
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RAFAEL FÃO DE MOURA

Software-only Computation Reuse
Techniques for Energy Efficient CNNs

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Luigi Carro

Porto Alegre
julho 2019



CIP — CATALOGING-IN-PUBLICATION

Fão de Moura, Rafael

Software-only Computation Reuse Techniques for Energy
Efficient CNNs / Rafael Fão de Moura. – Porto Alegre:
PPGC da UFRGS, 2019.

67 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Luigi Carro.

1. Convolutional neural networks. 2. Computation reuse.
I. Carro, Luigi. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Not everything that can be counted counts

and not everything that counts can be counted.”

— ALBERT EINSTEIN
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ABSTRACT

In the past years, several efforts in algorithm and architectural research were put together

to enable large-scale use of CNNs as we know today. Thus far, most of these achieve-

ments have been based on improving convolutions by chasing the parallel execution of

MAC operations through the replication of floating-point units. However, these solutions

fall far short of what is allowed from the energy budget when it comes to embedded sys-

tems running these NN models. Given specific image characteristics, such as recurrent

input patterns, we propose an algorithmic changing for performing CNN inferences by

employing a computation reuse technique instead of the original implementation. Based

on statistical analysis, we address computation reuse at three granularity levels: convolu-

tion kernel-level and grid-level through employing lookup tables in place of the original

convolutions, and frame-level by replacing entire frame computations with a movement

prediction algorithm. Experimental results show that it is possible to achieve energy sav-

ings up to 27.5×, while reducing the inference time to 116× of the baseline, with an

accuracy loss of 13%.

Keywords: Convolutional neural networks. computation reuse.



Técnicas de reuso de computação em software para CNNs energeticamente

eficientes

RESUMO

Nos últimos anos, pesquisas em melhorias nas áreas de algoritmos e arquiteturas compu-

tacionais foram postas lado-a-lado de modo a permitir o uso em larga-escala de CNNs.

Desde então, a maior parte destas melhorias têm sido baseadas na aceleração de convolu-

ções através da execução paralela de operações MAC, utilizando a replicação de unidades

de ponto-flutuante. No entanto, essas soluções ficam muito aquém do que é permitido

em termos de consumo energético quando se trata de sistemas embarcados executando

NNs. Considerando características específicas de imagens, tais como repetições de pa-

drões de entrada, neste trabalho, nós apresentamos uma mudança algorítmica no modo

como CNNs realizam inferências, empregando uma técnica de reuso de computação no

lugar da implementação original. Com base em análises estatísticas, nós abordamos o

reuso de computação em três granularidades: ao nível de convolução e ao nível de con-

junto de convoluções, realizando consultas em tabelas ao invés das convoluções originais,

e ao nível de frame através da substituição da computação original de um frame inteiro

por um algoritmo de predição de movimento. Nossos resultados mostram que é possível

obter níveis de economia de energia em até 27,5×, e reduzir o tempo de inferência por

um fator de 116× em relação à versão original, com uma perda de precisão de 13%.

Palavras-chave: redes neurais convolutioncais, reuso.
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1 INTRODUCTION

Convolutional Neural Networks (CNNs) comprise a class of supervised learning

algorithms that are specialized in recognizing patterns and properties from the inputs

that are fed to them. The behavior of a CNN is inspired by the brain’s basic operation

in which the algorithm replicates the same structure and connections present in organic

nervous systems. The first attempts to build Neural Networks (NNs) employed a neuron

model called Perceptron (ROSENBLATT, 1958). Then, this model was used to create

a more robust representation composed of a few neurons and layers, which are known

as Multilayer Perceptron (MLP). Although MLPs present limited levels of accuracy and

applicability, they have been used for a quite long time. Recently, they have evolved

towards deeper networks such as CNNs.

When LeCun et al. (1990) presented a groundbreaking CNN model, which intro-

duced the multi-layer CNN concept relying on the backpropagation algorithm, it was pos-

sible to classify handwritten digits with a satisfactory level of accuracy. This new model

allowed NNs to learn the position and scale-invariant structures in the data, which is es-

sential for many types of prediction problem involving image data as input. Ever since,

CNNs have become a standard machine learning solution for several modern application

realms, such as image classification, object detection, speech processing, and other prob-

lems involving non-image data (LIU et al., 2017; REDMON; FARHADI, 2017; LECUN

et al., 2015).

Among all types of layers that compose a CNN layout, the more significant time

slice in the CNN inference process is spent on convolution layers (JIAO et al., 2018).

At their core, convolution layers perform the extraction of features through convolutions,

which can be seen as multidimensional dot-product operations, thus relying massively

on Multiply-accumulate (MAC) calculations. For instance, up to 92% and 86% of the

execution time in a Graphics Processing Unit (GPU) and a General Purpose Processor

(GPP), respectively, is spent on convolution layers during the forward process for the

CNN proposed by Krizhevsky, Sutskever and Hinton (2012). Hence, the industry’s efforts

to accelerate CNN execution have been concentrated on optimizing hardware design for

convolution operations, ranging from conventional architectures, such as GPPs (SODANI,

2015) and GPUs (CHOQUETTE; GIROUX; FOLEY, 2018), to new custom-accelerator

based on high-performance Single Instruction Multiple Data (SIMD) and MAC engines

(CHEN et al., 2014b).
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With the advent of the Internet of Things (IoT) era, there is a trend to migrate

the execution of such Artificial Intelligence (AI) algorithms, previously done in special-

ized data centers and clusters, to local devices, using low-cost Central Processing Units

(CPUs), as already seen in embedded systems (ZOU et al., 2019). The increasing de-

mand for prediction and recognition tasks in smartphones and self-driving vehicles are

two good examples to illustrate the shift that embedded devices are going through nowa-

days. For the autonomous vehicles environment, many different sensors, such as cam-

eras, Global Positioning System (GPS), accelerometers, gyroscopes, and ultrasonic de-

vices are presented to employ different functionalities such as pedestrian detection, col-

lision avoidance, gear control, localization, and self-parking (AZMAT; SCHUHMAYER,

2015). Smartphones also rely on several sensors to gather information and to process it on

specialized NN algorithms, such as face recognition, speech processing, and fingerprint

authentication.

Nevertheless, the execution of CNNs still faces challenges related to chip area,

energy consumption, and time requirements on embedded systems, especially regarding

lightweight devices with limited resources and power budgets or running on tight latency

constraints. Despite dedicated hardware accelerators have advanced the state-of-the-art

on CNN execution, their practical implementation is still costly, as they either insert

high production costs or break the software design life cycle. On the other hand, tra-

ditional architectures, such as GPPs and GPUs, do not hurt programmability and provide

performance-efficiency outcomes along with the massive replication of Functional Units

(FUs) and processor cores by chasing the parallel execution of MAC operations, which in

turn increases area and power dissipation on chips.

To illustrate the performance versus energy-efficiency relationship, Figure 1.1

presents the Frames Per Second (FPS) ratio and the energy costs to perform a frame

inference running the YOLO9000 CNN (REDMON; FARHADI, 2017) on two setups of

GPPs, a GPU, and a typical embedded processor. It is possible to notice that the GPU

presents the best FPS ratio, while it requires a considerable amount of energy to process

a frame. On the other hand, the embedded processor presents the best energy saving.

However, this comprises the worst performance result.

In an ideal scenario, it is always desirable to achieve both the performance inherit

from high-performance systems like GPUs and the low-energy cost brought by embedded

processors. One possible approach to tackle this issue is through the replacement of the

original algorithm by a more efficient version. Several works have introduced advances
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Figure 1.1: FPS and energy per frame running CNNs in several architectures
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in new ways to replace the original CNN execution with software-only changes (LIU et

al., 2018). In general, the most common approach taken in an algorithmic change for

the CNN realm is through the exploitation of mathematical or statistical characteristics

present in the execution of these CNNs.

An essential but yet not well-explored characteristic in CNNs acceleration field

is the fact that the layout of CNNs presents data compression behavior along with the

different set of layers that compose the network. As the input data is passing through a

CNN, the temporary data generated is transformed and packed into smaller matrix rep-

resentations according to the parameters that define the network topology, such as the

number and size of filters, stride, padding, and downsampling elements. For instance, to

perform inference over an input image in YOLOv3-tiny CNN (REDMON; FARHADI,

2018), nearly 10 GB of temporary data is generated and processed between different lay-

ers. However, the input is a 416x416 RGB image, and the output is only a classifier vector

output represented into 320 Bytes. These measurements give us a glance to the oppor-

tunities for compression, which comes from the high level of data redundancy, to reduce

the temporary data produced throughout the forward process.

In the meantime, different domains where image recognition is applied commonly

present high levels of data redundancy. This property, when combined with the CNN data

compression behavior, enables computation reuse within a single input image or consec-

utive frames since pixels in the neighboring region tend to exhibit very similar values,

and an image streaming over the same scenario generally changes by subtle or often im-

perceptible degrees. Moreover, these replicated groups of pixels are forwarded to the

next CNN layers, with data patterns being repeated throughout the whole network execu-

tion. Recently, computation reuse has been proposed as an alternative for exploiting input

recurrence in CNN. Some straightforward implementations of this idea replace a floating-
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point multiplication by a table lookup, commonly implemented as an associative mem-

ory (RAZLIGHI et al., 2017; JIAO et al., 2018; MOCERINO; TENACE; CALIMERA,

2019). Nonetheless, the fine-grain approach is incapable of providing a significant factor

of energy and time savings because it does not tackle a more critical issue: reduce the

number of tasks, whether they can be floating-point or lookup operations.

Further, exploiting frame similarities over inputs is one fundamental idea behind

video and image compression algorithms. They are based on the idea that statistically,

the set of observed inputs tends to present only a small portion of the all possible com-

binations, thus generating an even more reduced set of outputs. These algorithms can

take advantage of the data recurrence by using motion estimation techniques, which work

by calculating motion vectors between frames (CHEN; HUNG; FUH, 2001; ZHU et al.,

2018). Thus, it is possible to keep information representing an object moving through

time and predict upcoming frame information.

Supported by that compression behavior present in CNNs execution and input pat-

terns recurrence, we propose an algorithmic changing to the CNNs execution employing a

closer look at wider granularities of data reuse. In this work, we exploit computation reuse

opportunities in CNNs execution due to input repetition by addressing three different lev-

els of reuse: convolution kernel-size, grid of convolutions, and frame similarity. The first

two approaches exploit the data recurrence enclosed within surrounding pixel regions in

the same input image by replacing the execution of entire convolutions by lookup table

accesses. Relying on video compression basics, in the third level of computation reuse

exploitation, we predict object movement between frames without the need to run the full

CNN for every frame.

To accomplish this, we present a preliminary analysis of training datasets and al-

gorithmic changes for the original CNN implementation. Firstly, a statistical analysis is

conducted over the intermediate data of CNN models, and a clustering mechanism re-

duces the amount of memory required to store the most representative entries in reuse

tables. Then, the proposed technique associates every pair of input and feature map

weight operands (kernel-level granularity of reuse) related to a single convolution with

an activation retrieved from hash tables.

Further, we expand the granularity of computation reuse from the kernel-level to

the convolution grid-level reuse based on two observations: a) the presence of recurrent

background in real-world images and b) the probabilistic distribution of a pixel, where the

neighboring region of a pixel can be interpreted as a normal distribution. In the grid-level
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granularity, groups of adjacent activations in the feature map can be stored for further

reuse, which enables us to use them in an approximate technique. By storing the most

common sequences of convolution grids in the hash table, we can speculate the values of

adjacent activations and check them in the future, while reducing the number of hashing

operations and table lookups by up 4.5×.

