), rounded (Fig. 9 A, C), or triangular angle (Fig. 9D). Male abdomen with setose patches on segments V and VI (Fig. 8C), parameres without two evident rami, triangular (Figs 6 G, H; 10 G, H) ... 2
2. Postfrenal lobe of scutellum enlarged, constriction line (sc) broader than adjacent region (ac) of corium until radial vein (Fig. 8H). Humeral angles little emarginated (Fig. 9) ... A. (Afrius) purpureus (Westwood, 1837)

2'. Postfrenal lobe narrow, constriction line (sc) equal or shorter than adjacent region (ac) of corium until radial vein (Fig. 5D). Humeral angles not emarginated (Fig. 5 B, D) ... A. (Afrius) kolleri Schouteden, 1911

Afrius (Subafrius) Schouteden, 1907

Afrius (Subafrius) Schouteden, 1907: 51. Type species by original monotypy:
Picromerus flavirostrum Signoret, 1861.

Afrius (Subafrius) - Kirkaldy 1909: 10. - Cachan 1952: 306. - Thomas 1994: 152. Maldès \& Pluot-Sigwalt 2004: 20. - Rider 2006: 234.

Diagnosis. Males without abdominal glandular patches; parameres divided in two lobes; dorsal disc of vesica covered by fine and inconspicuous microsculptures.

Afrius (Subafrius) flavirostrum (Signoret, 1861)
(Figs 2-4)

Picromerus flavirostrum Signoret, 1861: 921.
Cantheconidea migratoria Distant, 1913: 144-145. NEW SYNONYM.

Afrius williamsi Miller, 1952: 183-184. NEW SYNONYM.

Canthecona flavirostris (incorrect subsequent spelling) - Stål 1864: 68.
Cimex (Afrius) flavirostris (incorrect subsequent spelling) - Stål 1870: 44.
Afrius flavirostris (incorrect subsequent spelling) - Lethierry \& Severin 1893: 214 [with "Stål 1864" for authority]. - Schouteden 1905a: 151-153.
Afrius (Subafrius) flavirostrum - Schouteden 1907: 51. - Kirkaldy 1909: 10. - Cachan 1952: 306. - Thomas, 1994: 152. - Maldès \& Pluot-Sigwalt 2004: 20. - Gapon \& Konstantinov 2006: 809.

Afrius williamsi - Williams 1951: 461. - Jolivet \& Théodoridès 1953: 5. - Orian 1956: 642. - Mamet 1957: 35. - Cox 1996: 38.

Subafrius flavirostrum - Orian 1965: 116.
Afrius (Subafrius) migratorius - Thomas 1994: 152.
Afrius (Subafrius) williamsi - Thomas 1994: 152.
Afrius flavirostrum - Kuklinski \& Borgemeister 2002: 59.

Types examined. Picromerus flavirostrum Signoret, 1861. Syntype male, labels: "Madagasc Coll. Signoret."; "flavirostr det. Signoret."; "flavirostrum d. Schouteden." (Fig. 2 A-C) (deposited at NHMW). Syntype female, labels: "Madagascar. Coll. Signoret."; "flavirostrum"; "flavirostrum d. Schouteden."; "flavirostr. det. Signoret."; "Afrius flavirostrum Type Sign." (Fig. 2 E-F) (deposited at NHMW). Syntype female, labels: "Madag."; "Stål"; "Type"; "Typus"; "NHRS-GULI 000057896" (Fig. 2D) (deposited at NHRS). These three syntypes were examined by photos. Cantheconidea migratoria Distant, 1913. Syntype female, labels: blue-margined syntype disc label; red-margined type disc label "Aldabra. APT. 1907"; "Percy Sladen Trust Expedition. 1911-497."; "Canthecona migratoria type Dist."; "NHMUK 010592166 " (Fig. 2 G-H) (deposited at NHMUK).
Afrius williamsi Miller, 1952. Holotype male, labels: red-margined holotype disc label; "MAURITIUS. Coll. J.R. Williams i.1949."; "182"; "Pres by Com Inst Ent BM 1950 262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010592172" (Fig. 2 I-J) (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "MAURITIUS Reduit. xii. 1948 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950-262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010592173 (Fig. 2 K-L) (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "MAURITIUS Reduit. xii. 1948 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950 - 262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747732" (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "MAURITIUS Reduit. I. 1949 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950 - 262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747733" (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "MAURITIUS Reduit. vi. 1949 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950 - 262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM. INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747734" (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "Dept. of Agric.
MAURITIUS"; "Pres by Com. Inst. Ent. B.M.1948-38"; "COM. INST. ENT. COLL. NO. 10958"; "182"; "NHMUK 010747735" (deposited at NHMUK).

Paratype male, labels: yellow-margined paratype disc label; "MAURITIUS Reduit. i. 1949 Coll. J.R. Williams"; "182"; "Pres by Com Inst Ent BM 1950 - 262"; "Afrius williamsi sp.n det. N.C.E. Miller. 1950."; "COM INST. ENT. COLL. NO. 11607"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747736" (deposited at NHMUK).

Paratype male, labels: yellow-margined paratype disc label; "MAURITIUS Reduit A.
Moutia II.v.1948"; "Pres by Com. Inst. Ent. B.M.1948-38"; "COM. INST. ENT. COLL. NO. 10958"; "Preying on Schematiza cordiae"; "182"; "NHMUK 010747737" (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "MAURITIUS Reduit. i. 1949 Coll. J.R. Williams"; "Afrius williamsi sp.n. det. N.C.E. Miller. 1950."; "Press by Com Inst Ent B M 1950-262"; "COM INST. ENT. COLL. NO. 11607"; "182"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747738" (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "MAURITIUS Reduit. i. 1949 Coll. J.R. Williams"; "Afrius williamsi sp.n. det. N.C.E. Miller. 1950."; "Press by Com Inst Ent B M 1950-262"; "182"; "Predaceous on Schematiza cordiae, Barb"; "NHMUK 010747739" (deposited at NHMUK).

Paratype female, labels: yellow-margined paratype disc label; "Dept. of Agric. MAURITIUS Reduit 19.IV.1948"; "J.R. Williams"; "Pres by Com. Inst. Ent. B.M.1948-38"; "COM. INST. ENT. COLL. NO. 10958"; "182"; "NHMUK 010747740" (deposited at NHMUK).

Diagnosis. Scutellum wider than long, humeral pronotal angles laterally well projected to an acute angle; male abdomen without setose patches; parameres with two distinct lobes.

Redescription. Body elongate oval, yellowish to brown, usually with a pale posterior margin of the scutellum. Head subrectangular, wider than long, uniformly punctured; mandibular plates equal or little shorter than and two times wider than clypeus, anteriorly rounded, with margin straight to slightly sinuous; antennomeres yellow to brownish, black coloured on apical halves of third to fifth antennomeres, bearing thin setae, denser on third to fifth antennomeres; proportion of lengths of antennomeres: $\mathrm{II} \geq \mathrm{IV}>\mathrm{V}>\mathrm{III}>\mathrm{I}$; labium robust, reaching metasternum, last segment darker than precedent; proportion of lengths of labiomeres: II $>\mathrm{I} \geq \mathrm{III}>\mathrm{IV}$. Pronotum hexagonal, uniformly punctured except on cicatrices, twice or more wider than long, cicatrices flat. Anterior margin concave. Lateral margins sinuous, slightly crenulated on anterior half, humeral angle laterally projected, emarginated, apices acute. Scutellum wider than long. Corium longer than scutellum, reaching connexival segment VI, uniformly punctured, membrane surpassing apex of abdomen (Fig. 2).

Male abdomen without setose patches, parameres biramous (Fig. $3 \mathrm{~F}-\mathrm{H}$, par).
Male. Measurements ($\mathrm{n}=5$): head length 1.82 ± 0.18 (1.68-2.10); width $1.93 \pm$ 0.15 (1.87-2.13); pronotum length 2.52 ± 0.48 (1.85-3.22); width 6.44 ± 0.64 (5.64-
7.25); scutellum length 3.02 ± 0.32 (2.66-3.48); width 3.22 ± 0.34 (2.88-3.75); lengths of antennomeres: I 0.32 ± 0.05 ($0.27-0.37$), II 1.26 ± 0.11 (1.2-1.39), III 1.12 ± 0.23 ($0.97-1.37$), IV 1.32 ± 0.21 (1.12-1.54); V 1.16 ± 0.13 (1.05-1.31); lengths of labiomeres: I 0.94 ± 0.02 ($0.93-0.97$), II 1.13 ± 0.09 (1.05-1.23), III 0.97 ± 0.10 ($0.90-$ 1.90), IV 0.81 ± 0.02 ($0.78-0.82$); length of abdomen 4.50 ± 0.70 (4.00-5.00); width 4.82 ± 0.25 (4.65-5.00); total length 9.87 ± 0.71 (9.19-11.00).

Genitalia. Genital plates elongated and cylindrical (Fig. 3 A, C, D, F, I, gp). Parameres long, biramous, head V-shaped divided in one process long and acute and another shorter and rounded, dorsally directed, extended beyond pygophore (Fig. $3 \mathrm{~A}-$ H, par). Phallus. Thecal shield about two times longer than basal theca, widely opened posteriorly (Fig. $3 \mathrm{~J}-\mathrm{Q}$, ts). Vesica subrectangular in dorsal view (Fig. $3 \mathrm{O}-\mathrm{Q}$, v), golf club-shaped in lateral view, with apex subtriangular and a central slightly elevated rounded portion covered by fine and inconspicuous microsculptures (Fig. $3 \mathrm{~L}-\mathrm{N}, \mathrm{v}, \mathrm{m}$); ductus seminis enlarged near apex (Fig. $3 \mathrm{~K}-\mathrm{Q}$, ds). Apices of conjunctival lobes globose, endowed with a set of sculptured processes, forming a subrectangular projection in lateral view (Fig. $3 \mathrm{~K}-\mathrm{P}, \mathrm{cl}$, sp).

Female. Measurements ($\mathrm{n}=5$): head length 1.87 ± 0.10 (1.80-1.95); width $1.78 \pm$ 0.18 (1.65-1.91); pronotum length 2.62 ± 0.17 (2.5-2.74); width 3.48 ± 0.07 (3.433.53); scutellum length 3.01 ± 0.07 (2.96-3.07); width 3.24 ± 0.18 (3.11-3.37); length of antennomeres: I $0.30 \pm 0.0(0.30-0.30)$, II 1.29 ± 0.03 (1.27-1.31), III 1.08 ± 0.0 (1.08-1.08), IV 1.28 ± 0.05 (1.24-1.31); V 1.16 ± 0.06 (1.12-1.20); length of labiomeres: I 0.97 ± 0.06 ($0.93-1.01$), II 1.14 ± 0.03 (1.12-1.16), III 0.94 ± 0.0 ($0.94-$ 0.94), IV 0.86 ± 0.06 ($0.82-0.90$); length of abdomen 5.12 ± 0.05 (5.08-5.16); width 5.24 ± 0.0 (5.24-5.24); total length 9.51 ± 1.14 ($8.70-10.32$).

Genitalia. Gonocoxites VIII little longer than wide, mesial portions of posterior margins slightly constricted (Fig. $4 \mathrm{~A}, \mathrm{~B}$, gcVIII). Median and inner ducts of vesicular area with uniform diameter (Fig. 4 C, D, md, id).
Distribution. Madagascar (Signoret 1861), Seychelles Islands (Distant 1913), Mauritius (Miller 1952) (Table 1, Fig. 1).
Remarks. Although this species seems similar to A. (Afrius) purpureus (Westwood, 1837) in general aspect, this is the most distinct species of the genus: the scutellum is wider than long, the males do not have abdominal glandular patches, the parameres are dividided in two arms, and the vesica is shorter and less microsculptured in comparison
with A. (Afrius) purpureus and A. (Afrius) kolleri Schouteden, 1911. Because of the aforementioned, we have kept the subgeneric classification, grouping A. kolleri and A. purpureus in the subgenus Afrius, and A. flavirostrum in the subgenus Subafrius. When describing A. williamsi, Miller (1952) compared his new species with A. marmoratus (Dallas, 1851), but did not mention A. (Subafrius) flavirostrum.

The two new synonymies herein proposed have already been pointed out by Orian in his unpublished thesis (Orian 1965).

Afrius (Afrius) Stål, 1870

Cimex (Afrius) Stål, 1870: 44.

Afrius (Afrius) - Schouteden 1907: 51-52. - Kirkaldy 1909: 10. - Thomas 1994: 151152. - Maldès \& Pluot-Sigwalt 2004: 20.

Diagnosis. Males with abdominal glandular patches; parameres not divided in two lobes; dorsal disc of vesica covered by dense and demarcated microsculptures.

Afrius (Afrius) kolleri Schouteden, 1911
(Figs 5-7)

Afrius kolleri Schouteden, 1911: 180; lectotype herein designated.

Afrius kolleri - Schouteden 1963: 399. - Gillon 1972: 352. - Schouteden 1972: 106. Gillon 1974: 219. - Thomas, 1994: 151. - Maldès \& Pluot-Sigwalt 2004: 20. Robertson 2009: 22-23.

Types examined. Afrius kolleri Schouteden, 1911. Lectotype male, here designated, labels: "Holotypus"; "MUSÉE DU CONGO Galli-Koko Kasai R. CARLIER"; Afrius Stål kolleri Schout."; "Afrius kolleri n?" (Fig. 5 A, B). Paralectotype female, labels: "Paratypus"; "MUSÉE DU CONGO LUKOMBE. 6.X.08 A. Koller" (deposited at RMCA) (Fig. 5 C, D).

Diagnosis. Scutellum longer than wide, postfrenal lobe narrow; humeral pronotal angles not emarginated; male abdomen with setose patches on segments V and VI, parameres triangular, without two distinct lobes.

Redescription. Body pentagonal elongated, reddish to brown, usually with black stripes on head, pronotum, scutellum, and corium. Head quadrate, as long as wide or slightly wider than long, uniformly punctured; mandibular plates equal or little longer than clypeus, and little wider than clypeus, with margins straight to slightly sinuous; clypeus black; occeli surrounded by subquadrate black spots; antennomeres usually black, proportion of lengths of antennomeres: V $>\mathrm{IV}>\mathrm{III}=\mathrm{II}>\mathrm{I}$; labium robust, reaching metasternum; proportion of lengths of labiomeres: II $>$ I $>$ III $>$ IV.

Pronotum hexagonal, uniformly punctured, wider than long, with $1+1$ black transversal stripes on cicatrices, $1+1$ black vertical spots on humeral angles, and 3 longitudinal stripes on disc; cicatrices flat, black, sometimes with a central red spot, demarcated by punctures; anterior margin concave; lateral margins sinuous, crenulated on anterior half; humeri triangular, not emarginated. Scutellum longer than wide, uniformly punctured, reaching an imaginary line connecting middle of connexival segments V, partially or entirely emarginated in black and with one triangular black central spot along frenal lobe; postfrenal lobe narrow, narrower than corium at same region. Corium longer than scutellum, reaching connexival segment VI. Protibiae slightly expanded (Fig. 5).

Male abdomen with setose patches on segments V and VI, parameres uniramous, triangular.

Male. Measurements ($\mathrm{n}=3$): head length 1.95 ± 0.20 (1.72-2.07); width $2.07 \pm$ 0.06 (2.02-2.15); pronotum length 2.76 ± 0.23 (2.52-2.98); width 4.86 ± 0.40 ($4.53-$ 5.32); scutellum length 3.23 ± 0.13 (3.08-3.33); width 2.90 ± 0.09 (2.80-2.96); length of antennomeres: I 0.31 ± 0.05 (0.27-0.37), II 1.05 ± 0.07 (0.97-1.12), III 1.08 ± 0.04 (1.05-1.12), IV 1.34 ± 0.06 (1.30-1.38); V 1.50 ± 0.00 (1.50-1.50); length of labiomeres: I 0.86 ± 0.03 ($0.84-0.90$), II 1.16 ± 0.03 (1.12-1.18), III 0.92 ± 0.02 ($0.90-$ 0.93), IV 0.92 ± 0.02 ($0.90-0.93$); length of abdomen 5.12 ± 0.17 (5.00-5.24); width 4.56 ± 0.15 (4.45-4.67); total length 10.11 ± 1.00 (9.00-10.97).

Genitalia. Genital plates cylindrical (Fig. 6 A, D, I, gp). Parameres long, uniramous, head triangularly elongated, dorsally directed, extended beyond pygophore
(Fig. $6 \mathrm{~A}-\mathrm{H}$, par). Phallus. Thecal shield and basal theca subequal in length (Fig. 6 L , N, O, ts, bt). Vesica shield-shaped in dorsal view (Fig. 6 P, Q, R), golf club-shaped in lateral view (Fig. $6 \mathrm{~L}-\mathrm{O}$, v), with apex rounded and a central elevated microsculptured portion (Fig. $6 \mathrm{~L}-\mathrm{O}, \mathrm{m}$), this central portion is rounded in lateral view, subtriangular in dorsal view; ductus seminis with uniform diameter (Fig. $6 \mathrm{~L}-\mathrm{R}$, ds). Apices of conjunctival lobes with inconspicuous sculptured process (Fig. $6 \mathrm{~L}, \mathrm{O}, \mathrm{P}, \mathrm{sp}$).

Female. Measurements ($\mathrm{n}=5$): head length 2.20 ± 0.09 (2.06-2.30); width $2.20 \pm$ 0.12 (2.05-2.35); pronotum length 3.33 ± 0.24 (3.06-3.63); width 5.81 ± 0.31 (5.566.03); scutellum length 3.94 ± 0.27 (3.71-4.30); width 3.34 ± 0.26 (3.07-3.75); length of antennomeres: I 0.35 ± 0.01 ($0.33-0.37$), II 1.18 ± 0.07 (1.12-1.25), III 1.18 ± 0.08 (1.12-1.27), IV 1.47 ± 0.13 (1.31-1.62); V 1.42 ± 0.0 (1.42-1.42); length of labiomeres: I $1.04 \pm 0.13(0.90-1.23)$, II 1.27 ± 0.07 (1.20-1.35), III 1.00 ± 0.08 ($0.93-1.12$), IV 0.98 ± 0.10 ($0.83-1.08$); length of abdomen 6.40 ± 0.45 (6.03-7.09); width 5.59 ± 0.34 (5.40-6.20); total length 11.98 ± 0.86 (11.12-13.22).

Genitalia. Gonocoxites VIII little longer than wide, posterior margins sinuous (Fig. 7 A, B, gcVIII). Median and inner ducts of vesicular area little widening to apex (Fig. 7 C, D, md, id).
Distribution. Democratic Republic of the Congo (Schouteden 1911), Ivory Coast (Gillon, 1972), Ethiopia, Uganda (Thomas, 1994), Cameroon (Maldès and PluotSigwalt, 2004) (Table 1, Fig. 1).

Remarks. This species is apparently more similar with A. (Afrius) purpureus because they both present glandular patches on abdominal venter of males, parameres not divided in two rami, and presence of vesica microsculptures.

Afrius kolleri was based on an unspecified number of specimens of both sexes (Schouteden 1911). We examined two specimens in the RMCA, a male labelled as holotype and a female labelled as paratype. Since no holotype was designated in the original description, both of them must be considered as syntypes; accordingly, we hereby designate the male specimen as lectotype.

Afrius purpureus (Westwood, 1837)
(Figs 8-11)

Pentatoma yolofa Guérin-Méneville, 1831: 55, fig. 2 and legend (syn. Stål, 1870: 44).

Pentatoma purpurea Westwood, 1837: 43.
Asopus figuratus Germar, 1838: 185-186 (syn. Schouteden, 1905: 147, as a var. of Canthecona purpurea).

Canthecona caerulea Dallas, 1851: 89 (syn. Stål, 1862: 496, to Canthecona Yolofa Guérin, as var.; syn. Stål, 1870: 44).

Canthecona marginella Dallas, 1851: 89 (syn. Stål, 1862: 496, to Canthecona Yolofa Guérin, as var.; syn. Stål, 1870: 44).

Canthecona marmorata Dallas, 1851: 90 (synonymy to Canthecona purpurea suspected by Schouteden 1905a: 150). NEW SYNONYM.

Canthecona annulipes Dallas, 1851: 90-91 (syn. Schouteden 1905a: 149-150, to Canthecona marmorata; synonymy to Canthecona purpurea suspected by Schouteden 1905a: 150). NEW SYNONYM.

Canthecona miniatescens Stål, 1853: 213 (syn. Stål, 1864: 66-67, with Canthecona figurata, as var. b.; syn. Kirkaldy 1909: 10, to Afrius purpureus, as a var.).

Afrius rubromarginatus Bergroth, 1903: 289. NEW SYNONYM.

Pentatoma (Eurydema) yolofa - Laporte 1832: 61.
Canthecona Yolofa - Amyot \& Serville 1843: 82. - Dallas 1851: 89. - Stål 1864: 6768. - Larousse 1890: 724 [without any capital letters].

Cimex (Pentatoma) yolofa - Guérin-Méneville 1844: 344 [description]
Asopus figuratus - Herrich-Schaffer 1844: 113 (and fig. 710).
Canthecona figurata - Stål 1864: 66-67. - Gerstaecker 1892: 345.
Cimex (Afrius) figuratus - Stål 1870: 44.
Cimex (Afrius) purpureus - Stål 1870: 44. - Distant 1884: 459.
Cimex marmoratus - Stål 1870: 46.
Cimex annulipes - Stål 1870: 46.
Canthecona Ylofa (incorrect subsequent spelling) - Wallengren 1875: 133.
Afrius purpureus - Reuter 1882: 9. - Lethierry \& Severin 1893: 214. - Schouteden 1907: 51-52.- Kirkaldy 1909: 10. - Schouteden 1909: 64. - Schouteden 1910: 91. Vuillet \& Vuillet 1911: 277. - Vuillet \& Vuillet 1912: 445. - Hollrung 1912: 280. Jeannel 1913: 97. - Schouteden 1913a: 190. - Schouteden 1913b: 324. - Zacher 1921: 139. - Lehmann 1922: 129. - Hesse 1925: 39. - Carpenter 1926: Liii. - Golding 1931: 222. - Van Heerden 1931: 131 (and fig. Cvii). - Hargreaves 1937: 518. - Villiers

1949: 88. - Risbec 1950: 126, 397, 447. 457. - Cachan 1952: 305. - Leston 1952: 895. - Villiers 1952a: 1211. - Villiers 1952b: 82. - Mancini 1953: 202. - Villiers 1954: 230. - Villiers 1956: 213. - Lindberg 1958: 31. - Le Pelley 1959: 166. - Caswell 1962: 26. - Schouteden 1963: 399. - Schouteden 1964: 95. - Cachan 1965: 5-32. Girard 1969: 7, 52. - Herting 1971: 80. - Gillon 1972: 351-352. - Schouteden 1972: 106. - Gillon 1974: 219, 241, 246, 251, 266, 270, 285, 287. - Linnavuori 1975: 124. Herting 1976: 71. - Linnavuori 1976: 129. - Medler 1980: 123. - Bourdouxhe \& Jolivet 1981: 46-48. - Linnavuori 1982: 164. - Nuamah 1982: 11. - Nonveiller 1984: 54, 142. - Balsbaugh 1988: 276. - Couilloud 1989: 207-208. - Quicke et al. 1992: 1024. - Van Harten 1993: 247. - Bijlmakers \& Verhoek 1995: 147, 317. - Schaefer 1996: 41. - Jolivet 1997: 153. - Boulard 1998: 41. - Dolling et al. 1999: 73. - Beenen \& Hawkeswood 2004: 473. - Tchibozo \& Braet 2004: 161. - Arechavaleta et al. 2005: 76. - Renou 2007: 30. - Poutouli et al. 2011: 9, 54-56, 58, 76. - Agboton et al. 2014: 9. - Crétenet \& Gourlot 2015: 138.

Afrius purpureus var. marginella - Reuter 1882: 9. - Kirkaldy 1909: 10.
Cimex (Afrius) purpureus var. marginella - Distant 1884: 459.
Cimex purpureus - Distant 1890: LIII [with Hope for author, not Westwood].
Cimex figuratus - Distant 1892: 248 [description and illustration of unnamed variety]. Afrius ? annulipes - Lethierry \& Severin 1893: 214.

Afrius figuratus - Lethierry \& Severin 1893: 214. - Distant 1898: 308. - Distant 1901:
27. - Howard 1906: 731. - Leston 1954: 680 (and in title). - Maitai 1958: 291. - Le Pelley 1959: 257. - McDonald 1966: 44. - Cobben 1968: 116. - Le Pelley 1968: 195, 501. - Herting 1973: 84, 85, 87. - Medler 1980: 123. - Smith \& Barfield 1982: 263. Scholtz \& Holm 1985: 147. - Merrett 1986: 549. - Matanmi \& Hassan 1987: 376. Fry 1989: 108. - Schaefer 1996: 44. - Sileshi et al. 2000: 41, 48.

Afrius ? marmoratus - Lethierry \& Severin 1893: 214.
Canthecona purpurea - Schouteden 1905a: 146. - Schouteden 1905b: 15.
Canthecona purpurea var. figuratus - Schouteden 1905a: 147.
Canthecona marmorata - Schouteden 1905a: 149-150.
Canthecona rubromarginata - Schouteden 1905a: 150-151.
Afrius marmoratus - Schouteden 1907: 51. - Kirkaldy 1909: 10. - Thomas, 1994: 151.

- Robertson 2009: 22.

Afrius rubromarginatus - Schouteden 1907: 52. - Bergroth 1908: 182. - Kirkaldy 1909: 10. - Thomas 1994: 151. - Maldès \& Pluot-Sigwalt 2004: 20. - Robertson 2009: 22. Krüger \& Deckert 2016: 46.
Afrius purpureus var. caerulea - Kirkaldy 1909: 10.
Afrius purpureus var. figurata - Kirkaldy 1909: 10.
Afrius purpureus var. miniatescens - Kirkaldy 1909: 10.
Afrius purpureus var. figuratus - Schouteden 1907: 51-52. - Schouteden 1909: 64. Mancini 1937: 43. - Le Pelley 1959: 54.

Afrius yolofus - Dupuis 1952: 454. - Leston 1954: 680 (in a note). - Thomas 1994: 151.

- Maldès \& Pluot-Sigwalt 2004: 20. - Rebagliati et al. 2005: 201. - Kerisew 2011: 91. Afrius purpureus purpureus - Linnavuori 1989: 13.

Afrius purpureus figuratus - Linnavuori 1989: 12-13 [with unnamed variety].
Afrius yolofa - Sileshi et al. 2001: 289. - Sileshi et al. 2004: 6, 18. - Kerzhner et al.
2004: 18. - Rider 2006: 234. - Robertson 2009: 21-22. - Matesco et al. 2014: 352.

Types examined: Pentatoma purpurea Westwood, 1837: 43. Syntype female. Labels: "Type Hem: 242 PENTATOMA PURPUREA WESTWOOD HOPE DEPT.

OXFORD"; "TYPE = WEST. (HOPE) C. Hemipt. 1837 Part. I. page 43 Distant, P.Z.S., 1900, p. 807-825."; "Type"; "Africa"; "Afrius purpureus Westw." (deposited at OUMNH) (Fig. 8 E-F).

Asopus figuratus Germar, 1838. Syntype female. Labels: "figuratus Germ. Promont. b. sp. Collect. Germ."; "Afrius figuratus (Germ)"; "7968"; "Typus". (deposited at MFNB) (Fig. 8 G-H).
Canthecona caerulea Dallas, 1851:89. Syntype male. Labels: blue-margined syntype disc label; red-margined type disc label; "40 626 329"; "Canthecona caerulea identified by Dallas"; "a"; "NHMUK 010592171". (deposited at NHMUK) (Fig. 8 A-C).
Canthecona marginella Dallas, 1851:89. Syntype male. Labels: blue-margined syntype disc label; red-margined type disc label; "87a"; "Canthecona marginella identified by Dallas"; "a"; "NHMUK 010592170". (deposited at NHMUK) (Fig. 8 I-J).

Canthecona marmorata Dallas, 1851: 90. Syntype male. Labels: blue-margined syntype disc label; red-margined type disc label; "Int. S. Africa / 4319"; "3. Canthecona marmorata,"; "a"; "NHMUK 010592164". (deposited at NHMUK) (Fig. 8 K-L).

Canthecona annulipes Dallas, 1851: 90-91. Syntype female. Labels: blue-margined syntype disc label; "Int. Africa"; "Canthecona figurata Walker's catal."; "a". (deposited at NHMUK) (Fig. $8 \mathrm{M}-\mathrm{N}$).

Canthecona miniatescens Stål, 1853:213. Syntype female. Labels: "Caffraria"; "I. Vahlb"; "miniatescens Stål type."; "Typus"; "NHRS-GULI 000027293" (deposited at NHRS) (examined by photo) (Fig. 8D).

Afrius rubromarginatus Bergroth, 1903: 289. Syntype female. Labels: "Type Hem: 704 AFRIUS RUBROMARGINATUS BERGROTH. HOPE DEPT. OXFORD"; "Afrius rubro=marginatus Bergr."; "Probably TANGANYIKA"; "Ann. Soc. Ent. Belg. 47: 289"; "Afriq Or"; "3/"; "TYPE". (deposited at OUMNH) (Fig. 8 O-P).

Diagnosis. Scutellum longer than wide, postfrenal lobe enlarged; humeral pronotal angles little emarginated; male abdomen with setose patches on segments V and VI, parameres triangular, without two distinct lobes.

Redescription. Body elongate oval, with variable colour patterns from yellowish and brownish with yellow or red stripes (Fig. $8 \mathrm{D}, \mathrm{H}, \mathrm{L}, \mathrm{N}$) to purple, green and blue metallic uniform colours (Fig. 8 B, C, F, J, P) or with yellow, red and orange stripes. Head subrectangular, wider than long, punctured; mandibular plates equal or little longer than clypeus, with margin varying from straight to sinuous; antenna bearing thin setae, denser on third, fourth and fifth antennomeres, proportion of lengths of antennomeres: IV $>$ V $>$ II $>$ III $>$ I; labium robust, reaching metasternum; proportion of lengths of labiomeres: II $>\mathrm{I}>$ IV $>$ III.

Pronotum hexagonal, densely punctured, twice or more wider than long, cicatrices flat; anterior margin concave; lateral margins strongly sinuous, crenulated on anterior half (Fig. 9), humeral angle slightly emarginated, anterior humeral portion varying from convex (Fig. 9 A, C) to acute or spinose (Fig. 9 B, D). Scutellum longer than wide, densely punctured. Corium longer than scutellum, usually not surpassing connexival segment V , densely punctured.

Setose patches present on male abdominal segments V and VI (Fig. 8C). Parameres uniramous, triangular.

Male. Measurements ($\mathrm{n}=5$): head length 1.69 ± 0.08 (1.61-1.76); width $1.90 \pm$ 0.12 (1.76-2.10); pronotum length 5.70 ± 0.46 (5.32-6.45); width 2.83 ± 0.46 (5.326.45); scutellum length 3.51 ± 0.29 (3.14-3.95); width 3.33 ± 0.28 (3.06-3.79); length
of antennomeres: I 0.30 ± 0.04 (0.26-0.34), II 1.08 ± 0.11 ($0.93-1.24$), III 1.06 ± 0.10 ($0.93-1.16$), IV 1.26 ± 0.11 (1.12-1.39); V 1.22 ± 0.09 (1.12-1.31); length of labiomeres: I 0.93 ± 0.12 ($0.79-1.12$), II 1.06 ± 0.09 ($0.94-1.09$), III 0.80 ± 0.09 ($0.67-$ 0.94), IV 0.83 ± 0.08 ($0.71-0.94$); length of abdomen 4.67 ± 0.46 (4.03-5.24); width 4.83 ± 0.40 (4.43-5.48); total length 10.03 ± 0.52 (9.35-10.64).

Genitalia. Genital plates cylindrical (Fig. 10 A, C, D, F, I, gp). Parameres long, uniramous, head elongately triangular, dorsally directed, extended beyond pygophore (Fig. $10 \mathrm{~A}-\mathrm{H}$, par). Phallus. Basal theca and thecal shield subequal in length (Fig. 10, $\mathrm{L}-\mathrm{R}, \mathrm{bt}, \mathrm{ts}$). Vesica subtriangular in dorsal view (Fig. $10 \mathrm{P}-\mathrm{R}, \mathrm{v}$), golf club-shaped in lateral view, with apex obtuse and a central strongly elevated portion covered by microsculptures (Fig. $10 \mathrm{~L}-\mathrm{O}, \mathrm{v}, \mathrm{m}$), this central portion is broad, rectangular in lateral view, cylindrical in dorsal view; ductus seminis uniform (Fig. $10 \mathrm{~L}-\mathrm{R}$, ds), dorsally directed. Apices of conjunctival lobes globose endowed with a set of small sculptured processes (Fig. 10, L, N, O, cl, sp).

Female. Measurements ($\mathrm{n}=5$): head length 2.12 ± 0.19 (1.83-2.28); width $2.12 \pm$ 0.12 (1.91-2.21); pronotum length 6.94 ± 0.31 (6.45-7.25); width $3.17 \pm 0.20(2.82-$ 3.30); scutellum length 4.43 ± 0.39 (3.79-4.75); width 4.06 ± 0.34 (3.46-4.35); lengths of antennomeres: I $0.38 \pm 0.04(0.34-0.45)$, II 1.30 ± 0.15 (1.12-1.42), III 1.17 ± 0.14 ($0.93-1.31$), IV 1.50 ± 0.19 (1.16-1.61), V 1.37 ± 0.15 (1.12-1.50); lengths of labiomeres: I 1.04 ± 0.07 ($0.94-1.12$), II 1.27 ± 0.15 (1.01-1.38), III 0.93 ± 0.09 ($0.78-$ 1.01), IV 0.94 ± 0.11 ($0.75-1.05$); length of abdomen 6.17 ± 0.34 (5.64-6.45); width 6.27 ± 0.42 (5.64-6.61); total length 11.96 ± 0.83 (10.80-13.06).

