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Resumo: O recente desenvolvimento de hardware grafico apresenta uma mu-
danca na implementacéo do pipeline gréafico, de um conjunto fixo de fungdes, para
programas especiais desenvolvidos pelo usuario que sdo executados para cada vértice
ou fragmento. Esta programabilidade permite implementacGes de diversos algoritmos
diretamente no hardware gréafico.

Neste tutorial serdo apresentados as principais técnicas relacionadas a implementacéao
de algoritmos desta forma. Serdo usados exemplos baseados em artigos recentemente
publicados. Através da revisao e analise da contribuicdo dos mesmos, iremos explicar
as estratégias por tras do desenvolvimento de algoritmos desta forma, formando uma
base que permita ao leitor criar seus proprios algoritmos.
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Abstract:  The recent development of graphics hardware is presenting a change
in the implementation of the graphics pipeline, from a fixed set of functions, to user-
developed special programs to be executed on a per-vertex or per-fragment basis. This
programmability allows the efficient implementation of different algorithms directly
on the graphics hardware.

In this tutorial we will present the main techniques that are involved in implementing
algorithms in this fashion. We use several test cases based on recently published pa-
pers. By reviewing and analyzing their contribution, we explain the reasoning behind
the development of the algorithms, establishing a common ground that allow readers
to create their own novel algorithms.
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Computation on GPUs: From a Programmable Pipeline to an Efficient Stream Processor

1 Introduction

Recent advances in graphics hardware technology have allowed a change in the im-
plementation of the visualization pipeline used in graphics hardware. Instead of offering a
fixed set of functions, current processors allow a large amount of programmability by hav-
ing the user develop special programs to be executed on a per-vertex of per-fragment basis.
This programmability created a very interesting side-effect: it is now possible to interpret the
flow of graphical data inside the pipeline as passes through a stream processor. This leads to
the possibility of efficient implementation of a series of different algorithms directly on the
graphics hardware.

In this tutorial we will present the main techniques that are involved in implementing
algorithms in this fashion. The various examples that will be presented come from recently
published papers, and by reviewing and analyzing their contribution, we will enable the at-
tendee both to understand the reasoning behind the development of the algorithms and to
create novel algorithms of his or her own. We do not assume knowledge of how fragment
or vertex programs work, but we do assume knowledge of the structure of a graphics hard-
ware pipeline. Some working knowledge of linear algebra is also assumed, but the examples
presented will be thoroughly examined.

2 History of Graphics Hardware Development

Specialized hardware for computer graphics (referred here as “graphics hardware™)
has advanced in an unprecedented rate in the last several years. Part of the evolution can
be explained by industry pressure; real-time graphics has a great demand in military and
medical applications, for example. The interactive entertainment industry has also pushed
much of the development of graphics hardware. Computer games market were evaluated at
around eleven billion dollars in 2003 in the United States [23], which is more than the movie
industry evaluations.

Technical factors also pushed the evolution of graphics hardware. Many graphics
algorithms in the generation of synthetic images are easily expressed in a parallel fashion:
hardware implementation of these algorithms becomes very efficient. Moore’s Law also
helps: more and more transistors are being packed into a single chip. It is interesting to note
that graphics hardware has actually outpaced Moore’s law, because of the easy parallelization
of those algorithms when compared with the complexity of scaling up SISD performance.

To give a feel of the evolution of the graphics hardware, we follow with a short presen-
tation of the representative GPU’s of the last decade. The format and nomenclature follows

[4].
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Pre-GPU’'s Before the development of the so-called GPU’s, specialized graphics hardware
was only available in integrated hardware-software solutions provided by companies such as
Silicon Graphics (SGI) and Evans and Sutherland (E&S). This hardware was wholly inac-
cessible to the general public because of the cost involved. Nevertheless, these companies
provided the first hardware-based solutions for vertex transformation and texture mapping.

First-Generation GPU’s The first generation of consumer-level graphics processors ap-
peared around late 1998 and its main representatives are the NVIDIA TNT2, the ATl Rage
and the 3DFX Voodoo3. These processors operated mostly in the rasterization portion of the
pipeline, and required previously transformed vertices. Some of the chips supported “multi-
texturing”, which meant automatic blending of two or more textures in the rasterization step.
There was a fixed set of blending functions available to the programmer. These processors
had around 10 million transistors.

Second-Generation GPU’s The GPU'’s of these generation were called, at the time (late
1999 and early 2000), the T&L (transformation and lighting) GPU’s, because of their main
improvement with regard to the previous generation. Here the CPU is freed from an addi-
tional burden: the vertices can be passed untransformed, and the GPU takes care of keeping
the transformation matrices and making the transformation and lighting calculations. This
represented a great improvement for interactive graphics, because these operations are typ-
ically performed many times during the rendering of a scene. There are more operations
available for the programmer, but no real programmability is yet present. The typical proces-
sors of this generation are the NVIDIA GeForce256 and GeForce 2, the ATl Radeon 7500
and the S3 Savage3D. The transistor count for these GPU’s was in the order of 25 million.

Third-Generation GPU’s  This generation represents the first significant change that will
allow the interpretation of the graphics hardware pipeline as a stream processor. Now the
configurability of the pipelines is enhanced with a programming model that performs vertex
computations, and a very limited form of programming at the pixel level. \Vertex programs
have a limited number of instructions (128) and accept around 96 parameters (each a vector
of four floating-points). At the pixel level, the programs are limited by the way they can
access texture data, and by the format of the data available: dependent accesses are severely
restricted, and only fixed-point numbers are available. Another limitation that appears here
is the absence of program flow control: no branches are allowed. The maximum program
sizes are also small; programs can have no more than a dozen or so instructions (with small
variations depending on the specific GPU). Other features of these GPU’s include native
support for shadow maps and 3D textures. The main representatives of this generation are the
NVIDIA GeForce3 and GeForce4, and the ATl Radeon 8500. The year was 2001 (and early
2002), and the GPU’s used around 60 million transistors. Around this time the first steps
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towards general computation techniques using stock GPU’s were being taken [7].