Finally, we combine computation reuse and block matching techniques to exploit

frame similarities in camera videos to aggressively reduce the execution time and energy

consumption, using only low-cost software modifications. By implementing these tech-

niques in the open-source Darknet framework (REDMON, 2013–2016), it is possible to

achieve a performance speedup up to 116 times in one inference, while achieving en-

ergy gains of 27 times regarding an accuracy loss of 13% percent due to output values

prediction.

1.1 Contributions

The main contributions of this work are listed below:

• The proposed techniques differ from previous state-of-the-art works since they ad-

dress the computation reuse of convolution results and adjacent activation values.

• We exploit an intrinsic property of the input, which is data repetition at intra-frame

and inter-frame levels to achieve an algorithmic change in the original CNN imple-

mentation.

• We present a tool that automates the generation of tables for the computation reuse

technique, reduces the storage size required for these tables, and identifies patterns

of recurrent activations for grid-level reuse.

• By employing a motion prediction algorithm in place of the CNN execution, we

can skip the entire inference process avoiding the CNN call for every input frame.

1.2 Organization

The rest of this work is organized as follows.

• Section 2 presents a general overview of the CNN layout, execution, and introduces

the concepts of data repetition found in CNN inference.
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• Then, state-of-the-art endeavors to accelerate CNN are presented in Section 3.

• The proposed technique and their implications are presented in Section 4.

• Section 5 introduces the methodology, experimental setups, and results to evaluate

this work.

• Finally, Section 6 presents a brief conclusion and discusses future works.
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2 BACKGROUND

In this section, the basics of CNNs layout and execution are presented. Further, an

analysis of the presence of data locality, data redundancy, and computation reuse oppor-

tunities in CNNs is done.

2.1 CNN basics

CNN is a supervised machine learning model, which has largely been employed

for image classification, object detection, and other tasks. A CNN layout can be seen as

a pipeline of layers with several data conditioners, such as activation functions, pooling,

and normalization techniques. Figure 2.1 presents a generic architecture of a CNN. One

can observe that a lot of data transformations are performed across the layers regarding

any arbitrary input, helping the network to extract useful features over the data. Typically,

increasing the network depth is one way to achieve higher recognition accuracy rates.

For instance, state-of-the-art CNNs such as GoogLeNet (SZEGEDY et al., 2015) and

YOLOv3 (REDMON; FARHADI, 2018) use, respectively, 20 and 75 convolution layers,

compared to Alexnet’s (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) only 5 convo-

lution layers. More detailed information about CNNs and their basic building blocks will

be presented in the following sections.

2.1.1 Input layer

The input layer, also known as the data layer, is the first component present in a

CNN organization. It is in charge of taking the network input (images, text, videos, etc.)

and performing primary data extraction and conversions, further to feed the next elements

that compose the network. The most frequent data conversion done in the input layer

is the splitting of the input in channels. As an example, for image processing CNNs in

the Darknet framework (REDMON, 2013–2016), the data layer typically splits the input

images into three channels, each one representing the Red, Green, and Blue color model.

Meanwhile, it is beneficial for CNNs not to become susceptible to noise sources

found in datasets. Thereby, it is desirable to have as many samples as possible to feed

the network model, thus preventing over-fitting. The over-fitting effect happens when the
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Figure 2.1: A generic model of CNN

Source: Author

network model adjusts itself to generate the expected outputs given a training dataset,

though the model reveals ineffective regarding new and unknown inputs. Hence, when

the input batch size is not large adequately, several techniques modify the input layer to

obtain more samples, relying on transformation over inputs. Some of these techniques

refer to data augmentation, including image translations, shifting, mirroring, and others.

2.1.2 Convolution layer

Among all types of layers that compose the CNN layout, the most significant for

the network inference process, and computationally expensive is the convolution layer.

Convolution layer’s essential operation is inspired from the neurons of a human brain.

Figure 2.2 shows an example of a convolution layer. Each convolution layer treats as

its input a set of N channels or N feature maps, each of size HxW . To generate the

convolution layer outputs, or neuron outputs, the N feature maps are convolved with M

filters or kernels of size NxKxK in a multidimensional dot-product operation. The filters

represent the weights that were previously obtained in the training phase using a learning

algorithm such as back-propagation. For each filter of the M sets, the convolution is

performed by sliding the kernel across the input feature map according to a stride value.

At each overlapping of the filter over the input feature map, the values are multiplied and

accumulated together, giving one value to the output feature map. Thereby, as a result of

the convolution process, M output feature maps are generated with size H ′xW ′ each.



19

Figure 2.2: Convolution layer

...

#1

#M

...

Input feature map Output feature map

Filters

H

W

H'

W' M

K
K

N

N

Source: Author

2.1.3 Activation function

Commonly, the convolution layers are followed by the execution of activation

functions. Activation functions introduce non-linearity in the data, which in turn allows

the network to learn how to recognize and to extract more complex features, reaching

higher accuracy levels. Although there are several implementations of these functions,

the most employed in CNN domain is the Rectified Linear Units (ReLU). The ReLU rec-

tifier’s equation can be defined as the maximum value between the current input value

(x), and zero (max(0, x)). Thereby, after the execution of a ReLU rectifier, a neuron

with a ReLU output greater than zero is called activated or turned on, whereas a neuron

with an activation value equals to zero is said deactivated or turned off. Recent works

have observed those network models that employ ReLUs to perform inference and train-

ing operations several times faster than former network models relying on sigmoid and

hiperbolic-based functions with no degradation in the accuracy.

2.1.4 Pooling functions

As the input passes through the network layers, which the typical flow is a se-

quence of convolution layers, each one followed by activation functions, them a pooling

function is often employed. Pooling functions are applied to reduce the number of fea-

tures through the pipeline of layers while retaining all the essential elements required for

accurate inference. The traditional pooling implementations typically reduce the feature

map sizes by performing operations such as average (Average Pooling) and obtaining the
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maximum value (Max-pooling) over a grid of values, thus reducing the feature size pro-

portionally to the input pooling grid size. Notwithstanding pooling layers capability to

reduce feature map sizes without losing data representativeness, studies have pointed out

that convolution layers with increased stride sizes can replace pooling without incurring

a loss in the accuracy (SPRINGENBERG et al., 2014).

2.1.5 Fully-connected and classification layers

Inside each output feature map computation in a convolution layer, a single weight

kernel is slid over the input feature maps. This property is known as parameter sharing,

and it grants the reduction of the number of parameters (weights), as the execution time

of the network. In contrast to convolution layers, fully-connected layers are composed

of fewer neurons, where every single neuron is connected to all next layer neurons, thus

creating an N : N relationship. Fully-connected layers are commonly inserted in a CNN

layout after a sequence of several convolution layers, activation functions, and pooling

layers. Their primary goal is to perform high-level reasoning (ZEILER; FERGUS, 2014),

which is the first step to enable the network model to generalize and reduce the input to

several generalized features.

Finally, the last layer that composes a CNN architecture is an output or classifica-

tion layer. Classification layers deliver multi-class ranking employing heuristics such as

the softmax to estimate the probability of an arbitrary input to belong to a particular class.

As a result of the classification layer execution, a vector classifier outcome is created,

comprising all the probabilities of the current input to match in the reasonable classes that

the network is capable of detect.

2.2 Data locality, redundancy, and computation reuse opportunities in CNN execu-

tion

In different scenarios for CNN inference, the input images commonly expose sim-

ilarities within a single sample (RIERA; ARNAU; GONZÁLEZ, 2018) and among dif-

ferent frames (ZHU et al., 2018). Likewise, it may expect the intermediate data generated

along with the processing of convolution layers to present elevated levels of redundancy.

To illustrate that redundancy levels regarding a few input datasets and CNNs layouts ex-
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ecution, we have taken three distinct CNNs models and input datasets to help explain

the main concepts. Figure 2.3 presents the Redundancy Ratio regarding inputs with con-

volution kernel-size granulatiry for each convolution layer, when running the datasets

MNIST (DENG, 2012), IMAGENET (DENG et al., 2009), and the CAVIAR benchmark

(FISHER; SANTOS-VICTOR; CROWLEY, 2004) on pre-trained CNN models for LeNet

(LECUN et al., 2015), AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), and

YOLOv3-tiny (REDMON; FARHADI, 2018), respectively. The Redundancy Ratio is a

metric built to illustrate the input patterns recurrence observed during batch execution.

This metric is calculated and defined by the following equation:

Redundancyratio =

(
1− #DifferentInputPatterns

#TotalInputPatterns

)
× 100 (2.1)

Where #Different Input Patterns refers to how many different inputs were observed

during the execution, and #Total Input Patterns means all the inputs gathered during the

batch size execution. Hence, a Redundancy Ratio of zero percent means that all the input

patterns observed were different from each other, and a Redundancy Ratio of 50% means

that, on average, each input appeared twice in the batch execution.

Figure 2.3: Redundancy ratios running several CNNs over different datasets and batch
sizes
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Regarding only one input sample, the first convolution layer presents redundancy

ratio percentages up to 49%, 18%, and 26% for the experimented CNN models. Hence,

the percentage of redundancy reveals high intra-frame locality. These charts also indi-

cate that the same pattern of inputs and weights repeatedly appears for 49%, 18%, and

26% of the observed data in the first convolution layer, thus producing the same output

patterns. Meanwhile, as the number of samples in the batch increases, the inter-frame

locality comes up, and the redundancy rates grow too. When analyzing a batch composed

of 10,000 images, the measurements of redundancy level for the first convolution layer

reach percentages up to 76%, 92%, and 99% for the three different scenarios, respectively.

Another important observation from these charts is that: the more in-depth the convolu-

tion layer is, the lower the measured redundancy tends to become. Also, deeper layers

come with non-linearity and discretization processes inferred by the activation functions

after the convolution process, such as upsampling, downsampling, and specific feature-

extraction of subsequent filters.

As input data locality reflects into computation redundancy during the CNN execu-

tion, techniques such as computation reuse could exploit the intra-frame locality present

in CNNs by keeping in near-storage previous convolution output results, thus leverag-

ing computation reuse opportunities, and avoiding the costly dot-product operations. In

the same way, techniques such as those based on video compression algorithms can be

employed to exploit the inter-frame locality, bypassing the previous detection of a CNN

when the similarity level between two frames is considered high.
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3 RELATED WORK

In this chapter, state-of-the-art works regarding software and hardware endeavors

to accelerate NNs are presented.

3.1 Custom hardware accelerators for NN execution

Due to CNNs increasing importance as state-of-the-art solutions for a large num-

ber of applications, several specialized hardware accelerators have been proposed in the

past years. They aim to both accelerate and reduce CNN energy consumption by ex-

ploring intrinsic network characteristics, data redundancy, and similarity, as well as reuse

opportunities. DianNao (CHEN et al., 2014a) is a machine learning accelerator focusing

on high throughput and memory behavior, aiming to minimize and control memory trans-

fers for large-scale networks. Still focusing on memory and large networks, DaDianNao

(CHEN et al., 2014b) proposes a new custom-chip architecture. The Eyeriss (CHEN et

al., 2017) accelerator is based on a row stationary data-flow to map CNNs computations

into Processing Elements (PEs), minimizing data movements.