Genitalia. Gonocoxites VIII little wider than long, posterior margins sinuous (Fig. $11 \mathrm{~A}, \mathrm{~B}, \mathrm{gcVIII}$). Median and inner duct of vesicular area of uniform diameter (Fig. 11 C, D, md, id).

Distribution. Senegal (Guérin-Méneville 1844), South Africa (Dallas, 1851), Guinea (Stål 1864), Zimbabwe [as Mashonaland] (Distant, 1898), Democratic Republic of the Congo (Distant, 1901), Benin, Cameroon, Central African Republic [as Haute-Sangha], Equatorial Guinea [as Fernando Po], Eritrea, Ethiopia [as Abyssinia], Gabon, Mozambique, Nigeria [as Benue Niger], Sierra Leone, Sudan, Tanzania [as Usambara and Kilimanjaro] (Schouteden 1905a), South Sudan (Schouteden, 1909), Kenya [as Leito-kitok] (Schouteden 1910), Guinea-Bissau (Schouteden, 1913b), Namibia [as Damaraland, Otjiwarongo, and Tsumeb] (Hesse, 1925), Mali [as French Soudan]
(Risbec 1950), Cape Verde Islands (Lindberg 1958), Ivory Coast [as Lamto (Toumodi)] (Schouteden 1963), Yemen (Linnavuori 1989), Angola, Gambia, Ghana, Liberia, Somalia (Thomas, 1994), Malawi (Sileshi et al. 2000), Botswana, Chad, Republic of Djibouti, Uganda, Togo (Maldès and Pluot-Sigwalt, 2004), Niger, Republic of the Congo [as Congo Brazz.], Zanzibar (Robertson, 2009), Canary Islands (new record) (Table 1, Fig. 1).

Remarks. Intraspecific variability in the colour and general morphology has been demonstrated for A. (Afrius) purpureus (e.g., Linnavuori 1989, Schouteden 1905a, Van Heerden 1931, Villiers 1952b) as well as for other pentatomids, such as Nezara viridula (Linnaeus, 1758) (e.g., Freeman 1940; Kiritani 1970; Ohno \& Alam 1992; Vivan \& Panizzi 2002; More et al. 2017) and Stiretrus decemguttatus (Lepeletier \& Serville, 1828) (Paleari 2013) for colour pattern, and Pinthaeus sanguinipes (Fabricius, 1781) for variation in the pronotum, reported by Zhao et al. (2013). Besides, we could not find any correspondence between the polymorphism and the geographic distribution of A. (Afrius) purpureus, i.e. specimens that we have examined, despite different colour patterns and pronotum shapes, are sympatric. The localities where they were collected are denoted by green dots on Fig. 1.

There has been considerable difference of opinion regarding the name used for this species, i.e. either yolofal-us, purpureal-us or figuratal-us and, sometimes, the latter used as a variety or subspecies of the second one (see review of the taxonomic history of the species above). Dallas (1851) was the first to synonymize figuratus and yolofa; he stated the date of publication of Pentatoma yolofa as 1830, while Stål (1864) stated it as 1829. Subsequent authors (including Stå 1870) accepted 1838 as the year of publication for yolofa and therefore they recognized either figuratus or purpureus as the valid name. Wallengren (1875) may have been the last author to use yolofa (misspelled as Ylofa) as a valid name while Larousse (1890) gave a brief description of it under the genus Canthecona (Strangely, the entry first mentions that the type species of Canthecona is from Senegal and thereafter describes C. yolofa, as though implying it were the type species; the type species of Canthecona Amyot \& Serville, 1843 is, however, C. discolor (Palisot de Beauvois, 1811), described from the Kingdom of Oware, now Southwest Nigeria.). Dupuis (1952) demonstrated the priority of Pentatoma yolofa Guérin-Ménéville, 1831 over Pentatoma purpurea Westwood, 1837 and Asopus figuratus Germar, 1838. Thomas (1994) adopted the combination suggested by Dupuis
(1952), Afrius yolofus. This was, as well, used by subsequent authors (Maldès \& Pluot Sigwalt 2004, Rebagliati et al. 2005, Kerisew 2011). Some others (Sileshi et al. 2001, Sileshi et al. 2004, Kerzhner et al. 2004, Rider 2006, Robertson 2009, Matesco et al. 2014), however, chose the combination Afrius yolofa, while some others still used purpureus and/or figuratus after 1952 (e.g. Mancini 1953, Villiers 1954, 1956, Leston 1954, Lindberg 1958, Schouteden 1963, 1964, Gillon 1972, Linnavuori 1975, 1976, 1982, Bourdouxhe \& Jolivet 1981, Nuamah 1982, Matanmi \& Hassan 1987, Balsbaugh 1988, Couilloud 1989, Quicke et al. 1992, Schaefer 1996, Tchibozo \& Braet 2004, Poutouli et al. 2011, Agboton et al. 2014, Crétenet \& Gourlot 2015) and others treated figuratus as a variety or a subspecies of purpureus (Schouteden 1905a, Schouteden 1907a, Kirkaldy 1909, Schouteden 1909, Mancini 1937, Le Pelley 1959, Linnavuori 1989). Others still have used two or three combinations in the same work, possibly because they were reporting facts from primary sources, using the names as they were in the sources and were not aware that the species were the same (Le Pelley 1959 and Schaefer 1996).

The different combinations used for one and the same species clearly are the results of a few misconceptions: when and how yolofa, figuratus and purpureus were synonymized, the problematic dating of yolofa and figuratus and the status of yolofa as an adjective or a noun in apposition.

Synonymies of yolofa, figuratus and purpureus. Earlier we noted that Dallas (1851) first stated the synonymy of figuratus with yolofa. Clearly, Stål (1870) and Schouteden (1905a) believed yolofa sensu Dallas (1851) was a misidentification, pertaining to figuratus. Pentatoma yolofa was synonymized to Cimex (Afrius) purpureus by Stål (1870). A. figuratus was considered as a variety of Canthecona purpurea by Schouteden (1905a). It appeared as a junior synonym of Afrius yolofus together with Pentatoma purpurea in Dupuis (1952). Later, Leston (1954) made use of it as the valid name of the species yet, in a footnote, corrected that the valid name should be Afrius yolofus. Additionally, the confusion between the use of figuratus and purpureus has been so great that some authors have even attributed the authorship of purpureus to Germar (e.g. Risbec 1950, Herting 1971, 1976). Considering the above, it is no surprise that figuratus appeared as a variety or subspecies of purpureus, even relatively recently. It is no surprise either that it still appeared as a valid name as late as

2000 (Sileshi et al. 2000) and possibly later, concurrently with the other names (yolofa, yolofus and purpureus).

Problematic dating of yolofa and figuratus. As stated above, until Dupuis (1952), yolofa had been considered a junior synonym of purpureus as its date of publication was thought to be 1838 . This actually is that of figuratus. For a long time there was considerable confusion about the priority of the works of Westwood (1837) and Germar (1838); the title pages of both works indicated 1837 as the date of publication. Schouteden (1907b) demonstrated that Westwood's work had priority. Sherborn (1922-1932) attributed the date " 1840 " to all taxa published by Germar in the fifth volume of the Revue Entomologique (pp. 121-192); most modern catalogues of Heteroptera list Germar's work with the date 1838 (e.g. Rolston et al. 1993, Schuh 1995, Aukema \& Rieger (eds) 1995-2013, Rolston et al. 1996, Cassis \& Gross 2002, CoreoideaSF Team 2018, Dellapé \& Henry 2018). Recently, Nagel \& Schmidlin (2014: 97) stated a precise date (21 November 1838) for taxa newly described between pages 1 to 224 of the fifth volume. As a consequence, Pentatoma purpurea Westwood, 1837 definitely has priority over Asopus figuratus Germar, 1838 [not 1837 as earlier authors had assumed], and Pentatoma yolofa Guérin-Méneville, 1831, over them both.

Should we use yolofa, a noun in apposition or yolofus, an adjective?
The original description indubitably shows that Guérin-Méneville chose an adjective and not a noun in apposition as may have thought recent authors who made use of the combination Afrius yolofa, possibly influenced by earlier authors (Amyot \& Serville 1843, Dallas 1851).

Guérin-Méneville (1831: plate 55, 1844: 344) used the binomen Pentatoma yolofa with a lower case " y ", implying that the name was treated as an adjective (a capital "D" was used for Scutellera Dives and a capital "S" for Tesseratoma [sic] Sonneratii on the same plate, as one would expect in those days for a noun in apposition or a genitive based on the name of a person); the same author (Guérin-Méneville 1844: 344) also used the French vernacular name P[entatome] yolofe. Amyot \& Serville (1843) cited this species as Canthecona Yolofa (with vernacular French as Canthécone Yolofa), using a capital "Y" in the Latin binomen (also followed by Dallas 1851), and a final " a " in the French name. Their use of a capital " Y " and of a final " a " in the French name indicates that these subsequent authors treated the species name as a noun in apposition.

The Grand Dictionnaire Universel du XIX siècle (Larousse 1876: 1423) has an entry for the adjective "YOLOF ou YOLOFF, OVE", meaning "relative to the native language of the Wolof people (Senegal, Gambia, Mauritania)". Although the adjective is there restricted to the field of linguistics and despite the fact that the proper feminine form of the adjective in French is "yolove", it is clear that Guérin-Méneville (1831) meant to indicate that his Pentatoma, collected in Senegal, the land of the wolof/yolof people, was "yolove" (expressed with an adjective), so he called it Pentatome yolofe/Pentatoma yolofa. Admitedly, this adjective has not much been used in zoology; Sherborn (1932: 7031) only lists another species having yolofus for epithet, Prionus yolofus (Dalman, 1817) (Coleoptera: Cerambycidae: Prioninae: Acanthophorini). The latter species is now placed in genus Tithoes Thomson, 1864 which contains two other species whose epithets equally express their rather precise African provenance: Tithoes congolanus (Lameere, 1903) and T. somalius (Lameere, 1903).

The precedence of A. yolofa over its synonyms, pointed out by Dupuis (1952) and echoed by Leston (1954), was greatly ignored until Thomas (1994). Even now, few are those who apply it. In almost two centuries, a substantial number of papers on the species, which happens to be a predacious bug and natural enemy of agricultural pests, have been published using either purpureus or figuratus. Since purpureus has been the most used overall, since it was used continually to refer to this species since its publication and since Afrius purpureus is the name used in the latest publication on the species that we are aware of, we have used the name Afrius purpureus in this revision as the valid name. In addition, we intend to apply to the International Commission on Zoological Nomenclature, under Article 23.9.3 of the Code (ICZN 1999), so that the prevailing usage for the specific name Pentatoma purpurea Westwood, 1837 (currently Afrius purpureus) be conserved and ensured in future.

Concluding remarks.

We cannot hypothesize the relationship of the Afrius species without a phylogenetic study, and at present we do not know if the genus is monophyletic. A. (Afrius) kolleri and A. (Afrius) purpureus seems to be more related to each other than to A. (Subafrius) flavirostrum based on similar male genitalia, i.e., presence of vesica microsculptures and the presence of male abdominal glandular patches.

Afrius (Afrius) purpureus is a species with broad geographical distribution and a great intraspecific variability in respect of size, morphology of the head and pronotum, and colour pattern (Figs 8 and 9). Because of the observed differences we consider the morphology of the genitalia crucial to delimit the species of Afrius.

Acknowledgements

Herbert Zettel, Harald Bruckner (NHMW, Vienna) and Gunvi Lindberg (NHRS, Stockholm) sent images of types and their labels as well as other information about them. Dominique Pluot-Sigwalt (MNHN, Paris) and Angela Thresher (NHMUK, London) helped us obtain important references. Jürgen Deckert (MFNB, Berlin), Jérôme Constant (RBINS, Brussels), Stéphane Hanot (RMCA, Tervuren), Eric Guilbert (MNHN, Paris) and Amoret Spooner (OUMNH, Oxford) received the first author in their collections and provided material for this study. Randall T. Schuh and Ruth Salas (AMNH, New York), David A. Rider (NDSU, Fargo), Kurt Arnold (Entomologisches Museum - Insekten Dauerausstellung, Geyer), and Petr Kment (NMPC, Prague) also provided material for this study. Luiz Alexandre Campos (UFRGS, Porto Alegre) made suggestions regarding the terminology of genitalia structures. We thank them all. We also thank Anna Namyatova (SPBU, Saint Petersburg), Dávid Rédei (NKUM, Tianjin) and an anonymous reviewer whose helpful comments improved our manuscript. We are particularly grateful to CAPES (Brazil) for having funded the research of TR under fellowship grant PDSE - 88881.133880/2016-01.

References*

Agboton C., Onzo A., Ouessou F.I., Goergen G., Vidal S. \& Tamò M. 2014. Insect Fauna Associated with Anacardium occidentale (Sapindales: Anacardiaceae) in Benin, West Africa. Journal of Insect Science 14 (1): 1-11.
https://doi.org/10.1093/jisesa/ieu091

Amyot C.J.B. \& Serville A. 1843. Histoire naturelle des insectes. Hémiptères. Roret; Paris.
https://doi.org/10.5962/bhl.title. 8471

* Referências formatadas conforme regras do European Journal of Taxonomy [https://europeanjournaloftaxonomy.eu/index.php/ejt/information/authors]

Arechavaleta M., Zurita N., Marrero M.C. \& Martín J.L. (eds). 2005. Lista preliminar de especies silvestres de Cabo Verde (hongos, plantas y animales terrestres). 2005. Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias.

Baker A.D. 1931. A study of the male genitalia of Canadian species of Pentatomidae. Canadian Journal of Research 4: 181-220.
https://doi.org/10.1139/cjr31-013

Balsbaugh E.U. 1988. 16. Mimicry and the Chrysomelidae. In: P. Jolivet, P., Petitpierre, E. \& Hsiao, T.H. (eds) Biology of Chrysomelidae: 261-284. Series Entomologica 42, Kluwer Academic Publisher, Dordrecht/Boston/London.

Beenen R. \& Hawkeswood T.J. 2004. Cydippa balyi Chapuis, 1875 (Coleoptera, Chrysomelidae), an interesting galerucine from Australia rediscovered in the Northern Territory, with redescription and notes on its habitat and host plant. In: Jolivet, P., Santiago-Blay, J.A. \& Schmitt, M. (eds) New Developments in the Biology of Chrysomelidae: 469-473. SPB Academic Publishing, The Hague.

Bergroth E. 1903. Rhynchota Aethiopica III. Annales de la Société entomologique de Belgique 47: 288-297.

Bergroth E.E. 1908. Enumeratio Pentatomidarum post Catalogum bruxellensem descriptarum. Mémoires de la Société Entomologique de Belgique 15 (10): 131-200.

Bijlmakers H.W.L. \& Verhoek B.A. 1995. Guide de Défense des Cultures au Tchad. Cultures vivrières et maraîchères. Food and Agriculture Organization of the United Nations, Rome.

Boulard M. 1998. Abécédaire illustré du Mimétisme. École Pratique des Hautes Études: Biologie et Évolution des Insectes 10 [1997]: 3-77.

Bourdouxhe L. \& Jolivet P. 1981. Nouvelles observations sur le complexe mimétique de Mesoplatys cincta Olivier (Coléoptère Chrysomelidae) au Sénégal. Bulletin Mensuel de la Société Linnéenne de Lyon 50 (2): 46-48.
https://doi.org/10.3406/linly.1981.10464

Brinck P. 1955. Swedish exploration of South African animal life during 200 years. In: Hanstrom, B., Brinck, P. \& Rudebeck, G. (eds.) South African Animal Life. Results of the Lund University Expedition in 1950-1951. Vol. I: 11-61. Almqvist \& Wiksell, Stockholm. [Not seen, fide Ruta \& Libonatti 2016: 206]

Cachan P. 1952. Les Pentatomidae de Madagascar (Hémipteres Hétéropteres). Mémoires de l'Institut Scientifique de Madagascar (E)1(2): 231-462.

Cachan P. 1965. Morphologie et biologie de Afrius purpureus Westwood, 1837 Asopinae prédateur dans la région de Dakar (Hétéroptères-Pentatomidae). Annales de la Faculté des Sciences de l'Université de Dakar 18: 5-32.

Carpenter D.H. 1926. Various Observations on Insects in Uganda. Transactions of the Entomological Society of London 58: Liii-Lviii.

Caswell G.H. 1962. Agricultural Entomology in the Tropics. Edward Arnold (Publishers) Ltd., London.

Cobben R.H. 1968. Evolutionary trends in Heteroptera. Part I Eggs, architecture of the shell, gross embryology and eclosion. PhD thesis, Agricultural College, Wageningen, Netherlands. Available from: https://edepot.wur.nl/187075 [accessed 13 May 2018]

Couilloud R. 1989. Hétéroptères déprédateurs du cotonnier en Afrique et à Madagascar (Pyrrhocoridae, Pentatomidae, Coreidae, Alydidae, Rhopalidae, Lygaeidae). Coton et fibres tropicales 44 (3): 185-226.

Cox M.L. 1996. Insect Predators of Chrysomelidae. In: Jolivet, P.H.A. \& Cox, M.L. (eds) Chrysomelidae Biology. Vol. 2: Ecological Studies: 23-91. SPB Academic Publishing, Amsterdam.

Crétenet M. \& Gourlot J.P. (eds). 2015. Le cotonnier. Quae, CTA, Presses agronomiques de Gembloux, Gembloux.

Dallas W.S. 1851. List of Specimens of Hemipterous Insects in the Collection of the British Museum, Pt. 1. Taylor \& Francis, London.
https://doi.org/10.5962/bhl.title. 20373

Distant W.L. 1884. On the Rhynchota collected by the late Mr. W. A. Forbes on the Lower Niger. Proceedings of the Zoological Society of London 1884 (3): 458-461.

Distant W.L. 1890. Ethiopian Rhynchota in the collection of the Brussels Museum. Annales de la Société Entomologique de Belgique 34:li-lxi.

Distant W.L. 1892. A naturalist in the Transvaal. R.H. Porter, London. https://doi.org/10.5962/bhl.title. 2478

Distant W.L. 1898. Rhynchota from the Transvaal, Mashonaland, and British Nyasaland. Annals and Magazine of Natural History (7)2: 294-316.

Distant W.L. 1901. On the Rhynchota of the Congo region (Part I). Annales de la Société Entomologique de Belgique 45: 23-31.

Distant W.L. 1913. Percy Sladen Trust Expedition to the Seychelle Islands. No. IX. Rhynchota. Part I: Suborder Heteroptera. Transactions of the Linnean Society of London 16 (2): 139-191.

Dolling W.R., Rider D.A. \& Rolston L.H. 1999. Catalog of the Names of Cimex Linnaeus, With Comments on Early Works Concerning the Heteroptera. Thomas Say Publications in Entomology, Monographs, Entomological Society of America, Lanham.

Dupuis C. 1952. Priorité de quelques noms d'Hétéroptères de Guérin Méneville (1831). Bulletin de la Société Zoologique de France. 77: 447-454.

Dupuis C. 1955. Les Génitalia des Hémiptères Hétéroptères (Génitalia externes des deux sexes; Voies ectodermiques femelles). Mémoires du Muséum du Muséum national d'Histoire naturelle, Série A, Zoologie 6(4): 183-278.

Dupuis C. 1970. Heteroptera. In: Tuxen, S.L. (Ed.), Taxonomist's Glossary of Genitalia of Insects: 190-208. Munksgaard, Copenhagen.

Freeman P. 1940. A contribution to the study of the genus Nezara Amyot and Serville Hemiptera, Pentatomidae. Transactions of the Royal Entomological Society of London 90: 351-374.

Fry J.M. 1989. Natural Enemy Databank 1987: A catalogue of natural enemies of arthropods derived from records on the CIBC Natural Enemy Databank. C A B International [Institute of Biological Control], Wallingford.

Gapon D.A. \& Konstantinov F.V. 2006. On the structure of the aedeagus of shield bugs (Heteroptera: Pentatomidae): III. Subfamily Asopinae. Entomological Review 86 (7): 806-819.

Germar E.F. 1838. Hemiptera Heteroptera Promontorii Bonae Spei, Nundum descripta, quae collegit C. F. Drège, et proponit E. F. Germar. Revue Entomologique (Silbermann) 5: 121-192.

Gerstaecker A. 1892. Bestimmung der von Herrn. Dr. F. Stuhlmann in Ostafrika gesammelten Hemiptera. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten 9 (2): 45-58.

Gillon D. 1972. Les Hémiptères Pentatomides d'un savane préforestière de Côted'Ivoire. Annales de l'Université d'Abidjan (E) 5(1): 265-371.

Gillon D. 1974. Étude biologique des espèces d'Hémiptères Pentatomides d'une savane préforestière de Côte d'Ivoire. Annales de l'Université d'Abidjan. (E) 7 (1): 213-303.

Girard D.H. 1969. List of Intercepted Plant Pests, 1968. (Pests Recorded From July 1, 1967, Through June 30, 1968). United States Department of Agriculture - Agricultural Research Service - Plant Quarantine Division, Hyattsville, Maryland, USA.

Golding F.D. 1931. Further Notes on the Food-plants of Nigerian Insects. Bulletin of Entomological Research 22 (2): 221-223.
https://doi.org/10.1017/S0007485300035185

Grazia J., Panizzi A. R., Greve C., Schwertner C. F., Campos L. A., Garbelotto T. A. \& Fernandes J. A. M. 2015. Stink Bugs (Pentatomidae). In: Panizzi A., Grazia J. (eds) True Bugs (Heteroptera) of the Neotropics: 681-756. Entomology in Focus 2. Springer, Dordrecht.
https://doi.org/10.1007/978-94-017-9861-7_22

Guérin-Méneville F.E. 1831 [1829-1838]. Iconographie du Règne Animal de G. Cuvier, ou représentation d'après nature de l'une des espèces les plus remarquables et souvent non encore figurées, de chaque genre d'animaux. Vol. 1: Insectes. J. B. Baillère, Paris and London.

Guérin-Méneville F.E. 1844 [1829-1844]. Iconographie du Règne Animal de G. Cuvier, ou représentation d'après nature de l'une des espèces les plus remarquables et souvent non encore figurées, de chaque genre d'animaux. Vol. 2: Planche des Animaux invertébrés. J. B. Baillère, Paris and London.

Hargreaves E. 1937. Some Insects and their Food-plants in Sierra Leone. Bulletin of Entomological Research 28 (3): 505-520.
https://doi.org/10.1017/S0007485300038979

Herrich-Schaeffer G.A.W. 1844. Die Wanzenartigen Insecten. Vol. 7. C. H. Zeh'schen Buchhandlung, Nuremberg.

Herting B. 1971. A Catalogue of Parasites and Predators of Terrestrial Arthropods. Section A - Host or prey/enemy. Vol. I - Arachnida to Heteroptera. Commonwealth Agricultural Bureaux, Slough.

Herting B. 1973. A Catalogue of Parasites and Predators of Terrestrial Arthropods. Section A - Host or prey/enemy. Vol. III - Coleoptera to Strepsiptera. Commonwealth Agricultural Bureaux, Slough.

Herting B. 1976. A Catalogue of Parasites and Predators of Terrestrial Arthropods.
Section A - Host or prey/enemy. Vol. VII-Lepidoptera, Part 2 (Macrolepidoptera). Commonwealth Agricultural Bureaux, Slough.

Hesse A. J. 1925. 1. Contributions to a knowledge of the fauna of South-West Africa. IV. A list of the Heteropterous and Homopterous Hemiptera of South-West Africa. Annals of the South African Museum 23: 1-190.

Hollrung M. 1912. Jahresbericht über das Gebiet der Pflanzenkrankheiten. P. Parey, Berlin.

Howard C.W. 1906. The orange-tree butterfly: Papilio demoleus. Transvaal Agricultural Journal 4 (16): 727-732.

ICZN. 1999. International Code of Zoological Nomenclature. Fourth Edition. The International Trust for Zoological Nomenclature, London.

Jeannel R. 1913. Pentatomidae In: Voyage de Ch. Alluaud et R. Jeannel en Africa Orientale (1911-1912). Résultats scientifiques. Insectes Hémipteres. Librairie Albert Schulz, Paris.

Jolivet P. \& Théodoridès P. 1953. Les parasites phorétiques et prédateurs des Chrysomeloidea (Coleoptera) (4me note). Bulletin of the Royal Belgian Institute of Natural Sciences 29(32): 1-15.

Jolivet P. 1997. Biologie des Coléoptères Chrysomélides. Société Nouvelle des Éditions Boubée, Paris.

Kerisew B. 2011. Cytogenetic Investigations on Some Species of the Family Pentatomidae (Insecta: Hemiptera: Heteroptera). PhD thesis, Punjabi University, Patiala. Available from: http://hdl.handle.net/10603/3653 [accessed 9 May 2018].

Kerzhner I.M., Kuznetsova V.G. \& Rider D.A. 2004. Karyotypes of Pentatomoidea additional to those published by Ueshima, 1979 (Heteroptera). Zoosystematica Rossica 13 (1): 17-21.

Kiritani K. 1970. Studies on the adult polymorphism in the southern green stink bug Nezara viridula (Hemiptera: Pentatomidae). Researches on Populational Ecology 12: 19-34.

Kirkaldy G.W. 1909. Catalogue of the Hemiptera (Heteroptera) with biological and anatomical references, lists of foodplants and parasites, etc. Vol. 1: Cimicidae. Felix L. Dames, Berlin.

Kment P. \& Vilímová J. 2010. Thoracic scent efferent system of Pentatomoidea (Hemiptera: Heteroptera): a review of terminology. Zootaxa 2706: 1-77.

Konstantinov F.V. \& Gapon D.A. 2005. On the structure of the aedeagus of shield bugs (Heteroptera: Pentatomidae): 1. Subfamilies Discocephalinae and Phyllocephalinae. Entomological Review 85 (3): 221-235.

Krüger A. \& Deckert J. 2016. True bugs (Hemiptera-Heteroptera) of BotswanaBibliographical inventory and new records. Zootaxa. 4114(1): 33-63
http://doi.org/10.11646/zootaxa.4114.1.2

Kuklinski F. \& Borgemeister C. 2002. Cotton pests and their natural enemies in Madagascar. Journal of Applied Entomology 126: 55-65.

Laporte F. L. de. 1833. Essai d'une classification systématique de l'ordre des Hémiptères (Hémiptères-Hétéroptères Latr.). Magasin de Zoologie 2: 17-75, suppl. 7688, pls. 51-55.

Larousse P. 1876. Grand dictionnaire universel du XIXe siècle: français, historique, géographique, mythologique, bibliographique, littéraire, artistique, scientifique, etc., Vol. 15: TESTAM-Z. Administration du grand Dictionnaire universel, Paris.

Larousse P. 1890. Grand dictionnaire universel du XIXe siècle: français, historique, géographique, mythologique, bibliographique, littéraire, artistique, scientifique, etc., etc... Vol. 17, Supplement 2. Administration du grand Dictionnaire universel, Paris.

Lehmann G. 1922. Erster Beitrag zur Verbreitung afrikanischer Pentatomiden (Heteroptera). (VII. Heteropteren-Aufsatz.). Konowia 1: 129-133.

Le Pelley R.H. 1959. Agricultural Insects of East Africa. East Africa High Commission, Nairobi.

Le Pelley R.H. 1968. Pests of coffee. Longmans, Green and Co Ltd, London and Harlow.

Leston D. 1952. Notes on The Ethiopian Pentatomoidea (Hemiptera). -VI. Some insects in the Hope Department, Oxford. Annals and Magazine of Natural History. 12 (5): 893904.

Leston D. 1954. Notes on the Ethiopian Pentatomoidea (Hem.) XII. On some specimens from Southern Rodhesia, with an investigation of certain features in the morphology of Afrius figuratus (Germar) and remarks upon the male genitalia in Amyotinae.

Occasional Papers of the National Museum of Southern Rhodesia 19: 678-686.

Lethierry L. \& Severin G. 1893. Catalogue Général des Hémiptères, Pentatomidae. Musée Royal d'Histoire Naturelle Belgique, Bruxelles.

Lindberg, H. 1958. Hemiptera Insularum Caboverdensium. Systematik, Ökologie und Verbreitung der Heteropteren und Cicadiden der Kapverdischen Inseln.

Commentationes Biologicae 19 (1): 1-246.

Linnavuori R. 1975. Hemiptera Heteroptera of the Sudan with remarks on some species of the adjacent countries. Part 5. Pentatomidae. Boletim da Sociedade Portuguesa de Ciências Naturais (2)15: 5-128.

Linnavuori R. 1976. A hemipterous material from Somalia. Bollettino della Società Entomologica Italiana 108 (5-7): 123-130.

Linnavuori R.E. 1982. Pentatomidae and Acanthosomatidae (Heteroptera) of Nigeria and the Ivory Coast, with remarks on species of the adjacent countries in West and Central Africa. Acta Zoologica Fennica 163: 1-176.

Linnavuori R.E. 1989. Heteroptera of Yemen and south Yemen. Acta Entomologica Fennica 54: 1-40.

Maldès J.M. \& Pluot-Sigwalt D. 2004. Les Asopinae afrotropicaux et malgaches conservés au MNHN à Paris: Liste des spécimens types et des espèces représentées [Heteroptera: Pentatomidae]. Revue française d'Entomologie 26 (1): 19-28.

Mamet J. R. 1957. A Revised and Annotated List of the Hemiptera (Heteroptera and Homoptera, excluding Sternorrhyncha) of Mauritius. The Mauritius Institute Bulletin 5(2): 31-81.

Mancini C. 1937. Resultati scientifici delle missioni del Prof. G. Paoli in Somalia. Emitteri - Nota I. Bollettino della Società Entomologica Italiana 69 (1-2): 40-44.

Mancini, C. 1953. Missione biologica Sagan-Omo diretta dal Prof. Edoardo Zavattari (1939). Hemiptera-Heteroptera. Annali del Museo Civico di Storia Naturale Giacomo Doria 66:166-204.

Maitai W.M. 1958. Annotated List of Insects Associated with the Sweet Potato (Ipomoea batatas). East African Agricultural Journal 23 (4): 290-291.

Matanmi B.A. \& Hassan T.J. 1987. The life history and habits of Acraea eponina (Cramer) with notes on Acraea acerata Hewiston (Lepidoptera: Nymphalidae). Revue de Zoologie Africaine 101 (3): 371-377.

Matesco V.C., Bianchi F.M., Fürstenau B.B.R.J., Da Silva P.P., Campos L.A. \& Grazia J. 2014. External egg structure of the Pentatomidae (Hemiptera: Heteroptera) and the search for characters with phylogenetic importance. Zootaxa 3768 (3): 351-385.

McDonald F.J.D. 1966. The Genitalia of North American Pentatomoidea (Hemiptera: Heteroptera). Quaestiones Entomologicae 2: 7-150.

Miller N.C.E. 1952. A new species of Afrius (Hem., Pentatomidae) predacious on Schematiza cordiae Barb., in Mauritius. Bulletin of Entomological Research 42: 183184.

Medler J.T. 1980. Insects of Nigeria: Check List and Bibliography. Memoirs of the American Entomological Institute 30, American Entomological Institute, Ann Arbor.

Merrett P.J. 1986. Natural enemies of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae), in Tanzania. Bulletin of Entomological Research 76(4): 545-552.
https://doi.org/10.1017/S0007485300015054

More S.V., Prashant M.S., Kadolkar S. \& Kesarkar V. 2017. Polymorphism in the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae) From Chandgad Tehsil. International Journal of Zoology Studies 2 (6): 239-241.

Nagel P. \& Schmidlin L. 2014. Silbermann's "Revue entomologique": Publication Dates for Nomenclatural Purposes and Bibliographic Notes (Insecta, mainly Coleoptera). Zootaxa 3794(1): 87-107. http://dx.doi.org/10.11646/zootaxa.3794.1.3

Nonveiller G. 1984. Catalogue commenté et illustré des insectes du Cameroun d'intéret agricole (ap paritions, répartitions, importance). Institut pour la Protection des Plantes, Beograd.

Nuamah K.A. 1982: Karyotypes of some Ghanaian shield-bugs and the higher systematics of the Pentatomoidea (Hemiptera Heteroptera). International Journal of Tropical Insect Science 3 (1): 9-28.

Ohno K. \& Alam M.Z. 1992. Hereditary basis of adult colour polymorphism in the southern green stink bug, Nezara viridula Linné (Heteroptera: Pentatomidae). Applied Entomology and Zoology 27(1): 133-139.

Orian A.J.E. 1956. LXXX.-Hemiptera (Heteroptera and Homoptera excluding Sternorphyncha) of Mauritius. Annals and Magazine of Natural History 9(105): 641654.
https://doi.org/10.1080/00222935608655871

Orian A.J.E. 1965. Hemiptera of Mauritius. PhD Thesis, Imperial College London, England. Available from: https://spiral.imperial.ac.uk/handle/10044/1/17749 [accessed 13 May 2018]

Paleari L.M. 2013. Developmental biology, polymorphism and ecological aspects of Stiretrus decemguttatus (Hemiptera, Pentatomidae), an important predator of cassidine beetles. Revista Brasileira de Entomologia 57 (1): 75-83.

Poutouli W., Silvie P. \& Aberlenc, H.P. 2011. Hétéroptères phytophages et prédateurs d'Afrique de l'Ouest. Quae, Versailles/CTA, Wageningen.

Quicke D.L.J., Ingram S.N., Proctor J. \& Huddleston T. 1992. Batesian and Müllerian mimicry between species with connected life histories, with a new example involving braconid wasp parasites of Phoracantha beetles. Journal of Natural History 26: 10131034.
https://doi.org/10.1080/00222939200770601

Rebagliati P.J., Mola L.M., Papeschi A.G. \& Grazia J. 2005. Cytogenetic studies in Pentatomidae (Heteroptera): A review. Zoological Systematics and Evolutionary Research 43 (3): 199-213.
https://doi.org/10.1111/j.1439-0469.2005.00312.x

Renou A. 2007. Importance et contrôle des ravageurs en culture cotonnière au Mali. CIRAD, Montpellier. Available from: http://agritrop.cirad.fr/567196/1/document_567196.pdf [accessed 13 May 2018]

Reuter O.M. 1882. Vetenskapliga meddelanden. Ad cognitionem Heteropterorum Africae occidentalis. Öfversigt af Finska Vetenskaps-Societetens Förhandlingar 25: 143.