Fourth-Generation GPU’s  This generation represents the current state of the art in graph-
ics hardware. Here we see a significant generalization of the fragment and vertex programma-
bility present in the previous generation. Pixel and vertex programs now can comprise thou-
sands of instructions, and the limitation on the usage of texture data is moUsaToday03stly
gone. Dependent texturing are now more flexible, which is the use of texture data as index
for other lookups. This is the basic technique for the implementation of data structures later
on. The GPU’s now have floating-point units, and textures are no longer clamped to the
[0.0,1.0] range. This enables their use as ordinary arrays, and is the other main contribution
that enables general computation. The main representatives of this generation of GPU’s cur-
rently are the NVIDIA GeForce FX series and the ATl Radeon 9700 and 9800, with more
than 100 million transistors each.

In this course, we will focus on fourth-generation GPU’s, because the difference in
programmability between earlier and current processors are quite big. And while it is possible
to perform certain computational tasks using earlier GPU’s, there is a very limiting lack of
precision in the data formats available and unneeded complexity involved [7], [8].

3 High-level Shading Languages

It is hardly argued that the most significant advance in consumer-level graphics hard-
ware is the programmability of the graphics pipeline. This is achieved by replacing, as already
explained, portions of the pipeline with specialized programs. A critical issue that arises is
the need to describe these programs. Assembly languages are typically provided by vendors,
but they have well-known portability issue and are cumbersome to program.

Each different GPU has a different instruction set. This is complicated by the fact that
since the GPU’s are different, not all programs that are compilable in one GPU are in the other.
Additionally, this problem should be tackled in a vendor-independent way. Some solutions
have been proposed, each with their own tradeoffs. In the Direct3D HLSL, for instance,
a program is previously compiled to an intermediate GPU-independent assembly language,
and from that to the target language. The main advantage is the simplicity of implementation.
On the other hand, certain optimizations are not perfomed because the GPU instruction set is
shadowed by the intermediate step. This leads to other two solutions proposed. One of them,
used by NVIDIA in its Cg language, is to use different language profiles, mechanisms that
provide a way to probe the processor capabilities and to configure the compiler to produce
different outputs. This eliminates the need for the intermediate step, but requires potentially
different programs for different profiles.
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The last proposal, used by 3D Labs in its GLslang (GL Shading Language) [15], is to
embed the programmability directly in OpenGL. The GLslang will be used directly through
the OpenGL calls, and the compiler will be hid from the user by the runtime. This enables
each driver to provide its implementation, which is the ideal amount of decentralization,
as each vendor can implement the features in its own way, provided that the interfaces are
respected (concerning errors and compilation, for example).

In this section we will take a quick look at some proposals for high-level shading
languages. These languages work at different levels of abstraction, and have some interesting
differences that are worth mentioning.

3.1 Stanford shading language

The Stanford Shading Language [17] was one of the first high-level shading language
designed for real-time graphics. Its design used ideas from many languages, but the biggest
influence was undoubtedly the RenderMan shading language [20]. The Stanford shading
language revolves around different computation frequencies. Procedural shading elements
can be associated with primitives, vertices or pixels, and the language takes care of providing
a unified interface in which the programmer can mix operation from different frequencies.

One interesting aspect of the Stanford shading language, and one that separates it from
the other languages presented here is that the language takes care of virtualizing the graph-
ics resources. This means that if the graphics card is unable to perform a certain operation
that is present in the shader, this operation is delegated to the host CPU. This convenience is
important if the user wants to have the shader operation no matter what, even with a signif-
icant decrease in performance. This makes it somewhat unsuitable for our work here, since
we want to exploit the performance advantages of the GPU as much as possible, and we are
willing to develop a different (but equivalent) shader that will run on the GPU.

3.2 Cfor Graphics(Cg)

Cgis a high-level shading language designed for the programming of GPUs [1], devel-
oped by the NVIDIA Corporation. Cg attempts to preserve most of the C language semantics.
In addition to freeing the developer from hardware details, Cg also has all of the usual advan-
tages of a high level language such as easy code reuse, improved readability and the presence
of an optimizing compiler.

The Cg language is primarily modeled after ANSI C, but adopts some ideas from
modern languages such as C++ and Java, and from earlier shading languages such as Render-
Man and the Stanford shading language. These enhancements and modifications that make
it easy to write programs that compile to highly optimized GPU code, as well as increasing
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Figure 1. The Cg model of the GPU (figure from [4])

readabilty (through overloading, for example).

The Cg design considers some aspects of the GPU architecture, like the programmable
multi-processor units (the vertex processor and the fragment processor, plus other non-pro-
grammable hardware units). The processors, the non-programmable parts of the graphics
hardware, and the application are all linked through data flows. Figure 1 illustrates Cg’s
model of the GPU. The Cg language allows to write programs for both the vertex processor
and the fragment processor. NVIDIA refers to these programs as vertex programs and frag-
ment programs, respectively. (Fragment programs are also known as pixel programs or pixel
shaders, and we use these terms interchangeably in this document).

The Cg APl introduces the concept of profiles, to deal with the lack of generality in the
vertex and fragment programming. A Cg profile defines a subset of the full Cg language that
is supported on a particular hardware platform or API. Cg code can be compiled into GPU
assembly code, either on demand at run time or beforehand. Cg makes it easy to combine a
Cg fragment program with a handwritten vertex program, or even with the non-programmable
OpenGL or DirectX vertex pipeline. Likewise, a Cg vertex program can be combined with a
handwritten fragment program, or with the non-programmable OpenGL or DirectX fragment
pipeline. In this tutorial, we’ll use Cg as the language of choice to describe the programs that
will be implemented.

3.3 Microsoft HLSL

One of the most empowering new components of DirectX 9.0 is the High Level Shad-
ing Language (HLSL). Shaders were first added to Direct3D in DirectX 8 [3]. At that time,
several virtual shader machines were defined - each roughly corresponding to a particular
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graphics processor produced by each of the top 3D graphics hardware vendors. For each
of these virtual shader machines, an assembly language was designed. In DirectX 8.0 and
DirectX 8.1, programs written to these shader models (named vs_1 1 and ps_1 1 through
ps_1_4) were relatively short and were generally written by developers directly in the appro-
priate assembly language. In DirectX 9.0, the application passes an HLSL shader to D3DX
via the D3DXCompileShader() API and gets back a binary representation of the compiled
shader which is in turn passed to Direct3D.