The accelerator proposed in Riera, Arnau and González (2018) applies linear

quantization on the inputs to increase redundancy and combines this with a computation

reuse technique that takes into account input similarity in each layer. The Unique Weight

CNN Accelerator (HEGDE et al., 2018) exploits weight redundancy instead, reusing dot

product results to reach a reduced network size, eliminating multiplications and limit-

ing memory accesses. The technique proposed by Raha and Raghunathan (2017) is a

quantized table lookup that approximates kernel functions. They reduce the number of

values that need to be stored in the table by quantizing them to a smaller range, replacing

expensive operations by table lookups. However, the operations they replace are on a

smaller granularity level than our technique, referring to multiplications instead of whole

convolutions.

LookNN (RAZLIGHI et al., 2017) replaces multiplication operations with lookup

searches, relying on associative memory blocks to reduce power and execution time of

Floating-Point Units (FPUs). LookNN’s authors also provide an analysis of the addi-

tive error that their technique can introduce, and how to minimize it. The reconfig-

urable Bloom filter unit (JIAO et al., 2018) follows a similar approach, storing inputs

and performing an approximate pattern matching strategy, avoiding execution on energy-
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intensive FPUs. Inspired by these two previous work, the authors of Mocerino, Tenace

and Calimera (2019) present a clustering method that maximizes the reuse property of a

neural network and a CAM-enhanced floating-point that leverages operand-level reuse.

Recently, Euphrates (ZHU et al., 2018) has been proposed, with an approach where the

block matching technique replaces some CNN inferences, and predictions are made based

only on estimated vector motion, which allows the expensive convolutions to be skipped.

3.2 Software-based techniques for efficient NN execution

Software techniques for CNN acceleration have also been recently presented, cov-

ering several different approaches. Quantized Neural Networks (HUBARA et al., 2017)

reduce memory accesses and replace expensive arithmetic operations with bit-wise ones

by training the networks with 1-bit weights and activations. The deep compression pipeline

(HAN; MAO; DALLY, 2015) combines pruning, trained quantization, and encoding to

obtain smaller networks while keeping the same accuracy levels. The Quantized CNN

framework (WU et al., 2016) focuses on quantizing networks specifically for mobile de-

vices. Winograd’s minimal filtering algorithm and pruning are proposed in Liu et al.

(2018), where they manage to increase weight sparsity to explore it further. These tech-

niques work on available CNN models, modifying their structure to take advantage of

network compression opportunities. These works reduce image inference time but are not

ideal for videos as they do not consider image similarity.

MobileNets (HOWARD et al., 2017), on the other hand, comprises specialized

network architectures that focus on mobile and embedded vision applications. They are

designed to be small and present low latency, according to the limitations of target appli-

cations. The Fast YOLO framework (SHAFIEE et al., 2017) combines an optimized net-

work architecture for mobile devices based on YOLOv2 (REDMON; FARHADI, 2017)

and an inference module. They aim to perform real-time object detection in videos with

feasibility for mobile devices. Those two approaches require training new models, and so

cannot be directly applied to existing working networks.

To optimize video inference, NoScope (KANG et al., 2017) trains shallow Neural

Networks (NNs) as specialized models of a target network. Those models are smaller and

can only identify a limited set of objects they have been trained to, out of the original

objects the reference network is trained for. Thus, shallow NNs are less computationally

expensive and ideal for applications that do not need full network capabilities. A differ-
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ence detector mechanism is also used: if frames are deemed too similar, no new prediction

will be computed. However, this method does not generalize to videos other than the ones

they were targeted to classify and hence lacks generality.

The work 3D CNNs (JI et al., 2013) approaches the video analysis problem by

performing convolutions on multiple stacked frames to explore the temporal locality prop-

erties of inputs. Those networks, however, are focused on accuracy performance, instead

of energy reduction and network compression. Video classification with CNNs (KARPA-

THY et al., 2014; NG et al., 2015) aims to categorize full videos based on what is hap-

pening in them, instead of individually classifying objects within each frame.

3.3 Work comparison

To summarize the main aspects found in the state-of-the-art works that accelerate

CNN execution, we organized some features from the related work in Table 3.1. The cells

marked as "3" indicate that the feature is provided.

Regarding the related accelerators (on the top of the table), although they have

reached significant improvements in execution time and energy consumption reduction,

they do not cover all the granularities (multiplications, convolutions, and inferences) re-

ductions as this work does. Despite Mocerino, Tenace and Calimera (2019) have achieved

energy savings up to 70% (21.6% of improvement compared to Jiao et al. (2018)) for the

MNIST dataset running in a pre-trained model of the LeNet CNN, their results make men-

tion only to the energy spent on FP units. In contrast, the results achieved by this work

for the same experiment, report energy savings regarding the whole computer system up

to 48% for the convolution kernel-level reuse and 74% for the grid-level reuse. More-

over, these works introduce several drawbacks for software and hardware design. For the

software design field, they cause new challenges to the programmability task. Legacy

programs must be redesigned to cover the new hardware’s intrinsics such as memory

mapping, communication protocols, etc. For the hardware project and manufacturing

processes, there is a noticeable increase in production cost. Nonetheless, our work dif-

fers by being a software-only solution able to run on GPPs while achieving competitive

gains. Furthermore, we do not focus only on one technique, but rather on applying both

computation reuse and motion prediction wherever and whenever they are most needed.

Compared to state-of-the-art algorithm solutions for CNN execution, our approach

differs from other works, where the most common approach employed is the quantization
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or transformation of the original data to reduce the amount of data transferred and the

number of multiplications. Additionally, despite those works that propose specific domain

smaller NNs, reducing the number convolutions required without big accuracy drops, they

need the new CNN model to be retrained.

Table 3.1: Related work comparison

ASIC
Less

memory
transfers

Less
#Mult

Less
#Conv

Less
#Inferences

Network
retraining

Chen et al. (2014a) 3 3 3 7 7 7

Chen et al. (2017) 3 3 3 7 7 7

Riera et al. (2018) 3 3 3 7 7 7

Hegde et al. (2018) 3 3 3 7 7 7

Raha et al. (2017) 3 3 3 7 7 7

Razlighi et al. (2017) 3 3 3 7 7 7

Jiao et al. (2018) 3 7 3 7 7 7

Mocerino et al. (2019) 3 7 3 7 7 7

Zhu et al. (2018) 3 3 7 7 3 7

Hubara et al. (2017) 7 3 3 7 7 7

Han et al. (2015) 7 3 3 7 7 7

Wu et al. (2016) 7 3 7 7 7 7

Liu et al. (2018) 7 3 3 7 7 7

Howard et al. (2017) 7 3 3 3 7 3

Shafiee et al. (2017) 7 3 3 3 7 3

Kang et al. (2017) 7 3 3 3 7 3

Ji et al. (2013) 7 3 7 7 3 7

Source: Author



27

4 PROPOSED APPROACH

In this section, we exploit the computation reuse opportunities previously pointed

out in Section 2, which come up with the CNNs inference due to existing intra-frame

and inter-frame localities in different datasets. We address the intra-frame locality with

the employment of a computation reuse technique to replace convolution operations by

memory accesses and retrieve previously-stored results. Although computation reuse is

an alternative to avoid costly dot-product operations with repeated patterns, the benefits

on energy savings may not be that intuitive. Replacing a floating-point multiplication by

a table lookup can improve energy efficiency to some extent, but there is a narrow design

space to trade accuracy by energy-saving using operand-level reuse (RAZLIGHI et al.,

2017; JIAO et al., 2018; MOCERINO; TENACE; CALIMERA, 2019).

The main drawback of multiplication reuse remains on the increased energy con-

sumption due to on-chip memory accesses. For instance, a 16-bit fixed-point multipli-

cation in 32 nm consumes 0.4 pJ, whereas the corresponding lookup table access costs

2.5 pJ, regarding a 32K-entry 16-bit Static Random Access Memory (SRAM) (HEGDE

et al., 2018; MURALIMANOHAR; BALASUBRAMONIAN; JOUPPI, 2009). However,

by extending the idea of computation reuse backed on the results presented in Figure 2.3,

we can reduce the number of multiple lookups by a single search for each convolution,

thus opening up opportunities to reach more significant energy savings. This advance

on the degree of reuse, from multiplication-level to convolution kernel-level granularity,

implies in changes to the CNN algorithm. By replacing multiplications and additions, we

may reduce the costs of memory access in comparison to previous work and also make it

feasible for CPUs and GPUs without any hardware modification.

To store and, further, retrieve convolution results from memory, we propose a hash

table scheme to associate any arbitrary input with its corresponding output value for each

convolution layer’s filter. Further, we demonstrate by measuring the amount of memory

required to keep all the output values in storage to be disadvantageous, even when consid-

ering duplicated values due to redundancy. To overcome the high lookup table sizes, we

perform statistical analysis over the stored data, and we develop a magnitude-based clus-

tering mechanism to reduce the table sizes, making the employment of computation reuse

for the CNN realm feasible. Finally, we expand the reuse granularity from kernel-level to

the convolution grid-level, where groups of adjacent activations in the feature map can be

stored for further reuse.
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Regarding the inter-frame locality, we exploit the frame-level of reuse backed on

a block matching-based technique to exploit frame similarity between inputs in camera

videos. The block matching is widely used for video compression algorithms, where

it predicts motion between two sequential frames and stores the prediction as a Motion

Vector (MV), further to reduce the space storage. In this work, we modify the original

CNN inference to bypass the last output inference if the current input frame is similar to

the previous one, thus skipping the CNN call operation.

4.1 Convolution kernel-level reuse

To employ a reuse technique to keep in near-storage all the convolution output

values given a CNN execution, we associate every pair of input and feature map weight

operands related to a convolution, which outputs a single outcome value ((Ii,Wk)→ Oik)

with a hash table access. Since a convolution can be represented by a multivariate poly-

nomial function (F (Ii,Wk) → Oik), and to maintain the injective relation between the

domain (Ii,Wk) and the codomain (Oik), we split the output set into M subsets. Each

new subset comprises a hash table that contains all the convolution values generated by

the combination of the input (Ii) with the respective kernel weight (Wk). By splitting the

output set into smaller ones, it is possible to replace the multivariate polynomial function

by only one-variable dependant (only the input Ii), and potentially less computational

costly, mapping function recreating the relation that matches each Ii element to its cor-

responding output value given a constant weight kernel value (Fk(Ii) → Oik). Since we

employ filter-sized granularity of reuse over any input feature, a filter-sized input has to

be reduced to a single key using a Cyclic Redundancy Check (CRC)-inspired algorithm.

Then, the index is used to retrieve the output value associated with that input in a hash

table of a given filter. In other words, the algorithm now skips convolution over an in-

put volume performing CRC and hashing to find a value within the hash tables for each

different filter.

Further, implementing such a reuse technique requires a profiling tool that gener-

ates the hash tables before the inference process. First, the tool must run a batch of inputs

and collect all the tuples < Ii,Wk, Oik > that match each convolution operation. Then,

the profiler processes the data, generating the Output tables and the Mapping functions

files. The Output tables are hash tables that contain all the output values (Oik) occur-

rences for each kernel (k) observed during the profiling time. The Mapping Functions
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are indexing functions in charge of coordinating the appropriate mapping for any input

(Ii) to its corresponding output value (Oik) in the corresponding hash table. Initially, to

retrieve an output value for each filter’s table, we employ a CRC-like mapping function

over the input (Ii)to reduce the input size, and also to generate a hash index to consult the

table. We have chosen a CRC-like function since it does not perform any transformation

in the data, and it comprises only bitwise operations, which are meant to be less computa-

tionally expensive than the original convolutions. Further, other more adequate mapping

functions could be employed, possibly to better exploit some input property or behavior.

Figure 4.1 illustrates the execution flow of the proposed profiler tool.