Rider D.A. 2006. Family Pentatomidae. In: Aukema, B. and C. Rieger (eds.), Catalogue of the Heteroptera of the Palaearctic Region. Vol. 5: Pentatomomorpha II: 233-402. The Netherlands Entomological Society, Amsterdam

Risbec J. 1950. I - La faune entomologique des cultures au Sénégal et au Soudan français II - Contribution à l'étude des Proctotrupidae. Gouvernement Général de l'Afrique Occidentale Française, [Dakar].

Robertson I.A.D. 2009. The Pentatomoidea (Hemiptera: Heteroptera) of Sub-Saharan Africa: a database. [s.n.], Malindi. Available from: http://www.repository.naturalis.nl/document/228798 [accessed 9 May 2018].

Ruta R. \& Libonatti M. L. 2016. Redescriptions of Scirtidae (Coleoptera: Scirtoidea) described by Carl Henrik Boheman (1796-1868) with notes on Scirtes adustus diversenotatus Pic, 1930. Zootaxa 4072 (2): 203-216.

Schaefer C.W. 1996. Bright Bugs and Bright Beetles: Asopine Pentatomids (Hemiptera: Heteroptera) and Their Prey. In: Alomar, O. and Wiedenmann, R.N. (eds) Zoophytophagous Heteroptera: Implications for Life History and Integrated Pest Management: 18-56. Entomological Society of America, Lanham.

Scholtz C.H. \& Holm E. (eds). 1985. Insects of Southern Africa. Butterworths, Durban.

Schouteden H. 1905a. Rhynchota Aethiopica II. Arminae et Tessaratominae. Faune entomologique de l'Afrique tropicale. Annales du Musée du Congo Belge (Zoologie) 3 (1): 133-277.

Schouteden H. 1905b. Expédition du Baron C. von Erlanger en Abyssinie et au pays des Somalis. Hémiptères-Hétéroptères. Annales de la Société Entomologique de Belgique 49: 11-16.

Schouteden H. 1907. Heteroptera, Fam. Pentatomidae, Subfam. Asopinae (Amyoteinae). Genera Insectorum 52, P. Wytsman, Bruxelles.

Schouteden H. 1909. Catalogues raisonnés de la faune entomologique du Congo Belge. I. Hémiptères-Hétéroptères, Fam. Pentatomidae. Annales du Musée du Congo Belge (Zoologie) (3)2 (1): 1-85.

Schouteden H. 1910. Wissenschaftliche ergebnisse der schwedischen zoologischen expedition nach dem Kilimandjaro, dem Meru und den Umgebenden Massaisteppen Deutsch-Ostafrikas 1905-1906 unter leitung von Prof. Dr. Yngve Sjöstedt. Herausgegeben mit Unterstützung von der Königl. Schwedischen akademie der Wissenschaften. 12. Hemiptera. 6. Pentatomidae. In: Sjöstedts Kilimandjaro-Meru Expedition. Stockholm 12: 73-96.

Schouteden H. 1911. Cimicidae et Coreidae recueillis dans les districts du Kasai et du Kwango par MM. Carlier, Koller et Luja. Revue Zoologique Africaine 1: 179-189.

Schouteden H. 1913. Cimicidae et Coreidae recueillis au Congo par le Dr. J. Bequaert. Revue Zoologique Africaine 2 (2): 189-202.

Schouteden H. 1913. Pentatomides de la Guinée Portugaise. Revue Zoologique Africaine 3(2): 324-328.

Schouteden H. 1963. Pentatomides de la Côte d'Ivoire I. Revue de Zoologie et de Botanique Africaines 68 (3-4): 397-402.

Schouteden H. 1964. Pentatomides de la Côte d'Ivoire II. Revue de Zoologie et de Botanique Africaines 70 (1-2): 92-95.

Schouteden H. 1972. Pentatomidae. Exploration du Parc National de l'Upemba Mission G. F. de Witte 72(3): 83-113.

Sherborn C.D. 1922-32. Index Animalium sive index nominum quae ab A. D. MDCCLVIII generibus et speciebus animalium imposita sunt. Sectio secunda. A Kalendis Ianuariis, MDCCCI usque ad finem Decembris, MDCCCL. Longmans, Green \& Co. \& British Museum (Natural History), London.

Sherborn C.D. 1932. Index Animalium sive index nominum quae ab A.D. MDCCLVIII generibus et speciebus animalium imposita sunt. Section 2, Part 28: INDEX variegatuszizyphinus. pp. 6807-7056. The Trustees of the British Museum, London.

Signoret V. 1861. Faune des Hémiptères de Madagascar. Pt. 2. Hétéroptères. Annales de la Société entomologique de France 8: 917-972.

Sileshi G., Kenis M., Ogol C.K.P.O., \& Sithanantham S. 2001. Predators of Mesoplatys ochroptera in sesbania planted-fallows in eastern Zambia. BioControl 46 (3): 289-310.
https://doi.org/10.1023/A:1011483320133

Sileshi G., Mafongoya P.L., Kwesiga F., Kenis M., Rao M.R. \& Maghembe J.A. 2004. The pest spectrum of sesbania, Sesbania sesban (L.) Merrill, in eastern and southern Africa. In: Rao, M.R. \& Kwesiga, F.R. Proceedings of the Regional Agroforestry Conference on agroforestry impacts on livelihoods in southern Africa: putting research into practice: 245-255 [1-21]. World Agroforestry Centre (ICRAF), Nairobi. Available from: http://outputs.worldagroforestry.org/cgi-bin/koha/opacdetail.pl?biblionumber=37376 [accessed 17 May 2018]

Sileshi G., Maghembe J.A., Rao M.R., Ogol C.K.P.O. \& Sithanantham S. 2000. Insects feeding on Sesbania species in natural stands and agroforestry systems in southern Malawi. Agroforestry Systems 49: 41-52.

Singh-Pruthi H. 1925. The Morphology of the Male Genitalia in Rhynchota.
Transactions of the Entomological Society of London 127-267.
https://doi.org/10.1111/j.1365-2311.1925.tb02861.x

Smith J.W. \& Barfield C.S. 1982. Management of Preharvest Insects. In: Pattee, H.E. \& Young, C.T. (eds) Peanut Science and Technology: 250-325. American Peanut Research and Education Society, Inc., Yoakum, Texas.

Stål C. 1854. Nya Hemiptera från Cafferlandet. Öfversigt af Kongliga VetenskapsAkademiens Förhandlingar 10 (9)[1853]: 209-227.

Stål C. 1862. Synonymiska och systematiska anteckningar öfver Hemiptera. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar 19 (9): 479-504.

Stål C. 1864. Hemiptera Africana, vol. 1. Norstedt, Stockholm.
https://doi.org/10.5962/bhl.title. 8566

Stål C. 1870. Enumeratio Hemipterorum. Bidrag till en förteckning öfver alla hittills kända Hemiptera, jemte systematiska meddelanden. Kongliga Svenska VetenskapsAkademiens Handlingar 9 (1): 1-232.
https://doi.org/10.5962/bhl.title. 12549

Tchibozo S \& Braet Y. 2004. Note péliminaire sur les insectes terrestres de la forêt classée de la Lama et de ses alentours (République du Bénin). Bulletin S.R.B.E./K.B.V.E. 140: 157-162.

Thomas D.B. 1994. Taxonomic synopsis of the Old World asopine genera Heteroptera: Pentatomidae). Insecta Mundi 8: 145-211.

Van Harten A. 1993. Terrestrial arthropods of the Cape Verde Islands. A check-list. In: Lobin, W. (ed.) Beitrag zur Fauna und Flora der Kapverdischen Inseln, 9. Ergebnisse des 5. Symposiums in Leiden: 235-310. Courier Forschungsinstitut Senckenberg 159, Senckenbergischen Naturforschenden Gesellschaft, Frankfurt am Main.

Van Heerden P.W. 1931. The Pentatomidae of South Africa. Msc Thesis. Stellenbosch University, South Africa. Available from: http://scholar.sun.ac.za/handle/10019.1/50772 [accessed 14 May 2018]

Villiers A. 1949. Mission P. L. Dekeyser et A. Villiers en Guinée et Côte-d'Ivoire (1946). Insectes (Première partie). Institut Français d'Afrique Noire, Catalogues 5: 190.

Villiers A. 1952a. Mission A. Villiers au Togo et au Dahomey (1950). XXI. Hémiptères. Bulletin de l'Institut Français d'Afrique Noire 14 (4): 1196-1213.

Villiers A. 1952b. Hémiptères de l'Afrique noire (Punaises et Cigales). Initiations africaines 9, Institut Français d'Afrique noire, Dakar.

Villiers, A. 1954. Contribution à l'étude du peuplement de la zone d'inondation du Niger (Mission G. Remaudière). X. - Hémiptères Hétéroptères. Bulletin de l'Institut Français d'Afrique Noire 16 (1): 219-231.

Villiers, A. 1956. Voyage de J. Bechyné en Afrique occidentale, Hemiptera, Pentatomidae et Coptosomatidae. Entomologische Arbeiten aus dem Museum G. Frey 7: 203-216.

Vivan L.M. \& Panizzi A.R. 2002. Two new morphs of the southern green stink bug, Nezara viridula (L.) (Heteroptera: Pentatomidae), in Brazil. Neotropical Entomology 31 (3): 475-476.

Vuillet A. \& Vuillet J. 1912. Notes sur les insectes nuisibles au karité. L'Agriculture pratique des pays chauds 12(2): 436-448.

Vuillet J. \& Vuillet A. 1911. Notes sur Cerina Butyrospermi A. Vuillet. Insecta 1: 271277.

Wallengren H.D.J. 1875. Insecta Transvaaliensia - Bidrag till Transvaalska Republikens i Södra Afrika Insektfauna. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar 32 (1): 83-137.

Westwood J.O. 1837: A catalogue of Hemiptera in the collection of Rev. F. W. Hope, M.A., with short latin diagnoses of the new species. J.C. Bridgewater, London.

Williams J.R. 1951. The Control of the Black Sage in Mauritius by Schematiza cordiae Barb. (Col., Galerucid.). Bulletin of Entomological Research 42(2): 455-463. https://doi.org/10.1017/S0007485300025451

Zacher F. 1921. Schädlinge der Nutzpflanzen im West Sudan. Der Tropenpflanzer; Zeitschrift für tropische Landwirtschaft 24: 132-142 [With an English summary to be found in The Review of Applied Entomology (A)10 (1922): 27-28.].

Zhao Q., Rédei D. \& Bu W. 2013. A revision of the genus Pinthaeus (Hemiptera: Heteroptera: Pentatomidae). Zootaxa 3636 (1): 59-84

Captions of tables

Table 1. Geographic distribution and material examined of the Afrius Stål, 1870 species. The data are from literature and labels of the examined material. New collection sites located in previously registered countries are referred to as "new locality", whereas new collection sites located in also new registered countries are referred to as "new record".

Locality		latitude	longitude	material examined collection
observations				
A. (Subafrius) flavirostrum				

A.(Afrius) kolleri					
DEMOCRATIC REPUBLIC OF THE CONGO			2 females	NHMUK	non type
DEMOCRATIC REPUBLIC OF THE CONGO: Elizabethville (Lubumbashi)	-11.68	27.49	1 male	NHMUK	non type - New locality
DEMOCRATIC REPUBLIC OF THE CONGO: Galikoko DEMOCRATIC REPUBLIC OF THE CONGO: Gorges de la Pelenge	-4.96	21.25	1 male	RMCA	lectotype of Afrius kolleri data from Schouteden 1972
DEMOCRATIC REPUBLIC OF THE CONGO: Ituri	1.87	29.26	1 female, 1 male	RMCA	non type - New locality
DEMOCRATIC REPUBLIC OF THE CONGO: Kabwekanono	-5.81	28.56			data from Schouteden 1972
DEMOCRATIC REPUBLIC OF THE CONGO: Keniati river					data from Schouteden 1972
DEMOCRATIC REPUBLIC OF THE CONGO: Lukombe	-4.37	22.17	1 female	RMCA	paralectotype of Afrius kolleri
DEMOCRATIC REPUBLIC OF THE CONGO: Lulua, Kananga	-7.96	22.43	1 female	RMCA	non type - New locality
DEMOCRATIC REPUBLIC OF THE CONGO: Lusinga	-8.92	27.20			data from Schouteden 1972
DEMOCRATIC REPUBLIC OF THE CONGO: Lusinga	-8.92	27.20	1 female	RMCA	non type
DEMOCRATIC REPUBLIC OF THE CONGO: Mubale river					data from Schouteden 1972
DEMOCRATIC REPUBLIC OF THE CONGO: Munoi					data from Schouteden 1972
DEMOCRATIC REPUBLIC OF THE CONGO: Ngowa	-5.74	16.59	1 female, 1 male	RBINS	non type
UGANDA: Mpumu	0.35	32.83	1 female	NHMUK	non type - New locality
UGANDA: Bukalasa	0.70	32.51			data from Maldès and Pluot-Sigwalt 2004

A.(Afrius) purpureus

Africa			1 female	OUMNH	syntype of Pentatoma purpurea
BENIN: Agoué					data from Maldès and Pluot-Sigwalt 2004
BENIN: Bassila	9.00	1.66			data from Villiers 1952a
BENIN: in between Djougou and Kouandé					data from Maldès and Pluot-Sigwalt 2004
BENIN: Ouidah	6.45	02.06	1 female	NHMUK	non type - New locality
BENIN: Tchaourou	8.88	2.59			data from Linnavuori 1982, 1989
CAMEROON: Baïgom	5.57	10.68			data from Maldès and Pluot-Sigwalt 2004
CAMEROON: Dschang	5.44	10.05			data from Maldès and Pluot-Sigwalt 2004
CANARY ISLANDS			2 males	NHMUK	non type - New record
CAPE VERDE: Maio	15.21	-23.16			data from Arechavaleta et al. 2005
CAPE VERDE: Santo Antão					data from Arechavaleta et al. 2005
CAPE VERDE: Santo Antão, Porto Novo	17.03	-25.06			data from Lindberg 1958
CAPE VERDE: São Nicolau					data from Arechavaleta et al. 2005
CAPE VERDE: São Nicolau, Chã da Preguisa					data from Lindberg 1958
CAPE VERDE: São Nicolau, Ribeira Brava	16.61	-24.29			data from Lindberg 1958
CAPE VERDE: São Nicolau, Ribeira do Recanto					data from Lindberg 1958
CAPE VERDE: São Vicente					data from Arechavaleta et al. 2005
CAPE VERDE: São Vicente, Monte Verde	16.86	-24.93			data from Lindberg 1958
CAPE VERDE: Santiago	15.12	-23.62			data from Lindberg 1958 and Arechavaleta et al. 2005
CAPE VERDE: Maio, Monte Penoso	15.22	-23.13			data from Lindberg 1958
CAPE VERDE: Maio, Porto Ingles	15.14	-23.23			data from Lindberg 1958

CAPE VERDE: Maio, Porto Ingles	15.14	-23.23	1 female	NHMUK
non type				
CAPE VERDE: Maio, Ribeira da Lagoa				data from Lindberg 1958
CAPE VERDE: São Vicente, Monte Verde	16.87	-24.93	1 male	NHMUK
non type				

GHANA: Ashanti, Tafo	6.74	-1.61	1 male	DARC	non type
GHANA: Tafo	6.74	-1.61	2 males	NHMUK	non type

MALI: Dogo, Macina	13.99	-5.73		data from Villiers 1954, and Maldès and
Pluot-Sigwalt 2004				

SENEGAL: Dakar, Gorée
SENEGAL: Dakar, Sébikotane
SENEGAL: Dakar, Thiaroye
SENEGAL: Mboro
SENEGAL: Pout
SENEGAL: Richard-Toll
SIERRA LEONE
SOMALIA: Afgooye
SOMALIA: Jowhar
SOUTH AFRICA
SOUTH AFRICA: Barberton, Mpumalanga
SOUTH AFRICA: Cape of Good Hope
SOUTH AFRICA: Cape of Good Hope
SOUTH AFRICA: Delagoa, Limpopo
SOUTH AFRICA: Eastern Cape, Matatiele
SOUTH AFRICA, Free State, Toowoomba
SOUTH AFRICA, Gauteng, Johannesburg, Bedford Ridge
SOUTH AFRICA: Interior (Parallel of Delagoa [Bay])
SOUTH AFRICA: Interior (Parallel of Delagoa [Bay])
SOUTH AFRICA: Johannesburg 6,000ft
SOUTH AFRICA: KwaZulu-Natal

14.66	-17.39
14.74	-17.13
14.75	-17.35
15.13	-16.88
14.77	-17.06
16.46	-15.69

1 male
$2.13 \quad 45.12$
$2.99 \quad 45.56$

-25.77	31.04	1 female
-34.35	18.47	
		1 female

-23.97 $28.75 \quad 1$ male
-30.36 $28.80 \quad 1$ male
-30.25 25.40

data from Villiers 1949

data from Villiers 1949

data from Villiers 1949
data from Maldès and Pluot-Sigwalt 2004
data from Villiers 1949
data from Maldès and Pluot-Sigwalt 2004
NHMUK syntype of Canthecona marginella
data from Linnavuori 1976
data from Mancini 1937
NHMUK non type
NHMUK non type - New locality
data from Maldès and Pluot-Sigwalt 2004
syntype of Asopus figuratus; image
examined
NHMUK non type
NHMUK non type - New locality
DARC non type - New locality
AMNH non type
NHMUK syntype of Canthecona marmorata
NHMUK syntype of Canthecona annulipes
NHMUK non type - New locality
syntype of Canthecona miniatescens. See Ruta \& Libonatti (2016: 205-206) for an explanation on the boundaries of Caffraria

				and their mentioning of detailed data on Wahlberg's excursions in Brinck (1955)
SOUTH AFRICA: KwaZulu-Natal	-29.30	30.00	1 male	NHMUK
syntype of Canthecona caerulea				

UGANDA: Eastern Mbale Dist., S. of Mt. Elgon	01.08	34.18	1 female	NHMUK	non type - New locality
UGANDA: Entebe	0.05	32.46	6 females, 3 males	NHMUK	non type - New locality
UGANDA: Kadungulu, Eastern Province	1.51	33.20	1 female	NHMUK	non type - New locality
UGANDA: Kampala	0.34	32.58	1 male	NHMUK	non type - New locality
UGANDA: Kigezi Dist . Afr. Exp., Mabungo Camp. 6,000 ft J. Ford	0.46	31.63	1 female	NHMUK	non type - New locality
UGANDA: Mabungo camp.	0.46	31.63	2 females, 1 male	NHMUK	non type
UGANDA: Mbale,Kumi Rd. 3,700 ft S. of L. Salisbury	1.96	34.18	2 females, 3 males	NHMUK	non type - New locality
UGANDA: "Región Nord du Victoria Nyanza"					data from Maldès and Pluot-Sigwalt 2004
UGANDA: S.E. Ankole., 4,400-4,800 ft			2 females, 1 male	NHMUK	non type
UGANDA: Semliki Plains, near Sishore of L.A. Albert			1 male	NHMUK	non type
YEMEN: Wādī Risyān	13.56	43.28			data from Linnavuori 1989
ZIMBABWE: Mashonaland - Places not identified:					data from Distant 1898
Cap. Congo					data from Schouteden 1905a
Insaba (Congo)					data from Schouteden 1905a
Fernando Po					data from Schouteden 1905a
El Banno					data from Mancini 1953
Koridjalu					data from Schouteden 1905b
Lambarem (Congo)					data from Schouteden 1905a
Mpala (Congo, Tanganyika)					data from Schouteden 1905a
Musoma					data from Leston 1952. Probably in Tanzania

Niam-Niam (Congo)
Oriental Africa
Quilimane
TANGANYIKA or Oriental Africa?

Vieux-Kassongo
data from Schouteden 1905a
data from Schouteden 1905a
data from Gerstaecker 1892. Probably Quelimane, in Mozambique
OUMNH syntype of Afrius rubromarginatus. "A handwritten label reads "Probably TANGANYIKA" and it could be so, but we can't help notice that the green disc label reads "Afriq Or", clearly an abbreviation of the French "Afrique orientale". It could be because the specimen was labelled and/or examined in Belgium (Bergroth published the original description of A. rubromarginatus in the Annales de la Société entomologique de Belgique) but it could also mean that the specimen was collected in French East Africa, the only mainland country of which was what is now the Republic of Djibouti, a record for this species newly reported by Maldès and Pluot-Sigwalt in 2004)
data from Schouteden 1913a

Table 2. Terminology of male genitalia from Singh-Pruthi 1925, Baker 1931, Dupuis 1955, 1970, Konstantinov \& Gapon 2005, and Gapon \& Konstantivov 2006.

Figures

Fig. 1. Geographic distribution of the genus Afrius Stål, 1870 through Africa. The species points of occurrence and their dispersion in different countries are represented in purple (A. (Subafrius) flavirostrum (Signoret, 1861)), red (A. (Afrius) kolleri Schouteden, 1911), and green (A. (Afrius) purpureus (Westwood, 1837)). The countries highlighted for each species on the right part of the map are from literature information. The points marked for each species are from literature and labels information.

Fig. 2. Afrius (Subafrius) flavirostrum (Signoret, 1861), type specimens. A-C,
Picromerus flavirostrum Signoret, 1861 syntype male, labels, dorsal and ventral habitus respectively (Images received from Herbert Zettel and Harald Bruckner, NHMW); D, Picromerus flavirostrum, syntype female, labels and dorsal habitus (Image received from Gunvi Lindberg, NHRS); E-F, Picromerus flavirostrum, syntype female, labels and dorsal habitus (Images received from Herbert Zettel and Harald Bruckner, NHMW); G-H, Cantheconidea migratoria Distant, 1913, syntype female, labels and dorsal habitus (NHMUK); I-J, Afrius williamsi Miller, 1951, holotype male, labels and dorsal habitus (NHMUK); K-L, Afrius williamsi, paratype female, labels and ventral habitus (NHMUK). Scale bars $=4 \mathrm{~mm}$.

Fig. 3. Afrius (Subafrius) flavirostrum (Signoret, 1861), male genitalia. A-F pygophore in dorsal (A, D), ventral (B, E) and posterior (C, F) views; G, H, right paramere in lateral views, internal and external respectively; I, right genital plate, dorso-posterior
view; J, K, L, phallus in anterior, posterior and lateral views respectively; M, a detail of the vesica in lateral view, also represented in the drawing of the phallus in the figure N ; $\mathrm{O}-\mathrm{Q}$, phallus in dorsal view. Abbreviations: bf, basal foramen; bp, basal plates; bt, basal theca; cl, conjunctival lobes; db, dorsal border; ds, ductus seminis; er, ejaculatory reservoir; il, inferior layer; gp, genital plates; m, microsculptures; pa, posterolateral angles; par, parameres; ph, phallotheca; sg, secondary gonophore; sp, conjunctival process; ts, thecal shield; v, vesica; vb, ventral border; X, segment X. Scale bars: F= 0.5 $\mathrm{mm} ; \mathrm{G}-\mathrm{Q}=0.25 \mathrm{~mm}$.

Fig. 4. Afrius (Subafrius) flavirostrum (Signoret, 1861), female genitalia. A, B genital plates, ventroposterior view; C, D inner genitalia, ventral view. Abbreviations: id, inner duct; cs, capsula seminalis; gcVIII, gonocoxites VIII; gcIX gonocoxites IX; gpIX gonapophyses IX; laVIII, laterotergites VIII; laIX, laterotergites IX; md, median duct of vesicular area; od, outer duct of vesicular area; pi, pars intermedialis; tgIX, secondary thickening of gonapophyses IX; vi, thickening of vaginal intima; X, segment X. Scale bars: $\mathrm{A}, \mathrm{B}=1 \mathrm{~mm} ; \mathrm{C}, \mathrm{D}=0.5 \mathrm{~mm}$.

Fig. 5. Afrius (Afrius) kolleri Schouteden, 1911 types. A-B, lectotype male, labels and dorsal habitus (RMCA); C-D, paralectotype female, labels and dorsal habitus (RMCA). Abbreviations: ac, corium adjacent to the scutellum constriction; sc, scutellum constriction. Scale bars $=4 \mathrm{~mm}$.

Fig. 6. Afrius (Afrius) kolleri Schouteden, 1911, male genitalia. A-F pygophore in dorsal (A, D), ventral (B, E) and posterior (C, F) views; G, H, right paramere in lateral views, internal and external respectively; I, right genital plate, dorso-posterior view; J,

K, L, phallus in anterior, posterior and lateral views respectively; M, a detail of the vesica in lateral view, also represented in the drawing of the phallus in the figure $\mathrm{O} ; \mathrm{N}$, phallus in dorso-lateral view; P-R, phallus in dorsal view. Abbreviations: bf, basal foramen; bp, basal plates; bt, basal theca; cl, conjunctival lobes; db, dorsal border; ds, ductus seminis; er, ejaculatory reservoir; il, inferior layer; gp, genital plates; m, microsculptures; pa, posterolateral angles; par, parameres; ph, phallotheca; sg, secondary gonophore; sp, conjunctival process; ts, thecal shield; v, vesica; vb, ventral border; X, segment X. Scale bars: C, F, L, O, P = 0.5 mm ; G-K, M, N, Q, R $=0.25 \mathrm{~mm}$.

Fig. 7. Afrius (Afrius) kolleri Schouteden, 1911, female genitalia. A, B genital plates, ventroposterior view; C, D inner genitalia, ventral view. Abbreviations: id, inner duct; cs, capsula seminalis; gcVIII, gonocoxites VIII; gcIX gonocoxites IX; gpIX gonapophyses IX; laVIII, laterotergites VIII; laIX, laterotergites IX; md, median duct of vesicular area; od, outer duct of vesicular area; pi, pars intermedialis; tgIX, secondary thickening of gonapophyses IX; vi, thickening of vaginal intima; X, segment X. Scale bars: $\mathrm{A}, \mathrm{B}=1 \mathrm{~mm} ; \mathrm{C}, \mathrm{D}=0.5 \mathrm{~mm}$.

Fig. 8. Afrius (Afrius) purpureus (Westwood, 1837), type specimens. A-C, Canthecona caerulea Dallas, 1851 syntype male, labels, dorsal and ventral habitus respectively (NHMUK); D, Canthecona miniatescens Stål, 1853, syntype female, labels and dorsal view (Image received from Gunvi Lindberg, NHRS); E-F, Pentatoma purpurea Westwood, 1837, syntype female, labels and dorsal habitus (OUMNH); G-H, Asopus figuratus Germar, 1838, syntype female, labels and dorsal habitus (MFNB); I-J, Canthecona marginella Dallas, 1851, syntype male, labels and dorsal habitus (NHMUK); K-L, Canthecona marmorata Dallas, 1851, syntype male, labels and dorsal habitus (NHMUK); M-N, Canthecona annulipes Dallas, 1851, syntype female, labels and dorsal habitus (NHMUK); O-P, Afrius rubromarginatus Bergroth, 1903, syntype female, labels and dorsal habitus (OUMNH). Abbreviations: ac, corium adjacent to the scutellum constriction; sc, scutellum constriction. Scale bars $=4 \mathrm{~mm}$.

Fig. 9. Afrius (Afrius) purpureus (Westwood, 1837), variation of the pronotum shape. Scale bars $=2 \mathrm{~mm}$.

Fig. 10. Afrius (Afrius) purpureus (Westwood, 1837), male genitalia. A-F pygophore in dorsal (A, D), ventral (B, E) and posterior (C, F) views; G, H, right paramere in lateral views, internal and external respectively; I, right genital plate, dorso-posterior view; J, K, L, phallus in anterior, posterior and lateral views respectively; M, a detail of the
vesica in lateral view, also represented in the drawing of the phallus in the figure $\mathrm{O} ; \mathrm{N}$, phallus in lateral view; $\mathrm{P}-\mathrm{R}$, phallus in dorsal view. Abbreviations: bf, basal foramen; bp, basal plates; bt, basal theca; cl, conjunctival lobes; db, dorsal border; ds, ductus seminis; er, ejaculatory reservoir; il, inferior layer; gp, genital plates; m, microsculptures; pa, posterolateral angles; par, parameres; ph, phallotheca; sg, secondary gonophore; sp, conjunctival process; ts, thecal shield; v, vesica; vb, ventral border; X, segment X. Scale bars: A-F= $0.5 \mathrm{~mm} ; \mathrm{G}-\mathrm{R}=0.25 \mathrm{~mm}$.

Fig. 11. Afrius (Afrius) purpureus (Westwood, 1837), female genitalia. A, B genital plates, ventroposterior view; C, D inner genitalia, ventral view. Abbreviations: id, inner duct; cs, capsula seminalis; gcVIII, gonocoxites VIII; gcIX gonocoxites IX; gpIX gonapophyses IX; laVIII, laterotergites VIII; laIX, laterotergites IX; md, median duct of vesicular area; od, outer duct of vesicular area; pi, pars intermedialis; tgIX, secondary thickening of gonapophyses IX; vi, thickening of vaginal intima; X, segment X. Scale bars: $\mathrm{A}, \mathrm{B}=1 \mathrm{~mm} ; \mathrm{C}, \mathrm{D}=0.5 \mathrm{~mm}$.

CAPÍTULO 3

Compared morphology of male genitalia traits in Asopinae (Hemiptera: Pentatomidae) with a terminology proposal*

Talita Roell ${ }^{1}$ \& Luiz Alexandre Campos ${ }^{2}$
1,2 Universidade Federal do Rio Grande do Sul, Instituto de Biociências,
Departamento de Zoologia, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil 91501970.

1 tali.roell@gmail.com

Abstract

The superior processes of dorsal rim are structures of the pygophore that have already been called with many different terms in the literature. In Asopinae, these structures are well developed, visible posteriorly, and have different shapes and sizes. They are placed behind of parameres, on dorsal base of posterolateral angles. There is no comparative study describing these structures and evaluating the placement of them inside the pygophore in different taxa. Considering that compared studies may be important for define structures terminologies, we describe here the superior processes of dorsal rim and the parameres in most genera of Asopinae in comparison with genera of other Pentatomidae subfamilies. The structures were studied in scanning electron microscopy. We described the shape and size of the structures, propose nine morphological characters for use in phylogenies, and propose the use of the term "superior process of dorsal rim"

Introduction

The genital structures of insects have a great value for the identification of their species since they present a great diversity of details (Snodgrass 1957; Song \& Bucheli 2010). In particular, the male genitalia is recognized as the most variable and divergent

[^1]body structure, whose traits are valuable for insect systematics, inclusive in phylogenetic studies (e.g. Eyer 1924; Singh-Pruthi 1925; Dirsh 1956; Tuxen 1970; Song \& Bucheli 2010; Simmons 2014). However, the great morphological diversity can be an obstacle in the understanding of the homology of the genital structures which often causes the use of several different terms for the same structure (Marks 1951; Snodgrass 1957).

As the most insects, the abdominal segments VIII to X are modified in genital structures in Heteroptera. The genital cup (pygophore) usually does not vary intraspecifically, but presents a considerable interspecific variability, being able to have different processes of different sizes and forms that can serve as taxonomic and phylogenetic information for the group (e.g. Singh-Pruthi 1925; Dupuis 1955; Schaefer 1977; Genevcius \& Schwertner 2017). Many of the structures that make up a genital cup may be related to the male-female coupling (Schaefer 1977).

The pygophore is a small tube strongly sclerotized derived from the ninth abdominal segment which opens internally and externally and is delimited by dorsal, ventral and lateral rims (Dupuis 1970; Schaefer 1977). The eighth segment is a less sclerotized structure which surrounds and moves the ninth segment (Schaefer 1977). The pygophore contains the phallus (aedeagus), the anal tube, one pair of parameres, and an intersegmental membrane known as diaphragm (Sharp 1890) or segmental membrane (Singh-Pruthi 1925). The diaphragm supports the phallus and parameres, and separates the anterior part of the segment (which belongs to the body cavity and includes the ductus ejaculatorius, the distal portion of alimentary duct, and the muscles of phallus and parameres) from the posterior part (which opens externally and supports the anal tube, the phallus and parameres) (Sharp 1890; Dupuis 1970). In some species, the diaphragm may contain $1+1$ distinct symmetric areas differentiated in lobes or processes on each side of the anal tube and above the parameres, called processus supérieurs by Dupuis (1955).

We have observed that, even with the proposed standardization of terminology of genital structures by Tuxen 1970, several terms have been used for same male genital structures in works about Pentatomidae, in particular when it comes to the processus supérieurs. In Asopinae, these processes are generally quite developed and are considered one of the main morphological characteristics of the group (Thomas 1994). They have already been described for a small variety of species, having been called as
"genital plates" (Baker 1931; Thomas 1994; Roell et al. in press), "basal plates" (SinghPruthi 1925), "dorsal plates" (Gapon \& Konstantinov 2006), "dorsal sclerites" (Zhao, Rédei \& Bu 2013; Srikumar et al. 2018; Zhao et al. 2018), pseudoclasper (Zou et al. 2012) and even "parandria" (Thomas 1994, Gapon \& Konstantinov 2006; Gapon 2009; Zhao, Liu \& Bu 2013; Zhao, Bu \& Liu 2016). Dupuis (1970) stressed that "(...) these processes must not be confused with the parandria; they denote externally the insertion point of the superior abductor muscles of the parameres; in accordance with their phragmal nature, they lack bristles".

In other subfamilies of Pentatomidae these processes have already been treated as "superior process" (Dursun \& Fent 2013), "superior process of diaphragm" (e.g. Grazia \& Teradaira 1980; Grazia \& Fortes 1995; Barcellos \& Grazia 1998), "process of diaphragm" (e.g. Grazia, Becker \& Thomas 1994); "genital cup process" (e.g. Barcellos \& Grazia 2003; Matesco, Grazia \& Campos 2007), "superior process of genital cup" (e.g. Bernardes, Schwertner \& Grazia 2011), "genital cup superior process" (Correia \& Fernandes 2016), "processo da taça genital" (e.g. Silva, Fernandes \& Grazia 2004; Silva, Fernandes \& Grazia 2006). "superior process of dorsal rim" (e.g. Weiler, Ferrari \& Grazia 2011; Schwertner \& Grazia 2012; Poock-da-Silva, Barão \& Grazia 2013; Grazia, Bolze \& Barão 2016; Bianchi, Barão \& Grazia 2017), and "dorsal plate of pygophore" (Kment 2013).