In addition to the development of the HLSL compiler in D3DX, DirectX 9.0 also
introduced additional assembly-level shader models to expose the functionality of the latest
generation of 3D graphics hardware. Application developers can feel free to work directly in
the assembly languages for these new models (vs_2 0,vs 3 0,ps 2 0and ps_3_0).

In fact, Cg and HLSL are actually the same language, mainly due to its development
by NVIDIA and Microsoft consortium. They have different names for branding purposes.
HLSL is part of Microsoft’s DirectX API and only compiles into DirectX code, while Cg can
compile to DirectX and OpenGL.

3.4 OpenGL 2.0 shading language

The OpenGL 2.0 proposal, developed by 3DLabs and recently submitted for comment
by the OpenGL ARB, includes a specification for a shading language [15]. The syntax of the
shaders is very similar to the previous three languages described, but the really interesting
aspect of this language is that, because of its inclusion in the OpenGL standard, it is probably
the first shading language that will be adopted in a truly cross-platform way.

The main difference between GLslang and the other languages is that the compiler
will be more tightly integrated in the graphics pipeline, hopefully providing an easier to use
interface. 3DLabs claims that to use GLslang, it won’t be necessary to link to additional
libraries or use specific development tools. This can be an important advantage for the devel-
oper. Unfortunately, we haven’t had access to complete implementations of GLslang at the
time of writing.

4 Casestudies

General-purpose computation using graphics hardware is a rapidly growing field. In
this section, we hope to present some of the most important works to date. We will start with
very specific examples, which illustrate basic techniques, and work our way to more general
ones. During the presentation, the main methods to translate a problem to a GPU-based one
will be highlighted. This will enable the reader to apply the techniques in other problem
domains.
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The first cases use the GPU to implement ray tracing. Even though this is a com-
puter graphics algorithm, it is important to see which parts of the algorithm are given to the
GPU and the CPU, and to understand the fundamental differences in the approaches. The
following cases are iterative solvers, which introduce the concept of feedback. By reusing
the results of the computations and input, we are able to express many more problems using
the tools available to the GPU’s. The remaining cases concern general linear algebra solvers,
and the main concept used is that of indirect texture access. This technique is used in the
implementation of data structures using textures, and allows much more complex algorithms
to be cast in a GPU fashion.

4.1 GPU-based Ray Tracing

Until recently, limitations in computing power have forced real-time synthetic image
generation to methods that explore image and object-space coherency. Typically, scan-based
rasterization with local illumination models is used in these situations. Ray tracing offers
a completely different approach. Ray tracing allows more sophisticated models by solving
the radiance equation at a single point under reasonably realistic assumptions. For example,
it can be used to realistically simulate shadows, reflections and refractions in a general way
while approximate and specific solutions are needed in rasterization based algorithms, such
as shadow mapping, shadow volumes and environment mapping.

Ray tracing can easily produce images with higher quality, mostly because complex
interactions between the light and the scene can be simulated. On the other hand, ray tracing
has a reputation for being hopelessly inefficient in real-time applications. In this section
we will describe techniques that take advantage of the programmability of current graphics
hardware, allowing a substantial speed-up in ray tracing applications that brings ray-tracing
closer to real-time applicability.

The implementation of the rasterization pipeline in hardware allowed developers to
employ more sophisticated rasterization-based techniques such as the ones described above,
while keeping the frame rate well above real-time constraints. As we have seen, advances in
VLSI processes and demands for higher flexibility in the pipeline caused the abandon of the
fixed-function structure in favor of programmable vertex and pixel units. This change has in-
advertently allowed the implementation of entirely different synthetic image generation algo-
rithms. We will examine ray tracing here, but other techniques have also been implemented,
such as radiosity [2] and photon mapping [19].

We will examine two proposals for hardware-based ray-tracing. The first one [3]
relies directly on pixel programs for ray-triangle intersection tests, somewhat limiting the use
of the GPU to what it does most efficiently. The latter [18] base their implementation in
simulators that incorporate features currently unavailable on GPU’s and is discussed mostly
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for illustrative purposes of the expected direction in development of the GPU’s.

4.1.1 TheRay Engine

Defining the Role of the CPU and the GPU The ray tracing algorithm can be divided
in four distinct phases: ray generation, ray intersection and point shading. Ray intersection
assessment is classically the most expensive step in computational terms, and, as such, is
usually preceded by an acceleration structure traversal of some kind, where as many ray
intersection tests as possible are avoided.

We have seen that current graphics hardware can be interpreted as a stream processor.
As such, it lacks some typical features of regular CPU’s. The critical missing feature here is
the control stack. This imposes some severe constraints on a direct ray tracing implementa-
tion on a CPU, because ray tracing is very easily formulated as a recursive procedure. Path
tracing uses ray tracing and is not necessarily recursive, but we will deal exclusively with
classic ray tracing.

This first example uses the GPU exclusively for ray-triangle intersection tests. This
means that the ray tracer implemented is not very general: regular ray tracers can be imple-
mented to support arbitrary geometric structures, defined by many different shapes, including
implicitly defined surfaces and cubic spline patches [16]. The restriction of polygonal meshes
is not stringent, though. Most ray-tracers designed with strict performance requirements deal
only with triangles. The remaining steps of the ray tracing algorithms are left to the CPU.
Having decided the role of the GPU, we must now turn to the next question: how do we go
about implementing these tests efficiently?

Choosing and Implementing a Ray-Triangle Intersection Computation The pipeline
of a modern programmable GPU is customizable in two different stages of the pipeline. The
vertex programs replace the view volume normalization stage just before the primitive assem-
bly, and the fragment programs replace the lighting and shading calculations of the (typically)
Gouraud-interpolated, phong-shaded polygons.