Figure 4.1: Execution flow for the proposed profiler tool
Input set

CNN
execution

Tables

Mapping
Functions

Reuse
profiler

Parameters

Source: Author

Now that we have the Output tables and the Mapping Functions generated by the

profiling tool, the execution flow for each filter of each convolution layer follows the steps

described in Figure 4.2. First, the input feature map (Ii) is read, then the corresponding

mapping function (Fk), which matches the current filter (Wk) in the Mapping Functions

set generates a key to search in the hash table. After getting the hash key, we try to retrieve

the entry in the hash table, which matches the current input feature map to its respective

output value (Oik). If we succeed in searching the table, the corresponding output feature

map is updated with the value brought from the table. Otherwise, the current output

value must be calculated by a convolution. Additionally, when the lookup table search

retrieves a mismatch, we opt not to update the table, since it may incur modifications

in the Mapping functions that are statically created during the Computation reuse profiler

execution. Moreover, we conducted several experiments and found that even a static table,

keeping only exact matches, can reach hit ratios up to 97%, when performing inferences

over different images than the ones used during the profiler phase.

However, it is only viable to keep in memory a smaller set of a large dataset like

MNIST, ImageNet, and CAVIAR. Hence, the profiling dataset for computation reuse must

provide a representative sample of the whole datasets. Despite an input set of 10,000 ran-
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Figure 4.2: Execution flow for the convolution kernel-level reuse
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dom images from the datasets mentioned above, the profiling tool generates large hash

tables, which require up to 1.4 GB, 24.7 GB, and 235.1 GB of storage for running the

three datasets in the LeNet, AlexNet, and YOLOv3-tiny CNNs, respectively. Storing all

the convolution output values for a given batch can be a limiting factor for this type of

implementation since it is a one-to-one relationship of (Ii,Wk) and Oik, which may in-

troduce repeated entries in the lookup table. Further, even considering the repetition of in-

puts that causes redundancy in the CNN execution, the amount of memory to store all the

non-repeated output values for each layer’s filter might be still impracticable. Figure 4.3

illustrates the table sizes in megabytes required to store all the memorized values for the

execution of 10,000 images from MNIST, ImageNet, and CAVIAR datasets running on

LeNet, AlexNet, and YOLOv3-tiny CNNs, respectively. The label Raw data refers to

the table sizes without considering repeated values in the input set when the label Redun-

dancy does. It is possible to notice a reduction in the table sizes from 1.4 GB to 489 MB,

24.7 GB to 2.8 GB, and 235.1 GB to 5.9 GB for the three experimented scenarios.

Figure 4.3: Table size (Megabytes) to keep in storage convolution values for a batch of
10,000 inputs
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4.1.1 Performing data analysis to reduce table size

Managing tables containing all the output values profiled to exploit computa-

tion reuse throughout the CNN execution requires a considerable amount of memory,

as demonstrated in figure 4.3. Even the 489 MB of space related to the execution of the

LeNet CNN over the MNIST dataset can be prejudicial for the proposed lookup tech-

nique. Performing a lookup for a result in a 489 MB table size may introduce drawbacks

in both performance and energy gains since the searched data is likely not to be found in

any cache level in the whole memory hierarchy, though in the Dynamic Random Access

Memory (DRAM) module. Moreover, the time and energy costs associated with DRAM

access can reach thousands of magnitude when compared to first-level cache constraints.

For example, a 4 GB DDR4 memory consumes approximately 16.7 nJ of energy per read-

ing operation, and it takes roughly 30 ns to deliver data to the Last-Level Cache (LLC).

Hence, it is mandatory to keep all the tables as near as possible to the CPU to avoid the

costly data transfer between the memory levels.

One plausible solution to keep the tables closer to the CPU is by reducing the table

sizes. State-of-the-art works that employ memoization or lookup tables to hold previous

results have reduced their memory footprints by either cutting bits in the input (JIAO et

al., 2018) or by delivering quantization techniques in the activation kernel weights (MO-

CERINO; TENACE; CALIMERA, 2019), allowing clusterization of the data. Likewise,

but in a different scope, this work conducts statistical analysis over the convolution out-

puts gathered during the profiling phase. Figure 4.4 presents the output values histogram

for the first filter of the first convolution layer for several CNN models running different

datasets on a batch size of 10,000 inputs. One can notice that all the charts resemble a

normal distribution. Exploiting this central tendency behavior in the data in favor of the

reduction of the table sizes can be advantageous for the proposed technique for two main

reasons:

1. The central limit theorem ensures that even when unknown random variables are

added to a set, they tend toward a normal distribution. Hence, a new input pattern

will likely match one of the already mapped inputs

2. The values present magnitude proximity, which allows us to perform clustering and

approximations of the observed data further to reduce the table sizes without hurting

the data’s representativeness.
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Figure 4.4: Histogram of convolution outputs for three CNN models with different
datasets
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Since the output convolution values tend to a normal distribution as depicted in

Figure 4.4, a clustering algorithm could be applied in the data to reduce the number

of activations to store. Heuristics such as Jenks Natural Breaks, k-means, and mean-

shift clustering have been used to perform clustering in CNN domains (MOCERINO;

TENACE; CALIMERA, 2019; GONG et al., 2014; HAN; MAO; DALLY, 2015). How-

ever, these approaches estimate their cluster centroids based on metrics, such as the fre-

quency distribution or the variance of the values, that overlook a crucial data conditioner

that commonly comes up after the convolution process: the activation function. Activa-

tion functions usually take place to insert non-linearity in the data after the convolution

layers by cutting negative values or smoothing them. Advanced CNN models rely on

rectifiers like ReLu, Leaky ReLu, and even Linear functions, since they are much faster

in terms of execution time than saturating nonlinearities, such as sigmoid and hyperbolic

(REDMON; FARHADI, 2018; REDMON; FARHADI, 2017; SZEGEDY et al., 2017).

Thus, a clustering mechanism that exploits the activation function behavior could achieve

better results in terms of table size reduction and better data representativeness.

Thereby, this work introduces a clustering mechanism based on the activation

function that groups entries by its proximity and provides smaller lookup tables. Ini-

tially, the mechanism covers only the ReLu, Leaky ReLu, and Linear variations since they

are the most common types found in recent CNN models. The practical implementation

of the clustering requires modifications to the profiling tool presented in Figure 4.1. The

main parameters of the clustering mechanism are:

• O: The values gathered from a convolution layer’s output feature map execution.

• RangeDistance: The range distance that determines the approximation percentage

between the clusters.

• RectifierType: The activation function type that comes up after the current convo-

lution layer.
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• MultiplierFactor: The multiplier factor is applied over the RangeDistance depend-

ing on the RectifierType.

The whole clustering mechanism is completed in a four-step procedure:

1. First, all the output values (O) are sorted in ascending order.

2. Then, clusters are created, where each number is enclosed within an interval de-

fined by a temporary variable called ClusterDistance. The ClusterDistance is deter-

mined accordingly to the RangeDistance and the current activation function type:

If the function is a Linear activation, the ClusterDistance is set to the RangeDis-

tance value for all the numbers. However, if the function is a ReLu rectifier, all the

negative values are automatically mapped to their average value, and the Cluster-

Distance is set as the RangeDistance (Rd) for all positive numbers. Otherwise, if

the function is a Leaky ReLu rectifier, the ClusterDistance for the negative values

is set to the RangeDistance multiplied by the MultiplierFactor, and it is kept as the

RangeDistance for the positive ones.

3. Thirdly, the mechanism replaces all the convolution values inside each cluster by

their average value.

4. Finally, as a result of the clustering, the former one-to-one relationship of (Ii,Wk)

and Oik is replaced by a many-to-one (Ii,Wk) and Ōik, where the Ōik as the output

indicates that several inputs new are mapped to the same output convolution value.

Hence, both the Tables and the Mapping Functions in Figure 4.1 are updated to

generate the correct output values.

Figure 4.5 presents the output tables histogram comparison before and after the

execution of the proposed clustering mechanism. There are presented examples of con-

volution layers extracted from several CNNs, followed by three different types of rectifier

functions. For all the charts showing the reduced tables (red bars), the RangeDistance

value was set to 4%, while the MultiplierFactor was set as 2×. For the first convolution

layer in the AlexNet CNN, which is followed by a ReLU rectifier function, it is possible to

notice that all the negative values were mapped to a single red bar, while the positive ones

were mapped to clusters with the same Cluster Distance. The conditioner function type

related to the first YOLOv3-tiny’s convolution layer is a Leaky ReLU variant. Thus, all

the negative values are enclosed in broader ranges than those positive. Finally, YOLOv3-

tiny’s convolution layer #13 comprises a Linear rectifier. Hence, the Clustering Distance

is applied equally over all the range of numbers.
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Figure 4.5: Histogram of output values before and after clustering
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YOLOv3-tiny layer#1 (Leaky ReLU)
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YOLOv3-tiny layer#13 (Linear)
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To correctly coordinate the new Mapping Functions execution, we add to the orig-

inal CRC implementation a bitmask operation, which works as a truth-table, selecting

only the input bits whose variation changes the output values, thus ignoring the don’t

care bits. This approach is similar to those presented by Jiao et al. (2018) and Raha and

Raghunathan (2017), whereas we approximate the values based on the output result fur-

ther to select the bits to ignore in the input. To illustrate the costs related to perform an

index calculation versus a regular convolution, Figure 4.6 presents the average execution

time spent to calculate a convolution and to perform index calculations over different 3D

input sizes. On average, an index calculation is 4× faster than a regular convolution, even

considering a small overhead due to the bitmask after the table clustering (Label Mapping

function after clustering). Hence, if we can reduce the table sizes and consequently their

access time, significant energy savings, and inference time reduction can be achieved, as

will be presented in Chapter 5.
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Figure 4.6: Mapping Functions and regular convolution execution time comparison
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4.2 Grid-level reuse

Real-world images present interesting characteristics related to the distribution of

pixels still untapped for computation reuse. We are interested in two properties of these

images: a) the recurrent pixels to form an object, and b) the probability distribution of im-

age pixels. Backed on these properties, we may want to predict the next activation based

on past, nearby values. Firstly, recurrent pixels are undoubtedly present even after image

segmentation. Most of the objects from accessible datasets have regions with repeated

pixels and shades in their surroundings, thus generating the same pattern of activations.

In this situation, the kernel-level technique already benefits enormously from the tempo-

ral locality. Also, the second property enables us to interpret images as samples from a

high-dimensional probability distribution, which is broadly explored in generative models

(GOODFELLOW et al., 2014). Thus, such information can be used to improve entries’

allocation in the memory or also load probable activations ahead of computing their hash

indexes.

Figure 4.7 demonstrates the percentage of repeated sequences composed of four

neighboring activations (2x2 submatrices) in feature maps of different CNN models.

Though the reuse rate may depend on the CNN and dataset, from 15% to 40% of the

activations, on average, repeatedly appear in the feature maps of a single image. As we

increment the number of inferences, the redundancy rate can reach up to 54%, as shown

in the leftmost chart of Figure 4.7. Moreover, the potential for reuse can reach 99% when

we consider approximate values obtained by clustering within ranges of 1%, as presented

in the rightmost chart of Figure 4.7. Here, the test case scenario plays a vital role in grid

reuse, since the highest reuse rate occurs on CAVIAR and MNIST datasets. These sce-
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Figure 4.7: Percentage of repeated 2x2 submatrices throughout the layers of different
CNN models and datasets
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narios are composed of video recording with a static background and hand-written digits

with black and white pixels, respectively.