Up to date, these structures have never been studied in a context of comparative morphology, which possibly may justify the big number of terms for them. Furthermore, because they are highly developed in Asopinae, often having the size equivalent to the parameres, and being generally posteriorly visible, these structures have been cited with differentiated terminologies in comparison to the other subfamilies, and no hypothesis of homology was until the moment proposed. In this work, we evaluate the superior processes and parameres in Asopinae, comparing with species of Cyrtocorinae, Discocephalinae, Edessinae, Pentatominae, Phyllocephalinae, and Podopinae, seeking to: a) evaluate and describe the shape and the cuticular surface of the structures; b) propose morphological characters for use in phylogenies of the group; c) compare the shape and position of the process among several subfamilies of Pentatomidae, focusing on Asopinae; d) propose a standardization of terminology for these structures in Pentatomidae.

Material and methods

The right paramere and the right superior process of dorsal rim of 76 species of Asopinae were examined by optical (OM) and electron scanning microscopy (SEM), comprising 52 genera (Tables 1 and 2). Furthermore, we studied the right paramere of one species of Cyrtocorinae, four species of Discocephalinae, one species of Edessinae, four species of Pentatominae, one species of Phyllocephalinae, and two species of Podopinae; of these, only Dinocoris gibbus (Dallas, 1852) (Discocephalinae), Edessa rufomarginata (DeGeer, 1773) (Edessinae), Nezara viridula (Linnaeus, 1758) (Pentatomidae), and Tantia albopunctulata (Bergroth, 1894) (Phyllocephalinae) have superior process of dorsal rim, which were also examined (Tables 1 and 2). The studied specimens were obtained from the following institutions (acronyms according to Evenhuis, 2018): American Museum of Natural History, United States of America (AMNH); Australian Museum, Australia (AMS); Florida State Collection of Arthropods, United States of America (FSCA); Illinois Natural History Survey, United States of America (INHS); Instituto Nacional de Pesquisas da Amazônia, Brazil (INPA); Musee Royal de l'Afrique Centrale, Belgium (RMCA); Museu Nacional, Universidade do Rio de Janeiro, Brazil (MNRJ); Muséum National d'Histoire Naturelle, France (MNHN); National Museum, Czech Republic (NMPC); Naturhistoriska riksmuseet, Sweden (NHRS); Royal Belgian Institute of Natural Sciences, Belgium (RBINS); Science Museum of Minnesota, United States of America (SMPM); Staten Island Museum, United States of America (SIM); The Natural History Museum, United Kingdom (NHMUK); Universidade Federal do Rio Grande do Sul, Brazil (UFRG); University of Copenhagen, Zoological Museum, Denmark (ZMUC); Virginia Museum of Natural History, United States of America (VMNH).

The parameres and the superior process of dorsal rim were removed from dry specimens, kept submerged in contact lens solution Renu ${ }^{\circledR}$ for 48 h , agitated in an ultrasonic bath (5.400 kHz) with water and detergent solution for six minutes, and then dehydrated via an ethanolic series (80% alcohol for 5 minutes and and 90% alcohol for 5 minutes). The pieces were then glued to metal supports with carbon tape and coated with gold before observation, and microphotography using the scanning electron microscope JEOL JSM 6060 at the Center of Microscopy and Microanalysis at UFRGS, Porto Alegre, Brazil.

Results

Superior process of dorsal rim (spd)

The $1+1$ studied processes are placed lateral to the anal tube and above the bases of parameres, and they are derived from infoldings of the dorsal rim both in Asopinae and in the non-asopine taxa (Fig. 1B, d; Fig. 2, d). The position of these structures in the Asopinae species and in the species of other subfamilies of Asopinae is much similar. Hence, we are treating these structures as "superior process of dorsal rim (spd)" in this study, and we suggest that this terminology is adopted in future works.

The superior processes of dorsal rim (spd) in Asopinae are always positioned dorsolateral to the head of parameres, at the base of postero-lateral angles, parallel to dorsal border, often surpassing the dorsal border (Figs. 1B, 2A), and they are connected to the lateral wall of pygophore (i.e. on infoldings of the dorsal rim) by a fine membrane (Fig. 2A). In the non-asopine taxa, the position of the spd is almost similar to Asopinae, but they are mostly perpendicular to dorsal border (Fig. 2B). Dinocoris gibbus (Discocephalinae) presents the processes slightly displaced to the mesial region of the lateral wall of pygophore (Supplementary material 2, Figs. 4 and 5) Besides that, the spd in the non-asopines arise connected to dorsal rim by a sclerotized area (Fig. 2B) (Table 1).

Only two species of Asopinae do not have spd (Leptolobus eburneatus Karsch, 1892 and Leptolobus murrayi Signoret, 1855) (Table 1), the lateral wall of pygophore is internally projected and strongly sclerotized in these two species (Supplementary material, Figs. 214, 215).

The spd are generally well developed in Asopinae, and it presents a large variety of shapes: round (Anasida tenebrio Karsch, 1892; Apateticus lineolatus (HerrichSchäffer, 1840); Cecyrina platyrhinoides Walker, 1867; Coryzorhaphis leucocephala Spinola, 1837; Discocera cayennensis Laporte, 1833; Eocanthecona furcellata (Wolff, 1801); Jalla dumosa (Linnaeus, 1758); Montrouzieriellus falleni (Guérin-Ménéville, 1831); Perillus exaptus (Say, 1825); Stiretrus decastigmus (Herrich-Shäffer, 1838); Stiretrus decemguttatus (Lepeletier \& Serville, 1828); Stiretrus erytrocephalus (Lepeletier \& Serville, 1828); Tylospilus chilensis (Spinola, 1852); Tynacantha marginata Dallas, 1851; Tyrannocoris rex Thomas, 1992; Tyrannocoris nigriceps

Thomas, 1992), oval (Afrius flavirostrum (Signoret, 1861); Afrius purpureus (Westwood, 1837); Amyotea hamata (Walker, 1868); Arma custos (Fabricius, 1794); Blachia ducalis Walker, 1867; Canthecona discolor (Palisot de Beauvois, 1811); Comperocoris roehneri (Philipi, 1862); Coryzorhaphis carneolus Erichson, 1848; Damarius splendidulus (Fabricius, 1803); Dinorhynchus dybowskyi Jakovlev, 1876; Dorycoris pavoninus (Westwood, 1837); Ealda minax Walker, 1867; Friarius alluaudi (Schouteden, 1905); Glypsus conspicuus (Westwood, 1837); Hemallia signitenens (Schouteden, 1905); Hoploxys coeruleus Dallas, 1851; Jalloides opulentus Distant, 1911; Jalloides rubricosa (Stål, 1870); Mecosoma mensor Germar, 1837; Oechalia schellembergi (Guérin-Ménéville, 1831); Oplomus catena (Drury, 1782); Oplomus cruentus (Burmeister, 1835); Parajalla sanguineosignata (Spinola, 1852); Perillus bioculatus (Fabricius, 1775); Perillus circumcinctus Stål, 1862; Picromerus bidens (Linnaeus, 1758); Pinthaeus sanguinipes (Fabricius, 1781); Planopsis silvatica (Distant, 1890); Platynopus melanoleucus (Westwood, 1837); Platynopiellus septendecimaculatus (Palisot de Beavois, 1811); Podisus maculiventris (Say, 1831); Rhacognathus americanus Stäl, 1870; Rhacognathus punctatus Linnaeus, 1878; Supputius typicus (Distant, 1889)); subquadrate (Alcaeorrhynchus grandis (Dallas, 1851); Conquistator mucronatus (Uhler, 1897); Troilus luridus (Fabricius, 1775)), subrectangular (Cazira chiroptera (Herrich-Schäffer, 1840); Cazira insignis (Schouteden, 1907); Cazira verrucosa (Westwood, 1834); Brontocoris tabidus (Signoret, 1863); Supputius cincticeps (Stål, 1858)), falciform (Amyotea malabarica (Fabricius, 1775); Andrallus spinidens (Fabricius, 1787); Cantheconidea variabilis (Vollenhoven, 1868); Cermatulus nasalis (Westwood, 1837); Heteroscelis robustus Thomas, 1992; Heteroscelis servillei Laporte, 1833; Marmessulus nigricornis (Stål, 1865); Podisus nigrispinus (Dallas, 1851); Zicrona caerulea (Linnaeus, 1758)), guttiform (Apoecilus bracteatus (Fitch, 1856)), subtriangular (Apoecilus cynicus (Say, 1831); Discocera coccinea (Fabricius, 1798); Tylospilus cloelia (Stäl, 1862)), narrow and elongated (Euthyrrhychus floridanus (Linnaeus, 1767)), trapezoidal (Glypsus kuhlgatzi Schouteden, 1904), and sinuous (Macrorhaphis acuta Dallas, 1851).

The spd in Asopinae may be longer than half the length of paramere head, or even have a size similar to that of the head of the paramere (Table 1). But some species have small process in comparison to the length of the paramere head, as in Canthecona discolor (Palisot de Beauvois, 1811) (Table 1). In the other subfamilies, the spd is
shorter than half the length of paramere head. Almost all spd have microsculptures on their surface (Figs. 1A, 3B-L), which can range from an imbricated pattern (Fig. 3J, L) to almost parallel lines (Fig. $3 \mathrm{E}, \mathrm{F}$). The surfaces of the spd of Hemallia signitenens (Schouteden, 1905) (Fig. 3A) and Platynopiellus septendecimaculatus (Palisot de Beavois, 1811) are smooth (Supplementary Material, Figs. 179, 180, 294, 295). The surface of spd can also be uniform (Fig. 3B) or presents longitudinal elevations (Fig. 3D, I, J). Some species have yet globose projections on disc and on margins of the spd (Fig. 3G, H) (Table 1). Below are described more details about the spd for groups of Asopinae species.

Afrius flavirostrum (Signoret, 1861); A. purpureus (Westwood, 1837); Dorycoris pavoninus (Westwood, 1837); Friarius alluaudi (Schouteden, 1905); Jalla dumosa (Linnaeus, 1758) ; Jalloides opulentus Distant, 1911; J. rubricosa (Stål, 1870) and Picromerus bidens (Linnaeus, 1758) (Supplementary material 1, Figs. 4, 5, 9, 10, 164, 165, 199, 200, 204, 205, 209, 210, 279, 280)

Oval elongated, microsculptures imbricated, without globose projections and without elevations.

Alcaeorrhynchus grandis (Dallas, 1851) (Supplementary material 1, Figs. 14, 15)
Subquadrate, lateral internal margin concave, margins slightly elevated, microsculptures imbricated, few globose projections on disc.

Amyotea hamata (Walker, 1868) (Supplementary material 1, Figs. 19, 20)
Oval with globose projections on dorsal margin and disc, microsculptures imbricated, ventral margin less sclerotized than disc.

Amyotea malabarica (Fabricius, 1775) (Supplementary material 1, Figs. 24, 25)
Falciform, pleated with many longitudinal elevations. Microsculptures imbricated.

Anasida tenebrio Karsch, 1892; Eocanthecona furcellata (Wolff, 1801); Marmessulus nigricornis (Stål, 1865); Montrouzieriellus falleni (Guérin-Ménéville, 1831); Pinthaeus sanguinipes (Fabricius, 1781); Platynopus melanoleucus (Westwood, 1837); Podisus
maculiventris (Say, 1831), Rhacognathus americanus Stål, 1870; R. puncatatus Linnaeus, 1878 (Supplementary material 1, Figs. 29, 30, 154, 155, 229, 230, 239, 240, 284, 285, 299, 300, 304, 305, 314, 315, 319, 320)

Almost round, with longitudinal or transversal elevations. Microsculptures imbricated to parallel lines.

Andrallus spinidens (Fabricius, 1787) (Supplementary material 1, Figs. 34, 35)
Falciform, lateral internal margin concave, with longitudinal elevations near ventral margin, and globose projections near the external and ventral margins. Microsculptures forming parallel lines.

Apateticus lineolatus (Herrich-Schäffer, 1840) (Supplementary material 1, Figs. 39, 40)
Oval, but with the dorso-lateral angle projected. Globose projections on dorsal and lateral internal margins. Microsculptures forming parallel lines, sometimes combined in a polygonal pattern.

Apoecilus bracteatus (Fitch, 1856); Apoecilus cynicus (Say, 1831) (Supplementary material 1, Figs. 44, 45, 49, 50)

Subtriangular, lateral internal margin jagged. Globose projections on lateral internal margin and on disc. Microsculptures forming parallel lines.

Arma custos (Fabricius, 1794) (Supplementary material 1, Figs. 54, 55)
Lateral internal margin strongly convex with globose projections, lateral external margin concave. Microsculptures forming parallel lines.

Blachia ducalis Walker, 1867 (Supplementary material 1, Figs. 59, 60)
Falciform with sinuous microsculptures. Without elevations or globose projections.

Brontocoris tabidus (Signoret, 1863); Supputius cincticeps (Stål, 1858) (Supplementary material 1, Figs. 64, 65, 139, 140)

Subrectangular with some longitudinal elevations and some globose projections. Ventral margin concave. Microsculptures forming parallel lines.

Canthecona discolor (Palisot de Beauvois, 1811); Damarius splendidulus (Fabricius, 1803); Glypsus conspicuus (Westwood, 1837); Hoploxys coeruleus Dallas, 1851 (Supplementary material 1, Figs. 69, 70, 124, 125, 169, 170, 194, 195)

Oval elongated with strong longitudinal elevations which form a longitudinal sulcus on disc. Microsculptures imbricated or parallel lines.

Cantheconidea variabilis (Vollenhoven, 1868) (Supplementary material 1, Figs. 74, 75)
Suboval with a secondary lobe from lateral external margin. Microsculptures imbricated

Cazira chiroptera (Herrich-Schäffer, 1840); Cazira verrucosa (Westwood, 1834);
Discocera cayennensis Laporte, 1833; Discocera coccinea (Fabricius, 1798)
(Supplementary material 1, Figs. 79, 80, 89, 90, 134, 135, 139, 140)
C-shaped with light longitudinal elevations. Microsculptures imbricated.

Cazira insignis (Schouteden, 1907) (Supplementary material 1, Figs. 84, 85)
Inverted C -shape (O) with longitudinal elevations and imbricated microsculptures.

Cecyrina platyrhinoides Walker, 1867; Tynacantha marginata Dallas, 1851; Tyrannocoris nigriceps Thomas, 1992; T. rex Thomas, 1992 (Supplementary material 1, Figs. 94, 95, 364, 365; 369, 370, 374, 375)

Round, covered by globose microsculptures that sometimes form longitudinal elevations. Microsculptures forming parallel lines. T. marginata and Ty. rex have the ventral margin of spd projected, while in T. nigriceps the dorsal margin is projected.

Cermatulus nasalis (Westwood, 1837) (Supplementary material 1, Figs. 99, 100)
C-shaped with well pronounced elevations. Microsculptures imbricated.

Comperocoris roehneri (Philipi, 1862) (Supplementary material 1, Figs. 104, 105)
Oval excavated near dorsal margin. Covered by light elevations and imbricated microsculptures.

Conquistator mucronatus (Uhler, 1897) (Supplementary material 1, Figs. 109, 110)
Subquadrate, with latero-ventral angle projected, and covered by globose projections. Microsculptures forming parallel lines.

Coryzorhaphis carneolus Erichson, 1848; C. leucocephala Spinola, 1837
(Supplementary material 1, Figs. 114, 115, 119, 120)
Subtriangular with the lateral external margin concave, and the latero-ventral angle projected. Microsculptures forming parallel lines.

Dinorhynchus dybowskyi Jakovlev, 1876 (Supplementary material 1, Figs. 129, 130)
Suboval with the lateral external margin strongly concave. Microsculptures imbricated

Ealda minax Walker, 1867 (Supplementary material 1, Figs. 149, 150)
Subrectangular elongated, with a central elevation that joins to the inner lateral margin. Microsculptures imbricated.

Euthyrhynchus floridanus (Linnaeus, 1767) (Supplementary material 1, Figs. 159, 160)
Narrow and elongated, surface irregular with sinuosities and elevations.
Microsculptures imbricated to parallel lines.

Glypsus kuhlgatzi Schouteden, 1904 (Supplementary material 1, Figs. 174, 175)
Trapezoidal, dorsal margins elevated. Microsculptures imbricated.

Hemallia signitenens (Schouteden, 1905) (Supplementary material 1, Figs. 179, 180)
Oval elongated with smooth surface. Without projections.

Heteroscelis robustus Thomas,1992; H. servillei Laporte, 1833 (Supplementary material 1, Figs. 184, 185, 189, 190)

Falciform strongly curved and excavated. Microsculptures parallel lines to imbricate.

Macrorhaphis acuta Dallas, 1851 (Supplementary material 1, Figs. 224, 225)
Sinuous, with longitudinal elevations and imbricated microsculptures.

Mecosoma mensor Germar, 1837 (Supplementary material 1, Figs. 234, 235)
Suboval, with longitudinal elevations and light parallel microsculptures.

Oechalia schellembergi (Guérin-Ménéville, 1831)

Parameres

The parameres of Asopinae have a well-developed head, generally posteriorly visible. In some species, the parameres are much long, projecting beyond the lateral margins of pygophore (Fig. 4A). The internal lateral surface (Fig. 1C) can present microsculptures or wrinkles (e.g. Supplementary material 1, Figs. 56, 66, 81), or can be totally smooth (e.g. Supplementary material 1, Figs. 61, 106, 111), but in both cases the dorsal and ventral angles are generally smooth (Fig. 1C). The external lateral surface (Fig. 1D) can be smooth (e.g. Supplementary material, Figs. 03, 33, 68) or microsculptured (e.g. Supplementary material, Figs. 13, 18, 23), mainly on distal region (Fig. 1D). The microsculptures can be imbricated (e.g. Supplementary material 1, Fig. 133) or almost parallel (e.g. Supplementary material 1, Fig. 178) (Table 2).

Morphological characters

Based on the morphological diversity observed we propose the following characters. The characteristics of each studied species are listed on tables 1 and 2.

1) Superior process of dorsal rim: (a) absent; (b) present.
2) Superior process of dorsal rim, size: (a) up to half of paramere head; (b) more than half of paramere head.
3) Superior process of dorsal rim, microsculptures: (a) absent; (b) present.
4) Superior process of dorsal rim, globose projections: (a) absent; (b) present.
5) Superior process of dorsal rim, longitudinal elevations: (a) absent; (b) present.
6) Superior process of dorsal rim, connection with diaphragm: (a) membranous; (b) sclerotized
7) Head of paramere, position: (a) totally inside the pygophore; (b) projected beyond the lateral margins of pygophore.
8) Head of paramere, internal surface: (a) totally smooth; (b) with wrinkles or microsculptures.
9) Head of paramere, external surface: (a) smooth; (b) microsculptured.

Discussion

In this work, we present for the first time the description of the superior processes of dorsal rim (spd) for Asopinae in a comparative study including other subfamilies of Pentatomidae. We showed the great diversity of spd shapes and we observed that they are present in almost all genera of Asopinae (except in Leptolobus Signoret, 1855), and the connection of these structures to the dorsal rim is quite membranous (facilitating their removal even during dissection), unlike the majority of the other Pentatomidae species where the spd is a continuation of the sclerotized part of dorsal rim (except in Tantia albopunctulata (Bergroth, 1894)). The lack of a phylogenetic hypothesis for the subfamilies of Pentatomidae hinders our understanding on the evolution of spd, however, the presence of spd has already been indicated in several other taxa not studied here (e.g. Grazia \& Teradaira 1980; Becker \& Thomas 1994; Grazia \& Fortes 1995; Barcellos \& Grazia 1998; Barcellos \& Grazia 2003; Matesco, Grazia \& Campos 2007; Bernardes, Schwertner \& Grazia 2011; Weiler, Ferrari \& Grazia 2011; Poock-da-Silva, Barão \& Grazia 2013; Dursun \& Fent 2013; Kment 2013; Grazia, Bolze \& Barão 2016; Correia \& Fernandes 2016; Bianchi, Barão \& Grazia 2017) which indicates that the spd can be quite common, opening doors for two scenarios: a) the processes may be homologous to Pentatomidae, and were lost secondarily in certain groups; or b) the spd may have arisen many times by parallelism.

Proposing terminologies for morphological structures is not simple. Treating structures of the same ontogenetic origin with different names may generate errors of interpretation, and of hypotheses of primary homology, just as dealing with structures of different origins with the same name can generate similar errors. As mentioned in the previous paragraph, we cannot assume a common origin for the spd in Pentatomidae, but because of the position in which the psd are present and because they extend from the dorsal rim, we consider the use of the same term among the different taxa of

Pentatomidae, so we propose the term superior processes of dorsal rim, which was already used previously (e.g. Weiler, Ferrari \& Grazia 2011; Schwertner \& Grazia 2012; Poock-da-Silva, Barão \& Grazia 2013; Grazia, Bolze \& Barão 2016; Bianchi, Barão \& Grazia 2017), even though "genital cup process", "dorsal plate of pygophore", 'genital plates", "dorsal sclerites" (e.g Baker 1931; Thomas 1994; Roell et al. in press, Gapon \& Konstantinov 2006, Zhao, Rédei \& Bu 2013; Srikumar et al. 2018; Zhao et al. 2018, Barcellos \& Grazia 2003; Matesco, Grazia \& Campos 2007) are not incorrect terms, because all of them refer to the position of the process.

The various components of genital insect structures are related to anchoring during coupling, and the coupling mechanism is variable among different taxa (Genevcius \& Schwertner 2017). The superior processes of dorsal rim probably act on anchoring during the coupling of asopines, as demonstrated for Podisus nigrispinus (Dallas, 1851) by Genevcius \& Schwertner 2017, which differs from other pentatomids where the ventral rim of pygophore is useful on hold of the female genital plates. In this sense, the term "pseudoclasper" suggested for the spd by Zou et al. 2012 is not totally ruled out. However, it is not known whether other asopines as well as other Pentatomidae groups possessing spd may exhibit this same coupling pattern.

Most of the spd have their surfaces microsculptured, and this can vary from an imbricated pattern to almost parallel lines. Microsculptures have been reported in other arthropods (e.g. Lindroth 1974; Fusco et al. 2000; Beutel \& Gorb 2001; Arismendi \& Thomas 2003; Doberski \& Walmesley 2007; Roell \& Campos 2018), but little is known about the possible function of these structures. Interestingly, the distal external surface of parameres which is towards to the spd (Figs 1, 4B) is generally covered by microsculptures. It seems that the paramere and the spd act in the adhesion of structures, probably of the gonocoxites VIII. However, broad parameres (longer than the twice spd) do not have the distal region towards the spd (the spd are small, and towards the proximal region of parameres) (Figs 2A, 4A), these parameres have, mostly, the external surface smooth (Afrius Stål, 1870; Andrallus Bergroth,1862; Canthecona Amyot \& Serville, 1843; Cantheconidea Schouteden, 1907; Damarius Schouteden, 1907; Dorycoris Mayr, 1864; Ealda Walker, 1867; Eocanthecona Bergroth, 1915; Friarius Schouteden, 1907; Hoploxys Dallas, 1851; Jalla Hahn, 1832; Jalloides rubricosa (Stål, 1870); Macrorhaphis Dallas, 1851; Mecosoma Dallas, 1851; Picromerus Amyot \& Serville, 1843; Pinthaeus Stål, 1867; Platynopiellus Thomas,

1994; Platynopus Amyot \& Serville, 1843) (Tables 1 and 2). In the latter case, adherence may be facilitated in some other way. Perhaps the study of the morphology of female genitalia could better clarify this scenario.

Acknowledgments

We thank the curators of the scientific collections for the loan of specimens, Aline Henkes for preparing structures to SEM, the Center of Microscopy e Microanalyses of the Federal University of Rio Grande do Sul (CMM, Brazil), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (TR) and CNPq [307204/2015-4] (LAC) as fellowship grants.

References*

Arismendi, N., Thomas, D.B., 2003. Pentatomidae (Heteroptera) of Honduras: a checklist with description of a new ochlerine genus. Insecta Mundi 17, 219-236.

Asche, M., Wilson, M.R., 1990. The delphacid genus Sogatella and related groups: a revision with special reference to rice-associated species (Hornoptera: Fulgoroidea). Syst. Entomol. 15, 1-42.

Baker A.D., 1931. A study of the male genitalia of Canadian species of Pentatomidae. Can. J. Res. 4, 181-220. https://doi.org/10.1139/cjr31-012

Barcellos, A., Grazia, J., 1998. Sobre os gêneros Curatia e Copeocoris (Heteroptera, Pentatomidae, Pentatomini). Iheringia Ser. Zool. 85, 27-46.

Barcellos, A., Grazia, J., 2003. Revision of Brachystethus (Heteroptera, Pentatomidae, Edessinae). Iheringia Ser. Zool. 93(4), 413-446. http://dx.doi.org/10.1590/S007347212003000400008

Bernardes, J.L.C.B., Schwertner, C.F., Grazia, J., 2011. Review of Thoreyella Spinola with the description of two new species from Brazil (Heteroptera, Pentatomidae). Rev. Bras. entomol. 55(3), 299-302. http://dx.doi.org/10.1590/S008556262011005000037

Beutel, R.G., Gorb, S.N., 2001. Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. L. Syst. Evol. Res. 39, 177-207.

Bianchi, F.M., Barão, K.R., Grazia, J., 2017. Review of the sulcacitus group of Euschistus (Pentatomidae: Pentatominae: Carpocorini) with description of the internal female genitalia and a new species. Zootaxa 4362(3), 348-358. https://doi.org/10.11646/zootaxa.4362.3.2
Bourgoin, T.,1987. A new interpretation of the homologies of the Hemiptera male genitalia, illustrated by the Tettigometridae (Hemiptera, Fulgoromorpha). Proc. 6th Auchen. Meeting, Turin, Italy, 113-120.

Correia, A.O., Fernandes, J.A.M., 2016. Grammedessa, a new genus of Edessinae (Hemiptera: Heteroptera: Pentatomidae). Zootaxa, 4107(4), 541-565. http://dx.doi.org/10.11646/zootaxa.4107.4.4

Dirsh, V.M., 1956. The phallic complex in Acridoidea (Orthoptera) in relation to taxonomy. Trans. R. Entomol. Soc. Lond. 108, 223-356. https://doi.org/10.1111/j.1365-2311.1956.tb02270.x
Doberski, J., Walmesley, G., 2007. Microsculpture in UK ground beetles: are there patterns? Entomol. Sci. 10, 425-428.

Dupuis, C., 1955. Les génitalia des Hémiptéres Hétéroptéres (Génitalia externes des deux sexes; Voies ectodermiques femelles). Revue de la morphologie. Lexique de la nomenclature. Index bibliographique analytique. Mém. Mus. nat. Hist. nat. (A) Zool., N.S., 6, 183-278.

Dupuis, C., 1970. Heteroptera, In: Tuxen, S.L. (Ed.), Taxonomist's Glossary of Genitalia of Insects. Munksgaard, Copenhagen, pp. 190-208.

Dursun, A., Fent, M., 2013. Overview of the subgenus Ventocoris s. str. (Hemiptera: Heteroptera: Pentatomidae) with new records and a revised key to the Ventocoris species of Turkey. Zootaxa 3681(1), 151-177. http://dx.doi.org/10.11646/zootaxa.3682.1.8

Evenhuis NL. 2018. The insect and spider collections of the world website. Available at: http://hbs.bishopmuseum.org/codens

Eyer, J.R., 1924. The comparative morphology of the male genitalia of the primitive Lepidoptera. Ann. Entomol. Soc. Am. 17, 275-328.

Fusco, G., Brena, C., Minelli, A., 2000. Cellular processes in the growth of lithobiomorph centipedes (Chilopoda: Lithobiomorpha). A cuticular view. Zool. Anz. 239, 91-102.

Gapon, D.A., 2009. Conquistator, a new genus for Podisus mucronatus Uhler, 1897 (Heteroptera: Pentatomidae: Asopinae) with a re-descripton of type species. Zoosyst. Ross. 18(2), 264-270.

Gapon, D.A., Konstantinov, F.V. 2006. On the Structure of the Aedeagus of Shield Bugs (Heteroptera, Pentatomidae): III. Subfamily Asopinae. Entomol. Rev. 86(7), 806-819.

Genevcius, B.C, Schwertner, C.F., 2017. Strong functional integration among multiple parts of the complex male and female genitalia of stink bugs. Biol. J. Linnean Soc. 122(4), 774-786.

Grazia, J., Bolze, G.J., Barão, K.R., 2016. There and back again: contributions on Pseudevoplitus Ruckes (Heteroptera: Pentatomidae). Zootaxa 4078(1), 161-167. http://dx.doi.org/10.11646/zootaxa.4078.1.15

Grazia, J., Fortes, N.D.F., 1995. Revisão do gênero Rio Kirkaldy, 1909 (Heteroptera, Pentatomidae). Rev. Bras. Entomol. 39(2), 409-430.

Grazia, J., Teradeira, C.T., 1980. Nova espécie de Chloropepla Stål, 1867 coletada em Tucuruí, Pará, Brasil (Heteroptera, Pentatomidae). An. Soc. Entomol. Bras. 9, 123131.

Grazia, J., Becker, M., Thomas, D.B., 1994. A review of the genus Pseudevoplitus Ruckes, (Heteroptera, Pentatomidae) with the description of three new species. J. New York Entomol. S. 1994, 102(4), 442-455.

Klots, A., 1970. Lepidoptera, In: S.L. Tuxen (Ed.). Taxonomist's glossary of genitalia in insects. Copenhagen, Munksgaard, p. 115-130.

Kment, P., 2013. Carduelicoris stehliki, a new genus and species of Pentatomidae (Hemiptera: Heteroptera) from Madagascar. Acta Musei Moraviae, Sci. Biol. (Brno) 98(2), 415-432.

Lindroth, C., 1974. On the elytral microsculpture of Carabid beatles (Col. Carabidae). Entomologica Scandinavica 5, 251-264.

Mariani, R., Marino, A.M., Lenicov, R., 2018. A new species of Sogatella (Hemiptera: Delphacidae) from temperate Argentina. Rev. Bras. entomol. 62, 77-81.

Matesco, V.C., Grazia, J., Campos, L.A., 2007. Description of new genus and species of Ochlerini from Central America (Hemiptera: Pentatomidae: Discocephalinae). Zootaxa 1562, 63-68.

Marks, E.P., 1951. Comparative Studies of the Male Genitalia of the Hemiptera (Homoptera-Heteroptera). J. Kansas Entomol. Soc. 24(4), 134-141.
Poock-da-Silva, P., Barão, K.R., Grazia, J., 2013. Contributions to the knowledge of Dichelops Spinola: description of a new species of Dichelops (Diceraeus) and of the male of Dichelops (Prodichelops) divisus (Hemiptera: Heteroptera: Pentatomidae: Pentatominae: Carpocorini). Zootaxa, 3609(1), 060-068. http://dx.doi.org/10.11646/zootaxa.3609.1.4

Qin, D.Z., 2007. Two new species of the Chinese endemic delphacid genus Neuterthron Ding (Hemiptera: Fulgoromorpha) from Yunnan and Shaanxi Provinces. Zootaxa 1547, 59-64.

Roell, T., Campos, L.A., 2018. Phylogeny of Ochlerini (Hemiptera: Pentatomidae: Discocephalinae) and the evolution of the apical tarsomere in hind legs. Zool. J. Linn. Soc. XX, 1-14.

Roell, T., Lemaître, V., Webb, M.D., (in press) Revision of the African shieldbug genus Afrius Stål, 1870 (Hemiptera: Pentatomidae: Asopinae). Eur. J. Taxon.

Schaefer, C.W. 1977. Genital capsule of the trichophoran male (Hemiptera:
Heteroptera: Geocorisae). Int. J. Insect Morphol. Embryol. 6, 277-301.
Schwertner, C.F., Grazia, J., 2012. Review of the Neotropical genus Aleixus Mcdonald (Hemiptera: Heteroptera: Pentatomidae: Procleticini), with description of a new species and cladistic analysis of the tribe Procleticini. Entomol. Am. 118, 252-262.

Sharp, D., 1890. On the structure of the terminal segment in some male Hemiptera. T. Roy. Ent. Soc. London. 3, 399-427.

Silva, E.J.E., Fernandes, J.A.M., Grazia, J., 2004. Variações morfológicas em Edessa rufomarginata e revalidação de E.albomarginata e E. marginalis (Heteroptera, Pentatomidae, Edessinae). Iheringia Ser. Zool. 94(3), 261-268. http://dx.doi.org/10.1590/S0073-47212004000300006

Silva, E.J.E., Fernandes, J.A.M., Grazia, J., 2006. Caracterização do grupo Edessa rufomarginata e descrição de sete novas espécies (Heteroptera, Pentatomidae, Edessinae). Iheringia Ser. Zool. 96(3), 345-362. http://dx.doi.org/10.1590/S007347212006000300012

Simmons, L.W., 2014. Sexual selection and genital evolution. Austral Entomol. 53, 117. https://doi.org/10.1111/aen. 12053

Singh-Pruthi, C.A., 1925. The morphology of the male genitalia in Rhynchota. T. Roy. Ent. Soc. London. 1-2, 127-267.

Smit, F.G.A.M., 1970. Siphonaptera, In: S.L. Tuxen (Ed.). Taxonomist's glossary of genitalia in insects. Copenhagen, Munksgaard, p. 141-156.
Snodgrass, R.E., 1931. Morphology of the insect abdomen. Part I. General structure of the abdomen and its appendages. Smiths. Misc. Coll. 85, 1-128.

Song, H., Bucheli, S.R., 2010. Comparison of phylogenetic signal between male genitalia and non-genital characters in insect systematics. Cladistics 26, 23-35.