It is possible, in principle, to implement the test in either stage. Because of its intrin-
sically parallel nature, fragment programs are able to process more than ten times as many
fragments as the vertex programs can process vertices. The authors chose to do it in the frag-
ment program because of the precision, performance difference and the possibility of cheap
access to texture data. The vertex program would have the advantage of allowing more data
to be output (the fragment program currently can only produce < R, G, B, A > values and
a depth component). After considering different intersection tests, a modified version of the
Moller test [12] was chosen.
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The Moller test returns the parameter ¢ of the intersection between the ray and triangle
plane. It can be calculated as:

l.ao=0o—-a

2. bod = bo x d

3. bo=0—-b

4. u = ac.aod

5. v = —ab.aod

6. aod =ao x d

7. w = cb.bod

8. t = —(n.ao/n.d)

where

e a,b,c— the vertices of the triangle
e n — front facing triangle normal

e 0,d — ray origin and direction

Additionally, some values (ab, ac, ¢b) are constant per triangle and are evaluated of-
fline for eficiency purposes. The result of the intersection is stored in the framebuffer, and
will be sent back later to the CPU for actual shading of the fragment or to respawn secondary
rays. Since each triangle may have different material properties, and hence will interact dif-
ferently with the ray, there must be a way to identify the closest triangle intersected by each
ray. This is done by the standard technique of storing a unique identification number as a
color that will be stored in the framebuffer. We have the following parameters to be passed to
the GPU: a, b, ¢, ID, o, d. For additional performance, ab, ac, c¢b and n are computed inside
the vertex shader and passed into the fragment shader.

The output data should be packed in a suitable and compact form. Special care had to
be taken when defining this packing format, mainly because the output data should be sent
back to the CPU, and would consume AGP bandwidth. Considering that AGP is an asymmet-
ric port, presenting a narrower bandwidth on the GPU to CPU direction, it can significantly
slow down the entire process if the amount of data to be sent through it is large. At the same
time, the output data must have the minimal informationI D, o, d, necessary to enable the
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CPU to compute the shading calculations from it. The data elected to be returned by the
GPU, for each ray tested, are: the color of the first triangle the ray intersects (the triangle’s
ID), the result of intersection in the alpha channel and the t-value []. The question now is:
how to send and retrieve those parameters to and from the GPU?

Passing and Retrieving Parametersfrom the GPU  The format in which the input param-
eters should be packed to be sent to the hardware should be defined. The authors decided for
packing ray’s data into texture units and triangle’s data as properties of the four vertices of a
screen filling quadrilateral (quad).

Ray data was packed into two screen resolution textures. The first texture stores the
coordinates of the origin of each ray as RGB values. The second texture stores the direction
of each ray as RGB values. Textures can be directly accessed at the fragment program level
by texture samplers that wrap the GPU texture unit functionally.

Triangle data are stored as properties of the four vertices of a quad that covers all
screen area. As the process of rasterization progresses, each pixel of the screen is evaluated,
and the quad vertices’ properties are properly interpolated. As the property values of those
four vertices are equal, the linear interpolation process just replicate those values across each
pixel of the screen.

The quadrilateral texture coordinates related to texture O (zero) have a special mean-
ing. Those coordinates are different at the four vertices of the quad (they are set to (0,0),
(0,1), (1,0), (1,1)) and, when interpolated across the quad, they enable the pixel shader to
address the two textures units containing ray data.

The output data is stored in the framebuffer. For each tested ray, there are three values
that must be returned: color of the triangle (triangle I1D), result of the intersection computation
and the t-value. All those values were packed, for each ray, as an unique vector of the form
< R,G, B, A,depth >.

Putting Everything Together It was defined, in previous sections, the rule of the CPU and
the GPU in this particular ray tracing implementation based on their properties. It was shown
how an efficient ray-triangle intersection computation can be successfully implemented into
the GPU, and how to send and retrieve parameters from it.

Now it is time to an overview of the entire system. It is obvious that just accelerating
the ray-triangle intersection through the use of the GPU is not sufficient to really improve
the performance of the ray tracing, and additional techniques can be used. The reduction of
ray-intersection tests to be computed and use of coherency are good points to be observed.

The ray engine uses an octree to keep the geometry coherence and a 5-D ray tree to
exploit ray coherence. A ray cache, composed by small buckets of rays, is maintained by the
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CPU to better utilize the texture cache of the GPU. Each bucket contain 256 rays, organized
as two textures 64 x 4, that stores the values of origin and direction of those rays. Those small
textures are better handled by the GPU, and are kept inside the texture cache during its use,
accelerating the intersection computations.

As they are created, new rays are stored inside those buckets. Each time a bucket is
filled, and a new ray is added, this bucket is split into four new buckets. Once the ray cache
becomes filled with rays, or the GPU finishes previous calculations, the filled buckets are
sent to the GPU. During the intersection computations on the GPU, the CPU can calculate
the shading of already returned intersected points, add new rays to the buckets, etc.

412 Ray Tracing on PGH A different approach was chosen by [18][19], where they
decided for implementing the entire ray tracing algorithm into the GPU. As GPUs had serious
limitations concerning to floating point precision and control flow, extended GPU simulators
were used to test and generate the results.

In this method, the ray-tracing process was broken into four main kernels: ray gen-
eration, structure traversal, ray intersection and point shading. The ray generation kernel
is responsible for the generation of rays based on the camera description and for the initial
intersection test between these new rays and the bounding box of the scene. The structure
traversal kernel is responsible for searching triangles inside the scene structure for future in-
tersection tests. The intersection kernel receives (one ray, n triangles) pairs and computes the
intersection of those rays against their respective triangles. The shading kernel is responsible
for computing the shade of an intersected point or for the respawn of new rays, that will be
shoot against the scene again. Each one of the four kernels was implemented into the GPU
through a separate pixel shader program.

As ray tracing involves significant looping, two different extended GPU architectures
were simulated for the tests: a multipass and a branching one. The branching architecture
was allowed to loop and to branch, while the multipass architecture wasn’t. One can simulate
looping in the multipass architecture through the use of multipass rendering, whereas the flow
control is simulated using the stencil buffer.

To improve performance, a structure to keep geometry coherence should be used. The
authors decided for using a 3D uniform grid (implemented by a 3D texture) to divide the
scene into voxels, for two main reasons: first, uniform grids can be more easily handled by
actual hardware (that does not support hierarchical structures), and second, due to efficiency
gains.