Thus, the tool has to find the arrangement of adjacent activation most likely to

happen. This process is easily automated by changing the profiling flow presented in the

preceding section and by providing parameters such as the structure of recurrence (matrix

or vector) and thresholds for table filling. Also, the table structure has to be changed and

a trade-off between table size and number of adjacent values to be stored. Here, we are

going to consider that each entry in the table is composed of four activations. This initial

setup is enough for demonstrating the grid-level of reuse potential while keeping it feasi-

ble with low overhead in table size. The hashing function still maps to the approximate

value obtained in the clustering process, which is the first value of the entry. However, it is

now followed by the most probable left and right bottom, and top-right activations. Then,

we may take advantage of this information for speculatively loading the next activations.

Given a filled lookup table, one may use adjacent values in the hash table to ex-

ploit the spatial locality without modifying the algorithm presented in the last section.

However, mapping those neighboring activations to contiguous addresses is a challenging

task for any tool. Another way to use the sequence of activations is by loading the next

activation ahead of computing the index associated with that activation. In this approach,

the activations loaded ahead of its time can be seen as an approximate technique, since we

use them to skip the hashing operations of the algorithm flow presented in Figure 4.2. An

improvement for this algorithm is shown in Procedure 1. This routine enables us to skip

some operations if we accept some uncertainty in partial results, but also enables us to

verify them later with overlapping activations. Also, Figure 4.8 illustrates some iterations

of the execution flow.
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Procedure 1 Compute feature maps using kerne-level and grid-level reuse
Input: InputFMap, Table, InputHeight, InputWidth,KernelSize
Output: OutputFMap

1: for y ← 0 to InputHeight do
2: for x← 0 to InputWidth do
3: actvs← Hash(Table, CRC(InputFMap(y, x)))
4: for kh← 0 to KernelSize do
5: for kw ← 0 to KernelSize do
6: OldActv ← OutputFMap(y + kh, x + kw)
7: if OldActv 6= actvs[kh ∗ KernelSize + kw] or isNonV alid(OldActv)

then
8: OutputFMap(y + kh, x + kw)← actvs[kh ∗KernelSize + kw]
9: else

10: actvs2← Hash(Table, CRC(InputFMap(y + kh, x + kw)))
11: for kkh← 0 to KernelSize do
12: for kkw ← 0 to KernelSize do
13: OutputFMap(y + kh + kkh, x + kw + kkw)←

actvs2[kkh ∗KernelSize + kkw]
14: end for
15: end for
16: end if
17: end for
18: end for
19: end for
20: end for
21: return OutputFMap
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Initially, we apply the CRC and hash functions to obtain the entry related to a

submatrix of an input image or a feature map. Next, we retrieve the activation value along

with its most recurrent neighbors (line 3 in Procedure 1). This compound entry contains

four activation values: the top left, which generates the hash index, followed by the top

right and bottom values, which are stored speculatively in their respective positions. The

step 1 in Figure 4.8 illustrates the mapping of convolution from the input (gray) to the

output (medium blue), followed by the supposed activations (light blue).

Then, we proceed to the next iteration (step 2 ) where the hashing function is

applied to another submatrix of the input that overlaps the previous region. The lookup

search is performed not only to retrieve a more precise activation for the current position

of the output feature map but also to verify if part of the last prediction was accurate

enough (line 7 in Procedure 1). If the overlapping values (blue patterned) match, we

proceed to the next 2x2 submatrix (lines 10,11,12 and 13). It is important to notice that

the main loop computes over three input rows at each time, which maintains the streaming

behavior of the input feature.

Then, the next iteration (step 3 ) is similar to the step 1 , except for an ad-

ditional operation that checks two supposed activations in the overlapping region (light

blue patterned). From step 1 to 4 , we capture the behavior of highly predictive spec-

ulation. When a mismatching of overlapped values happens, as illustrated in step 5 , a

new lookup for that position is made. In the last step ( n ), one can notice that the upper

row and left column have values which are not checked against other speculative loads,

thus increasing error to our execution. However, the majority of the supposed activations

are checked against more precise, nearby activations. Therefore, this algorithm enables

us to reduce up to 50% the number of hash operations in the best-case scenario for a 2x2

grid-size. Although the mismatching does not represent a significant penalty in execution

time, not always our prediction is precise and the savings can reach 50% when compared

to the previous algorithm using only kernel-level reuse. Thus, we present the energy and

time savings in the next section, as well as accuracy and average table size required for

these techniques.

4.3 Frame-level reuse

The inter-frame locality in videos has already been exploited in the past by video

compression techniques. The notion that frames change gradually over time, instead of
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Figure 4.8: Iterations of the algorithm using computation reuse of adjacent activations
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abruptly, is natural for videos. Based on that, video encoding standards commonly per-

form motion estimation between frames to further improve compression rates. To perform

motion prediction between frames, the block matching algorithm is widely employed

(JAKUBOWSKI; PASTUSZAK, 2013).

The block matching technique works by dividing a frame in macroblocks of size

MxM , and searching in the previous frame for the corresponding block that minimizes

matching error, over a search area of size N . The displacement between two same mac-

roblock regions present in different frames is referred to as the Motion Vector. An MV

for each macroblock indicates where the macroblock came from in relation to the previ-

ous, comparison frame; in this way, motion can be predicted over time. Block matching

algorithms try to find the best matching block from the previous frame by minimizing

matching error. The matching error between the block at position (x,y) in the current im-

age, It, and the candidate block at position (x + u, y + v) in the reference image, It−1, is

usually defined as the Sum of Absolute Difference (SAD), where the block size is MxM

(CHEN; HUNG; FUH, 2001).

SAD(xy)(u, v) ≡
M−1∑
j=0

M−1∑
i=0

|It(x + i, y + j)− It−1(x + u + i, y + v + j)| (4.1)

The offset between where a block was in the previous frame and where a block is

in the current one determines its MV. The best estimation of the MV, (û, v̂), is set as (u, v),

which minimizes SAD(x,y)(u, v) The specific block matching algorithm to estimate the
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(û, v̂) used in this work is Three Step Search (TSS), which was modified from the code

provided by Chen, Hung and Fuh (2001). Nevertheless, since its execution is independent

of the network, any variant could be used in its place.

Figure 4.9: CNN and motion prediction comparison.

a) Regular CNN prediction of frame f b) Regular CNN prediction of frame f+1 c) Motion prediction of frame f+1

The combination of motion estimation and regular video inference comes quite

naturally. Previously CNN-predicted bounding boxes can have their new locations up-

dated according to calculated frame motion. By checking the macroblocks that overlap

predicted bounding boxes, one can find the associated MV of each bounding box. This

process eliminates the need for CNN inference during several frames. Figure 4.9 shows

a comparison between running the CNN and performing motion prediction. The first

frame is predicted by the network, which is the same for both techniques. For the second

frame, however, motion prediction does not need the CNN inference and achieves similar

predictions.

Since applying motion prediction to several consecutive frames can accumulate

errors, we take the SAD metric into account to decide whether the network will need

to run the CNN or not. When the error is less than a predefined threshold, the motion

prediction is used to update the output prediction frame. Otherwise (when the error is

greater than the threshold), the motion prediction data is discarded, and a regular CNN

inference is done instead. To control the updated bounding box sizes, we have also set

minimum and maximum size values that they can have: when the predicted bounding box

size is not enclosed between the minimum and maximum values, a CNN inference must

be called for the frame too.

The proposed modifications for the MV algorithm follow the steps described be-

low:

1. The CNN is called for the first video frame.

2. The next frame f is fetched and the block matching technique is applied considering

f and f-1.
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3. If the SAD metric is greater than a set threshold, or the bounding boxes are of

invalid sizes, the CNN is called for the frame f. If not, then the motion prediction

technique is applied to the frame f.

4. Go back to step 2.

Regarding step 3, the threshold value must be calculated separately depending on

the camera. For example, the threshold necessary for an autonomous car application is

different than one needed for indoor cameras. This happens since luminosity, camera

focus, FPS, among other variables, change from camera to camera. We discuss how this

work uses thresholds, and also how they have been computed in Section 5.

Figure 4.10 shows that there is a huge potential for energy savings in video in-

ference. The figure’s histogram illustrates the behavior of the proposed technique when

running a set of 1.050 frames, which comprises 42 seconds of a video, in the YOLOv3-

tiny network. The video chosen is the same as presented in Figure 4.9. As shown, the first

frame is always executed. After that, the chart has CNN execution spikes that correspond

to sections of the video where objects are moving. These spike regions, however, still

do not have the same computational demand as a full CNN run would have, as seen in

the irregular pattern present. Further, even when motion is present, we can apply block

matching to several frames.

Figure 4.10: CNN execution histogram distribution
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4.3.1 Execution flow

By combining the two approaches proposed in Sections 4.1 and 4.3, our method

cannot only drastically reduce the number of times that the image inference needs to be

performed, but also reduce each inference’s cost. Figure 4.11 illustrates the execution
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flow when combining the two former techniques. Each step works as follows:

Load first frame. The very first frame of the video is loaded. This frame always

needs to be analyzed by the network in order to have the first reference prediction.

CNN computation reuse. Performs the CNN inference on a frame. Following 4.1,

we replace a regular network with our computation reuse technique.

Load next frame. Fetches the next frame to be analyzed.

Block matching. Applies our block matching strategy to current frame f and pre-

vious frame f-1. This step calculates new bounding boxes positions if any were present in

frame f-1.

Error > threshold? Based on the SAD value obtained in the block matching step

and on the new bounding boxes sizes, decides whether a full inference is needed on frame

f. If so, then the new bounding boxes values are discarded, and we go back to the CNN

computation reuse step. Otherwise, we go to the update prediction step.

Update prediction. The bounding boxes placements calculated in the block match-

ing step are used as the inference result for the current frame f. This frame never goes

through the network.

Figure 4.11: Complete execution flow.

NO YES

Load first 
frame

Computation 
reuse

Error > 
threshold?

Block 
matching

Load next 
frame

Update 
prediction



43

5 EVALUATION AND ANALYSIS

To evaluate the proposed techniques presented in Chapter 4, we implemented the

execution flows described in Figures 4.1, 4.2, 4.8, and 4.11 in the Darknet framework. The

Darknet is an open-source neural network framework written in C and CUDA (REDMON,

2013–2016). The standard data representation used in Darknet is the IEEE 754 single-

precision floating-point format. Additionally, to separately measure the impact of each

one of the three granularities of reuse addressed in this work, we built different scenarios,

one for each technique exploration. Along with the experiments, we selected the datasets

MNIST, ImageNet, CAVIAR, Caltech’s Pedestrian Detection benchmark (DOLLÁR et

al., 2009), and the GTEA dataset (FATHI; REN; REHG, 2011; LI; YE; REHG, 2015).

Regarding the NNs employed in this work, we ran the abovementioned datasets in the

CNN models LeNet, AlexNet, YOLO3-tiny, YOLO3-tiny, and YOLO3-tiny, respectively.

The MNIST dataset is comprised of handwritten digits, where all the digits have

been size-normalized and centered in a fixed-size image. This dataset is an excellent al-

ternative for people who want to try machine learning algorithms without spending lots of

computational efforts. The ImageNet is a dataset built to provide variety and dense cover-

age of the image world. It organizes its different classes of images in a densely populated

semantic hierarchy composed of 12 subtrees and 5,247 categories, varying for mammals

to vehicles. The CAVIAR dataset comprises video frames recorded over different sce-

narios. These scenarios include people walking alone, meeting with others, entering and

exiting compounds, etc. The Caltech’s Pedestrian Detection benchmark is a dataset that

contains video frames collected from a moving vehicle. These videos include several traf-

fic scenarios with frequently occluded people. We have chosen these last two datasets for

our experiments since they comprise of real-life situations specific to two essential appli-

cations: security cameras and autonomous cars. Moreover, with the GTEA dataset, which

comprises videos from a camera attached to a cap worn by a person, we cover situations

with daily activities.