Srikumar, K.K., Salini, S., Smitha, S., Kumar, B.S., Radhakrishnan, B., 2018. Taxonomy, bionomics and predatory potential of Eocanthecona concinna (Walker) (Hemiptera: Pentatomidae: Asopinae). J. Biol. Control. 32(2), 81-86. DOI: 10.18311/jbc/2018/18213

Thomas, D.B., 1994. Taxonomic synopsis of the Old World Asopine genera Pentatomidae: Heteroptera). Insecta Mundi 8, 145-212.

Tuxen, S.L., 1970. Taxonomist's Glossary of Genitalia of Insects. Munksgaard, Copenhagen.

Weiler, L., Ferrari, A., Grazia, J., 2011. Contributions to the knowledge of Euschistus (Lycipta) with the description of E. (L.) riograndensis sp. nov. (Hemiptera: Heteroptera: Pentatomidae: Pentatominae: Carpocorini). Zootaxa 3067, 59-64.

Zhao, Q., Rédei, D., Bu, W., 2013. A revision of the genus Pinthaeus (Hemiptera: Heteroptera: Pentatomidae). Zootaxa 3636(1), 059-084. http://dx.doi.org/10.11646/zootaxa.3636.1.3

Zhao, Q., Liu, G., Bu, W., 2013. A review of the Chinese species of the genus Picromerus Amyot and Serville, with description of a new species (Hemiptera: Heteroptera: Pentatomidae: Asopinae). Zootaxa 3613(2), 146-164. http://dx.doi.org/10.11646/zootaxa.3613.2.3

Zhao, Q., Wei, J., Bu, W., Liu, G., Zhang, H., 2018. Synonymize Arma chinensis as Arma custos based on morphological, molecular and geographical data. Zootaxa 4455(1), 161-176.

Zhou, Z.X., Yang, L., Chen, X.S., 2018. Parasogata gen. n., a new genus of the tribe Delphacini with descriptions of two new species from China (Hemiptera, Fulgoromorpha, Delphacidae). ZooKeys 806, 73-85.

Zou, D., Wang, M., Zhang, L., Zhang, Y., Zhang, X., Chen, H., 2012. Taxonomic and bionomic notes on Arma chinensis (Fallou) (Hemiptera: Pentatomidae: Asopinae). Zootaxa 3382, 41-52.

Figures

Fig. 1. Pygophore in posterior view, with detailed images of the superior processes of dorsal rim and parameres of Tynacantha marginata. A, right superior process of diaphragm; B, pygophore; C, ineer view of the right parâmero; D, outer view of the right paramere.

Fig. 2. Dorso-posterior view of the pygophore of Afrius flavirostrum (A) and Edessa rufomarginata (B) showing the dorsal rim (d), and the connection between the superior process of dorsal rim (spd) and the dorsal rim indicated with a green arrow.

Fig. 3. Morphological variations on surface of the Asopinae superior processes of dorsal rim. A, Hemallia signitenens; B, Afrius flavirostrum; C, Glypsus kuhlgatzi; D, Macrorhaphis acuta; E, F Podisus nigrispinus; G, H, Apoecilus bracteatus; I, J, Anasida tenebrio; K, L, Montrouzieriellus falleni.

Tables

Table 1. Characteristics of the superior processes of dorsal rim

Table 2. Characteristics of parameres.

Supplementary material

Supplementary material 1.

Supplementary material 1, figs. 1-40. Right paramere and right superior process. 1-5, Afrius flavirostrum (Signoret,
1861). 6-10, Afrius purpureus (Westwood, 1837). 11-15, Alcaeorrhynchus grandis (Dallas, 1851). 16-20, Amyotea hamata (Walker, 1868). 21-25, Amyotea malabarica (Fabricius, 1775). 26-30, Anasida tenebrio Karsch, 1892. 31-35, Andrallus spinidens (Fabricius, 1787). 36-40, Apateticus lineolatus (Herrich-Schäfer, 1840).

Supplementary material 1, figs. 41-80. Right paramere and right superior process of dorsal border. 41-45, Apoecilus bracteatus (Fitch, 1856) (Signoret, 1861). 46-50, Apoecilus cynicus (Say, 1831). 51-55, Arma custos (Fabricius, 1794). 56-60, Blachia ducalis Walker, 1867. 61-65, Brontocoris tabidus (Signoret, 1863). 66-70, Canthecona discolor (Palisot de Beauvois, 1811). 71-75, Cantheconidea variabilis (Vollenhoven, 1868). 76-80, Cazira chiroptera (Herrich-Schäffer,

Supplementary material 1, figs. 81-120. Right paramere and right superior process of dorsal border. 81-85, Cazira insignis (Schouteden, 1907). 86-90, Cazira verrucosa (Westwood, 1834). 91-95, Cecyrina platyrhinoides Walker, 1867. 96-100, Cermatulus nasalis (Westwood, 1837). 101-105, Comperocoris roehneri (Philipi, 1862). 106-110, Conquistator mucronatus (Uhler, 1897). 111-115, Coryzorhaphis carneolus Erichson, 1848. 116-120, Coryzorhaphis leucocephala

Supplementary material 1, figs. 121-160. Right paramere and right superior process of dorsal border. 121-125, Damarius splendidulus (Fabricius, 1803). 126-130, Dinorhynchus dybowskyi Jakovlev, 1876. 131-135, Discocera cayennensis Laporte, 1833. 136-140, Discocera coccinea (Fabricius, 1798). 141-145, Dorycoris pavoninus (Westwood, 1837). 146150, Ealda minax Walker, 1867. 151-155, Eocanthecona furcellata (Wolff, 1801). 156-160, Euthyrhynchus floridanus

Supplementary material 1, figs. 161-200. Right paramere and right superior process of dorsal border. 161-165, Friarius alluaudi (Schouteden, 1905). 166-170, Glypsus conspicuus (Westwood, 1837). 171-175, Glypsus kuhlgatzi Schouteden,
1904. 176-180, Hemallia signitenens (Schouteden, 1905). 181-185, Heteroscelis robustus Thomas, 1992. 186-190,

Heteroscelis servillei Laporte, 1833. 191-195, Hoploxys coeruleus Dallas, 1851. 196-200, Jalla dumosa (Linnaeus, 1758).

Supplementary material 1, figs. 201-240. Right paramere and right superior process of dorsal border. 201-205, Jalloides opulentus Distant, 1911. 206-210, Jalloides rubricosa (Stål, 1870). 211-215, Leptolobus eburneatus Karsch, 1892 (214, 215 - pygophore) . 216-220, Leptolobus murrayi Signoret, 1855 (219, 220 - details of paramere). 221-225, Macrorhaphis acuta Dallas, 1851. 226-230, Marmessulus nigricornis (Stål, 1865). 231-235, Mecosoma mensor Germar, 1837. 236-240, Montrouzieriellus falleni (Guérin-Ménéville. 1831).

Supplementary material 1, figs. 241-280. Right paramere and right superior process. 241-245, Oechalia schellembergi (Guérin-Ménéville, 1831). 246-250, Oplomus catena (Drury, 1782). 251-255, Oplomus cruentus (Burmeister, 1835). 256-260, Parajalla sanguineosignata (Spinola, 1852). 261-265, Perillus bioculatus (Fabricius, 1775). 266-270, Perillus circumcinctus Stål, 1862. 271-275, Perillus exaptus (Say, 1825). 276-280, Picromerus bidens (Linnaeus, 1758).

Supplementary material 1, figs. 281-320. Right paramere and right superior process of dorsal border. 281-285,
Pinthaeus sanguinipes (Fabricius, 1781). 286-290, Planopsis silvatica (Distant, 1890). 291-295, Platynopiellus septendecimaculatus (Palisot de Beavois, 1811) (294-295, Pygophore and detail of the superior process). 296-300, Platynopus melanoleucus (Westwood, 1837). 301-305, Podisus maculiventris (Say, 1831). 306-310, Podisus nigrispinus (Dallas, 1851). 311-315, Rhacognathus americanus Stål, 1870. 316-320. Rhacognathus puncatatus Linnaeus, 1878.

Supplementary material 1, figs. 321-360. Right paramere and right superior process of dorsal border. 321-325, Stiretrus decastigmus (Herrich-Shäffer, 1838). 326-330, Stiretrus decemguttatus (Lepeletier \& Serville, 1828). 331-335, Stiretrus erythrocephalus (Lepeletier \& Serville, 1828). 336-340, Supputius cincticeps (Stål, 1858). 341-345, Supputius typicus (Distant, 1889). 346-350, Troilus luridus (Fabricius, 1775). 351-355, Tylospilus chilensis (Spinola, 1852). 356-360,
Tvlospilus cloelia (Stål, 1862).

Supplementary material 1, figs. 361-380. Right paramere and right superior process of dorsal border. 361-365, Tynacantha marginata Dallas, 1851. 366-370, Tyrannocoris nigriceps Thomas, 1992.371-375, Tyrannocoris rex Thomas, 1992. 376-380, Zicrona caerulea (Linnaeus, 1758).

Supplementary material 2.

Supplementary material 2, figs. 1-20. Outgroup. Right paramere and right superior process of diaphragm. 1-5, Dinocoris gibbus (Dallas, 1852) (4, pygophore). 6-10, Edessa rufomarginata (DeGeer, 1773). 11-15, Nezara viridula (Linnaeus, 1758). 16-20, Tantia albopunctulata (Bergroth, 1894).

Supplementary material 2, figs. 1-20. Outgroup. Right paramere. 21-23,Cyrtocoris egeris Packauskas \& Schaefer, 1998. 24-26, Antiteuchus mixtus (Fabricius, 1787). 27-29, Lincus spurcus Rolston, 1983. 30-32, Arvelius albopunctatus (DeGeer, 1773). 33-35, Murgantia varicolor (Westwood, 1837). 36-38, Proxys albopunctulatus (Palisot de Beauvois, 1805). 39-41, Graphosoma lineatum (Linnaeus, 1758). 42-44, Podops inunctus (Fabricius, 1775).

CAPÍTULO 4

Phylogeny of the predatory stink bugs and the evolution of abdominal glandular patches (Hemiptera: Pentatomidae: Asopinae)*

Talita Roell ${ }^{1}$ \& Luiz Alexandre Campos ${ }^{2}$

1,2 Universidade Federal do Rio Grande do Sul, Instituto de Biociências,

Departamento de Zoologia, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil 91501970.

1 tali.roell@gmail.com

Abstract

Asopinae is a group of predatory stink bugs worldwide distributed, and currently classified in 64 genera and 295 species. Its species are characterized, mainly, by the robust labium modified for predation. Its monophyly was many times speculated but never tested with a cladistics methodology. We present the first phylogenetic hypothesis of monophyly of Asopinae, as well as the internal relationships among its genera. We do not consider classifying the subfamily in tribes because we did not find sufficiently distinctive and exclusive features for the groups of genera recovered monophyletic by the cladistics analysis. Moreover, we present an ancestral state reconstruction study which indicates that the presence of male abdominal glandular patches is homologous for one group of species inside Asopinae.

Introduction

Asopinae is the only subfamily of Pentatomidae presenting predatory habits, and this secondary condition within the family is the most famous feature of the group (Gapud, 1991; Thomas, 1992, 1994; De Clercq, 2008; Grazia et al., 2015), which makes them potential controllers of diverse agricultural pests, mainly of defoliation caterpillars attacking crops worldwide (e.g. Zanuncio et al., 1994, 2011; De Clercq et al., 1998;

Malaguido \& Panizzi, 1998; Cavalcanti et al., 2000; Oliveira et al., 2002; Vivan et al., 2002; Angelini \& Boiça Jr., 2009; Ribeiro et al., 2010; Zibaee et al., 2012; Claver \& Jaiswal, 2013; Vacari, 2013; Magistrali et al., 2014). The biological control allows the reduction of chemical compounds in agricultural production systems. The asopines are mostly generalists, and many species suck plant fluids and water probably as a complementary diet, or when prey are scarce (De Clercq, 2000, 2008).

Allied to the predatory habit, the asopines have a robust labium, with the first segment articulated with full forward extension capability (Gapud, 1991; Thomas, 1992). Besides that, they have an apparently rectangular head, with labium inserted right below labrum, profemora frequently endowed with thorn, very numerous tibial bristles, superior process of dorsal rim in the pygophore, and phallus divided in basal and apical theca (Gapud, 1991; Thomas, 1992, 1994; Gapon \& Konstantinov, 2006; Barão et al., 2013; Brugnera et al., 2019; Roell et al., in press; Roell et al. in prep.). Furthermore, they are very variable in color (Thomas, 1992, 1994), and 26 genera have male pheromone abdominal glandular patches (Thomas, 1992; Kochenborger, 2018). The glandular patches were studied in a comparative morphology perspective, and fifteen morphological characters were proposed by Kochenborger (2018), but nothing is known about the evolution of these structures in Asopinae.

Asopinae is classified in 64 genera and 295 species (Table 1), distributed worldwide. Africa is home to 15 genera of Asopinae, America is to 28, Asia is to 18, Europe is to 7, and Oceania is to 11 (Thomas, 1992, 1994) (Table 1). Thomas (1992, 1994) made available identifications keys for the genera of Asopinae, and also for the species of the western hemisphere. There is no identification key for the species of eastern hemisphere.

The monophyly of Asopinae has been speculated (Schouteden, 1907; McDonald, 1966; Thomas, 1992; Gapon \& Konstantinov, 2006), and Pendergrast (1957) suggested that Asopinae, Discocephalinae, Podopinae (Graphosomatini) and Phyllocephalinae should form a natural group based on their very similar structure of male genitalia. McDonald (1966) indicated that Asopinae has a similar structure of the male genitalia with Podopinae and Pentatomini. Years later, Gapud (1991) proposed that Asopinae is sister of a Pentatominae group ("Penta 10") formed by some species of the Strachiini tribe: Eurydema Laporte, 1833, Murgantia Stål, 1862, Stenozygum Fieber, 1860, and Strachia Hahn, 1833 (Rider, 2019).

Based on morphological characteristics, four tribes have already been proposed for Asopinae: Discoceraria Schouteden, 1907 (= Stiretrides Amyot \& Serville, 1843), Asoparia Schoudeten, 1907 (= Asopides Amyot \& Serville, 1843), Jallini Dupuis, 1949, and Stilbotini Gapud, 2015. Furthermore, Gapon (2008) proposed, in his doctoral thesis, the division of the subfamily in five tribes: Amyoteini Schouteden, 1907, Glypsini Gapon, 2008 nomen nudum, Jallini Dupuis, 1949, Platynopini Gapon, 2008 nomen nudum, and Stiretrini Amyot \& Serville, 1843, but this study has not yet been published.

In this work we present the first phylogenetic analysis for Asopinae seeking to evaluate: a) its monophyly and its relationships with other subfamilies of Pentatomidae; b) intergeneric relationships; and c) the validity of tribes and groups of genera already proposed to the subfamily. We also provide an ancestral state reconstruction study for the characters of male abdominal glandular patches evaluating the distribution of these characters along the phylogeny, and the evolution of these structures in Asopinae.

Material and methods

Taxon sampling and material preparation

A total of 101 taxa were included in the cladistic analysis, comprising 87 species in the ingroup, which includes at least one species of each known genera of Asopinae. The outgroup includes most subfamilies of Pentatomidae (Grazia et al., 2008), which is formed by one species of Cyrtocorinae (Cyrtocoris egeris Packauskas \& Schaefer, 1998), four Discocephalinae (Antiteuchus mixtus (Fabricius, 1787); Dinocoris gibbus (Dallas, 1852); Lincus spurcus Rolston, 1983; Ochlerus rusticus Breddin, 1910), one Edessinae (Edessa rufomarginata (De Geer, 1773)), four Pentatominae (Arvelius albopunctatus (DeGeer, 1773); Murgantia varicolor (Westwood, 1837); Nezara viridula (Linnaeus, 1758); Proxys albopunctulatus (Palisot, 1811)), one Phyllocephalinae (Tantia albopunctulata (Bergroth, 1894)), two Podopinae (Graphosoma lineata (Linnaeus, 1758); Podops inunctus (Fabricius, 1775)), and Galgupha schulzii (Fabricius, 1781) as the root (Thyreocoridae Amyot \& Serville, 1843). The species of Asopinae included in the analysis are listed in the table 1, as well as where are deposited the type-specimens of most of them. Specific identifications were confirmed through of the exam of type-specimens (Table 1), of the identifications
keys from Thomas (1992, 1994), and through the original descriptions of the studied taxa.

The analyzed specimens pertain to the following institutions (acronyms according Evenhuis, 2019):
AMNH - American Museum of Natural History (New York, United States of America). AMS - Australian Museum (Sydney, Australia).

BHMH - Universidade Federal de Minas Gerais, Museu de Historia Natural (Belo Horizonte, Brazil).
CLEV - Cleveland Museum of Natural History (Cleveland, United States of America).
DARC - David A. Rider Collection (Fargo, United States of America).
DZUP - Museu de Entomologia Padre Jesus Santiago Moure, Universidade Federal do Paraná (Curitiba, Brazil).

EMG - Entomologisches Museum Geyer, Insekten Dauerausstellung (Geyer, Germany).
FSCA - Florida State Collection of Arthropods (Gainesville, United States of America).
INHS - Illinois Natural History Survey (Champaign, United States of America).
INPA - Instituto Nacional de Pesquisas da Amazônia, Coleção Sistemática da Entomologia (Amazonas, Brazil).
MACN - Museo Argentina de Ciencias Naturales "Bernardino Rivadavia" (Buenos Aires, Argentina).
MLPA - Universidad Nacional de La Plata, Museo de la Plata (La Plata, Argentina).
MCPM - Milwaukee City Public Museum (Milwaukee, United States of America).
MNHN - Muséum National d'Histoire Naturelle (Paris, France).
MNRJ - Universidade do Rio Janeiro, Museu Nacional (Rio de Janeiro, Brazil).
MZLS - Museé Zoologique (Lausanne, Switzerland).
MZUSP - Museu de Zoologia da Universidade Federal de São Paulo (São Paulo, Brazil).
NHMUK - The Natural History Museum (London, United Kingdom).
NHMW - Naturhistorisches Museum Wien (Wien, Austria).
NHRS - Naturhistoriska riksmuseet (Stockholm, Sweden).
NMPC - National Museum (Prague, Czech Republic).
OUMNH - Oxford University Museum of Natural History (Oxford, United Kingdom).
RBINS - Royal Belgian Institute of Natural Sciences (Brussels, Belgium).
RMCA - Musee Royal de l'Afrique Centrale (Tervurem, Belgium).

SIM - Staten Island Museum (Staten Island, United States of America).
UFRG - Universidade Federal do Rio Grande do Sul, Instituto de Biologia (Porto Alegre, Brazil). UFRJ - Universidade Federal do Rio de Janeiro (Rio de Janeiro, Brazil). UMSP - University of Minnesota (St. Paul, United States of America). VMNH - Virginia Museum of Natural History (Martinsville, United States of America). ZFMK - Zoologisches Forschungsmuseum "Alexander Koenig" (Bonn, Germany). ZMHB - Museum für Naturkunde der Humboldt-Universität (Berlin, Germany). ZMUC - University of Copenhagen, Zoological Museum (Copenhagen, Denmark).

Phallus and female ectodermal ductus were studied after boiling in $10 \% \mathrm{KOH}$ aqueous solution. The terminology of Baker (1931), Dupuis (1970), Gapon \& Konstantinov (2006) \& Roell et al., in press was adopted for genital structures. The terminology of Kment \& Vilímová (2010) and Barão et al. (2017) was adopted for cuticular structures of the external scent efferent system.

Cladistic analysis

We present two hypothesis for the Asopinae phylogeny, the first (A) including all taxa examined, even though by photos or descriptions (Figs. 1-5), and the second (B) excluding the taxa examined only by photos or bibliography (Australojalla versicolor (Distant, 1911), Bulbostethus transversalis Ruckes, 1963, Martinina inexpectata Schouteden, 1907, Martinina prima (Distant, 1908), Ornithosoma rivierei Kormilev, 1957, Parealda bouvieri Schouteden, 1907, Ponapea arachnoides Ruckes, 1963, and Pseudanasida fallax Schouteden, 1907) (Table 1) (Figs. 1, 6, supplementary material 1) because we could not code most of characters for these specimens, generating block bias, which could impair the accuracy of the results (Prevosti \& Chemisquy, 2010). The purpose of including these taxa in the analysis is to have at least one species of each known genus of Asopinae. The data for Ornithosoma rivierei and Ponapea arachnoides were based only on bibliography (Kormilev, 1957; Ruckes, 1963; Thomas, 1992, 1994) because their type specimens were not found (on Argentinian museums for the first and on north-american museums for the second). Thomas (1992) said he has not seen the type of O. rivierei, but he examined the holotype of P.
arachnoides on AMNH (Thomas, 1994). Ruth Salas (AMNH) and Jim Boone (BPBM, Bernice P. Bishop Museum, Hawaii) could not locate P. arachnoides.

A data matrix with 191 morphological characters were constructed in the software Mesquite v. 3.10 (Maddison \& Maddison, 2017) based on a comparative study of the adult external morphology (characters 1 to 130), female external and internal genitalia (characters 131 to 164), and male external and internal genitalia (characters 165 to 191) (Supplementary material 2). Nonapplicable data were recorded as ' - ' and missing data as '?'. All characters were coded non-additively (Fitch, 1971). Character polarization followed the outgroup method (Nixon \& Carpenter, 1993), and the most parsimonious trees where searched in TNT (Goloboff et al., 2008) by heuristic searches (random Wagner tree, 999 replications, tree bisection reconnection saving 99 trees per replication) under equal (EW) and implied weighting (IW). The IW analyses were performed according Mirande (2009), with 11 K -values calculated with a fit range of 50 to 90% of a perfectly hierarchical character. Strict consensus trees were calculated for each K-value. A similarity matrix of Subtree Pruning Regrafting (SPR) distances was constructed to compare the 11 strict consensus K-value. The presented classifications under implied weighting are based on the trees with higher sums of similarity of SPR distances, indicating more stable K-values (Mirande, 2009; Garbelotto et al., 2014). Relative Bremer support (subtrees up to ten extra steps; relative fit difference of 0.9) (Bremer 1994) was calculated. Visualization of cladograms was performed in WinClada 1.00.08 (Nixon 2002).

Ancestral reconstruction

Ancestral state reconstruction was provided for ten significant traits about the external structure of the male abdominal glandular patches. The characters 114 to 120 about the distribution of glandular patches were united only in one character regarding the presence and absence of glandular patches in order to know in which node the GPs have probably emerged (Fig. 5). Characters and codes are from Kochenborger (2018). We also sampled taxa not analyzed by Kochenborger (2018), but for these cases scanning electron microscopy were not made. Using Mesquite's ASR package (v3.10; Maddison \& Maddison, 2017), likelihood criterion and the Markov k-state one parameter model (Mk1) we traced the characters over the tree generated by a data
matrix that includes all taxa and all characters evaluated (hypothesis A, Fig. 5) seeking to produce results on the most reliable and accurate phylogeny (Deleporte, 1993; De Queiroz, 1996; Miller, 2003). Likelihood scores were used to evaluate results and the potential evolutionary explanations for the emergence of glandular patches and its transformations.

A correlation test likelihood-based was provided to test the independent evolution of the following features: a) presence or absence of male abdominal glandular patches (GPs) with presence or absence of pores; b) setae parallel or angled to abdomen with setae sparse or densely grouped. The analysis was performed through Pagel's test in Mesquite v.3.10 (Pagel, 1994; Maddison \& Maddison, 2017) with 1000 simulations. Owing to a limitation of Pagel's test, taxa with missing data were excluded while performing the test.

Results and discussion

Morphological characters
(See the supplementary materials SM3, SM4 for illustrations)

Head:

1. Head, region before the anterior line of eyes, shape: (0) subtriangular (SM3, Fig. 1 A, D); (1) subquadrate (SM3, Fig. 1 B, E); (2) subrectangular (wider than long) (SM3, Fig. 1 C, F); (3) subrectangular (longer than wide) (SM3, Fig. 1G, I); (4) tongue-like (SM3, Fig. $1 \mathrm{H}, \mathrm{J})$.

Barreiro (2015) commented that the head of the asopines is rectangular, apparently unique for the group. Once the base of head can be more or less long (Grazia et al., 2008), and the size of eyes can be variable (Barreiro, 2015), we observed the morphology of the head before the anterior line of eyes, and this region is generally subquadrate in Asopinae.
2. Base of head, shape: (0) not forming a neck; anterior margin of pronotum near eyes; (1) forming a neck; anterior margin of pronotum distant from eyes (SM3, Fig. 1I) (Grazia et al., 2008).
3. Head, lateral view, shape: (0) flat (SM3, Fig. 1K); (1) convex (SM3, Fig. 1L).
4. Head, size: (0) wider than long (SM3, Fig. 1B); (1) longer than wide (SM3, Fig. 1I); (2) as long as wide (Hasan \& Kitching, 1993; Barreiro, 2015).

Here we measured the width of the head including eyes, and the length until the end of mandibular plates.
5. Interocular distance, size: (0) longer than the head length; (1) longer than $3 \backslash 4$ of the head length; (2) subequal to the head length; (3) up to 314 of the head length (SM3, Fig. 1A) (Hasan \& Kitching 1993, Campos \& Grazia 2006, Barreiro, 2015).

We measured the head length from the posterior line of eyes to the apex of mandibular plates
6. Eyes, size: (0) as long as wide; (1) longer than wide; (2) wider than long (SM3, Fig. 1J) (Barreiro, 2015).
7. Eyes, size: (0) less than half of interocular distance; (1) half the interocular distance or more (SM3, Fig. 1O) (Campos \& Grazia, 2006).
8. Eyes, posterior margin, carina: (0) absent; (1) present (SM3, Fig. 1I) (Campos \& Grazia, 2006).
9. Occeli, width related to the eye width: (0) less than $1 \backslash 3$ of the eye width (SM3, Fig. 1C); (1) $1 \backslash 3$ of the eye width or more (Barreiro, 2015).
10. Head, distance between the inner limit of eye and the external limit of occelli: (0) equal the occelli width; (1) practically inexistent; (2) twice the occelli width; (3) half the occelli width; (4) 1.5 times the ocelli width (SM3, Fig. 1P) (5) 3 times the ocelli with or more (Campos \& Grazia, 2006).
11. Mandibular plates, punctuation: (0) conspicuous (SM3, Fig. 1B); (1) inconspicuous (SM3, Fig. 1M).

The punctuations are absent or almost invisible in some species (inconspicuous).
12. Mandibular plates, punctuation, distribution: (0) regular (SM3, Fig. 1J); (1) irregular (SM3, Fig. 1N).

The punctuations are regularly distributed when the whole surface of mandibular plates is covered by them, and the space among them is similar. Irregular punctuations can be observed when they are distributed generally only on disc of mandibular plates, and the distance among them is variable. Non-comparable to taxa with inconspicuous punctuations (character 11).
13. Mandibular plates, lateral margins, position: (0) plane, at the same level of the disc of mandibular plates and clypeus (SM3, Fig. 1K); (1) elevated in relation to the disc of mandibular plates and clypeus (SM3, Fig. 1L).

The mandibular plates of Leptolobus Signoret, 1855 are dorsally directed, so its lateral margins are elevated in relation to its disc.
14. Mandibular plates, lateral margins: (0) not contiguous with antenniferous tubercles (SM3, Fig. 1A); (1) contiguous with antenniferous tubercles (SM3, Fig. 1N).
15. Mandibular plates, position: (0) parallel (SM3, Fig. 1B); (1) convergent (SM3, Fig. 1J) (Roell \& Campos, 2015).
16. Mandibular plates, length: (0) in line with clypeus; (1) longer than clypeus (SM3, Fig. 1O); (2) shorter than clypeus (Gapud, 1991; Barreiro, 2015).

Some species of Asopinae (e.g. Afrius purpureus (Westwood, 1837)) present intraspecific variation to this character, which were coded as multistate.
17. Mandibular plates, inner margins, shape: (0) convex or sinuous (SM3, Fig. 1I); (1) straight (SM3, Fig. 1M) (Bianchi et al., 2017)

Multistate for Afrius flavirostrum (Signoret, 1861).
18. Clypeus, apex, shape: (0) plane in relation to base (SM3, Fig. 1P); (1) depressed in relation to base (SM3, Fig. 1O).

Multistate for Eocanthecona furcellata (Wolff, 1801), Mecosoma mensor

 Germar, 1837, and Platynopiellus septendecimaculatus (Palisot de Beavois, 1811).19. Antennal tubercle, head in dorsal view: (0) invisible; (1) visible (SM3, Fig. 1O) (Gapud, 1991; Grazia et al., 2008; Barreiro, 2015)
20. Antennal tubercle, lateral distal margin, shape: (0) straight; (1) convex (SM3, Fig. 1 K).
21. Antennal tubercle, ventral distal margin, shape: (0) straight; (1) convex.
22. Antennae, longer antennomere: (0) V; (1) IV; (2) III; (3) II; (4) IV e V.

Gapud (1991) pointed a difference in the lengths of the antennomeres II and III, and said that the character regarding the size of antennal segments could be useful together with other characters.

Marmessulus nigricornis (Stål, 1865) and Montrouzieriellus falleni (GuérinMénéville, 1831) have the antennomeres IV and V equally long, and these are longer than precedent antennomeres (state 4).
23. Antennomere IV: (0) cylindrical; (1) enlarged.

The IV antennomere dorso-ventrally flattened and dilated is one diagnostic characteristic of Discocera, Cecyrina Walker, 1867 and Colpothyreus Stål, 1867 (Thomas, 1992, 1994). In our analysis, this is one evidence that corroborates the monophyphy of Discocera, and the sister relation of Cecyrina with Colpothyreus.
24. Distance between labium and labrum: (0) up to half of the first labium segment length (SM3, Fig. 2C); (1) more than half of the first labium segment length (SM3, Fig. 2B); (2) almost nonexistent, labium inserted right below labrum (SM3, Fig. 2A) .

Gapud (1991) defined Asopinae as the most clearly defined group in comparison with other Pentatomidae based in several characteristics, including the "labral-labialbuccular arrangement", i.e the labium is juxtaposed to labrum and bucculae (state 2). Besides that, he said that this arrangement can be found in Phyllocephalinae. Barreiro (2015) pointed this condition either to some species of Edessinae. This is a
synapomorphic condition for Asopinae, but present also in Tantia albopunctulata (Phyllocephalinae), and Cyrtocoris egeris (Cyrtocorinae).
25. Labium, first segment, insertion: (0) before the middle of bucculae (SM3, Fig. 2A); (1) after the middle of bucculae (SM3, Fig. 2B) (Roell \& Campos, 2015).
26. Labium, first segment, position: (0) not surpassing the posterior margin of bucculae (SM3, Fig. 2C); (1) surpassing the posterior margin of bucculae (SM3, Fig. 2B) (Campos \& Grazia, 2006; Barreiro, 2015).
27. Labium, length related to the length of ventral thorax: (0) $1 / 5$ longer (SM3, Fig. 2D); (1) subequal; (2) $1 / 3$ longer; (3) twice longer; (4) shorter; (5) $2 / 5$ longer.

The size of labium has been evaluated according to its reach (Gapud, 1991; Campos \& Grazia, 2006; Barreiro, 2015). Once some species have long heads (e.g. Heteroscelis servillei Laporte, 1833), with the labium arising further on in comparison with other species, we choose to evaluate the length of labium in comparison with the length of ventral thorax (from anterior limit of prothorax to posterior limit of metathorax). For the sampled taxa we found six variables, expressed in the states 0 to 5 .
28. Labium, segment I, size: (0) about twice longer than wide (SM3, Fig. 2E); (1) 3,5 times longer than wide; (2) 2,5 times longer than wide; (3) 3 times longer than wide (4) 5 times longer than wide.

The most famous characteristic defining Asopinae is the large labium (Thomas, 1992, 1994; Grazia et al., 2015, Barreiro, 2015), however, some species have a narrower labium (e.g. Heteroscelis servillei, Stilbotes semperi) in comparison with other asopines, as well as the segments I to IV oftentimes have different widths to each other. Therefore, we evaluate the proportion of the first segment. In Asopinae the first segment is generally wide, about twice longer than wide.
29. Labium, segment II, shape: (0) anterior and posterior margins almost equal in width (SM3, Fig. 2C); (1) narrower on the anterior margin, apparently triangular (SM3, Fig. 2A).
30. Labium, segment II, length: (0) shorter than the combined segments III and IV (SM3, Fig. 2A); (1) longer than the combined segments III and IV.

This characteristic is used on identification keys and descriptions by Thomas (1992, 1994). The state 1 is one of the evidences that corroborate the monophyly of Supputius Distant, 1889.
31. Shorter labium segment: (0) IV; (1) I; (2) III; (3) III and IV (4) I and IV.
32. Bucculae, posterior margins: (0) contiguous (SM3, Fig. 2F); (1) evanescent (SM3, Fig. 2G) (Gapud, 1991; Barreiro, 2015).
33. Bucculae, ventral view, position: (0) lateral to the base of the lip, rectilinear (SM3, Fig. 2H); (1) facing the base of lip (SM3, Fig. 2L) (Gapud, 1991)
34. Bucculae, anterior region, shape: (0) not developed (SM3, Fig. 2H); (1) developed and rounded (2) developed and spined (SM3, Fig. 2L) (Barreiro, 2015; Roell \& Campos, 2015)

Thorax:

35. Pronotum, lateral margin, anterior half, shape: (0) smooth (SM3, Fig. 2I); (1) crenulated (SM3, Fig. 2J); (2) serrated (SM3, Fig. 2K) (Garbelotto et al., 2013).
36. Pronotum, lateral smooth margin, anterior half, shape: (0) carinated (SM3, Fig. 2I); (1) not carinated.