Each voxel of the scene may contain scene geometry. If this is the case, the respective
texel will contain a pointer to the beginning of a triangle list. If it’s not, its content will be
null. Triangle lists are arrays of pointers to triangle data, and they are all stored in a one-
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dimensional texture. Each triangle list is separated by a null element in the 1D texture. The
vertices of each triangle are spread over three 1D textures.

Purcell et al. demonstrated that various ray tracing techniques could be successfully
implemented through the use of those simulators, including: shadow cast, ray casting, ray
tracing and path tracing. As the solution presented required a lot of inexistent extensions
in the GPU, its practical implementation is not possible at the moment, but the article can
be viewed as an interesting study about GPU structure, and presents a series of interesting
extensions that could be found in future releases of those processors.

4.2 lterative Solvers

In this section, the two papers that will be presented use the same main technique to
achieve their results. By carefully using feedback, that is, by interpreting the rendered results
as inputs to another step of the simulation, a much larger set of problems can be tackled.
This feedback is achieved by copying the framebuffer to a texture or by directly rendering to
textures. This later feature is only available in OpenGL through the use of extensions, but
Direct3D offers it natively. One straightforward use of the feedback technique is to iteratively
solve differential equations, and the time integration is done by using the result of the last time
step as input to the next one. As we’ll see, this is close to what happens in these examples.

421 CML’'s Thiswork [7] demonstrates the use of graphics hardware to implement sim-
ulations of physical phenomena in a simple but visually accurate way. The simulation is
achieved using coupled map lattices [10], which are a simple extension of cellular automata
[22] where the cell states are real values, and the next-state computation is an arbitrary arith-
metical expression. CML’s have been used to simulate many different physical phenomena,
and the ones we’ll discuss here are the ones used in the paper, namely boiling and reaction-
diffusion.

This work is particularly interesting because the operations that are to be performed
during a given simulation using CML’s have a very close correspondence with the kind of
fragment-level programming that is used in most of the examples we’ll see. At the same time,
CML’s don’t involve any particularly difficult mathematical modelling that may obscure the
programming techniques employed. For example, the representation of the state of a given
CML in hardware is simply a texture with appropriately valued channels, not requiring any
specific data structure or manipulation.

The authors divide a single step of the CML computation in four stages that are sim-
ple and broadly applicable techniques for GPU computation, and so we will follow their
presentation here almost exactly. The main difference is that the authors divide the stages
of neighbor computation and new state computation, because of the hardware features at the
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glviewport (0, O,
lattice->width(),
lattice->height());

glOrtho (0, lattice->width(),
0, lattice->height(),
-1, 1);

Figure 2. Setting up the projection for next-state computation

time the paper was written. Since we are not interested in this historical perspective, and
currently it is much easier to interpret and implement these steps as a single one, we will treat
them as such.

Next-statecomputations For now, we’ll suppose that we have the current state of the CML
in a texture, and will consider the problem of obtaining the value of the next-state. Since we
are interpreting the GPU as a stream processor and the CML simulation involves continued
iteration of functions, we must eventually find a way to feed the results of a computation back
to the beggining of the stream. This is a simple operation, and will be described later.

The authors use the frame buffer as a temporary placeholder for the next state of the
CML. This means that we’ll render the CML directly to the screen, and use fragment-level
programming to do the compuation. This also means that each texel in the texture must be
mapped exactly to a pixel in the frame buffer. A simple orthographic projection will take care
of that, as shown in figure 2.

Neighbor Sampling The first stage described is the one in which we determine the value
of the cells in the local neighborhood of the cell we are computing. This is done by offsetting
the texture coordinates in the direction of the neighbors. Some simulations require a weighted
average of the neighbors and the local value, and this can be done without additional compu-
tation, using the interpolation capabilites of the texturing hardware. This blurs the distinction
between the stages of sampling and computation, but the technique is highly useful, since
computing the average comes at no cost at all.

Computation on Neighbors and New State Computation After having determined the
values of the state in the neighbors, we have to compute the next state of the local cell using
fragment-level programming. In the original paper, this is not entirely trivial because of the
need to use texture shaders and texture combiners, two GeForce3-specific techniques at the
time. Since in this tutorial we’ll be using Cg, the two stages can be fused into one, and
the clarity of the operation is much improved. A simple fragment program that computes
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the diffusion step of the boiling simulation using only simple arithmetic is available in the
additional material provided, as an illustrative example.

In case we need to use more complex functions that are either not available on the
GPU or too expensive, we can employ a very easy and very powerful technique. We trade
a potentially expensive set of operations for a simple texture lookup, at the expense of a
texture sampler. Previously to the iteration cycles, we compute the complex function across
the portion of the domain that we’ll use and store it in a texture. In the GPU code, the
complex function is then traded for a texture look-up. In a sense, the earlier stage of sampling
the neighbors can be interpreted as looking up a potentially complex function, possibly in
multiple dimensions. This will be exactly the case in the other case studies, where we will turn
the GPU into general numerical PDE solvers. The more general technique of using texture
values as indices for other textures is the dependent texturing technique described earlier, and
will be put to extraordinary use in the case studies. The buoyancy operator described in the
original paper uses this very technique through the DEPENDENT_GB_TEXTURE_2D_NV
GeForce3-specific (at the time) texture shader, and a fragment program the computes it in Cg
is also available in the additional material.

State Update After the fragment programs are executed throughout the entire texture, the
frame buffer will contain the next state of the CML computation. We must now find a way to
feed these results back to the original texture. There is a simple OpenGL call that does just
this: glCopyTexSublmage2D. This is a very efficient operation in the case where there is no
transfer of data across the graphics bus or port, which is what happens here, copying from the
frame buffer to a texture.

4.2.2 Cloth Simulation This example will show an implementation of a cloth simulation
using only graphics hardware, which includes some interaction with scene geometry [13]. It
will serve as an illustration of the methods described above — specially the feedback from the
frame buffer — and, although it is not portrayed in this way, it should be clear to the reader
that the CML model discussed earlier serves as a very suitable model for this simulation.