All baseline results refer to pre-trained models of the tested CNN architectures

and datasets, running in the original version of the Darknet framework and in the sys-

tem processor system described in Table 5.1. We based our execution time and energy

consumption estimations on hardware counters (AVG clock frequency, clock cycles, and

cache statistics) available in the processor described in Table 5.1, and power constraints

found in the user’s manual guides for both the CPU and the DRAM module. The com-
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plete description regarding each evaluation scenario, such as the number of evaluated

frames and parameters for the computation reuse tool, is done at the beginning of the

corresponding section of each computation reuse granularity technique.

Table 5.1: System configuration.
CPU processor
Intel(R) Core(TM) i5-7500 CPU; 4 cores; 3.40GHz;
AVX2 Instruction Set Capable;
32KB IL1 cache; 32KB DL1 cache;
1MB L2 cache;
6MB L3 cache;
Total Power - 65W;
DRAM
DDR4 2133MHz;
Total DRAM Size 16GB;
Total Power - 6.4W;

Source: Author

5.1 Convolution kernel-level reuse

To evaluate the technique presented in Section 4.1, which address computation

reuse at convolution kernel-size granularity, we employed the datasets MINIST, Ima-

geNet, and CAVIAR, running in the CNNs LeNet, AlexNet, and YOLOv3-tiny, respec-

tively. Moreover, we ramdonly selected 10,000 images for each dataset as input for the

Computation Reuse tool. For evaluation, we selected 6,000 frames from each dataset. For

MNIST and ImageNet, we randomly select 6,000 images from each dataset as validation

scenarios. From CAVIAR, we selected videos of two different surveillance cameras, each

recording a different corridor angle of a shopping center. To illustrate how the presented

technique impacts the accuracy, the lookup table sizes, the inference time, and energy

consumption, we have chosen three different (5%, 10%, and 20% for LeNet; 0.05%,

0.13%, and 0.2% for AlexNet; 0.05%, 0.1%, and 0.13% for YOLO) RangeDistance val-

ues for each dataset and CNN pair. As the MultiplierFactor for the clustering technique

presented in Section 4.1.1, we set it as 2× for all the experiments.
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5.1.1 Lookup table sizes and accuracy

Figure 5.1 presents the lookup table sizes and their respective accuracy levels for

profiling and running the three evaluation datasets above mentioned. On average, there is

a slightly (in terms of magnitude) decrease in the demand for lookup table sizes for the

MNIST dataset, ranging from 15 KB to 3.75 KB, with accuracy drops up to 10% only

for the smallest table. This behavior happens because the MNIST dataset is composed

of handwritten digits, which comprise small images containing static black backgrounds

and white numbers, which allows the technique to perform a higher approximation with-

out hurting the accuracy. The ImageNet dataset achieves similar accuracy levels to those

presented for MNIST approximation. However, it demands bigger tables due to its variety

present in the inputs and the more in deep CNN layout compared to LeNet. This dataset is

comprised of worldwide images, which implies in various backgrounds representations.

Thereby, this dataset requires a wider variety of numbers to represent a higher number

of classes it comprises. Hence, the ImageNet does not allow greater levels of values ap-

proximation as those found in the MNIST, demanding table sizes varying from 10.5 MB

to 2.62 MB, with an accuracy drop up to 8% for the most approximative scenario. Al-

though the CAVIAR dataset is composed of surveillance camera videos, which may incur

higher levels of data redundancy due to its static background, this dataset demands the

biggest table sizes to achieve similar accuracy levels like those reported from the other

networks execution, ranging from 27 MB to 10 MB. The higher demand for table sizes in

CAVIAR can be explained due to the low accuracy value for the original CNN, so higher

approximations cannot be done without incurring in more significant accuracy drops.

5.1.2 Inference time

To compare the convolution kernel-size reuse technique to a normal CNN exe-

cution, we took the average inference time for a single frame using the original CNN

algorithm, and we normalized our results to the baseline scenario, as seen in Figure 5.2.

The accelerations are strictly related to the depth of a CNN architecture, the input size,

and mainly the targeted accuracy. First, small convolution kernel size and small networks,

as found in the scenario LeNet-MNIST, reveals an improvement up to 1.9× for different

setups of the clustering process. Though this achievement is not insignificant, it is much

harder to beat the baseline in small kernel scenarios, where intermediate data resides
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Figure 5.1: Table sizes and accuracy for the convolution kernel-size reuse technique
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mostly on cache memories. The second observation relates accuracy, network size, and

table size to the overall performance. The profiling tool has to use more classes due to the

YOLO’s depth to keep an acceptable level of accuracy, thus generating larger tables. In

the execution time, searching on large tables increases the average memory access latency

of our application, which limits the performance of the setup range 0.05% to 1.8× of the

baseline. Nonetheless, when we go from the RangeDistance of 0.05% to 0.1%, there ex-

ists an accentuated slope in the average execution time chart. This effect can be explained

due to the table size reduction (from 27 MB to 13 MB), where the lookup tables are likely

to fit in the cache hierarchy of the processor described in Table 5.1. Finally, the small

tables found in the profiling time for the AlexNet-Imagenet test-case reflect an average

speed-up of 3× due to the medium size of this network.

5.1.3 Energy consumption

Figure 5.3 presents absolute values for DRAM transfer and the energy savings

normalized to each baseline. From this figure, an important observation can be made: the

energy savings are intrinsically related to the speedup and the off-chip data transfer be-
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Figure 5.2: Average inference time comparison for the convolution kernel-size reuse tech-
nique
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tween CPU and DRAM. Hence, the test-cases that require smaller tables will also require

fewer DRAM accesses, which is likely to improve energy efficiency by a factor higher

than the speedup of each scenario.

The LeNet-MNIST test-case outperforms the baseline by more than 1.9× by us-

ing the kernel-level reuse with a RangeDistance of 20%. Although the YOLOv3-tiny-

CAVIAR test requires larger tables, it presents the most significant reduction in the off-

chip transfer compared to the baseline. This behavior can be explained due to the presence

of inter-frame locality, incurring a high degree of activation repetition due to the static

background present in this dataset. Hence, the energy saving levels over the baseline

can reach 2.9× using clustering configuration of "0.13% range". Finally, the AlexNet-

ImageNet test-case can provide significant improvement in terms of energy, reaching up

to 3.18× when compared to the baseline CNN execution. In conclusion, the data trans-

fer results have significant contributions to overall energy savings: An execution of the

computation reuse-based algorithm requires less data manipulation than the baseline con-

volution execution, which in turn reduces the data requests by the CPU. Alternatively, a

more straightforward and less power-hungry CPU version could be used instead of the

setup in Table 5.1. Furthermore, the clustering mechanism enables us to replace convolu-
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Figure 5.3: Energy consumption comparison for the convolution kernel-size reuse tech-
nique
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tion calculations by accesses to small lookup tables, leveraging data locality in the cache

hierarchy, which in turn reduces the total DRAM transfers.

5.2 Grid-level reuse

To evaluate the convolution grid-level reuse technique presented in Section 4.2, we

took the same setup employed in Section 5.1. Hence, the evaluated datasets were MNIST,

ImageNet, and CAVIAR running on their respective CNN models. To perform compar-

isons regarding average inference time, accuracy, and energy savings, we generated all the

grid-level tables based on the lookup tables created by the greatest clustering range dis-

tance employed for each dataset in Section 5.1. Thus, the RangeDistance values employed

were 20%, 0.2%, and 0,13% for the datasets MNIST, ImageNet, and CAVIAR, respectiv-

elly. Additionally, we built two evaluation scenarios for the grid-level reuse, gathering all

the 2x2, and 3x3 grids in the profiling scenarios, and we selected those with a frequency

higher than the average grid frequency value (#TotalGrids÷#DifferentGrids) of the

profiling set to compose the tables. Table 5.2 presents all the evaluated scenarios, their
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respective average grid frequency, and the average number of grids added to the lookup

table corresponding to each convolution filter.

The average frequency of grids 2x2 found in the entire profiling set (10,000 im-

ages) are 51,578; 421; and 19,406 for the respective test-cases: LeNet-MNIST, AlexNet-

ImageNet, and YOLOv3-CAVIAR. The scenario LeNet-MNIST presents the highest av-

erage frequency and consequently needs fewer grids added to the lookup-tables (two on

average). This elevated average grid frequency can be explained due to its simplicity in

the inputs: only static black background images with white numbers. On the other hand,

the ImageNet dataset has the most diverse set of representations among the tested sce-

narios. Thebery, the AlexNet-ImageNet scenario presents the worst result (lower average

grid frequencies and higher added grids to lookup tables). Finally, due to its high inter-

frame redundancy leveraged by the static background camera, the CAVIAR dataset also

presents high levels of the grid frequency. Further, as we employ a bigger grid size (3×3),

the average grid frequency values drop to 2,647; 43; and 1,145 for the three datasets, re-

spectively. As a consequence of the grid-level reuse, the metric grid frequency will have

a significant impact on accuracy, inference time, and energy savings, as will be presented

in the following Sections.

Table 5.2: Grid-level reuse statistics
CNN/dataset Grid-size AVG grid freq. AVG grids/table

LeNet-MNIST
2× 2 51,578 2
3× 3 2,647 5

AlexNet-ImageNet
2× 2 421 30,840
3× 3 43 97,530

YOLOv3-tiny-CAVIAR
2× 2 19,406 152
3× 3 1,145 616

Source: Author

5.2.1 Lookup table sizes and accuracy

The table sizes and accuracy levels that enable grid-level reuse are shown in Fig-

ure 5.4. As the most frequent adjacent activations (i.e., bottom, right, and bottom-right

activations for a 2x2 grid) are stored along with a more precise activation, it is expected

that the table size is increased by at least 4× and 9× for the 2x2, and 3x3 grid sizes,

respectively. However, the table size depends on the threshold given in profiling time that

determines the cutoff frequency for storing a pattern of the submatrices. Since the cutoff
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frequency in these experiments was given by the average number of repeated grids per

image, the test-case scenarios present different overheads in table size. Thereby, as pre-

viously pointed out in Section 5.2, the average frequency of grids presented in Table 5.2

has a direct impact on the overhead in table sizes. Hence, AlexNet-Imagenet’s tables are

24× and 164× larger than its kernel-level range clustering (0.2% range), demanding new

table sizes of 62.76 MB and 430.59 MB for the two grid sizes evaluated. This result

is strictly related to the diversity of images present in the dataset, where the recurrence

of backgrounds is smaller compared to the other datasets. Meanwhile, YOLOv3-tiny-

CAVIAR test-case has it tables increased by factors of 1.8× (10.2 MB to 18.47 MB)

and 7× (10.42 MB to 70.34 MB), reinforcing the inter-frame locality found in sequential

video frames. The LeNet-MNIST scenario presents the smallest table overhead (in the

magnitude of values), demanding 3 KB (2.25× more space) and 16.87 KB (5.49× more

space) of extra table size.