Not comparable in species with crenulated or serrated pronotum.
37. Pronotum, lateral margin, shape: (0) convex (SM3, Fig. 3B); (1) sinuous (SM3, Fig. 2I); (2) rectilinear (SM3, Fig. 3A).
38. Pronotum, anterolateral margin, projection: (0) absent; (1) present (SM3, Fig. 2J).
39. Pronotum, anterolateral margin, projection, extension: (0) in line with the lateral margin of eyes; (1) surpassing the lateral margin of eyes for half an eye width or more; (2) surpassing the lateral margin of eyes for less than half an eye width; (3) not reaching the lateral margin of eyes.
40. Pronotum, humeral angles, shape: (0) not emarginated (SM3, Fig. 3A); (1) emarginated (SM3, Fig. 3C) (Gapud, 1991).
41. Pronotum, humeral angles, position in frontal view: (0) plane in relation to the disc (SM3, Fig. 3D); (1) dorsally directed (SM3, Fig. 3E); (2) depressed (SM3, Fig. 3F).
42. Pronotum, posterior angles, shape: (0) rounded (SM3, Fig. 2J); (1) triangular (SM3, Fig. 3A).
43. Pronotum, posterior angles, shape: (0) in line with posterior margin (SM3, Fig. 3B); (1) projected beyond posterior margin (SM3, Fig. 3G).
44. Pronotum, posterior angles, acute projection: (0) absent; (1) present (SM3, Fig. 2K).
45. Pronotum, anterior region between the anterior margin and cicatrices: (0) flat (SM3, Fig. 3A); (1) sulcated (SM3, Fig. 3B).
46. Pronotum, medial longitudinal line, shape: (0) flat; (1) elevated (SM3, Fig. 3H).
47. Pronotum, disc, transversal constriction: (0) absent; (1) present (SM3, Fig. 3I).

The pronotum medially constricted is one of the diagnostic characteristics for Leptolobus and Stilbotes Stål, 1867 (Thomas, 1994), which corroborates their sisterrelationship in our analysis.
48. Pronotum, posterior margin, middle tubercle: (0) absent; (1) present (SM3, Fig. 3J).

The body surfaces of the Cazira Amyot \& Serville, 1843 species are generally covered by many tubercles. The tubercle on middle of posterior margin of pronotum is common to the three species studied.
49. Pronotum, postero-lateral margin, carina: (0) absent; (1) present (SM3, Fig. 3K).
50. Scutellum, shape: (0) triangular, base larger than apex (SM3, Fig. 3M); (1) Ushaped, base and apex almost similar in width (SM3, Fig. 3L) (Hasan \& Kitching, 1993).

Schouteden (1907) proposed the tribe Discoceraria for the group called Stiretrides by Amyot \& Serville (1843) (Discocera Laporte, 1833 + Stiretrus Laporte, 1833). Both authors considered the large scutellum (state 1) unique for this group. Thomas (1992) suggested suspending the tribal classifications because of the lack of characters supporting them. About scutellum Thomas states that, even though different from Discocera, the species of Oplomus Spinola, 1837, Perillus Stål, 1862, Heteroscelis Latreille, 1829, Coryzorhaphis Spinola, 1837, and Blachia Walker, 1867 have also a certain degree of enlargement. We coded the U-shaped scutellum (state 1) for Blachia, Discocera and Stiretrus, and it appears synapomorphic for clade 34 (Discocera + Stiretrus). Furthermore, the taxa cited by Thomas form a clade supported by several features, including the size of post-frenal margins of scutellum (characters 52 and 55) (clade 28).
51. Scutellum, lateral view, shape: (0) plane, less high than pronotum (SM3, Fig. 3N); (1) convex, higher than pronotum (SM3, Fig. 3O); (2) convex, but not surpassing the pronotum (SM3, Fig. 3P).
52. Scutellum, post-frenal margins, size: (0) shorter than frenal margins (SM3, Fig. 3M); (1) longer than frenal margins (SM3, Fig. 3L); (2) subequal the frenal margins (Gapud, 1991; Grazia, 2008).
53. Scutellum, posterior margin, shape: (0) not emarginated; (1) emarginated.

The emarginated posterior margin of scutellum is one of the diagnostic characteristics for Colpothyreus, but it is also present in Cazira verrucosa (Westwood, 1834).
54. Scutellum, posterior margin, dorsal view, range: (0) sternite V (SM3, Fig. 4B); (1) sternite VI; (2) sternite VII; (3) end of abdomen (Gapud, 1991; Campos \& Grazia, 2006).
55. Scutellum post frenal part, width: (0) equal or larger than adjacent corium (SM3, Fig. 4A); (1) narrower than adjacent corium.
56. Scutellum, range: (0) surpassing the corium apex; (1) not surpassing the corium apex (Campos \& Grazia, 2006).
57. Scutellum, longitudinal median line: (0) flat; (1) elevated (SM3, Fig. 4B).
58. Scutellum, longitudinal median line, elevation, distribution: (0) $1 / 3$ apical; (1) apical half; (2) $3 / 4$ apical; (3) 1/5 apical.
59. Scutellum, anterior surface, tubercle: (0) absent; (1) present (SM3, Fig. 4C) (Gapud, 1991).
60. Scutellum, anterior surface, tubercle, shape: (0) unilobed; (1) bilobed (SM3, Fig. $4 C$).
61. Profemur, projection: (0) absent; (1) present (SM3, Fig. 2D; SM3, Fig. 4B) (Campos \& Grazia, 2006).
62. Profemur, projection, shape: (0) thorn (SM3, Fig. 4B); (1) tubercle (SM3, Fig. 2D).
63. Mesofemur, projection: (0) absent; (1) present.
64. Mesofemur, projection, shape: (0) tubercle; (1) thorn.
65. Meso- and metatibiae, dorsal inner and outer margins, longitudinal carina: (0) absent; (1) present (SM3, Fig. 4D).
66. Meso- and metatibiae, dorsal sulcus: (0) absent; (1) present (SM3, Fig. 4D).
67. Meso- and metatibiae, lateral sulcus: (0) absent; (1) present (SM3, Fig. 4E).
68. Foretibia, dorsal external margin, foretibial expansion: (0) absent; (1) present (Brugnera et al., 2018).

The characters 68 to 75 were proposed and illustrated by Brugnera et al. (2019).
69. Foretibia, inner view, dorsal external margin, foretibial expansion, maximal width related to width of tibial axis: (0) less than double; (1) more than double (Brugnera et al., 2019).
70. Foretibia, inner view, dorsal external margin, foretibial expansion reaching base of tibia: (0) absent; (1) present (Brugnera et al., 2019).
71. Foretibia, inner view, ventral surface, foretibial expansion: (0) absent; (1) present (Brugnera et al., 2019).
72. Foretibia, ventral surface, foretibial expansion reaching base of tibia: (0) absent; (1) present (Brugnera et al., 2019).
73. Foretibia, ventral surface, foretibial apparatus, shape of setae: (0) curvilinear; (1) rectilinear (Brugnera et al., 2019).
74. Foretibia, ventral surface, proximal setae: (0) absent; (1) present (Brugnera et al., 2019).
75. Foretibia, peripheral area, shape: (0) flat; (1) elevated (Brugnera et al., 2019).
76. Corium, posterolateral angle, shape: (0) truncate (SM3, Fig. 4A); (1) rounded (SM3, Fig. 4B).
77. Hemelytral membrane, range: (0) not or very lightly surpassing the end of abdomen;
(1) surpassing the end of abdomen (longer than female genital plates in ventral view) (SM3, Fig. 4C).
78. Prosternum, mesial longitudinal region, shape: (0) excavated; (1) slightly elevated (SM3, Fig. 4G); (2) flat (SM3, Fig. 4F).
79. Mesosternum, longitudinal gutter: (0) absent (SM3, Fig. 4G); (1) present (SM3, Fig. $4 \mathrm{H})$.
80. Mesosternum, shape: (0) carinated (SM3, Fig. 4G); (1) not carinated (Hasan \& Kitching, 1993).

Not comparable to species that have longitudinal gutter.
81. Mesosternum, carina, extension: (0) on entire mesosternum (SM3, Fig. 4G); (1) only on anterior half of mesosternum; (2) only on posterior half of mesosternum.
82. Mesosternum, carina, base, width: (0) uniform with the rest of carina (SM3, Fig. 4I); (1) wider than the rest of carina (SM3, Fig. 4G).
83. Mesosternum, carina, sulcus: (0) absent (SM3, Fig. 4G); (1) present (SM3, Fig. 4J).
84. Metasternum, shape: (0) not carinated (SM3, Fig. 4G); (1) carinated (SM3, Fig. 4I) (Campos \& Grazia, 2006).
85. Metasternum, shape: (0) plane to metapleurae (SM3, Fig. 4I); (1) raised in relation to metapleurae (SM3, Fig. 4K); (2) sulcated (SM3, Fig. 4L) (Campos \& Grazia, 2006).
86. Ostiole, ventro-lateral view, shape: (0) guttiform; (1) circular; (2) elliptic; (3) narrow fissure (Barão et al., 2017)
87. Ostiole, opening orientation: (0) laterally; (1) latero-posteriorly; (2) ventrally (Barão et al., 2017).
88. Peritreme, shape: (0) disc; (1) ruga; (2) spout; (3) bean-shaped; (4) disc 2; (5) swollen; (6) disc 3; (7) absent (Kment and Vilímová, 2010; Barão et al., 2017)

The states 4,5 and 6 are new propositions to this character. "disc 2 " (4) has a well-developed and is evanescent. "Swollen" (5) is an ample peritreme, attaining the lateral margin of mesopleura. "disc 3" (6) is similar to "disc", but is more elevated.
89. Thorax, external scent efferent system, peritreme, median furrow: (0) absent; (1) present (SM3, Fig. 4J) (Hasan \& Kitching, 1993; Bianchi et al., 2017).
90. Peritreme, median furrow, development related to peritremal length: (0) less than half; (1) more than half (Barão et al., 2017, char 6).
91. Metapleuron, evaporatorium, development related to metapleuron width: (0) more than half of; (1) less than half of (Campos \& Grazia, 2006; Barão et al., 2017).
92. Metapleuron, evaporatorium, range: (0) surrounding peritreme (SM3, Fig. 4I); (1) not surrounding peritreme (SM4, Fig. 1A).
93. Metapleuron, evaporatorium, form of anterolateral margin: (0) rounded; (1) tapered (Barão et al., 2017).

Non-comparable to species with evaporatorium not surrounding peritreme.
94. Metapleuron, evaporatorium, area close to outer margin raised: (0) absent; (1) present (Barão et al., 2017).

Non-comparable to species with evaporatorium not surrounding peritreme.
95. Mesopleuron, posterior margin, evaporatorium: (0) present (SM4, Fig. 1A); (1) absent.
96. Mesopleuron, evaporatorium, development degree related to anterior limit of mesocoxal suture: (0) surpassing; (1) not attaining (Barão et al., 2017).
97. Mesopleuron, anterolateral angle, evaporatorium: (0) absent; (1) present (Barão et al., 2017).
98. Mesopleuron, postero-lateral angle, evaporatorium: (0) present; (1) absent (Barão et al., 2017).
99. Mesopleuron, outer margin, evaporatorium: (0) present; (1) absent (Barão et al., 2017).
100. Mesopleuron, evaporatorium in a diagonal from mesepimeron to mesepisternum: (0) absent; (1) present (Barão et al., 2017).
101. Mesopleuron, evaporatorium in a diagonal from mesepimeron to mesepisternum, development related to the anterolateral angle of mesepisternum: (0) reaching; (1) not reaching (Barão et al., 2017).
102. Evaporatorium, gyrification: (0) conspicuous; (1) inconspicuous (Barão et al., 2017).
103. Evaporatorium, punctuation: (0) absent; (1) present (Barão et al., 2017).
104. Metathoracic spiracle, shape: (0) wide; (1) narrow (Barão et al., 2017).

Abdomen:

105. Third urosternite, base, tubercle: (0) absent; (1) present (SM4, Fig. 1B; SM4, Fig. 1C) (Gapud, 1991; Campos \& Grazia, 2006).
106. Third urosternite, base, tubercle, reach: (0) at most reaching the metacoxae; (1) reaching mesocoxae; (2) between pro and mesocoxae (SM4, Fig. 1B) (Gapud, 1991).
107. Third urosternite, base, tubercle, shape: (0) unilobed (SM4, Fig. 1B); (1) bilobed (SM4, Fig. 1C).

Bilobed abdominal tubercle is one of the diagnostic characteristics for Glypsus Dallas, 1851 (Thomas, 1994).
108. Urosternite VII, posterolateral margins, projection: (0) absent; (1) present (SM4, Fig. 1D) (Bianchi et al., 2017).
109. Urosternites III and IV, trichobothria, position: (0) lined up to spiracles (SM4, Fig. 1E); (1) external to spiracles (SM4, Fig. 1F) (Gapud, 1991; Grazia et al., 2008).
110. Female, seventh urotergite, membranous longitudinal line: (0) present (SM4, Fig. 1G); (1) absent.
111. Female, seventh urotergite, $1+1$ lateral membranous line: (0) absent; (1) present (SM4, Fig. 1H).
112. Female, seventh urotergite, lateral margins, shape: (0) not emarginated; (1) emarginated (SM4, Fig. 1I).
113. Female, seventh urotergite, posterior margin, shape: (0) arcuate (SM4, Fig. 1H); (1) rectilinear (SM4, Fig. 1J); (2) sinuous (SM4, Fig. 1K); (3) concave.
114. Male, urosternite IV, glandular patches: (0) absent; (1) present (Kochenborger, 2018).

The characters 114 to 128 were proposed and illustrated by Kochenborger, 2018.
115. Male, urosternite V , anterior half, glandular patches: (0) absent; (1) present (Kochenborger, 2018).
116. Male, urosternite V , posterior half, glandular patches: (0) absent; (1) present (Kochenborger, 2018).
117. Male, urosternite VI, anterior half, glandular patches: (0) absent; (1) present (Kochenborger, 2018).
118. Male, urosternite VI, posterior half, glandular patches: (0) absent; (1) present (Kochenborger, 2018).
119. Male, urosternite VII, anterior half, glandular patches: (0) absent; (1) present (Kochenborger, 2018).
120. Male, urosternite VII, posterior half, glandular patches: (0) absent; (1) present (Kochenborger, 2018).
121. Male, glandular patches, pores (not comparable in species without glandular patches): (0) absent; (1) present (Kochenborger, 2018).
122. Male, glandular patches, sensilla chaetica I (not comparable in species without glandular patches): (0) absent; (1) present (Kochenborger, 2018).
123. Male, glandular patches, sensilla chaetica II (not comparable in species without glandular patches): (0) absent; (1) present (Kochenborger, 2018).
124. Male, glandular patches, sensilla chaetica III (not comparable in species without glandular patches): (0) absent; (1) present (Kochenborger, 2018).
125. Male, glandular patches, sensilla pit peg I (not comparable in species without glandular patches): (0) absent; (1) present (Kochenborger, 2018).
126. Male, glandular patches, sensilla pit peg II (not comparable in species without glandular patches): (0) absent; (1) present (Kochenborger, 2018).
127. Male, glandular patches, setae, orientation towards the abdomen (not comparable in species without glandular patches): (0) angled; (1) parallel (Kochenborger, 2018).
128. Male, glandular patches, setae, distribution (not comparable in species without glandular patches): (0) grouped; (1) sparse (Kochenborger, 2018).
129. Male, urosternites V and VI, shape: (0) not excavated (SM4, Fig. 1M); (1) excavated (SM4, Fig. 1L).
130. Male, limit between urosternites VI and VII, shape: (0) not sulcated; (1) sulcated.

Female genitalia:

131. Genital plates, position: (0) ventro-posterior (SM4, Fig. 2A); (1) ventral (SM4, Fig. 2B); (2) posterior (SM4, Fig. 2C).
132. Gonocoxites VIII, position: (0) juxtaposed (SM4, Fig. 1N); (1) overlapping (SM4, Fig. 1O) (Bianchi et al., 2017).
133. Gonocoxites VIII, disc, form: (0) flat; (1) concave; (2) convex (Bianchi et al., 2017).
134. Laterotergites VIII, spiracles: (0) present (SM4, Fig. 1O); (1) absent.
135. Laterotergites VIII, posterior margin, shape: (0) round (SM4, Fig. 1O); (1) acutely projected (SM4, Fig. 1D).
136. Band uniting the laterotergites VIII: (0) tumid (SM4, Fig. 2D); (1) not tumid.
137. Gonapophyses VIII, external position: (0) not exposed; (1) exposed (SM4, Fig. 2E).
138. Gonocoxites IX, shape: (0) longitudinally carinated (SM4, Fig. 2F); (1) flat (SM4, Fig. 2E)
139. Gonocoxites IX, external view, shape: (0) trapezoidal elongated (wider than long) (SM4, Fig. 2E); (1) trapezoidal (as long as wide) (SM4, Fig. 1D); (2) pentagonal (SM4,

Fig. 2G); (3) v-shaped (SM4, Fig. 2I); (4) losangular (SM4, Fig. 2F); (5) triangular (SM4, Fig. 2H); (6) oval (SM4, Fig. 2J).
140. Laterotergites IX, position: (0) not surpassing the band uniting laterotergites VIII (SM4, Fig. 2I); (1) surpassing the band uniting laterotergites VIII (SM4, Fig. 2G).
141. Laterotergites IX: (0) touching each other (SM4, Fig. 2F); (1) away from each other (SM4, Fig. 2I) (Gapud, 1991; Campos \& Grazia, 2006; Grazia et al., 2008).
142. Segment X, position: (0) visible (SM4, Fig. 2G); (1) hidden by laterotergites IX (SM4, Fig. 2F); (2) hidden by sternite VIII (SM4, Fig. 2K) (Campos \& Grazia, 2006).
143. Laterotergites IX, size in relation to the size of gonocoxites VIII: (0) laterotergites IX smaller than gonocoxites VIII (SM4, Fig. 1N); (1) laterotergites IX longer than gonocoxites VIII (SM4, Fig. 1D); (2) laterotergites IX as long as gonocoxites VIII (SM4, Fig. 2E) (Gapus, 1991; Grazia et al., 2008).
144. Laterotergites IX, posterior margin, shape: (0) round (SM4, Fig. 2E); (1) acutely projected (SM4, Fig. 2G).
145. Gonocoxites VIII, internal wall, development: (0) more than half of the gonocoxites VIII width (SM4, Fig. 2L); (1) less than half of the gonocoxites VIII width (SM4, Fig. 2M).
146. Ring sclerites: (0) absent; (1) present (SM4, Fig. 2N; SM4, Fig. 2O) (Campos \& Grazia, 2006).
147. Ring sclerites, shape: (0) oval (SM4, Fig. 2O); (1) round (SM4, Fig. 2N).
148. Ring sclerites, position: (0) latero-posterior to the thickening of vaginal intima; (1) posterior to the thickening of vaginal intima (SM4, Fig. 3A); (2) lateral to the thickening of vaginal intima (SM4, Fig. 2O).
149. Ring sclerites, size: (0) $1 / 3$ of the length of gonocoxites IX or more (SM4, Fig. 3 A); (1) less than $1 / 5$ of the length of gonocoxites IX.
150. Arcus: (0) present (SM4, Fig. 3A); (1) absent.

151 Thickening of vaginal intima, shape: (0) triangular elongated (SM4, Fig. 3C); (1) cylindrical (SM4, Fig. 3B); (2) tubular elongated (SM4, Fig. 2N); (3) oval elongated.
152. Vesicular area, median duct, shape: (0) uniform (SM4, Fig. 3D); (1) expanding to the pars intermedialis (SM4, Fig. 3D).
153. Vesicular area, median duct, proximal half, obtuse enlargement: (0) absent; (1) present (SM4, Fig. 3D).
154. Vesicular area, median duct, size: (0) longer than the length of gonocoxites VIII; (1) equal or shorter than the length of gonocoxites VIII (SM4, Fig. 3F).
155. Ductus receptaculi distal, width: (0) equal or narrower than ductus receptaculi proximal (SM4, Fig. 3D); (1) wider than ductus receptaculi proximal (SM4, Fig. 3G).
156. Pars intermedialis and capsula seminalis, combined length: (0) $1 / 3$ or less the length of vesicular area (SM4, Fig. 3G); (1) about half the length of vesicular area (SM4, Fig. 3D); (2) equal or longer the length of vesicular area (SM4, Fig. 3F) (Campos \& Grazia, 2006).
157. Pars intermedialis and capsula seminalis, combined length: (0) equal to the length of posterior margins of gonocoxites VIII; (1) longer than posterior margins of gonocoxites VIII (SM4, Fig. 3L); (2) less than half of posterior margins of gonocoxites VIII; (3) half of posterior margins of gonocoxites VIII; (4) about $2 / 3$ of posterior margins of gonocoxites VIII.
158. Pars intermedialis, shape: (0) cylindrical (SM4, Fig. 3H); (1) medially enlarged (SM4, Fig. 3I); (2) distally enlarged (SM4, Fig. 3J); (3) distally narrowed (SM4, Fig. 3K) (Campos \& Grazia 2006).
159. Pars intermedialis, length: (0) equal or shorter than capsula seminalis (SM4, Fig. 3L); (1) 4 times longer than capsula seminalis; (2) at most twice longer than capsula seminalis (SM4, Fig. 3I) (Campos \& Grazia 2006).
160. Capsula seminalis, shape: (0) spherical (SM4, Fig. 3I); (1) digitiform (SM4, Fig. 3H); (2) U-shaped (SM4, Fig. 3J); (3) oval (SM4, Fig. 3E).
161. Capsula seminalis, processes: (0) absent; (1) present (SM4, Fig. 3I) (Gapud 1991).
162. Posterior annular crest: (0) developed (SM4, Fig. 3H); (1) not developed.
163. Anterior annular crest, size: (0) equal or wider than posterior annular crest (SM4, Fig. 3G); (1) narrower than posterior annular crest (SM4, Fig. 3K).
164. Posterior annular crest, position: (0) at base of capsula seminalis (SM4, Fig. 3H); (1) directed to the midst of capsula seminalis (SM4, Fig. 3G).

Male genitalia:

165. Pygophore, posterior view, parameres: (0) invisible (SM4, Fig. 3M); (1) visible (SM4, Fig. 3N).
166. Pygophore, surface between superior and inferior layers, shape: (0) not excavated; (1) excavated (SM4, Fig. 3M).
167. Pygophore, ventral rim, inferior layer, $1+1$ tubercles: (0) absent; (1) present (SM4, Fig. 30).
168. Pygophore, ventral rim, position: (0) in line with the apex of posterolateral angles (SM4, Fig. 3O); (1) shorter than apex of posterolateral angles (SM4, Fig. 4A).
169. Pygophore in dorsal view, ventral rim: (0) visible (SM4, Fig. 4C); (1) invisible (SM4, Fig. 4B) (Roell \& Campos, 2018).
170. Pygophore, segment X, dorsal view, membranous longitudinal line: (0) absent; (1) present (SM4, Fig. 4D).
171. Segment X, dorsal cuneiform projection: (0) absent; (1) present (SM4, Fig. 4B).
172. Pygophore, segment X, dorsal view, carina: (0) absent; (1) present.
173. Superior process of dorsal rim: (0) absent; (1) present (Roell \& Campos, in prep.)
174. Superior process of dorsal rim, proportion: (0) up to half of paramere head; (1) more than half of paramere head (Roell \& Campos, in prep.).
175. Superior process of dorsal rim, microsculptures: (0) absent; (1) present (Roell \& Campos, in prep.).
176. Superior process of dorsal rim, globose projections: (0) absent; (1) present (Roell \& Campos, in prep.).
177. Superior process of dorsal rim, longitudinal elevations: (0) absent; (1) present (Roell \& Campos, in prep.).
178. Superior process of dorsal rim, connection with diaphragm, texture: (0) membranous; (1) sclerotized (Roell \& Campos, in prep.).
179. Head of parameres, position: (0) totally inside the pygophore; (1) projected beyond of the pygophore (Roell \& Campos, in prep.).
180. Head of parameres, internal surface; texture: (0) smooth; (1) with wrinkles or microsculptures (Roell \& Campos, in prep.).
181. Head of parameres, external surface, texture: (0) smooth; (1) microsculptured (Roell \& Campos, in prep.).
182. Paramere, hairs: (0) present (SM4, Fig. 4E); (1) absent (SM4, Fig. 4F).
183. Phallus, theca, shape: (0) not divided (SM4, Fig. 4G); (1) divided in basal theca and thecal shield (SM4, Fig. 4H) (Hasan e Kitching, 1993).
184. Male, inner genitalia, phallus, basal theca, length: (0) shorter than thecal shield (SM4, Fig. 4I); (1) as long as or longer than thecal shield (SM4, Fig. 4H).

Gapon \& Konstantinov (2006) pointed that the phallus of Asopinae can be short and narrow ("scheme A", observed in Afrius flavirostrum; Andrallus spinidens (Fabricius, 1787); Discocera coccinea (Fabricius, 1798); Dorycoris pavoninus (Westwood, 1837); Euthyrhynchus floridanus (Linnaeus, 1767); Friarius alluaudi (Schouteden, 1905); Macrorhaphis acuta Dallas, 1851; Oplomus pulcher Dallas, 1851; Platynopiellus septendecimaculatus) or long and wide ("scheme B and C", Arma custos (Fabricius, 1794); Cazira verrucosa; Cermatulus nasalis (Westwood, 1837); Coryzorhaphis leucocephala Spinola, 1837; Dinorhynchus dybowskyi Jakovlev, 1876; Oechalia schellenbergii (Guérin-Ménéville, 1831); Pinthaeus sanguinipes (Fabricius, 1781), Podisus nigrispinus (Dallas, 1851), P. distinctus (Stål, 1860), Rhacognathus punctatus (Linnaeus, 1878), Zicrona caeruela (Linnaeus, 1758)). We agree with most of their observations, except for Cazira verrucosa, Coryzorhaphis leucocephala, and Oechalia schellenbergii. We also observed that the length and the width of phallus should be treated as different characters, once a short phallus (state 0) can be wide (character 185, state 0) or narrow (character 185, state 1), and vice-versa (e.g. the phallus of Comperocoris roehneri (Philipi, 1862) is short and wide, and the phallus of Jalla dumosa (Linnaeus, 1758) is long and narrow. Most studied Asopinae have a short basal theca (clade 11).
185. Basal theca, lateral view, distal margin, width: (0) as wide as the thecal shield at the same point (SM4, Fig. 4H; SM4, Fig. 4I); (1) narrower than thecal shield at the same point (SM4, Fig. 4J).

Most studied Asopinae have a narrow thecal shield (clade 11)
186. Phallus, vesica, range: (0) not following ductus seminis distalis to opening (SM4, Fig. 4K); (1) following ductus seminis distalis to opening (SM4, Fig. 4G) (Roell \& Campos, 2015).
187. Phallus, vesica, shape: (0) divided in two arms (SM4, Fig. 4H); (1) tubular, not divided in two arms (SM4, Fig. 4G).
188. Conjunctival process: (0) present (SM4, Fig. 4J); (1) absent.
189. Conjunctiva, posterior lobes, apex, sclerotization: (0) absent (SM4, Fig. 4H); (1) present (SM4, Fig. 4K).
190. Conjunctiva, posterior lobes, sclerotization, range: (0) only at the end of lobes, i.e., less than $1 / 5$ of the lobe (SM4, Fig. 4J); (1) 1/3 of the lobe or more (SM4, Fig. 4K).
191. Conjunctiva, posterior lobes, ventral surface, sclerotization: (0) absent; (1) present (SM4, Fig. 4L).

Cladistic analysis
(Figs. 1-6)

Our two hypotheses for the Asopinae phylogeny (A, Figs. 2-5, full dataset and B, Fig. 6, supplementary material 1, dataset excluding taxa examined only by photos and bibliography) are similar regarding the relationships among species and the characters distribution (Figs. 2-6).

The cladistic analyses with equal weights (EW) recovered 76 (A) and 36 (B) most parsimonious trees (Fig. 1). The highest sum of SPR distances of the consensus trees with implied weighting (IW) was obtained for the fifth K-values ($\mathrm{K}=11.684$ (A);
$\mathrm{K}=11.420$ (B)) (Figs. 2-6). The clade 4, which includes all Asopinae species (except Ornithosoma rivierei), is supported by ten synapomorphies, two non-homoplastic, the first regarding the subquadrate morphology of head in dorsal view (modified in Cecyrina platyrhinoides Walker, 1867, Colpothyreus flavolineatus (Blanchard, 1843), Damarius splendidulus (Fabricius, 1803), Dinorhynchus dybowskyi, Heteroscelis, Oechalia schellembergi, and Stilbotes semperi, and reversed in Leptolobus murrayi Signoret, 1855) (character 1(1)) (Figs. 2-4), and the second regarding the absence or reduction of female ring sclerites (reversed in Arma custos and Oplomus cruentus (Burmeister, 1835) (character 149 (1)) (Figs. 2-4). Genera recovered as monophyletic in the EW analysis (Fig. 1) were also recovered with IW (Figs. 2-6), except Afrius Stål, 1870. Roell et al. (in press) called attention to the possible non-monophyly of Afrius and maintained the genus divided into two subgenera until the proposition of a better elucidation based on a phylogenetic analysis. Here we included the two type species of each subgenus (Afrius (Afrius) purpureus (Westwood, 1837) and Afrius (Subafrius) flavirostrum (Signoret, 1861)) finding a non-monophyly for the genus. The species with male abdominal glandular patches (including Afrius purpureus) are arranged in a monophyletic clade (clade 21), separated from the other asopinaes which do not have glandular patches (including Afrius flavirostrum, Fig. 5, clade 18). The monophyly of Afrius may be tested in the future with the inclusion of Afrius kolleri Schouteden, 1911 in the analysis.

Ornithosoma rivierei is in a polytomy with Edessinae, Discocephalinae, and Pentatominae (Figs. 2, 5, clade 1), but this is probably because of the lack of data for the species, as only the original description was consulted, and only 46 characters were coded for it (none for genitalia). It is probably an Asopinae species because it has the first segment of labium free and robust (Kormilev, 1957) but we could not better evaluate its characteristics only based on description. As mentioned by Thomas (1992), this species remembers the P. falcatus group of Podisus Herrich-Schaeffer, 1851.

Asopinae is monophyletic (clade 4), sister of Murgantia varicolor (Pentatominae: Strachiini) (clade 2). This corroborates the hypothesis of Gapud (1991) about the relationship between Asopinae and Pentatominae (Strachiini). In our analysis, Pentatominae is polyphyletic, Podopinae is paraphyletic, and Discocephalinae (clade 3) is monophyletic (Figs. 1, 2, 5, 6).

Most asopines have a long hemelytral membrane surpassing the abdomen (character 77(1)), which supports the clade 5 . This clade is also supported by the absence of evaporatorium on postero-lateral angle of mesopleuron (character 98(0)). Many authors have already called attention for the morphological structure of the external thoracic scent efferent system (ESES) of Asopinae (Thomas 1992; Gapud, 1991). Gapud (1991) even cited that Asopinae has a "characteristic ostiolar peritreme", as one of the exclusive characteristics of the subfamily. However, the ESES was never studied in detail in Asopinae. Kment \& Vilimová (2010) provided a reviewed terminology for the structures compounding the ESES in Pentatomoidea, and Barão et al. (2017) presented variable patterns to Carpocorini (Pentatominae), however, we still observed different shapes of peritreme for Asopinae, which were included as new states for these character (character 88). Most asopines present a "disc", but generally with a well-developed sulcus (not "obsolete" as described by Kment \& Vilimová, 2010). Once "disc" is a parallel and slightly elevated with an obsolete sulcus (Kment \& Vilimová, 2010), this set of characteristics do not fits to Platynopus melanoleucus (Westwood, 1837) and Parajalla sanguineosignata (Spinola, 1852), in which the peritreme is evanescent, (called by us as "disc 2" (state 4)), and seems to be evolved independently in these two species. Besides, Stilbotes semperi has an ample peritreme, attaining the lateral margin of mesopleurae ("Swollen" (state 5)) and Blachia ducalis Walker, 1867 has a peritrema similar to "disc", but more elevated ("disc 3" (6)).

Clade 6 includes the most specious genus of Asopinae, Podisus. This genus appears paraphyletic in our analysis but we have sampled only two of its species. The representatives of this clade (clade 6) are generally castaneous, rufous or brownish, and they have a similar pentagonal appearance, profemora not armed, and globose projections on superior processes of diaphragm (Roell \& Campos, in prep). Conquistator mucronatus (Uhler, 1897) (recently removed from Podisus (Gapon, 2009)) is sister to clade 7 (which includes Tynacantha Dallas, 1851, Tyrannocoris Thomas, 1992, Oechalia Stål, 1862, and Tylospilus Stål, 1870). Apateticus Dallas, 1851 and Apoecilus Stål, 1870 are apparently similar with the species of clade 6 , but they are placed along the clade 21 with the other species presenting male abdominal glandular patches.

The relations among the species of clade 8 are slightly influenced with the removal of taxa studied only through images and bibliography. In the hypothesis A
(Figs. 3, 5) Dinorhynchus dybowskyi is sister to clade 9, and in the hypothesis B (Fig. 6) this species is more related with Cecyrina platyrhinoides and Colpothyreys flavolineatus (supplementary material 1) sharing a similar shape of head (character 1(3)), the presence of tibial expansion (character 68(1)), and the lateral margins of seventh urotergite emarginated (character 112(1)). In the hypothesis A, Martinina Schouteden, 1907 (removed in B) is sister to Cecyrina platyrhinoides and Colpothyreys flavolineatus (clade 10, Figs. 3, 5) sharing the similar position of gonocoxites VII (juxtaposed, character 132(1)). Although we have consulted only the type specimens of M. prima (female, at NHMUK) and M. inexpectata (male, at MNHN) this genus was recovered monophyletic, supported by the bucullae developed and round (character 34(1)), the convex lateral margins of pronotum (character 37(0)), and the dorsally directed humeral angles (character 41(1)). These two species are indeed very similar; the humeral angles are ample, subcrectangular and strongly produced, the mandibular plates are longer than clypeus, and the peritrema is a disc surrounded by evaporatorium.

The relationships inside the clade 17 are influenced by the removal of Ponapea arachnoides and Australojalla versicolor. Although the clade 17 includes same species on hypothesis A and B, Afrius flavirostrum is displaced from clade 18 (sister to Australojalla + Macrorhaphis Dallas, 1851) in the hypothesis A to the base of clade 17 in the hypothesis B (sister to Jalloides Schouteden, 1907 and Damarius Schouteden, 1907 + Macrorhaphis). The positions of Ponapea Ruckes, 1963 and Australojalla are not very reliable since we could code not even half of the characters for these species (Figs. 5, 6).