A cloth patch can be represented as a bidimensional array of 3D points. These points
represent a discretization of the real piece of cloth, and will be subject to a series of constraints
that simulate the real world, such as collision between objects and distance constraints be-
tween neighboring points of the mesh, in addition to being subject to gravity.

The gravity-induced acceleration will be integrated using \Verlet integration [21]. This
method was chosen because it eliminates the need for explicit velocity storage. Verlet inte-
gration is more stable than explicit Euler integration, but there are better integrators in terms
of stability (RK4 is the usual integrator used). An additional problem with Verlet integration
is the subtracting of two terms of approximately the same magnitude, which can result in se-
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void Integrate (inout float3 x, float3 oldx,
float3 a, float timestep2, float damping)
{

X = X + damping* (x - oldx) + a*timestep2;

}

Figure 3. Verlet time integration in Cg

vere loss of precision in floating-point operations. On the other side, Verlet integration makes
the treatment of constraints rather easier. Using Verlet integration, velocity is estimated from
the current and previous positions only. Since there is no explicit velocity, when a collision is
detected only a recomputation of the correct position is needed. This is important here, as we
will simulate the cloth interaction with the environment using fragment programs, and as we
have shown earlier, fragment programs have no way to write more than a single value in one
execution. So, storing the velocity would require an additional pass and fragment program,
and would make the program clumsier. The implementation of the simulator follows closely

[9].

Representation The state of the simulation will be represented using two floating-point
textures. The first one will store the actual positions of the 3D points, and the second one will
store the normals that will be used for the lighting model. The normals are only needed for
the visualization, and will not take part in the simulation itself.

Time integration Time integration is done by a fragment program that will update the
position according to the forces being applied at the points of the cloth patch and the previous
and current positions. In this case, only gravity is considered, so the total acceleration on a
body is simply the acceleration vector. The integration step is shown in figure 3.

In the code, a represents the acceleration vector, t imestep2 represents the square
of the timestep, x and o1dx are respectively the current and previous position of the vertex,
and damping is a damping coeficient to prevent instability.

Constraints In this simulation, we have three constraints that must be met. Two of them
concern interaction of the cloth with the environment, and the last one concerns the mainte-
nance of the cloth integrity. The first two will be implemented simply checking whether the
points are invading the solid volumes and updating them accordingly. The floor constraint is
trivial (Figure 4).

The sphere constraint is also straightforward: the point is inside the sphere if the
distance between the point and the center of the sphere is smaller than its radius. To enforce
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void FloorConstraint (inout float3 x, float level)

{
if (x.y < level) {
x.y = level;
}
}

Figure 4. Floor constraint in Cg

the constraint, the point must be displaced outward from the center a distance equal to the
portion of the sphere it has penetrated (Figure 5).

void SphereConstraint (inout float3 x,
float3 center, float r)
{

float3 delta = x - center;
float dist = length(delta) ;
if (dist < r) {
x = center + delta*(r / dist);

}
}

Figure5. Sphere constraint in Cg

The final constraint is the trickiest. Since we are simulating a piece of cloth, each point
must be kept at the initial rest distance of each other. This constraint is approximated by sum-
ming the displacements created by each constraint — the left, right, up and down neighbors.
The sum is then scaled down by a stiffness value, that serves to stop big displacements, as
these can throw the Verlet integration out of stability. In the following code, x is the central
point, and x2 will have the values of each of the neighbors. restlength is the expected
rest length of the joint, and st if fness is self-explaining (Figure 6).

The constraints have to be applied in a proper order, so that the user doesn’t see the
cloth temporarily penetrating the floor or the sphere. We will have two passes, then: the first
will integrate the time, and the second will satisfy the constraints, as follows.

Normal computation The first texture is now being updated properly. On the GPU side,
what is left now determining the normal of the cloth pieces. This is done by computing
the normalized cross product between the vectors formed from each the current point to the
vertical and horizontal points.
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float3 DistanceConstraint (float3 x, float3 x2,
float restlength, float stiffness)
{

float3 delta = x2 - X;

float deltalength = length(delta) ;

float diff = (deltalength - restlength) / deltalength;
return delta*stiffness*diff;

Figure 6. Distance constraint in Cg

Visualization We have now an interesting problem. The textures describe the cloth patch
appropriately, and we are able to simulate the behavior of the cloth and its interaction with
the environment as time passes, but a fundamental piece of the puzzle is missing: how do we
visualize the results? A naive solution would be to read the textures back to the CPU memory
using adirect glReadPixels call. However, this would largely defeat the original purpose,
that is to alleviate the CPU from the entire process. Additionally, we know that this memory
transfer can be problematic if stringent real-time constraints are present.

The solution proposed involves a currently proprietary OpenGL extension. Fortu-
nately, this extension is expected to be included in the ARB specs [6]. The procedure is
similar to the initial idea. Since we were going to use the CPU simply as a way to inter-
pret that textures as series of vertices and normal values, there should be way to do just that,
without resorting to copying data through the graphics port. The NVIDIA pixel data range
extension [14] allows just that. By specifying a vertex array range using that extension, we
can do a glReadPixels directly from the texture to the vertex array, avoiding a round trip to
and from the CPU.

This final part is probably the most interesting part of this example. Now, along with
being able to perform iterated computation on textures, we can interpret them as arbitrary
geometry, which means that, for example, the CML techniques can be used in different prob-
lem domains. One of the possibility this creates is the one of implementing particle systems
directly on the GPU.

4.3 General Linear Algebra Solvers

The next two examples will raise the abstraction level we are dealing with. Instead
of coding each problem into a different algorithm, the following two papers describe the
implementation of general linear algebra methods that are applicable in a wide range of sim-
ulations. The two papers specifically illustrate their data structures by implementing solvers
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main(...)