In addition to the table size, Figure 5.4 presents the accuracy levels for the eval-

uated grid-level reuse scenarios. The MNIST dataset presents the smaller reductions in

the overall accuracy, from 90% in the 20% range to 89% in the 2x2 grid scenario, and

83% in the 3x3. The 3x3 case has the highest accuracy drop level for the MNIST dataset

(17%), indicating that the small convolution filter sizes (for the first convolution layer,

the input size is 28 × 28) do not tolerate a grouping of convolutions in a matrix bigger

than 2x2. Despite the bigger table sizes required for the ImageNet scenario, its accuracy

drops are relatively small for the 2x2 grid size (10% of accuracy drop). Nonetheless, like

the results for MNIST, when we employ a 3x3 grid size, the accuracy drops grow up to

23%. Finally, the CAVIAR dataset presents the worst accuracy drops when employing

the grid-level reuse: it presents accuracy drops of 19% and 35% for the two scenarios, re-

spectively. Moreover, the worst-case scenario considers that the algorithm inserted errors

due to speculative convolutions in the overlapping of activations, which were supposed to

happen.

5.2.2 Inference time

When we add the grid-level to our computation reuse algorithm, one can observe

the influence of dataset domain in the overall performance. Due to the predictive patterns

in MNIST and CAVIAR datasets, we reduce the average inference time to 27-15% and

23%-20% of the baseline time, respectively. The small reduction in the CAVIAR dataset
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Figure 5.4: Table sizes and accuracy for the convolution grid-size reuse technique
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average inference time when we change from the 2x2 scenario to the 3x3 happens due

to the table size increase (7×) reported from the last. The table size overhead also has

an impact on the inference time for the ImageNet dataset. For the 2x2 grid size, the

average inference time was reduced to 30% of the baseline, which configures a small

increase when compared to the 33% achieved by the 0.2% range scenario. Furthermore,

the results for a 3x3 grid size get worse compared to the 0.2% range scenario, lowering

the execution time to only 35% of the baseline.

Although the inference time for AlexNet-Imagenet test-case has worsened when

compared to kernel-level reuse, this gives us an interesting sight: the deviation of image

pixels in the dataset and the metrics related to the grid-level reuse in the profiling time are

critical to deciding if the grid-level reuse must be used or not. The deviation of pixels in

datasets impacts directly on the frequency of 3x3 submatrices, thus providing more grids

with lower reuse rate. Even if we change the current metric to gather fewer grids with the

highest frequencies, which generates smaller tables, the reuse rate in the execution time

is still reduced. Therefore, grid-level reuse may not be beneficial in a domain as varied as

the Imagenet is.
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Figure 5.5: Average inference time comparison for the convolution grid-size reuse tech-
nique
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5.2.3 Energy consumption

Figure 5.6 presents absolute values for DRAM transfer and the energy normalized

to each baseline when employing the convolution grid-level reuse technique. As already

stated in Section 5.1.3, the DRAM transfer has a significant contribution to the overall

energy savings. Furthermore, when employing the grid-level reuse, the off-chip transfers

can be reduced even more, since not all the input are read due to the speculative execution

of the grid-level reuse technique. The LeNet-MNIST test-case presents the best energy

savings, outperforming the baseline scenario more than 3.73× by using a 2x2 grid-size

reuse, and by a factor of 6.8× regarding a 3x3 grid-size. Regarding the DRAM transfer

results for MNIST, the 2x2 case reports a reduction from 8.6 MB to 6.5 MB, while the

3x3 grid-size can reduce it to 6.3 MB. This slightly decrement in the DRAM transfer

can be expected, since even the extra table size required for LeNet-MNIST (20.62 KB) is

insignificant given cache memory sizes found in commercial CPUs (the CPU presented

in Table 5.1 has 32 KB as the first-level of data cache).

The YOLOv3-tiny-CAVIAR scenario reaches energy savings of 4.6× and 5.2×

compared to 2.96× related from the 0.13% range scenario. Notwithstanding the 1.8×
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increasing in the table sizes required for the 2x2 grid scenario, the acutest slope in the

energy consumption curve can be seen when we go from the 0.13% range scenario to

the 2x2 grid size, outperforming the kernel-level reuse scenario in 1.55×, reducing the

DRAM transfer from 288 MB to 279 MB. Moving from a 2x2 to a 3x3 grid introduces

a table increase in 70× over the 0.13% range scenario. Thus, even with the expected

reduction in the amount of data read (with a 3x3 grid, we must read only two inputs to get

results for nine outputs due to the speculation) when employed this technique, the DRAM

transfer value reported reaches 330 MB.

Finally, the ImageNet dataset presents the worst energy savings results for the

grid-level reuse technique. The 2x2 case achieves energy savings of 3.42×, while the

3x3 case lowers this value to 2.75× when compared to the 3.18× related from the 0.2%

kernel-level reuse. Due to the extra lookup table size (60.14 MB and 427 MB) related

from the grid-reuse applied to the ImageNet scenario, there is an increase in the DRAM

transfer levels achieved by the grid-size scenarios (245 MB and 537 MB) compared to the

0.2% range (168 MB).

In conclusion, the extra lookup table sizes due to grid-level reuse have signifi-

cant contributions to DRAM transfer results, and consequently to overall energy savings:

When the new table sizes are much higher than the theoretical data transfer reduction (2×

less reading operations for a 2x2 grid, and 4.5× for a 3x3 grid), the energy savings can be

attenuated or even be smaller than the reported for the corresponding kernel-level reuse

version.

5.3 Frame-level reuse

To evaluate the frame-level reuse technique proposed in Section 4.3, we selected

the Datasets CAVIAR, Caltech’s Pedestrian Detection benchmark, and GTEA. For evalu-

ation, we selected 6,000 frames from each dataset. From CAVIAR, we selected videos of

two different surveillance cameras, each recording a different corridor angle of a shopping

center. From Caltech’s dataset, we randomly select videos recorded by vehicles traveling

in several traffic scenarios. From the GTEA dataset, we have chosen videos from different

activities totaling the 6,000 required frames. The network used for our experiments was

YOLOv3-tiny, which we will later replace with YOLOv3 to improve the work’s scope in

Section 5.3.4.

To better illustrate the impact of frame-level reuse on energy reduction, average
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Figure 5.6: Energy consumption comparison for the convolution grid-size reuse technique
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inference time, and accuracy, we have performed experiments using three different SAD

thresholds for each dataset. These values were obtained by evaluating block matching

results from the training set. First, we save the maximum SAD found between each

two frames comparison. We can then calculate a threshold for each dataset based on this

maximum value, setting it to be a certain percentage from the maximum value. The higher

the threshold, the more differences between images are tolerated, and so the computation

reuse method is called fewer times. As such, applications that do not tolerate much error

need smaller thresholds. We have chosen thresholds of 50%, 70%, and 85%, to exemplify

the behavior of our method for different rates of re-computation.

Regarding the "Computation reuse" box presented in the execution flow that de-

scribes this technique in Figure 4.11, we replaced the CNN execution calls by the con-

volution kernel-level computation reuse, with the same setup employed for the CAVIAR

dataset in Section 5.1. As the RangeDistance, we took the scenario 0.13% since it can

achieve the best speedup presented over the baseline. As the input training set for the

Computation Reuse profiler execution, we used a batch size of 10,000 video frames for

each dataset, different from those 6,000 used for evaluation. The choice for employing the

kernel-level reuse instead of grid-level was based on the accuracy results for the CAVIAR

dataset illustrated in Section 5.1.1. Moreover, given the same CNN layout employed in
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this experiment, and the resemblance present in the characteristics of the datasets, we kept

the same 0.13% as the RangeDistance for the three evaluated datasets in this section.

5.3.1 Accuracy

Table 5.3 illustrates the relationship between inference accuracy levels and CNN

call rate, when running a pre-trained YOLOv3-tiny model on the validation datasets. For

all the datasets, it can be seen that as the number of frames that need to be inferred with

our computation reuse technique decreases, so does the accuracy. Further, one can notice

that for the CAVIAR dataset, higher levels of accuracy can be achieved with less CNN

execution calls, while Caltech demands more elevated CNN execution rate. This accuracy

versus CNN execution rate behavior can be explained due to the datasets video classes:

the CAVIAR dataset presents higher levels of locality since the source camera resides in

a fixed observation point. The GTEA dataset presents behavior that falls in the middle of

these, as the 50% threshold is probably too low, making it so that too many frames need

re-computation, which leads to higher execution rate. As the threshold lowers, however,

we find that it gets closer to results from the CAVIAR dataset. This is expected, as the

GTEA dataset, while not made from a fixed camera, does not have as many angles and

background variations as the Caltech one.

Table 5.3: YOLOv3-tiny CNN accuracy and inferred frames
Dataset Scenario CNN call(%) Accuracy(%)

Caltech

Baseline 100 100
Frame prediction threshold 50% 61 95
Frame prediction threshold 70% 44 92
Frame prediction threshold 85% 31 84

CAVIAR

Baseline 100 100
Frame prediction threshold 50% 55 98
Frame prediction threshold 70% 38 94
Frame prediction threshold 85% 23 87

GTEA

Baseline 100 100
Frame prediction threshold 50% 86 98
Frame prediction threshold 70% 31 93
Frame prediction threshold 85% 16 83

Source: Author

Furthermore, three significant sources of error can influence the output, either re-

sulting in non-detected objects or mispredictions:

1. First, the computation reuse technique employed performs approximations in the
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output, to reduce the lookup table sizes further. As such, higher rates of CNN

executions using computation reuse are expected the accuracy levels to get closer

to those related in Section 5.1.1.

2. The motion prediction algorithm can introduce inaccuracy levels in the inference

through wrong estimations of the bounding boxes when the frames change quickly.

3. Furthermore, if the CNN execution erroneously makes a prediction mistake, then

it is possible that the motion estimation technique will propagate the error. For

example, if the network finds an object where there is none, the motion estimation

will keep this object’s prediction until another CNN call is made. Similarly, if the

network fails to find an object, then our technique will not be able to detect this

object until at least the next CNN inference.

5.3.2 Inference time

To estimate the speedup achieved by our proposed technique over a normal CNN

execution, we take a single frame inference time by the CNN and normalize our results

to the baseline scenario, as seen in Figure 5.7. All the Mem. range columns refer to the

Computation Reuse technique, and represent the clustering range distance used to gener-

ate the lookup tables. Thus, a 0.05% range means that numbers were grouped in clusters

with a distance value set to 0.05% of their original values. The range choice of 0.05%

manages to perform a frame inference 1.92× faster than the baseline. Further, increas-

ing the distance outcomes a smaller table, which in turn introduces accuracy drops but

accelerates the frame inference. As such, a 0.1% range provides 2.46× faster inference.

Finally, regarding range the value of 0.13%, one can reach inference time accelerations

up to 2.73×.

The Frame pred. column refers to the time needed by the motion estimation tech-

nique to make a frame inference. It is 116× faster than the baseline time. However, we

cannot perform frame predictions only: at least one CNN execution inference as the "cold

start state" to completely compute the motion estimations is required. On top of that, too

many predictions in a row can lead to accuracy drops. By combining the Computation

Reuse and the frame prediction techniques, however, we can exploit the inference time

gap between the original inference time and our achieved speedups. If the FPS rate of

the original video is kept the same, significant and reduced energy consumption can be
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Figure 5.7: Average frame inference time comparison over the baseline system
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obtained, as will be presented in Section 5.3.3.

5.3.3 Energy consumption

As already presented, one can achieve speedups of up to 2.73× and 116× when

replacing CNN inference with computation reuse and motion prediction, respectively. As

such, those two techniques combined can preserve FPS rates while drastically improving

energy gains. To do so, a mechanism such as Dynamic Voltage and Frequency Scaling

(DVFS) can be used to reduce the main CPU frequency operation, lowering its power

dissipation while accomplishing the target inference time for each frame. Alternatively, a

simpler and less power-hungry CPU version could be used in place of the original. Fig-

ure 5.8 illustrates the energy savings that one can achieve in comparison to the baseline,

which can be done just by reducing the frequency operation of the baseline system.