Bulbostethus transversalis (hypothesis A) is probably sister to Dorycoris pavoninus (clade 26), both do not have evaporatorium on posterior margin of mesosternum (character 95(1)) and have a short abdominal projection (character 106(1)). When Bulbostethus is inactivated, Dorycoris appear sister to Stilbotes + Leptolobus (clade 27) (Figs. 4-6).

Discoceraria was proposed to include Discocera Laporte, 1833 and Stiretrus Laporte, 1833 and was characterized by the enlarged scutellum, covering most of abdomen (Amyot \& Serville, 1843; Schouteden, 1907). Thomas (1992) states that, even though different from Discocera, the species of Oplomus, Perillus, Heteroscelis, Coryzorhaphis, and Blachia have also a certain degree of enlargement. Indeed, Discocera and Stiretrus form a monophyletic clade (clade 34) supported mainly by
characters of scutellum shape and size, which would corroborates the validity of Discoceraria tribe. Oplomus is sister to the clade of Discocera + Stiretrus (clade 33) and they are sister of the clade of Heteroscelis, Perillus, Coryzorhaphis, Blachia, and Cazira (clade 31), all sharing scutellum characteristics (clade 30), already mentioned by Thomas (1992). Furthermore, they share the presence of male glandular patches on seventh urosternite (character 119) (Fig. 4).

Jallini was proposed to include Jalla Hahn, 1832 and Zicrona Amyot \& Serville, 1843, which share a lobed condition of the apex of seventh urotergite that covers the genitalia (Dupuis, 1949; Thomas, 1992). According to Thomas (1992), Dorycoris Mayr, 1864 have a similar condition, and Jalla and Zicrona share other characteristics, as the absence of abdominal tubercle, and the absence of male abdominal glandular patches. However, Jalla and Zicrona do not form a monophyletic group (Fig. 3), which would invalid the tribe Jallini. Both genera share a rectilinear posterior margin of urotergite VII in females, (character 113) with the majority of studied species, and no other character was sufficient to group them. Zicrona caerulea is more closely related to Comperocoris roehneri (Philipi, 1862) (clade 13), and Jalla dumosa is more related to Glypsus (clade 14) (Fig. 3).

Gapud (2015) recently proposed Stilbotini for Stilbotes semperi Stål, 1871 based on phallus characteristics; according to him, this tribe is related with Stiretrini and Platynopini. Stilbotes and Leptolobus are sister genera (clade 27) supported by eleven synapomorphies, including the pronotum medially constricted, which is a diagnostic characteristics for both genera (Thomas, 1994). The tribe Stilbotini (Gapud, 2015) cannot be valid once Stilbotes does not appear paraphyletic to one or more taxa of the same rank (Potter \& Freudenstein, 2005; Roell \& Campos, 2015).

Furthermore, Glypsini nomen nudum and Platynopini nomen nudum (Gapon, 2008) were not recovered monophyletic. Despite the cladistic analysis had resulted in many monophyletic clades for Asopinae, as Thomas (1992) suggested, we did not find sufficiently distinctive and congruent features to divide Asopinae in tribes.

Finally, there are no many congruencies between the monophyletic clades and the geographic occurrences of its species, i.e. very few related genera are from the same continents (clade 20, Ealda+Pareala, clade 32, Blachia + Cazira; clade 33, Oplomus + Discocera + Stiretrus).

Evolution of the male abdominal glandular patches

The presence of glandular patches (GPs) is an exclusive characteristic of the clade 21, at the same time the set of characteristics about the GPs supports this clade and the relationships inside it. Glandular patches are cuticle modifications that expel and induce the propagation of pheromonic compounds produced internally in the abdomen of a group of males of Asopinae (Aldrich, 1988). These modifications include the presence of microsculptures, pores and setae (Thomas 1992, 1994; Kochenborger, 2018). The characteristics regarding the GPs were evaluated by Kochenborger (2018) that proposed fifteen morphological characters treated here as the characters 114 to 128.

The presence of glandular patches were influent on relationships between the two sampled species of Afrius (A. purpureus have GPs, A. flavirostrum does not have), but that was not influent on monophyly of Leptolobus (L. eburneatus Karsh, 1892 have GPs, L. murrayi does not have). Other genus in which the presence of glandular patches is variable is Macrorhaphis, but because of availability of material we only sampled M. acuta Dallas, 1851 which does not present GPs. An analysis including all species of Afrius, Leptolobus and Macrorhaphis could better expose how influent is the presence of GPs on monophyly of genera of Asopinae.

Ponapea arachnoides possesses glandular patches on fourth and fifth abdominal segments (Ruckes, 1963) but its phylogenetic position on Asopinae tree is dubious as most characters were not evaluated because we had only its original description available. In our analysis the GPs emerged on node 21 (presence $=0.98$; absence $=0.02$), and they may have evolved independently in Ponapea arachnoides, or they may be evolved only once, as the phylogenetic place of Ponapea arachnoides is dubious. The pores are part of the GPs that emerged at the same time on node 21 ($\mathrm{p}=0.999 ; \mathrm{a}=<0.01$), the positive correlation of presence of pores and presence of glandular patches (pvalue $=0.03$) corroborates that they can serve as channels expelling the secretions (Kochenborger, 2018). No different result is produced on cladistic analysis when this character is deactivated (character 21).

The presence of GPs on fourth abdominal segment is exclusive of P. arachnoides (Ruckes, 1963) and Andrallus spinidens, which probably evolved independently.

Hoploxys caeruleus Dallas, 1851 is sister to the clade 22 which includes the other Asopinae species having GPs. The distribution of GPs along the urosternites is peculiar in this species, i.e. only on anterior half of urosternites V, VI, and VII. Clade 22 is supported by the presence of GPs on posterior half of segments V and VI (Figs. 4, 5). Furthermore, the GPs extend up to the posterior half of urosternite VII only on Coryzorhaphis.

Conjectures about evolution of sensilla are limited since their functions are not surely known, their identifications from scanning electron microscopy images are not very reliable, they can also be present in species without GPs (Kochenborger, 2018), and we do not have the information about pores and sensillae for many species. Nevertheless, at least one species of each genus were evaluated by Kochenborger (2018). It seems that sensilla chaetica I emerged in node $21(\mathrm{p}=0.91 ; \mathrm{a}=0.09)$ and was lost many times, mainly in the node $30(\mathrm{p}=0.36 ; \mathrm{a}=0.64)$. The absence of sensilla chaetica II is exclusive for Apoecilus bracteatus (Fitch, 1856) and for the clade 24 ($\mathrm{p}=0.01 ; \mathrm{a}=0.99$) (character 123(0)), and resurfaced in Perillus bioculatus (Fabricius, 1775). Sensilla chaetica III probably emerged many times over the evolution of the group (node 21, $\mathrm{a}=0.84 ; \mathrm{p}=0.16$). The sensilla pit peg I also emerged on node $21(\mathrm{p}=$ $0.89 ; \mathrm{a}=0.11$) and was lost on nodes 23 and 29. Sensilla pit peg II is exclusive of Apateticus lineolatus (Herrich-Schaffer, 1840) and Dorycoris pavoninus.

The secretions produced by the GPs can serve to attract females or other insects for feeding (Fleicsher \& Krieger, 2018). This can be an extra strategy for the propagation of this group of Asopinae, since the success of insects are generally related with the successful ways of attracting food and mate, which frequently involves the production of chemical compounds (Dickens \& Payne, 2018; Fleischer \& Krieger, 2018). However, the production of male attractive chemicals is known for many insects of different orders, mainly as a reproductive strategy to attract females (Dickens \& Payne, 2018). The production of pheromones can also be associated with aggregation, facilitating protection and cooperativeness in getting food (e.g. Durisko et al., 2014 Riipi et al., 2001; Yew and Chung, 2015). Moreover, pheromone can be produced to repel conspecifics (Yew and Chung, 2015). The function of GPs in Asopinae is producing and dispersing pheromones to attract females for mating (Aldrich \& Lusby, 1986). The repellency of conspecific males in the presence of reproductive females could be speculated as a function for these structures, however, although little is known
about behavior in Asopinae, it seems that they are usually solitary (Paleari, 2013; Gapud, 2015).

The insects' detection of chemical compounds is usually made by porous sensillae, which are generally concentrated on antennae, mouthparts, and legs. Sensilla with one or no one pores are generally mechanosensory, thermoreceptor, and gustatory (Fleicsher \& Krieger, 2018), as the sensillae chaetica and pit peg (Altner and Prillinger, 1980). Since asopines rub the bristles of their tibiae and tarsi against GPs to disperse the attractive compounds (Aldrich and Lusby, 1986), the sensillae found associated with the glandular patches (Kochenborger, 2018) can indeed have a mechanical function.

Setae of GPs are generally grouped and angled to abdomen, but in a few cases (clade 23, Leptolobus eburneatus and Coryzorhaphis carneolus Erichson, 1848) they are sparse and parallel to abdomen. The orientation and distribution of setae (characters $127,128)$ were significant to phylogeny as these are two of the four characters supporting clade 23 . Withal, these characteristics may probably have evolved independently in Leptolobus eburneatus and Coryzorhaphis carneolus, and perhaps in other not examined species. There are no comparative studies about the compounds produced by L. eburneatus, Coryzorhaphis carneolus, the species of clade 23, and by the remaining species of clade 21 , and then it is not known if they present any difference regarding the quantity or the volatility of substances produced, which could justify the differences on density of GPs' setae. Our reconstruction points that parallel and sparse setae evolved later on the aforementioned species (node 23, parallel=0.94, angled $=0.06$; sparse $=0.94$, grouped $=0.06$), and they are positively correlated (pvalue $=0.002$)

The excavation of urosternites with GPs is found on species of Cazira and Discocera. Our initial hypothesis was that this could be a common characteristic between these two genera, but the cladistic analysis point that these genera are not strictly related, as well as that this characteristic is modified in Cazira insignis (Schouteden, 1907), so that has probably converged in some species of Cazira and Discocera.

Conclusion

Asopinae is a natural group of predatory stink bugs characterized by the subquadrate dorsal head, labium robust and place right below labium, bucullae parallel and not projected over the anterior margins of labium, pygophores endowed with superior processes of diaphragm, and phallus divided in basal and apical theca. Many species have a projection on anterior femur, and a monophyletic group of genera have male abdominal glandular patches. The last seems to be evolved once. Predation inside Pentatomidae seems to be evolved once in Asopinae. Although some limitations regarding the taxa sampling, this work represents the first step for systematics studies on subfamily. From this, the addition of data may refine classifications of genus and species in the future, as well as permit new comprehensions about the evolution of exclusive morphological structures of the subfamily.

Acknowledgements

We thank the curators of the scientific collections for the loan of specimens, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001 (TR) and CNPq [307204/2015-4] (LAC) as fellowship grants. We are also grateful for the financial support of CNPq Edital Universal (CNPq 421724/2016-1)

References*

Aldrich, J.R. \& Lusby, W.R. (1986) Exocrine chemistry of beneficial insects: malespecific secretions from predatory stink bugs (Hemiptera: Pentatomidae). Comparative Biochemistry and Physiology Part B, 85, 639-42.

Aldrich, J.R. (1988) Chemical ecology of the Heteroptera. Annual Review of Entomology. 33, 211-238.

Altner, H. \& Prillinger, L. (1980). Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. International Review of Cytology, 67, 69-139.

Amyot, C.J.B. \& Serville, A. (1843) Histoire Naturelle des Insectes. Hémipteres. Librairie Encyclopedique de Roret ed., Paris. pp. 675.

Angelini, M.R. \& Boiça-Júnior, A.L. (2009) Capacidade predatória e atratividade de Podisus nigrispinus (Dallas, 1851) (Hemiptera: Pentatomidae) por lagartas de Dione juno juno (Cramer, 1779) (Lepidoptera: Nymphalidae) criadas em folhas de genótipos de maracujazeiros. Revista Ceres, 56(1), 25-30.

Baker, A.D. (1931) A study of the male genitalia of Canadian species of Pentatomidae. Cannadian Journal Research, 4, 148-220.

Barão, K.R., Ferrari, A. \& Grazia, J. (2013) Comparative morphology of selected characters of the Pentatomidae foreleg (Hemiptera, Heteroptera). Arthropod Structure \& Development, 42(5), 425-435.
10.1016/j.asd.2013.04.004

Barão, K.R., Ferrari, A., Adami, C.V.K. \& Grazia, J. (2017) Diversity of the external thoracic scent efferent system of Carpocorini(Heteroptera: Pentatomidae) with character selection for phylogenetic inference. Zoologischer Anzeiger, 268, 102-111.
10.1016/j.jcz.2016.08.003

Barreiro, M.S. (2015) Morfologia comparada da cabeça de Pentatomidae (Hemiptera: Heteroptera). Master's thesis. Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Campus de Diadema, UNIFESP, Brazil, pp. 123.

Bianchi, F.M., Deprá, M., Ferrari, A., Grazia, J., Valente, V.L.S. \& Campos, L.A. (2017) Total evidence phylogenetic analysis and reclassification of Euschistus Dallas within Carpocorini (Hemiptera: Pentatomidae: Pentatominae). Systematic Entomology, 42, 399-409.
DOI: 10.1111/syen. 12224

Bremer, K. (1994). Branch support and tree stability. Cladistics, 10, 295-304.
10.1006/clad.1994.1019

Brugnera, R., Barão, K.R., Roell, T. \& Ferrari, A. (2019) Comparative morphology of selected foretibial traits of Asopinae (Hemiptera: Heteroptera: Pentatomidae).

Zoologischer Anzeiger, 278, 14-20.
10.1016/j.jcz.2018.10.011

Campos, L.A. \& Grazia, J. (2006) Análise cladística e biogeografia de Ochlerini (Heteroptera, Pentatomidae, Discocephalinae). Iheringia, Série Zoologia, 96(2), 147163.
10.1590/S0073-47212006000200004

Cavalcanti, M.G., Vilela, E.F., Eiras, A.E., Zanuncio, J.C. \& Picanço, M.C. (2000) Interação tritrófica entre Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae), Eucalyptus e lagartas de Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae): I Visitação. Anais da Sociedade Entomológica do Brasil, 29(4), 697-703. 10.1590/S0301-80592000000400009.

Claver, M.A. \& Jaiswal, P. (2013) Distribution and abundance of two predatory stink bugs (Pentatomidae: Hemiptera) associated with rice field. Academic Journal of Entomology, 6(1), 33-36.
10.5829/idosi.aje.2013.6.1.72131

De Clercq, P. (2000) Predaceous stink bugs (Pentatomidae: Asopinae), In: Schaefer, C.W. \& Panizzi, A.R. (ed.), Heteroptera of economic importance. CRC Press, Boca Raton, Florida. pp.737-789.

De Clercq, P., Merlevede, F., Mestdagh, I., Vandendurpel, K., Mohaghegh, J. \&
Degheele, D. (1998) Predation on the tomato looper Chrysodeixis chalcites (Esper) (Lep., Noctuidae) by Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae). Journal of Applied Entomology, 122, 93-98.
10.1111/j.1439-0418.1998.tb01468.x

De Clercq, P. (2008) Predatory Stink Bugs (Hemiptera: Pentatomidae, Asopinae). In: Capinera JL (ed) Encyclopedia of insects, Vol. II. Kluwer Academic Publishers, Dordrecht, pp. 3042-3045.

Deleporte, P. (1993) Characters, attributes and tests of evolutionary scenarios.
Cladistics, 9, 427-432.
10.1111/j.1096-0031.1993.tb00235.x

Dickens, J.C. \& Payne, T.L. (2018) Chemical messengers and insect behavior. In: Mandava, N.B. CRC Handbook of natural pesticids: methods, volume I: theory, practice, and detection, CRC Press, p.p. 201-230.

Dupuis, C. (1949) Les Asopinae de la faune française. [Hemiptera Pentatomidae]. Essai sommaire de synthèse morphologique, systématique et biologique. Revue française d'Entomologie, 16, 233-250.

Dupuis, C. (1970) Heteroptera, In: Tuxen, S.L. (ed.), Taxonomist's Glossary of Genitalia of Insects. Munksgaard, Copenhagen, pp. 190-208.

Durisko, Z., Kemp, R., Mubasher, R. \& Dukas, R. (2014) Dynamics of social behavior in fruit fly larvae. PLoS ONE, 9(4), 1-4. e95495.
10.1371/journal.pone. 0095495

Evenhuis, N.L. (2019) The insect and spider collections of the world website. Available at: http://hbs.bishopmuseum.org/codens/

Fitch, W.M. (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology, 20(4), 406-416.

Fleischer, J. \& Krieger, J. (2018) Insect pheromone receptors - key elements in sensing intraspecific chemical signals. Frontiers in Cellular Neuroscience, 12(425), 1-14. 10.3389/fncel.2018.00425

Gapon, D.A. (2008) ТАКСОНОМИЧЕСКИЙ ОБЗОР МИРОВОЙ ФАУНЫ

 КЛОПОВ-ЩИТНИКОВ (HETEROPTERA: PENTATOMIDAE) ПОДСЕМЕЙСТВ ASOPINAE И PODOPINAE. Doctoral Thesis. Universitetskaya Embankment, pp. 32.Gapon, D.A. (2009) Conquistator, a new genus for Podisus mucronatus Uhler, 1897 (Heteroptera: Pentatomidae: Asopinae) with a re-descripton of type species. Zoosystematica Rossica, 18(2), 264-270.

Gapon, D.A. \& Konstantinov, F.V. (2006) On the structure of the aedeagus of shield bugs (Heteroptera, Pentatomidae): III. Subfamily Asopinae. Entomological Review, 86, (7), 806-819.

Gapud, V.P. (1991) A generic revision of the subfamily Asopinae, with consideration of its phylogenetic position in the family Pentatomidae and superfamily Pentatomoidea (Hemiptera Heteroptera). Philippines Entomology, 8(3), 865-961.

Gapud, V.P. (2015) The Philippine genus Stilbotes Stål and a new tribe of Asopinae (Hemiptera: Pentatomidae). Asia Life Sciences, 24(2), 1-5.

Garbelotto, T.A., Campos, L.A. \& Grazia, J. (2013) Cladistics and revision of Alitocoris with considerations on the phylogeny of the Herrichella clade (Hemiptera, Pentatomidae, Discocephalinae, Ochlerini). Zoological Journal of the Linnean Society, 168, 452-472.

Garbelotto, T.A., Campos L.A., Grazia, J. (2014) Xynocoris, new genus of Ochlerini from Central and South America (Hemiptera: Pentatomidae: Discocephalinae). Zootaxa, 3869(3), 281-305.

Grazia, J., Schuh, R.T. \& Wheeler, W.C. (2008) Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta:

Heteroptera). Cladistics, 24, 932-976.
10.1111/j.1096-0031.2008.00224.x

Grazia, J., Panizzi, A.R., Greve, C., Schwertner, C.F., Campos, L.A., Garbelotto, T.A. \& Fernandes, J.A.M. (2015) Stink Bugs (Pentatomidae). In: True Bugs (Heteroptera) of the Neotropics. Vol. II. Springer. pp. 681-756.
10.1007/978-94-017-9861-7

Goloboff , P.A., Farris J.S., Nixon K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics, 24, 774-786.

Hasan, S.A. \& Kitching, I.A. (1993) A cladistic analysis of the tribes of the Pentatomidae (Heteroptera). Japanese Journal of Entomology, 61(4), 651-669.

Kment, P. \& Vilímová, J. (2010) Thoracic scent efferent system of Pentatomoidea (Hemiptera: Heteroptera): a review of terminology. Zootaxa, 2706, 1-77.

Kochenborger, A.P.L. (2018) Morfologia comparada das estruturas externas que compõem as manchas glandulares ventrais em machos de Asopinae (Hemiptera: Pentatomidae). Final graduation work. Universidade Federal do Rio Grande do Sul, Brazil, pp. 29.

Kormilev, N.A. (1957) Notas sobre Pentatomoidea Neotropicales VI (Hemiptera). Anales de la Sociedad Científica Argentina, CLXIII, 47-57.

Maddison, W.P. \& Maddison, D.R. (2017) Mesquite: a modular system for evolutionary analysis. Version 3.10. Available at: http://mesquiteproject.org

Magistrali, I.C., Costa, E.C., Machado, L.M. \& Nadai, J. (2014) Novos registros de Asopinae (Pentatomidae) predadores de lagartas Nystalea nyseus (Cramer, 1775) (Lepidoptera: Notodontidae). Biotemas, 27(2), 209-212.
10.5007/2175-7925.2014v27n2p209

Malaguido, A.B. \& Panizzi, A.R. (1998). Alcaeorrhynchus grandis (Dallas): an eventual predator of Chlosyne lacinia saundersii Doubleday \& Hewitson on sunflower in northern Paraná state. Anais da Sociedade Entomológica do Brasil, 27(4), 671-674.

McDonald, F.J.D. (1966) The genitalia of North American Pentatomoidea (Hemiptera: Heteroptera). Quaestiones Entomologicae, 2, 7-150.

Miller, K.B. (2003) The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biological Journal of the Linnean Society, 79, 359388.
10.1046/j.1095-8312.2003.00195.x

Mirande, J.M. (2009) Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics, 25, 574-613.
10.1111/j.1096-0031.2009.00262.x

Nixon, K.C. (2002) WinClada v. 1.00.08. Ithaca: publicado pelo autor.

Nixon, K.C. \& Carpenter, J.M. (1993) On Outgroups. Cladistics, 9, 413-426.

Oliveira, J.E.M., Torres, J.B., Carrano-Moreira, A.F. \& Ramalho, F.S. (2002) Biologia de Podisus nigrispinus predando lagartas de Alabama argillacea em campo. Pesquisa agropecuária braliseira, 37(1), 7-14.
10.1590/S0100-204X2002000100002

Paleari, L.M. (2013) Developmental biology, polymorphism and ecological aspects of Stiretrus decemguttatus (Hemiptera, Pentatomidae), an important predator of cassidine beetles. Revista Brasileira de Entomologia, 57(1), 75-83.
10.1590/S0085-56262013000100012

Pagel, M. (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society B: Biological Sciences, 255, 37-45.

Pendergrast, J.G. (1957) Studies on the reproductive organs of the Heteroptera with a consideration of their bearing on classification. The Transactions of the Royal Entomological Society of London, 109(1), 1-63.

Potter, D. \& Freudenstein, J.V. (2005) Character-based phylogenetic linnaean classification: taxa should be both ranked and monophyletic. Taxon, 54(4), 1033-1035.

Prevosti, F.J. \& Chemisquy, M.A. (2010) The impact of missing data on real morphological phylogenies: influence of the number and distribution of missing entries. Cladistics, 26, 326-339. 10.1111/j.1096-0031.2009.00289.x
de Queiroz, K. (1996) Including the characters of interest during tree reconstruction and the problems of circularity and bias in studies of character evolution. The American Naturalist, 148, 700-708.

Ribeiro, R.C., Lemos, W.P., Bernardino, A.S., Buecke, J. \& Müller, A.A. (2010) Primeira ocorrência de Alcaeorrhynchus grandis (Dallas) (Hemiptera: Pentatomidae) predando lagartas desfolhadoras do dendezeiro no estado do Pará. Neotropical Entomology, 39(1), 131-132.
10.1590/S1519-566X2010000100018

Rider, D.A. (2019) Pentatomoidea Home Page. North Dakota: North Dakota State University. Available at: https://www.ndsu.edu/pubweb/~rider/Pentatomoidea/

Riipi, M., Alatalo, R.V., Lindström, L. \& Mappes, J. (2001) Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature, 413, 512514.

Roell, T. \& Campos, L.A. (2015) Candeocoris bistillatus, new genus and new species of Ochlerini from Ecuador (Hemiptera: Heteroptera: Pentatomidae). Zootaxa, 4018 (4), 573-583.
10.11646/zootaxa.4018.4.6

Roell, T. \& Campos, L.A. (2018) Phylogeny of Ochlerini (Hemiptera: Pentatomidae: Discocephalinae) and the evolution of the apical tarsomere in hind legs. Zoological Journal of the Linnean Society, XX, 1-13.
10.1093/zoolinnean/zly073

Roell, T., Lemaître, V.A. \& Webb, M.D. (in press) Revision of the African shieldbug genus Afrius Stål (Hemiptera: Pentatomidae: Asopinae). European Journal of Taxonomy.

Roell, T. \& Campos, L.A. (in prep.) Compared morphology and the evolution of male genitalia traits in Asopinae (Hemiptera: Pentatomidae).

Ruckes, H. (1963) Heteroptera: Pentatomoidea. Insects of Micronesia, 7, 307-356.

Schouteden, H. (1907) Family Pentatomidae, subfamily Asopinae (Amyoteinae). In. P. Wystman [ed.], Genera Insectorum, 52, 1-81.

Thomas, D.B. (1992) Taxonomic synopsis of the Asopine Pentatomidae (Heteroptera) of the Western Hemisphere. Lanham, The Thomas Say Foundation, ESA, Monographs 16. pp. 156.

Thomas, D.B. (1994) Taxonomic synopsis of the Old World Asopine genera Pentatomidae: Heteroptera). Insecta Mundi, 8, 145-212.

Vacari, A.M., Bortoli, S.A. \& Goulart, R.M. (2013) Comparison of eggs, larvae and pupa of Plutella xylostella (Lepidoptera: Plutellidae) as prey for Podisus nigrispinus (Hemiptera: Pentatomidae). Annals of the Entomological Society of America, 106(2), 235-242.
10.1603/AN11190

Vivan, L.M., Torres, J.B., Veiga, S.L. \& Zanuncio, J.C. (2002) Comportamento de predação e conversão alimentar de Podisus nigrispinus sobre a traça do tomateiro. Pesquisa agropecuária brasileira, 37(5), 581-587.
10.1590/S0100-204X2002000500002

Yew, J.Y. \& Chung, H. (2015) Insect pheromones: An overview of function, form, and discovery. Progress in Lipid Research, 59, 88-105.
10.1016/j.plipres.2015.06.001

Zanuncio, J.C., Alves, J.B., Zanuncio, T.V. \& Garcia, J.F. (1994) Hemipterous predators of eucalypt defoliator caterpillars. Forest Ecology and Management, 65, 6573.

Zanuncio, J.C., Ferreira, A.M.R.M, Tavares, W.S., Torres, J.B., Serrão, J.E. \& Zanuncio, T.V (2011) Rearing the predator Brontocoris tabidus (Heteroptera:
Pentatomidae) with Tenebrio molitor (Coleoptera: Tenebrionidae) pupa on Eucalyptus grandis in the field. American Journal of Plant Sciences, 2, 449-465.
10.4236/ajps.2011.23052

Zibaee, A., Hoda, H. \& Fazeli-Dinan, M. (2012) Role of proteases in extra-oral digestion of a predatory bug, Andrallus spinidens. Journal of Insect Science, 12(51), 117.
10.1673/031.012.5101

Tables

Table 1.

Genera and species valid of Asopinae with the indication of species included in the cladistic analysis and type specimens examined.

* Species examined only by photos and/or descriptions.

Genus	Species	Distribution	Included in the analysis	Types examined
Afrius Stål, 1870	A. kolleri Schouteden, 1907 A. purpureus (Westwood, 1837) A. flavirostrum (Signoret, 1861)	Africa and adjacent islands	X X	RMCA NHMUK, OUMNH, ZMHB NHMUK, NHMW
Alcaeorrhynchus Bergroth, 1891	A. grandis (Dallas, 1851) A. phymatophora (Palisot de Beauvois, 1805)	America	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	NHMUK
Amyotea Ellenreider, 1862	A. erythromela (Walker, 1868) A. frontalis (Walker, 1868) A. glaucolimbata (Tryon, 1892) A. hamata (Walker, 1868) A. lata Zhao et al., 2011 A. malabarica (Fabricius, 1775) A. micans (Distant, 1888) A. reciproca (Walker, 1868) A. maliki Ahmad \& Kamaluddin	Asia and Oceania	X X	NHMUK NHMUK NHMUK NHMUK NHMUK
Anasida Karsch, 1892	A. funebris Distant, 1900 A. orientalis Distant, 1910 A. schoutedeni Distant, 1910 A. tenebrio Karsh, 1892	Asia and Africa	X	NHMUK NHMUK ZMHB
Andrallus Bergroth,1862	A. spinidens (Fabricius, 1787)	cosmopolitan	X	RBINS, OUMNH
Apateticus Dallas, 1851	A. lineolatus (Herrich-Schaffer, 1840) A. marginiventris (Stål, 1870)	America	X	NHMUK
Apoecilus Stål, 1870	A. bracteatus (Fitch, 1856) A. cynicus (Say, 1831) A. invarius (Walker, 1867)	America	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	NHMUK NHMUK
Arma Hahn, 1832	A. custos (Fabricius, 1794) A. ferruginea (Hsiao \& Cheng, 1977) A. insperata Horváth, 1899 A. koreana Josifov \& Kerzhner, 1978 A. maculata Zheng, 1980 A. tuberculata (Yang, 1935) A. velata Walker, 1868	America, Asia, Europe	X	ZMUC, ZMHB MNHN, ZMHB MNHN
Australojalla Thomas, 1994	A. versicolor (Distant, 1911) B. ducalis Walker, 1867	Oceania	X * X	NHMUK NHMUK
Blachia Walker, 1867	B. ducalis Walker, 1867	Asia	X	NHMUK
Brontocoris Thomas, 1992	B. nigrolimbatus (Spinola, 1852) B. tabidus (Signoret, 1863)	America	X	MNHN
Bulbostethus Ruckes, 1960	B. chrysopterus (Herrich-Schaffer 1844)	Oceania (Mariana islands)		

	B. transversalis Ruckes, 1963		X*	AMNH
Canthecona Amyot \& Serville, 1843	C. discolor (Palisot de Beauvois, 1811)	Africa	X	
Cantheconidea Schouteden, 1907	C. acuta (Vollenhoven, 1868) C. cyanacantha (Stål, 1870) C. gaugleri Scheiner, 1940 C. humeralis (Distant, 1908) C. javana (Dallas, 1851) C. variabilis (Vollenhoven, 1868)	Asia	X	NHRS NHMUK NHMUK
Cazira Amyot \& Serville, 1843	C. bergrothi Breddin, 1903 C. breddini Schouteden, 1907 C. chiroptera (Herrich-Schaeffer, 1840) C. concinna Hsiao \& Zheng, 1977 C. emeia Zhang \& Lin, 1982 C. flava Yang, 1934 C. frivaldskyi Horváth, 1889 C. fruhstorferi Breddin, 1901 C. horvathi Breddin, 1903 C. inerma Yang, 1934 C. insignis (Schouteden, 1907) C. internexa Walker, 1867 C. kirkaldyi Breddin, 1903 C. membrania Zhang \& Lin, 1982 C. montandoni Breddin, 1903 C. reuteri Breddin, 1903 C. schwarzi Abbasi \& Rishi, 1974 C. sichuana Zhang \& Lin, 1986 C. similis Distant, 1902 C. thibetensis Schouteden, 1907 C. ulcerata (Burmeister, 1835) C. vegeta Kirkaldy, 1909 C. verrucosa (Westwood, 1834) C. yunnanica (Zhang \& Lin, 1982)		X	MNHN, RBINS RBINS MNHN MNHN, RBINS MNHN RBINS NHMUK NHMUK MNHN, RBINS ZMHB ZMHB
Cecyrina Walker, 1867	C. platyrhinoides Walker, 1867 C. flata Zhao et al., 2016 C. rubra Zhao et al., 2016	Asia	X	NHMUK
Cermatulus Dallas, 1851	C. nasalis (Westood, 1837) C. turbotti Woodward, 1950	Oceania	X	NHMUK, OUMNH
Colpothyreus Stål, 1867	C. flavolineatus (Blanchard, 1843)	America	X	MNHN
Comperocoris Stål, 1867	C. roehneri (Phillipi, 1862)	America	X	
Conquistator Gapon, 2009	C. mucronatus (Uhler, 1897)	America	X	
Coryzorhaphis Spinola, 1837	C. carneolus Erichson, 1848	America	X	NHMUK, ZMHB

C. cruciata Stål, 1870
C. dollingi Thomas, 1992

NHMUK
C. egeri Thomas, 1992
C. leucocephala Spinola, 1837 X
C. superba Breddin, 1906

| Damarius Schouteden,
 1907 | D. splendidulus (Fabricius, 1803) | Africa | X | NHMUK |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dinorhynchus Jakovlev,
 1876 | D. dybowskyi Jakovlev, 1876 | Asia | X | NHMUK |
| D. opulentus (Distant, 1890) | | | NHMUK | |
| Discocera Laporte, 1833 | D. cayennensis Laporte, 1833

 D. coccinea (Fabricius, 1798) | America | X | ZMHB |
| Dorycoris Mayr, 1864 | D. pavonivus (Westwood, 1837) | Africa | X | ZMHB |
| | | | X | NHMUK, |

| Ealda Walker, 1867 | E. minax Walker, 1867 | Oceania (New
 Caledonia) | X |
| :--- | :--- | :--- | :---: | NHMUK

E. atipes (Stal, 1871)
E. mitis (Vollenhoven, 1868)
E. neotibialis (Ahmad \& Rana, 1988)
E. ornatula (Distant, 1908) NHMUK
E. parva (Distant, 1902) NHMUK
E. plebeja (Vollenhoven, 1868)
E. populusi (Ahmad \& Rana, 1988)
E. robusta (Distant, 1879)

NHMUK
E. rufescens (Vollenhoven, 1868)
E. shikokuensis (Esaki \& Ishihara, 1950)
E. thomsoni (Distant, 1911) NHMUK
E. tibialis (Distant, 1879)

NHMUK
E. vollenhoveni (Breddin, 1902)