{
/] ...
// sample x1, x2, x3, and x4, the point neighbors

float3 dx;

dx = DistanceConstraint (x, x1, constraintDist, stiffness);

dx = dx + DistanceConstraint (x, x2, constraintDist, stiffness);
dx = dx + DistanceConstraint (x, x3, constraintDist, stiffness);
dx = dx + DistanceConstraint (x, x4, constraintDist, stiffness);

X = X + dx;

SphereConstraint (x, center, r);
FloorConstraint (x, level);

Figure 7. Putting the constraints together

for finite-difference equations. These solvers require three different classes of operations:

e \ector-vector operations, such as element-wise sum, difference and multiplication

e Sparse matrix-vector operations: Multiplication of a sparse matrix by a vector is the
typical operation. Dense matrices are seldom used, because the typical matrix that
appears in the discretization of differential equations is by nature sparse.

e \ector reductions: Vector reductions are a class of operations which reduce a vector
into a scalar, by applying a binary associative operator to all elements of the vector.
This is used, for example, to compute the inner product between two vectors, where
first we compute the element-wise multiplication between the vectors and then reduce
the result using a sum.

The first example we’ll examine [11] explores a particular layout present in most
sparse matrices that arise in physics-based numerical simulation, that of being banded or
nearly-banded. The second example [1] employs a more general technique of rows of sparse
matrices into matrices and executing different fragment shaders for rows with a different num-
ber of elements. In showing these two data structures, we’ll explore a range of techniques for
mapping CPU constructs to the GPU.
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Linear Algebra Operators for GPU Implementation of Numerical Algorithms We’ll
start describing the implementation of the data structures involved. We basically must de-
scribe vectors and sparse matrices, and since vectors are simpler structures, we’ll begin there.

Intuitively, one could think about implementing vectors directly as one-dimensional
textures. This straightforward solution has the advantage of extreme simplicity, but is limited
in some ways. First of all, we should know that the size of a texture is limited by the maxi-
mum width and height allowed in the hardware implementation. The maximum size of a 1D
texture is then bound linearly by the maximum width representable in the graphics board. 2D
textures, on the other hand, have their maximum size bound by the square of the width. This
allows a much larger vector size. Secondly, square textures are rendered faster in graphics
hardware. This way, we’ll represent vectors as 2D textures and convert the coordinates in the
fragment programs that will manipulate the structure.

The design of the sparse matrix data structures involves an observation concerning
the typical layout of non-zero entries in the matrix that are to be used in the implementa-
tions. Typically, matrices that are created from the discretization of differential equations are
banded, typically with a low bandwidth. This means that most of the non-zero values are very
near the diagonal of the matrix. The authors exploit this fact by storing the matrix not as a set
of columns or set of lines, but as a set of diagonal vectors. Each of these vectors is stored as
described in the previous paragraph, but instead of laying them out as columns, the authors
move the diagonals under the main diagonal to the right of the matrix, achieving a “skewed”
layout like that of figure 8:

This way, if one of the diagonals (which, apart from the main diagonal, actually now
represent two matrix diagonals) has no non-zero values, it doesn’t have to be stored at all.
Since we know the matrices are likely to be banded, this represents a potentially big gain in
space. A matrix with bandwidth 2 needs only three vectors for its representation, for example.

The case of more general sparse matrices needs to be handled in a different way,
because we no longer have the guarantee of the diagonal coherence. The solution suggested
by the authors is to abandon the diagonal layout and turn to a more traditional column-based
layout. Instead of arranging each column as a vector represented as a texture in the way
described earlier, the columns will be represented as individual vertex arrays that will be
rendered as points. Vertex arrays are a feature present in all modern graphics cards which
enable the programmer to store geometry in the GPU memory [NVIDIA or OpenGL]. The
vertex position will be the position of the cell in the matrix, and its color will be the value
of the matrix cell. We will also store here texture coordinates, that will be used in a way
explained later.

Now that we know the representation of the structures that will be used, let us turn
to how the operations themselves are implemented, starting with the simpler vector-vector
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1112|1314 Traditional

21(22(23(24 layout

31(32(33[34
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1112|1314 Proposed
22(23(24|21 layout

33(34|31(32
a4/a1\42(a3

Figure 8. Moving the sub-diagonals, creating a skewed “diagonal matrix”
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11

12

13

14

Figure 9. The matrix is represented as a set of diagonals, and the diagonals are themselves
represented as vectors, in the way described above.
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operations. Vector-vector operations use very simple fragment programs that operate over
each fragment performing the desired operation. The operations that the authors describe can
scale the input vectors arbitrarily before applying the operations. This is also very simple.
The result of the renderization is the new vector. No fancy texture coordinate calculation is
needed, because both vectors share the same layout, so that the right elements are already
aligned.

Vector reduction operations work on a single vector, and must accumulate all the vec-
tor values into a scalar using some operation. In general the reduction operation need not be
commutative, but this implementation imposes a commutative restriction on the operation.
The way this implementation work is to repeatedly turn a NxN texture representing a vector
into a N/2xN/2 texture, where each new element corresponds to four elements accumulated
using the operation supplied. This new texture is again reduced using the same technique, and
this is done iteratively until all values are accumulated into a 1x1 texture. The value of the
single pixel will correspond to the final value of the reduction operation. The whole reduction
takes logn passes, and not more than 4/3 x n? pixel operations, being reasonably efficient.
The way this operation is implemented illustrates a key missing feature in current graphics
hardware: there is no accumulator register present that can be used concurrently by the dif-
ferent fragment program executions. Were this the case, the implementation would work in
a single pass. This illustrates a bottleneck that is created when an algorithm is translated to
streaming style: the data-parallel operations become more efficient, but if reduction opera-
tions are a significant part of the algorithm, the translation might not be effficient. Occlusion
queries [14] can be used as described in [5] to simulate the determination of the L ;,,; norm in
a single pass. Similar techniques may be used in restricted cases.

Finally, we have to implement the sparse matrix vector multiplication. When a sparse
matrix is represented by sets of diagonal vectors, a matrix-vector multiplication can be seen as
the vector sum of a series of vector-vector element-wise multiplications with an appropriate
shifting of indices. This is much clearer to understand by looking at the figure 11.