For motion prediction, we use the three chosen thresholds and demonstrate how

they impact the total energy consumption. Higher thresholds imply in more frames going

through motion prediction instead of computation reuse inference, which makes energy

gains more pronounced, since the latter achieves small energy savings compared to the

former. As a tradeoff, more significant energy savings impact more on the accuracy, as

shown in Section 5.3.1. The most significant energy gains can be seen in the GTEA

dataset with a threshold of 85%, where our technique can manage energy savings of up

to 27.62× over the baseline. A threshold of 70% yields 12.61×, while 50% can achieve

4.20×. For the Caltech dataset, the thresholds of 85%, 70%, and 50% produce energy

gains of 12.5, 9.09, and 6.25 times, respectively. As for CAVIAR, the same thresholds

obtain energy gains of 11.70, 17.97 and 25.77. The data pattern can easily explain the dif-
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Figure 5.8: Energy gains over baseline and data transfers running three different datasets
on YOLOv3-tiny.
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ference in gains between the three datasets: as mentioned, CAVIAR is composed of fixed

camera videos, which our technique can benefit more from. On the other hand, Caltech’s

dataset has regularly moving car cameras, presenting less opportunity for motion predic-

tion, as frames change more frequently. GTEA presents behavior that’s in the middle of

them, with a moving camera that is slower than a camera in a car and reduced fluctuations

between the other two. While it can achieve more energy gains than CAVIAR with an

85% threshold, those gains diminish with a 50% threshold, with which CAVIAR achieves

11.70× energy reduction, while GTEA only manages 4.20×. Still, a factor of more than

12× of energy reduction in software can certainly be useful.

Furthermore, the "CPU data transfer" bars present the amount of data generated

and requested by the CPU to the first level of cache memory. The "CPU data trans-

fer" value amounts to approximately 10 GB of data for the baseline system running the

three evaluation sets. When applying our technique, considering the three chosen thresh-

olds, the data transfers are reduced to ranges of 2316-7135 MB, 1540-3808 MB, and

808-2469 MB. Meanwhile, the "DRAM data transfer" bars refer to the amount of data

transferred between the DRAM module and the cache hierarchy. Similarly, the "DRAM
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data transfer" series reach approximately 1892 MB of data for the baseline system run-

ning the three evaluation sets. For the three chosen thresholds, they are reduced to ranges

of 175-312 MB, 45-55 MB, and 31-42 MB.

In conclusion, the data transfer results have significant contributions to overall

energy savings: An execution of the motion prediction algorithm requires less data ma-

nipulation than a baseline convolution execution, which in turn reduces the data requests

by the CPU and the DRAM accesses. Furthermore, the clustering mechanism of the com-

putation reuse technique replaces convolution calculations by accesses to small lookup

tables, leveraging data locality in the cache hierarchy, which in turn reduces the total

DRAM transfers. Last but not least, one can see that the CAVIAR and GTEA datasets

demand even fewer data management efforts than the Caltech’s one, keeping in mind the

frame locality behavior related in the previous results.

5.3.4 Applying the technique to a deeper NN

To expand the representativeness and generality of this work, we conducted several

experiments with a deeper YOLOv3 variation. As this network is much slower to run

than YOLOv3-tiny, we were not able to gather complete data as described before, but

we will exemplify that our technique could be expanded to models other than YOLOv3-

tiny as well. DNN have reported more significant accuracy levels since they can extract

more features of the inputs along with their more numerously convolutional layers. Table

5.4 presents a few versions of the YOLOv3’s original layout. One can notice that the

YOLOv3-tiny variation comprises of the smallest, the less computation power dependent,

and also the less accurate model. On the other hand, the YOLOv3 version presents a better

ratio between accuracy and computation demand. It comprises up to 75 convolutional

layers, and delivers a mAP score for the MSCOCO dataset (LIN et al., 2014) of 55.3%.

Using YOLOv3-tiny, our evaluations have presented a 16% error (84% accuracy),

caused by situations explained in Section 5.3.1. As shown in Table 5.4, this tiny network

achieves a mAP score of only 33.1% on the MSCOCO dataset, compared to YOLOv3’s

score of 55.3%. Thereby, both to demonstrate the applicability of the proposed work, and

to evaluate the possibility that some accuracy drops reported in the previous results could

be fixed only by changing our network choice to a more reliable one; we employed the

YOLOv3 variation to conduct some experiments.

Following this logic, in this section, we present some results for the CAVIAR
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dataset, when running it on the YOLOv3 as the baseline network model. As seen in

Figure 5.9, for the same threshold of 85%, the less beneficial for accuracy, applying the

same technique yields an accuracy of 98%, compared to YOLOv3-tiny’s 87%. These

results can be easily explained: YOLOv3 is less likely to make mispredictions and is also

less likely to entirely miss objects in a frame, problems that were previously described

in Section 5.3.1. Thus, the error propagated by the motion prediction technique is also

reduced. Furthermore, increasing the threshold to 99% in this network model yields an

accuracy of 97%, which is only a 1% difference in comparison to the 85% threshold.

Table 5.4: YOLOv3 variations comparison
YOLOv3-tiny YOLOv3 YOLOv3-spp

Total layers 25 108 115
Conv. layers 13 75 76

GFLOPS 5.56 65.86 141.45
MSCOCO mAP(%) 33.1 55.3 60.6

Source: Author

Regarding energy reduction, gains are also more aggressive because we can further

limit frames that will need to be processed by the computation reuse technique. From the

26 times energy savings achieved by the 85% threshold, we can go to savings of up to

96 times, while reducing accuracy only by 1%. These saving can be explained by the

full inference call rate, which drops from 32% with an 85% threshold to 22% with a 99%

threshold. In other words, the more complex and precise the network, the smaller our

errors, and the larger the possible acceleration provided by frame skipping.

Figure 5.9: Energy gains over baseline of the CAVIAR dataset using YOLOv3.
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6 CONCLUSION AND FUTURE WORK

In this work, we analyzed the execution of different CNN models and conducted

experiments to expose computation reuse opportunities in these networks. Based on input

recurrence patterns at convolution kernel-level, we exploited data redundancy and simi-

larity by using a software-based reuse technique to skip entire convolution operations by

keeping representative activations in tables. We designed a tool that analyzes a profiling

set and generates hash tables for future reuse in the running time. By using a range-based

clustering, we made the size of the lookup tables smaller at a cost to the accuracy of

the prediction. Further, we extended the reuse level to a grid of convolutions by storing

neighboring convolutions values. Through the speculative execution of the adjacent con-

volutions, it was possible to reduce the input read operations by theoretical factors of 2×

and 4.5×, for a 2x2 and a 3x3 convolution grid-size, respectively. Finally, we presented

a combination of two software-only strategies to reduce the energy consumption of CNN

video inference. The proposed technique could exploit the intra-frame and the inter-frame

locality inherent from sequential frames, relying on a computation reuse technique and on

video compression basics to predict frames.

Our experimental results show that our implementation can reduce the average

inference time up 3× for a kernel-level reuse granularity, 6.6× for a 3x3 grid-level, and

116× for the motion prediction technique. We have shown how the performance and

energy improvements provided by our techniques are strictly dependent on the table sizes

required for the computation reuse technique, and the DRAM transfer levels. Thus, the

most aggressive energy savings can be improved by a factor of 3.18× for the kernel-level

reuse, 6.6× for a 3x3 grid-level, and 27.62× for the frame-level reuse. Additionally, as

we either perform approximations to reduce the lookup tables or predict frame inferences,

there are inserted accuracy drops in the results. The accuracy level can be a limiting

factor to determine whether each granularity of reuse is suitable for each CNN and dataset

domain pairs. For LeNet-MNIST case, the highest speedup for the kernel-level reuse

introduces an accuracy drop of 10% and 11% for the 2x2 grid size scenario. The AlexNet-

ImageNet relates accuracy drops up to 5% and 10% for the same scenarios, respectively.

However, the YOLOv3-tiny-CAVIAR presents accuracy drops of 7% in the kernel-level,

and 19% in the 2x2 grid-level, revealing the grid-level technique not feasible for this

specific dataset-CNN pair.

Bringing the table presented in Section 3.3 and comparing with the features cov-
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ered by this work, according to the characteristics listed in Table 6.1, this work is the only

one which provides a reduction in the memory data transfers, reduces the total number of

multiplications, convolutions, and CNN calls inferences, while not demanding to retrain

the original CNN neither a dedicated hardware accelerator.

Table 6.1: Comparison between this work and related work

ASIC
Less

memory
transfers

Less
#Mult

Less
#Conv

Less
#Inferences

Retraining

Chen et al. (2014a) 3 3 3 7 7 7

Chen et al. (2017) 3 3 3 7 7 7

Riera et al. (2018) 3 3 3 7 7 7

Hegde et al. (2018) 3 3 3 7 7 7

Raha et al. (2017) 3 3 3 7 7 7

Razlighi et al. (2017) 3 3 3 7 7 7

Jiao et al. (2018) 3 7 3 7 7 7

Morecino et al. (2019) 3 7 3 7 7 7

Zhu et al. (2018) 3 3 7 7 3 7

Hubara et al. (2017) 7 3 3 7 7 7

Han et al. (2015) 7 3 3 7 7 7

Wu et al. (2016) 7 3 7 7 7 7

Liu et al. (2018) 7 3 3 7 7 7

Howard et al. (2017) 7 3 3 3 7 3

Shafiee et al. (2017) 7 3 3 3 7 3

Kang et al. (2017) 7 3 3 3 7 3

Ji et al. (2013) 7 3 7 7 3 7

This work 7 3 3 3 3 7

Source: Author

As future work, we intend to employ scratchpads to store the lookup tables used for

reuse more effectively, thus achieving even more significant energy savings. Also, the ex-

ploitation of bitwise operations and parallel memory arrays found in Field-Programmable

Gate Array (FPGA) devices, could be advantageous for a hardware implementation of

this work. Further, we also plan on testing our technique with more network models, such

as gathering full results for more in-depth versions of YOLOv3 CNN and extending it to

run on GPUs.

6.1 Published Papers

During the master degree, this work culminated in a published paper, in the Inter-

national Conference on Embedded Computer Systems, and other publications not related
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to the current thesis, as listed below:

1. DE MOURA, Rafael Fao et al. Skipping CNN convolutions through efficient

memoization. In: 2019 International Conference on Embedded Computer Sys-

tems: Architectures, MOdeling and Simulation (SAMOS). IEEE, 2019.

2. SANTOS, Paulo Cesar et al. A Technologically Agnostic Framework for Cyber-

Physical and IoT Processing-in-Memory-based Systems Simulation. In: Micro-

processors and Microsystems, 2019.

3. AHMED, Hameeza et al. A Compiler for Automatic Selection of Suitable Processing-

in-Memory Instructions. In Proceedings of the Conference on Design, Automa-

tion & Test in Europe European Design and Automation Association. IEEE, 2019.

4. DE LIMA, João Paulo C. et al. Exploiting Reconfigurable Vector Processing

for Energy-Efficient Computation in 3D-Stacked Memories. In: International

Symposium on Applied Reconfigurable Computing. Springer, Cham, 2019. p.

262-276.

5. SANTOS, Paulo Cesar et al. Exploring IoT platform with technologically ag-

nostic processing-in-memory framework. In: Proceedings of the Workshop on

INTelligent Embedded Systems Architectures and Applications. ACM, 2018. p.

1-6.
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