Euthyrhynchus Dallas, 1851	E. floridanus (Linnaeus 1767)	America	X	NHMUK
Friarius Schouteden, 1907	F.alluaudi (Schouteden, 1905)	Africa	X	MNHN
Glypsus Dallas, 1851	G. abdominalis Cachan, 1952	Africa		MNHN
	G. bouvieri Schouteden, 1904			MNHN
	G. carinulatus Bergoth, 1904			
	G. conspicuus (Westwood, 1837)		X	NHMUK, ZMHB, OUMNH
	G. erubescens Distant, 1890			NHMUK, RBINS

	G. fuscispinus Stål, 1870			
	G. kuhgatzi Schouteden, 1904		X	MNHN, RMCA
	G. luridus Dallas, 1851			NHMUK
	G. nigripes Horváth, 1911			
	G. sparsus (Westwood, 1837)			OUMNH
	G. truculentus Walker, 1868			NHMUK
	G. vigil (Germar, 1837)			
Hemallia Bergroth, 1908	H. signitenens (Schouteden1905)	Africa	X	MNHN
Heteroscelis Latreille, 1829	H. bimaculata (Walker, 1867)	America		MLPA, NHMUK
	H. lepida Distant, 1880			NHMUK
	H. servillei Laporte		X	MACN
	H. robustus Thomas, 1992		X	
Hoploxys Dallas, 1851	coeruleus Dallas, 1851	Africa	X	NHMUK
Jalla Hahn, 1832	dumosa (Linnaeus, 1758)	Asia and Europe	X	
	subcalcarata Jakovlev, 1885			
	subdilatata Reuter, 1900			
Jalloides Schouteden, 1907	J. opulentus (Distant, 1911)	Oceania	X	NHMUK
	J. rubricosus (Stål, 1870)		X	NHRS
Leptolobus Signoret, 1855	L. eburneatus Karsch, 1892	Africa	X	MNHN, RMCA NHMUK
	L. insignis (Distant)			
	L. karschi Schumacher, 1912			
	L. martini (Schouteden, 1904)			MNHN
	L.murrayi Signoret, 1855		X	OUMNH
	L. zanzibaricus Bolivar, 1879			
Macrorhaphis Dallas, 1851	M. dallasi Schouteden, 1905	Africa		MNHN, NHMUK
	M. leprosa (Germar, 1837)			
	M. acuta (Dallas, 1851)		X	NHMUK
	M. wollastoni White, 1878			NHMUK
Marmessulus Bergroth, 1891	M. brasilianus Schouteden, 1907	America		
	M. nigricornis (Stål, 1865)		X	NHMUK
Martinina Schouteden, 1907	M. inexpectata Schouteden, 1907	Asia	X*	MNHN
	M. prima (Distant, 1908)		X*	NHMUK
Mecosoma Dallas, 1851	M. coquerelii Signoret, 1861	Africa		
	M. floridum Distant, 1890			
	M. mensor (Germar, 1837)		X	NHMUK
Montrouzieriellus Kirkaldy, 1908	M. borneensis (Distant, 1900)	Africa and Oceania		NHMUK
	M. falleni (Guérin-Méneville)		X	NHMUK
	M. inermis (Schouteden, 1907)			RBINS
	M. laetus (Walker, 1867)			NHMUK
	M. lefebvrei (Spinola, 1837)			
	M. minor (Elleinreider, 1862)			
	M. purparascens (Walker, 1868)			NHMUK
	M. turneri (Distant, 1911)			NHMUK
Oechalia Stål, 1862	O. acuta Usinger, 1941	Oceania		

	P. nigrispinus (Dallas, 1851)		X	NHMUK
	P. nigriventris Distant, 1880			NHMUK
	P. pallipes (Dallas, 1851)			NHMUK
	P. placidus Uhler, 1870			
	P. rostralis (stal, 1860)			NHMUK
	P. sagitta (Fabricius, 1794)			NHMUK
	P. sculptus Distant, 1889			NHMUK
	P. semialbus (Walker, 1868)			NHMUK
	P. sordidus (Stal, 1859)			
	P. subferrugineus Barber \& Bruner, 1932			
	P. tinctus (Dallas, 1851)			NHMUK
	P. trucidatus Thomas, 1992			
	P. ventralis (Dallas, 1851)			NHMUK
	P. volxemi Distant, 1887			
Ponapea Ruckes, 1963	P. arachnoides Ruckes, 1963	Oceania (Caroline islands)	X*	
Pseudanasida Schouteden, 1907	P. fallax Schouteden, 1907 P. ikrami (Ahmad \& kamaluddin, 1983)	Asia	X*	MNHN
Rhacognathus Fieber, 1860	R. callosus Horváth, 1903	America, Asia, Europe		
	R. corniger Hsiao \& Zheng, 1977			
	R. lamellifer Josifov \& Kerzner			
	R. punctatus (Linnaeus, 1758)		X	MNHN, RBINS
	R. americanus Stål, 1870		X	NHRS
Stilbotes Stål, 1867	S. semperi Stål, 1871	Asia	X	
	S. goulae Roca-Cusachs \& Jung 2018			
Stiretrus Laporte, 1833	S. anchorago (Fabricius, 1775)	America		NHMUK, NHRS, OUMNH, ZMHB
	S. bifrenatus Breddin, 1906			
	S. cinctellus Germar, 1839			ZMHB
	S. decastigmus (Herrich-Schaeffer, 1838)		X	ZMHB
	S. decemguttatus (Lepeletier \& Serville, 1828)		X	OUMNH, ZMHB
	S. erythrocephalus (Lepeletier \& Serville, 1828) S. loratus Germar, 1839		X	NHRS, OUMNH, ZMHB ZMHB
	S. quinquepunctatus Germar, 1839			ZMHB
Supputius Distant, 1889	S. cincticeps (Stål, 1858)	America	X	NHMUK, NHRS
	S. pulchricornis (Stål, 1862)			
	S. typicus (Distant, 1889)		X	NHMUK
Troilus Stål, 1867	T. luridus (Fabricius, 1775)	Asia, Europe	X	NHMUK
	T. testaceus Zheng \& Liu, 1987			

Tylospilus Stål, 1870	T. acutissimus Stål, 1870	America		NHRS
	T. armatus Thomas, 1992			
	T. chilensis (Spinola, 1852)		X	MNHN
	T. cloelia (Stål, 1862)		X	
	T. distans Bergroth, 1891			
	T. megaspilus (Walker, 1867)			NHMUK
	T. nigrobinotatus (Berg, 1879)			NHMUK
	T. peruvianus (Horváth, 1911)			
Tynacantha Dallas, 1851	T. marginata Dallas, 1851	America	X	NHMUK
	T. splendens Distant, 1889			NHMUK
Tyrannocoris Thomas, 1992	T. rex Thomas, 1992	America	X	AMNH
	T. nigriceps Thomas, 1992		X	AMNH
	T. rideri Thomas, 1992			
	T. jole (Stål, 1862)			
Zicrona Amyot \& Serville, 1843	Z. caerulea (Linnaeus, 1758)	America, Asia, Europe	X	NHMUK
	Z. hisarensis Chopra \& Sucheta 1984 Z. americana Thomas, 1992			
	Z. murreensis Rana \& Ahmad, 1988			

Figures

Fig. 1. Strict consensus of 76 (A) and 36 (B) equally parsimonious trees calculated under equal weights. A, Full dataset. B, Taxa examined only by photos or description deactivated.

Fig. 2. First hypothesis (A) for the classification of Asopinae generated from an analysis including all taxa examined (Table 1) and analyzed under implied weighting ($\mathrm{K}=11.684$), outgroup relationships. White circles, homoplasious transformations; black circles, nonhomoplasious transformations. Numbers below branches indicate relative Bremer support. The terminal names are coloured according to the family or subfamily to which they belong: grey, Thyreocoridae; pink, Cyrtocorinae; yellow, Podopinae; green, Pentatominae; orange, Phyllocephalinae; red, Edessinae; light blue, Discocephalinae; dark blue, Asopinae.

Fig. 3. First hypothesis (A) for the classification of Asopinae generated from an analysis including all taxa examined (Table 1) and analyzed under implied weighting ($\mathrm{K}=11.684$), clade 4. White circles, homoplasious transformations; black circles, nonhomoplasious transformations. Numbers below branches indicate relative Bremer support. Colored rectangles beside terminal names indicate in which continents the species are distributed.

Fig. 4. First hypothesis (A) for the classification of Asopinae generated from an analysis including all taxa examined (Table 1) and analyzed under implied weighting ($\mathrm{K}=11.684$), clade 21. White circles, homoplasious transformations; black circles, nonhomoplasious transformations. Numbers below branches indicate relative Bremer support. Colored rectangles beside terminal names indicate in which continents the species are distributed. The specimen illustrated on inferior left lateral have abdominal male glandular patches. Scale bar $=4 \mathrm{~mm}$.

Fig. 5. First hypothesis (A) for the classification of Asopinae generated from an analysis including all taxa examined (Table 1) and analyzed under implied weighting
($\mathrm{K}=11.684$). Ancestral reconstruction of male abdominal glandular patches for the clade 21. Circles on nodes indicate the probabilities of each state for ancestrals.

Fig. 6. Second hypothesis (B) for the classification of Asopinae generated from an analysis not including all taxa examined (Table 1) and analyzed under implied weighting ($\mathrm{K}=11.420$).

Supplementary material

SM1. Second hypothesis (B) for the classification of Asopinae generated from an analysis not including all taxa examined (Table 1) and analyzed under implied weighting ($\mathrm{K}=11.420$). White circles, homoplasious transformations; black circles, nonhomoplasious transformations.

SM2. Data matrix

	1					106107	107																										
Galgupha schulzi	-	0	0	0	0	- -	- 0	00	0	00	0	0	0	00	0	0	0	-		- -	- -	-	- 0	0	0	0	0	0	0	0	0		0
Cyrocoris egeris	?	?	?	1	0	-	- 0	11	0	00	2	0	00	0	0	0	0	-		-	-		- 0	0 1	0	0	10	00	1	0		6	0
Antiteuchus mixtus	0	0	0	0	0	- .	- 0	11	0	00	1	0	0 0	0	0	0	0 -	-		- -			- 0	00	0	0	0	00	1	0	1		
Dinocoris gibbus	0	1	0	0	0	-	- 0	11	0	00	1	0	0 0		0	0	0 -	-		- -	-	-	- 0	01	0	0	0	0	1	1	0	2	0
Lincus spurcus		0	1	0	0	- -	- 0	10	0	00	0	0	0 0	0	0	0	0	-		- -		-	- 0	00	2	0	20	00	1	0		5	
Ochlerus rusticu	0	1	0	0	0		- 0	11	0	0 0	0	0	00	0	0	0	0							00	2	0	0 0	00	1	0	0		
Edessa rufomarginata	0	0	0	0	1	0	$0 \quad 1$	01	10	0 0	1	0	0 0	0	0	0	0							00	0	0	00	00	1	0		3	
Arvelius albopunctatus	0	0	0	0	1	0	01	01	0	00	1	0	00		0	0	0 -	-		- -			- 0	00	0	0	0	$0 \quad 1$	1	1		2	
Murgantia varicolor		1	0	1	0	- -	- 0	01	0	00	3	0	0		0	0	0 -	-		- -		-	- 0	00	0	0	0	0	1	1	1	2	0
Nezara viridula	0	0	0	0	1	0	00	01	11	10	2	0	0	0	0	0	0	-		-		-	- 0	00	0	0	2	00	1	1	1	2	
Proxysalbopunci	0	0	1	0	0	-	- 1	$0 \quad 1$	10	0 1	1	0	00	0	0	0	0							00	0	0	21	1	1	0		2	
Graphosoma lineata	0	0	0	0	0	- -	- 0	01	11	10	1	0	00	0	0	0	0							00	0	0	21	10	0	0		2	
Podops inunctus		0	1	1	0	- -	- 0	01	11	11	0	0	0 0	0	0	0	0	-		- -			- 0	00	0	0	2	10	1	1		2	0
Tantia albopunctulata	-	0	0	1	0	- -	- 0	0	11	11	2	0	0		0	0	0 -	-		- -		-	- 0	00	0	0	20	0	1	1	0	2	0
Afrius purpureus	1	1	1	0	1	0	00	0	0	00	1	0	11	1	1	0	01	1	1	10	00	0	0	0 0	0	0	20	00	0	0	1	0	0
Afriusflavirsstrum	0	1	1	0	1	0	00	01	10	0 0	1	0	0 0	0	0	0	0							- 0	0	0	20	00	0	0		0	
Alcaeorrhynchus grandis	1	1	0	0	1	0 0	$0 \quad 1$	$0 \quad 1$	10	00	1	0	0	0	0	0	0	-		-				0 1	0	0	20	00	0			0	
Alcaeorrhynchus phymatoph	1	1	1	0	1	0	01	01	10	00	1	0	0 0	0	0	0	0 -	-		- -			- 0	01	0	0	20	00	0	0	1	0	
Anyotea hamata	-	1	1	0	0	- -	0	01	0	01	1	0	0		0	0	0 -	-	-	- -	- -	-	- 0		0	0	0	00	0	0	1	0	0
Amyotea malabarica	-	1	1	0	0	- -	- 0	01	10	01	1	0	0	0	0	0	0			-		-	- 0	0 0	0	0	0 0	00	0	0	1	0	
Anasida tenebrio		-	-	0	0	-	- 0	$0 \quad 1$	0	0 0	1	0	0	0	0	0	0						- 0	0 0	0	0	20	00	0	0	1	0	
Andrallus spinidens		1	1	0	1	0 0	0 1	01	10	0 1	1	1	11	1	1	1	$0 \quad 1$	1	1	00	00	0	0	0 0	0	0	20	00	0	0		0	
Apateticus lineolatus	-	1	1	0	1	0	00	01	10	00	1	0	11	1	1	1	$0 \quad 1$	1	1	0	01	1	10	0 0	0	0	2	00	0	0	1	0	
Apoecilus bracteatus	-	1	1	0	1	-	00	01		01	1	0	11		1	1.	01	1	0	00	0 0	1	10	00	0	0	2	00	0	1	1	0	
Apoecilus cynicus	-	1	1	0	1	0	00	01	0	0	1	0	1	11	1	0	0	1	1	00	00	1	10	0 0	0	0	20	00	0	1	1	0	
Arma custos		1	1	1	0	- -	- 0	01	10	00	3	0	0 0	0	0	0	0						- 0	00	0	0	20	00	0	0	1	0	
Australojalla versic		1	1	0	1	0	00	0 ?	? ?	? ?	?	?	? ?	? ?	?	?	$?$?	?	?	$?$?	? ?	?	? ?	? ?	0	0	0 0	00	?	0		0	
${ }^{\text {Blachia ducalis }}$	-	1	1	0	1	0	01	01	10	00	1	0	0 1		1	1	01	0	0	10	00	0	0	01	2	0	10	00	0	0	1	0	
Brontocoris tabidus		1	1	0	1	0 0	01	$0 \quad 1$		00	1	0			0	0	0								0	0	20	0		1		0	
Bulbostethus transersal	0	?	1	0	1	0	01	0 ?	? ?	? ?	?	0	11	1	1	0	0	?	?	? ?	? ?	?	? 0	0 ?	?	?	? ?	? ?	?	?	?		
Canthecona discolor		1	1	0	1	0	01	$0 \quad 1$	10	0 1	1	0	11		1	0	0	1	0	$0 \quad 1$	10	0	0	00	0	0	0 0	00	0	0	1	0	
Cantheconidea varia	0	1	0	0	1	0	1	1	10	0 1	1	0	0 0	0	0	0	0	-					- 0	01	0	1	20	00	0	0		0	
Cazira chiroptera	-	1	1	0	1	0	1	01		00	1	0	0 1		0	0	01	1	0	11	10	0	$0 \quad 1$	11	2	0	20	00	0	0		0	
Cazira insignis		1	1	0	0	- 0	01	$0 \quad 1$		00	1	0	0 1		1	1				? ?		?	? 0	$0 \quad 1$	2	0	20	0	0	0	1	0	
Cazira verrucosa	-	1	1	0	1	0	01	01	0	00	1	0	0 1	1	0	0	0 0	0	0	11	10	0	01	11	2	0	20	00	0	0	1		
Ceccrina platyrhino		0	0	0	1	0	00	01	10	$0 \quad 1$	2	0	0 0) 0	0	0	0			-			- 0	01	0	1	20	00	0	0			
Cermatulus nasalis		1	1	0	1	0	00	01	0	00	2	0	0 0	0	0	0	0							00	0	0	2	00	0	0		0	
Colpothyreusflavolineatus	0	1	1	0	1	0	00	01		$0 \quad 1$	1	?			?	?	? ?	?	?	? ?		?	? ?		0	1	20					0	
Comperocoris roehneri		1	0	0	0		- 0	01		00	2	0	0 0		0	0	0								0	0	0	0		0	1	3	0
Conquistator mucronatus	-	1	1	0	1	0	0	01	0	0 1	1	0	0	0	0	0	0	-		-		-	- 0	00	0	0	0 0	00	0	0			
Coryorhapis carneolus	1	1	0	0	1	0	0	01	0	00	1	0	11	1	1	1	11	0	0	10	00	1	10	$0 \quad 1$	2	0	0	0 0	1	0	1		
Coryzorhapis lencocephala	1	1	0	0	1	0	$0 \quad 1$	01	0	0 1	1	0	11	1	1	1	1 ?		?	? ?		?	$? 0$	01	2	,	0 0	00	0				
Damarius splendidulus	0	1	1	0	1	0	01	01		01	1	0	0		0	0	0	-		- -			- 0	01	0	0	0 0	00	0	0	1	0	
Dinorhynchus dybovskvi	0	1	1	0	1		00	01		01	1	0	0 0		0	0	0						- 0			0						0	
Discocera cayennensis		1	0	0	1	0	-	01	0	0	1	0	11	1	1	1	0 ?		?	? ?		?	? 1	11	2	0	20		0	0			0
Discocera coccinea	-	1	1	0	1	0	0	01	0	00	1	0	0 1	1	1	1	$0 \quad 1$	0	0	10	00	0	0	11	2	0	20	00	0	0			
Dorycoris pavo	-	1	1	1	1	0	0	1	10	00	2	0	11	1	1	1.	$0 \quad 1$	0	0	11		0	0	01	-	-	20	0	0	0		0	
Ealda minax	0	1	1	0	1	00	1	01	0	00	1	0	0		0	0	0			- -			- 0	01	0	-	20	0		0		0	
Eocanthecona furcellata	0	1	1	0	1		01	01		$0 \quad 1$	1	0	11		1	0	01	0	0	11	10	0	0	01	0	0	0	0				0	
Euthyrrhynchusfloridanus		1	1	0	1	0	00	01		0 1	1	0	0 0	0	0	0	0			-			- 0	01	0	0	0 0		0	0			0
Friarius alluadi	0	1	1	1	0	-	- 1	01	0	0 1	1	0	00	00	0	0	0	-		-			- 0	00	0	0	20	$0 \quad 0$	0	0			
Glypsus conspicuous	0	1	1	0	1	1	10	01		$0 \quad 1$	1	0	0 0		0	0	0	-	-	-		-	- 0		0	0	10	0		0			
Glypsus kuhgati	-	1	1	0	1	01	10	01		$0 \quad 1$	1	0	00		0	0	0	-	-	-		-	- 0	0 0	0	,	20	0				0	
Hemallia signitenens	-	1	1	0	1		00	01			1	0	0 0		0	0							- 0		0		0 0					0	
Heteroscelis robustus		1	0	0	1	0	01	01			2	0	1	11	1	1.	0	?		? ?		?	? 0	$0 \quad 0$	0					0			
Heter		1	1	0	1	0	0 1	01	0	0 0	1	0	11		1	1	$0 \quad 1$		0	$0 \quad 1$		0	0	0 0	0	0	20	00	0	0			
Hoploxys coeruleus	1	1	1	0	1	0	1	01			1	0			0	1		1	1	$0 \quad 1$	1	0	0		0	-	0					0	
Jalla dumosa		1	1	0	0		0	01			1	0	0 0		0	0							- 0										
Jalloides opulentus				0				01				0								-			- 0										
Jalloides rubricosa	0	1	0	0	1	0 0	0	0		-		0	00		0	0	0	-					- 0										
Leptolob	0	1	0	0	0		1	01			2	0	11		1	0		0	0	10	0	1	10	$0 \quad 1$		0	20						
Leptolobus murrayi	0	1	0	0		0 0	,	01			2				0	0				- -		-	- 0										
Machrorhaphis acuta	0	1	1	0	1	0	01	01			2	0			0	0				- -		-	- 0										
Marmessulus nigricornis		1	0	0		0	00	01				0				0				-			- 0	00				0					
Martinina inexpectata	?	?	1	0	1	0		0 ?		? ?		0	00	0 0	0	0	0	-					- 0	0 1									
Martinina prima	?	?	?	0	1	0 0	0 ?	0 ?				?	? ?		?	?				? ?		,	? ?				0	00					
Mecosoma mensor	-	1	1	-	1	20	1	1	10	00	1	0	11		1	0	$0 \quad 1$		1	0		-	-										
Montrouzieriellus falleni	0	1	1	0	1	00	01	01			1	0			1	0		0	0	10		0	0										
Oechalia schellenbe		1	0	0	1	0	01	0				0	0		0	0				- -			- 0	0 0		0		0				0	
Oplomus catena		1	1	0	1	10	01	01	0		1	0	11	11	1	1	$0 \quad 1$	0	0	10	00	0	0	$0 \quad 1$			20					0	
oplomus cruentus	1	1	1	0	1	0	-	1	10		1	0			1	1			0	00	0	0	0	01	2	1	00	00	0		0	0	0
Ornithosoma rivierei	?	?	?	?	0	-	1	? ?			?	0	0		0	0		-		- -		-	- ?		?	?	? ?						
Parajalla sanguneosignata		1	1	0		00	00	-				0	0 0		0	0	0 -			- -		-	- 0	01	0	0	00	0				3	
Parealda bouvieri	0	?	?	?	?	? ?		0 ?				?	? ?		?	?	? ?			$?$?	? ?	?	$? 0$	0 1		?	? ?					?	?
Perillus bioculatus		0	1	0	1	0	00	0	0	0	1	0	11	11	1	1	0	1	1	00	0	0	0	0 0		1	20	00	0	0		0	0
Perilus circumcinctus Perilus exapus		0	1	0	1	00	00	01	10	-	1	-	11	11	1	1	0 ?		?	? ?	? ?	?	? 0	01	12		20	00	0	0		0	0
Perilus exaptus	-	0	1	0	1	00	0	0			1	0	1		1	1	$0 \quad 1$	1	0	10	00	0	0	00			20	0	0	0			
Picromerus bidens	-	1	1	0	1	00	0	$0 \quad 1$	10		2	0	0		0	0	0 -			- -	- -	-	- 0	0) 0	0	0 0	0	0	0		0	
Pinthaeus sanguinipes		1	0	0		0		01				0	11		1	1	01	0	1	00	00	1	10	01		-	0	00				0	
Planopsis silvaticus	0	1	1	0	1	0 0	00	01	10	0	1	0	0 0	00	0	0	0	-		- -		-	- 0	00	0	0	0 0	0 0	0	0	1	0	0
Platynopiellus septendecim		1	1	-	-	00		1	10	$0 \quad 1$	1	-	11	11	0	0	01	0	0	11	10	0	0	01	0	0	0	0	0	0	1	0	0
Platyopus melanoleucus	0	1	1	0	1	0 0	1	01			1	0	11		1	0	0	0	0	11	10	0	0	1	-	0	0	0	0	0	1	0	0
Podisus maculiventris		1	1	0	1	00	$0 \quad 1$	01	10	00	1	0	0 0	00	0	0	0 -	-	-	- -	- -	-	- 0	0 0	-	0	00	0 0	0	0	1	0	
Podisus nigrispinus		1	1	0		0		01	0			0	0		0	0	0 -			- -			- 0	00) 0	0	0 0	00	0			0	
Ponapea arachnoides	$?$?	?	?	1	0	0 ?	? ?	? ?	? ?	?	1	11	10	0	0	0 ?	?	?	? ?	$?$?	$?$?	? ?	?	?	? ?	? ?	?		?	?	?
Pseudanasida fallax Rhaconatus americanus	?	?	?	0		?			?	? ?	?	?	? ?		?	$?$? ?		?	? ?	? ?	?	? ?	? ?	?	0	0	0	0	0	?	0	0
Rhacognatus americanus	-	1	0	1	0	- -	- 0	01	10	00	2	0	0	0	0	0	0	-	-	- -	-	-	- 0	0) 0	0	00	0	0	0	1	0	
Rhacognathus punctatus	-	1	0	1	0	-	- 0	01	0	00	1	0	0 0	00	0	0	0 -			- -		$-$	- 0	0 0) 0	0	00	00	0	0		0	
Stilootes semperi		1	1	0	0		- 0	01	0	00	3	?	? ?		?	?	? ?	?	?	? ?	? ?	$?$? ?	? ?	2	0	20	00	1	0		?	
Stiretrus decastigmus	-	1	0	0	1	0	00	1	10	0	2	0	0 1	11	1	1	$0 \quad 1$	0	0	10	00	0	0	00) 2	1	2	00	0	0	0	0	
Stiretus decemgutatus Stiretus ervirocephalus		1	0	0	1	10	,	1	10	00	1	-	0 1		1	1	0 ?		?	? ?	$?$?	0	,	0) 2	1	0	0	0	0	0	0	
Stiretrus erymocephalus	-	1	0	0	1	0	0	$0 \quad 1$	10	0	2	0	11	1	1	1	0	1	0	10	00	0	0	0	$)^{2}$	1	0	00	0	0	0	0	
Supputius cinctipes	-	1	0	0	1	00	01	01	10	0 1	1	0	0	0	0	0	0 -	-	-	- -	- -	-	- 0	0	0	0	00	00	1	0	1	0	
Supputius typicus				0				1				0	0 0		0	0	0			- -		-	- 0	00) 0		0 0	00				0	
Troilus Luridus		1	1	0	1	0 0	00	$0 \quad 1$	10	0	1	0	0	00	0	0	0 -	-		- -	-	-	- 0	00	0	0	0	00	0	0	1	0	
Tylospilus chilensis		1	0	0	1	0	01	0	0	$0 \quad 1$	1	0		00	0	0	0 -			- -	- -	-	- 0	00) 0	0	0	0 0	0	0	1	0	
Tylospilus cloelia	0	1	0	0	1	0	1	$0 \quad 1$	10		1	0	0	0	0	0	0			- -		-	- 0	0) 0	0	0	0	0	0	1	3	
Tynacantha marginata		1	0	0	1	00	1	$0 \quad 1$	10	0	1	0	0	0	0	0	0 -			- -		-	- 0	0	0	0	0	0	0	0	1	0	
Tyrannocoris nigriceps				0		0		1				0	0 0		0	0	0 -			- -			- 0	00) 0	0	0	00	0				
Tyrannocoris rex	-	1	0	0	1	00	1	01	10	0	1	0	0	0	0	0	0	-	-	- -	- -	-	- 0	00	0	0	0	0	0	0	1	0	
Zicrona caerulea																											0 0						

Afriusflavirostrum
Alcaeorrhychus grand
Amyotea hamata
Amyotea malabarica
Andrallus spinidens
Apateticus lineolates
Apoeciluscynicu
Australojalla versic
Blachia ducalis
Bulbostethus transversat
Cantheconidea va
Cazra insignis
Cecyrinaplasyrhinoid
Cermatulus nasalis
Colpothyreus flvolineatus:
Conquistatr mucronatus
Conzorhapisleucoceph
Dinorhynchus dybovsk
Discocera coccinea
Donycoris pave
Eocanthecona furcellata
Friariusalluaudi
Glypus conspicuo(
Hemalliasignitenen
Heteroscelis robusus
Hoploxys coeru
Jalla dumosa
Jalloides nubricosa
Leptolobus murrayi
Marmessulusnigricorm
Martinina inexpecta
Marrinina prima
Montruuzieriellus falleni
Oplomus catena
Oplomuscruentus
Parealda bouvieri
Perilus bioculatus
Periluseaptus
MPromacus sanguini\eta
Platynopiellus septendecimaculati
Podisus maculiventris
Podisusnigrispinus
Ponapea arachnoid
Pseudanasidd fallax
Rhacognatus american
Khacognathuspun
Stilootes semperi
Sirerusdecastigmus
Stiretuserytrocephalus
Supu\tuscinctipe
Troilus luridus
Tylospilus chilensis
Tylospilus cloelia
Tynacantha marginata
Zicrona caerulea

```

SM3. Illustrations of the morphological characters


SM3. Figure 1. Characters of head. A,D, Ochlerus rusticus, B, E, Podisus nigrispinus, C, F, Cyrtocoris egeris, G, I, Heteroscelis servillei, H, J, Antiteuchus mixtus, K, Glypsus kuhlgatzi, L, Leptolobus murrayi, M, Blachia ducalis, N, Alcaeorrhynchus grandis, O, Cazira insignis, P, Cermatulus nasalis.


SM3. Figure 2. Characters of head and pronotum. A, F, J, Alcaeorrhynchus grandis, B, Antiteuchus mixtus, C, Nezara viridula, D, Stilbotes semperi, E, Podisus nigrispinus, G, Proxys albopunctulatus, H, Podisus sp., I, Damarius splendidulus, K, Arma custos, L, Ochlerus rusticus.


SM3. Figure 3. Characters of pronotum and scutellum. A, Tynacantha marginata, B, Dinorhynchus dybowskyi, C, N, Heteroscelis servillei, D, Dinocoris gibbus, E, M, Ealda minax, F, Euthyrhynchus floridanus, G, Podisus nigrispinus, H, J, Cazira chiroptera, I, Leptolobus eburneatus, K, Pseudanasida fallax, L, P, Stiretrus decastigmus, O, Discocera coccinea.


SM3. Figure 4. Characters of scutellum, wings, legs, and ventral thorax. A, Comperocoris roehneri, B, Damarius splendidulus, C, Cazira insignis, D, Marmessulus nigricornis, E, Stilbotes semperi, F, Dinocoris gibbus, G, Alcaeorrhynchus grandis, H, Ealda minax, I, Ochlerus rusticus, J, Afrius flavirostrum, K, Arvelius albopunctatus, L, Graphosoma lineata.

SM4. Illustrations of the morphological characters.


SM4. Figure 1. Characters of abdomen and female genital plates. A, Damarius bicolor, B, Mecosoma mensor, C, Glypsus sp., D, Arvelius albopunctatus, E, Heteroscelis servillei, F, Ochlerus rusticus, G, Lincus spurcus, H, Podops inunctus, I, Tylospilus cloelia, J, Discocera coccinea, K, Nezara viridula, L. Blachia ducalis, M, Coryzorhaphis sp., N, Jalloides opulentus, O, Colpothyreus flavolineatus.


SM4. Figure 2. Characters of female genitalia. A, Hemallia signitenens, B, M Oechalia schellembergii, C, Cazira insignis, D, Apoecilus cynicus, E, Apoecilus cynicus, F, O, Ochlerus rusticus, G, Edessa rufomarginata, H, Cyrtocoris egeris, I, Zicrona caerulea, J, Leptolobus eburneatus, K, Stilbotes semperi, L, Discocera coccinea, N, Podisus nigrispinus.


SM54 Figure 3. Characters of female and male genitalia. A, Anasida tenebrio, B, K, L, Colpothyreus flavolineatus, C, Hemallia signitenens, D, H, Podisus nigrispinus, E, F, Discocera coccinea, G, Apoecilus cynicus, I, Ochlerus rusticus, J, Cyrtocoris egeris, M, Comperocoris roehneri, N, Friarius alluaudi, O, Glypsus conspicuus. Abbreviation: par, paramere.


SM4. Figure 4. Characters of male genitalia. A, B, Apoecilus cynicus, C, Tantia albopunctulata, D, Ealda minax, E, Lincus spurcus, F, Discocera cayennensis, G, Dinocoris gibbus, H, Dynorhynchus dybowskyi, I, Apoecilus bracteatus, J,
Coryzorhaphis leucocephala, K, Glypsus conspicuus, L, Anasida tenebrio. Abbreviations: bt, basal theca; dr, dorsal rim; ds, ductus seminis distalis; ts, thecal shield; v, vesica; vr, ventral rim.

\section*{CONCLUSÃO GERAL}

Asopinae é um grupo natural de percevejos predadores que possuem uma aparência geral similar aos outros representantes da mesma família, sendo diferenciados principalmente pela cabeça retangular e lábio robusto. Além disso, o pigóforo em Asopinae contém \(1+1\) processos superiores do diafragma, e estes são bastante desenvolvidos, apresentando variações morfológicas quando observados em microscopia eletrônica de varredura. Estes processos não contêm cerdas nem sensilas e podem estar associados ao comportamento de cópula. "Processo superior do diafragma" é um termo que propomos neste trabalho a fim de padronizar a terminologia de trabalhos futuros em Pentatomidae, uma vez que estes processos também são encontrados em outras subfamílias.

Diversos clados foram recuperados na análise filogenética, mas nós não conseguimos definir características exclusivas e consistentes para grupos de gêneros e decidimos, por isto, não propor uma divisão de tribos para a subfamília. As espécies cujos machos possuem modificações abdominais que externalizam excreções feromônicas produzidas internamente na mesma região formam um grupo monofilético, e esta característica parece ter evoluído de forma única no grupo. A análise filogenética apresentada neste trabalho recuperou a monofilia de vários gêneros os quais pudemos amostrar mais de uma espécie, exceto Afrius Stål, 1870. As duas espécies amostradas, A.(Subafrius) flavirostrum (Signoret, 1861) e A. (Afrius) purpureus (Westwood, 1837) ocupam posições em clados diferentes, principalmente pelo fato de uma das espécies ( \(A\). purpureus) apresentar manchas glandulares abdominais masculinas. Como o gênero possui três espécies válidas (A. (Subafrius) flavirostrum, A. (Afrius) kolleri Schouteden, 1911 and \(A\). (Afrius) purpureus), talvez um estudo cladístico futuro incluindo todas elas possa esclarecer melhor se Afrius é ou não monofilético.```


[^0]:    * Trabalho aceito pelo European Journal of Taxonomy; em processo de publicação.

[^1]:    * Este trabalho será submetido à Zoologischer anzeiger