The other case to be treated is that of a general sparse matrix, which, as we’ve seen,
is represented using vertex arrays. These arrays are stored in a column-based layout. The
matrix multiplication is performed in a similar way, but are simpler in one important way:
instead of having to shift indices around to achieve the appropriate skewing of the matrix, the
authors use the an additional parameter for each vertex, passed as a texture coordinate that
was mentioned above. This texture coordinate is used to directly access the corresponding
vector element for element-wise multiplication, so that the fragment program does not need to
compute the appropriate indices. Since the sparse matrix is computed offline, this is possible
and incurs little overhead.
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Figure 10. Blocked reduction: every 4 elements are “joined” using a reduction operation,
and the procedure works iteratively until we’re left with an 1x1 texture.

Sparse Matrix Solverson the GPU: Conjugate Gradientsand Multigrid  The other pa-
per we will describe differs mainly in the implementation of the sparse matrix data structure.
Instead of arranging the non-zero elements in the diagonals as vertex arrays, or skewing the
matrix so that it is represented in terms of sets of diagonals, here the authors will make ex-
tensive use of indirect access through dependent texturing. First, the diagonal of the matrix is
stored in a texture by itself, which is the same approach mentioned above. Then, all non-zero
off-diagonal entries of each row the matrix are packed in a single texture, and additional tex-
tures that work as pointers both to this packed texture and to the diagonal texture are created
to allow the multiplication to be performed efficiently. We will now turn to the explanation
of these indirection textures.

The technique used by the authors involves interpreting the texture values not as
scalars or intensities or even vectors, as is usual in many algorithms. Here, the values of
indirection textures will be interpreted as texture coordinates to be used in looking up other
values, acting effectively as pointers to the textures containing the matrix values. This is an
example of the dependent texturing technique described earlier, but here it is used to create
data structures, and not directly other functions. We will follow the authors convention of
superscripting each texture with a letter. Two different textures sharing the same superscript
also share the same layout: texture coordinates that can be used to access one element of one
texture can be used to access a natural correspondent element of the other. A sparse matrix
will consist, then, of four separate textures:

o Atexture A7, which will store all the diagonal elements of the matrix;
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Figure 11. Column-based matrix-multiplication as the sum of dot products of elements
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Figure 12. Equivalence of column-based matrix-vector multiplication with diagonal-based
matrix-vector multiplication. In the diagonal based-one, the indices used the access the
vector have to be appropriately shifted by the distance of the diagonal vector to the main
diagonal. Notice that the result is (necessarily) the same as the column-based matrix
multiplication, modulo reordering of the sum terms.
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e Atexture A}, which will store all the off-diagonal elements of the matrix, packed and
in row order,

e A texture R*, an indirection texture storing pointers to the beginning of each series of
off-diagonal entries in A%, and

e Atexture C'%, that stores pointers to the vector that will be multiplied against the matrix.
Note that this texture has the same layout as A%. As such, the texture coordinates that
access a matrix value in A access in C* the value of the texture coordinates that will
be used to fetch the right vector value for the multiplication of each row against the
vector.

A vector will be stored as a single X ® texture. Notice that this means that the vector
will have the same layout as the diagonal elements texture of the matrix. To compute the
sparse matrix vector product, the authors use a more standard technique when compared to
the previous description. Here, a matrix vector multiplication is interpreted as a series of dot
products of matrix rows and the vector. So, the result of a matrix vector multiplication will be
another vector, Y *. Each of the elements of this vector will be calculated with a dot product.

A dot product is defined as the sum of element-wise multiplication between two vec-
tors, and this is what we need to compute for each of the matrix rows. A pointer to the
beginning of each compressed row is stored in R*. Using this pointer, we traverse C'* and
A% concurrently. The values in A¢ are the matrix values themselves, but the A¢ is an indi-
rection texture pointing back at the vector X ®. Because of that, we need to use the value at
C® as the address in which to fetch the right vector value at X *. We then multiply these two
values together, “increment the pointers” to C'* and A$, and sum all the values of the row
together. This value is the dot product between the row and the vector, and will be stored at
the right place in Y'* (remember that they share the same layout).

The cautious reader will have noticed a problem in this description. We have, previ-
ously, repeatedly stressed the fact that a program fragment currently has no branch instruc-
tions or control flow of any kind. At the same time, we know the authors store rows with
different sizes in the C'* and A;‘ texture. These different sizes mean that a program would
have to stop as soon as it had reached the right row size, or it would invade the data belonging
to a different row. The insight needed to solve this is that for all rows of the same size, the
same amount of computation needs to be performed. The authors used this and developed a
fragment program for each row size, and each of these programs is then used in the appro-
priate rows. This is another important principle to be kept in mind: the ability to identify
constant amounts of computation and isolate them. This effectively works around the control
flow restriction, and, as such, is a broadly applicable technique.

There is a final observation to be made. With many different programs that must be
used in a single matrix-vector multiplication, we notice that most of the computation of the

RITA e Volume X e NUmero 1 e 2003 67



Computation on GPUs: From a Programmable Pipeline to an Efficient Stream Processor

program that adds rows of size n would be wasted if we used that program over the entire
texture, because the sparse matrix could potentially have many different row sizes. What we
need to do, then, is to generate fragments only where they’ll be useful. In other words, we
must find a way to send data to the fragment program so that it always corresponds to valid
row sizes. Since the main primitve used here is the rectangle, we need to create rectangles
that contain entries with the same row size. This is a packing problem that can be solved
offline, as the size of the rows will not change during the computation. We refer the reader to
the original paper [1] for a thorough discussion of the model.

5 Conclusion

In this paper we discussed the recent advances on graphics hardware from the per-
spective of understanding the possibilities that open up with such hardware. This approach is
different from most tutorials on graphics hardware, which focus on the details necessary to
be able to implement programs that use such technology.

Here, we took a different approach, by looking at classes of algorithms that can ben-
efit from such hardware. For this, we chose significant papers in the literature that illustrate
tecnhiques that we judged to be important, such as ray-tracing calculations, simulation of
physical phenomena using iterative solvers, and numerical computations involved in the so-
lution of linear systems. This diverse set of problems illustrates the potential of such graphics
hardware, and the possibilities of its use to other graphics (and non-graphics) problems.

We hope the summary can be used as common ground to readers so that they can
start working on their own algorithms. Obviously that every new feature added to graphics
hardware (and more are coming) will open more possibilities, and we encourage the reader
to continue following recent papers on the area and the specifications of the graphics boards.
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