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ABSTRACT

Approximate Computing is a design paradigm that can be employed in situations where

results of computation do not have to be exact – applications that can tolerate a certain

amount of approximation errors and still produce useful outputs for the end-user, es-

pecially for perceptual signals processing. Approximate memories are a digital hardware

design technique that brings these approximations to the data storage level. This paradigm

is usually explored in Error-Tolerant Applications (ETAs), which include image and video

processing, artificial neural networks, computer vision, web searches, machine learning,

etc.

This work proposes the use of Approximate Memories for High Efficiency Video Cod-

ing (HEVC or H.265), with the development of a methodology to evaluate the impact of

the introduction of such approximations on the quality of the compressed video and the

energy consumption. The memory access patterns of the HEVC encoder are recorded

as memory traces and used to extract power results. The quality degradation produced

by the approximations is evaluated with objective metrics used in the video coding litera-

ture, such as Peak Signal-to-Noise Ratio (PSNR) and Bjøntegaard delta bit-rate (BD-BR).

Keywords: Video Coding. Motion Estimation. Memory Systems. Approximate Com-

puting. Approximate Memory.



RESUMO

Computação Aproximada é um paradigma de projeto que pode ser empregado em situ-

ações onde os resultados da computação não precisam ser exatos - aplicações que po-

dem tolerar certa quantidade de erros de aproximação e ainda produzir saídas úteis para

o usuário final, especialmente quando se tratar de processamento de sinais perceptuais.

Memórias aproximadas são uma técnica de "design"de sistemas digitais que traz essas

aproximações para o nível de armazenamento de dados. Esse paradigma geralmente é ex-

plorado em aplicações tolerantes a erros (ETAs), que incluem o processamento de imagem

e de vídeo, redes neurais artificiais, visão computacional, pesquisas na Web, aprendizado

de máquina etc.

Este trabalho propõe o uso de Memórias Aproximadas para Codificação de Vídeo de Alta

Eficiência (HEVC ou H.265), com o desenvolvimento de uma metodologia para avaliar o

impacto da introdução de tais aproximações na qualidade de saída e consumo de energia.

O padrão de acesso à memória do codificador HEVC será gravado como um rastreio de

memória e usado para extrair resultados de energia. A degradação da qualidade produ-

zida pelas aproximações será avaliada com métricas objetivas utilizadas na literatura de

codificação de vídeo, como a relação sinal-ruído (PSNR) e taxa de bits Bjontegaard Delta

(BD-CA).

Palavras-chave: Video Coding. Motion Estimation. Memory Systems. Approximate

Computing. Approximate Memory.
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1 INTRODUCTION

The continuing advances in the IT technology industries led to more and more

people having different electronic devices as a part of their daily activities. According to

Cisco’s forecast, there will be 3.6 networked devices per capita by 2022 (CISCO, 2017).

It’s important to take energy and computational constraints into account to improve the

quality of products and services that are provided to the end-user of IT devices.

Digital video is constantly increasing as a media form, especially on mobile de-

vices: video will account for about 82% of all IP traffic by 2022, up from 75% in 2017

(CISCO, 2017). Live video streaming is also on the rise, and it will account for 17% of

the Internet video traffic by 2022 (CISCO, 2017). Video coding standards play a vital role

in this scenario, since it is impractical and inefficient to store and transmit uncompressed

videos: a 15-minute High Definition (HD) video, using the Red-Green-Blue (RGB) color

space, with a resolution of 1920x1080 and at 24 frames per second takes 134 GB to store

and requires a bandwidth of 149 MB/s for its transmission.

Equations 1.1 and 1.2 show the calculation of size and bit-rate for uncompressed

videos. H and W refer to height and width, respectively. N is the number of bytes nec-

essary to represent each pixel. F is the frame-rate (FPS) and t is the time duration of the

video, in seconds.

Size = W ∗H ∗N ∗ F ∗ t (1.1)

Bit−Rate = Size/t (1.2)

In this scenario, it is necessary to have efficient video encoders to process videos

with increasing resolutions and, at the same time, higher frame rates, keeping the bit-

stream as small as possible. Besides, video encoders need to be energy efficient so they

can operate on battery-powered devices. Video coding takes advantage of the redundan-

cies in and between frames to reduce the amount of data required to represent a video -

which is critical when storage space and communication costs to transmit such data are

considered (SHAFIQUE; HENKEL, 2014).

The need to provide efficient video encoding for ever-increasing video resolu-

tions has led to the introduction of the HEVC (High Efficiency Video Coding, or H.265)

standard in the ISO & ITU organizations in 2013 (SULLIVAN et al., 2012). The tech-
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niques adopted by HEVC use more complex data structures and considerably increase

the computational effort for coding, compared to its predecessor H.264/AVC (OHM et

al., 2012), (VANNE et al., 2012), (MONTEIRO et al., 2015). HEVC runs on platforms

with multiple hierarchical levels of memory, and because of the large impact on runtime

and power consumption associated with memory accesses, architectural improvements,

encoder, and memory configurations bring interesting trade-offs between coding time,

coding efficiency, and global energy consumption (SHAFIQUE; HENKEL, 2014).

HEVC was introduced to achieve better compression than its predecessor, H.264/AVC

(WIEGAND et al., 2003) - about 40%-50% bit-rate savings for the same video quality

(OHM et al., 2012) - and to better explore general-purpose conventional parallel pro-

cessing architectures (SULLIVAN et al., 2012). HEVC delivers better quality and com-

pression ratios, but this comes with a cost: HEVCs techniques and tools increase the

computational effort of the encoding process by about 40%-70% and perform over two

times more memory accesses when compared to H.264 (SHAFIQUE; HENKEL, 2014).

Instead of the 16x16-sized Macroblocks defined in H.264/AVC, HEVC employs the con-

cept of Coding Tree Unit (CTU). A CTU can be defined as a fixed block with LxL pixels,

where L is typically 64.

Figure 1.1: Processing time and average time share of video encoder modules

Source:
(Grellert; Bampi; Zatt, 2016)

As shown in Figure 1.1, the Motion Estimation (ME) accounts for most of the

encoding time (over 50% of the encoding time, on average). There is also evidence

supporting the importance of the ME on the side of memory access demands. Previ-

ous studies targeting cache memory accesses in the HEVC standard have shown that
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Inter-prediction accounts for over 70% of the memory accesses performed by the encoder

(MATIVI; MONTEIRO; BAMPI, 2016). By targeting the module that performs the most

cache memory accesses, we can impact energy consumption with a small overall impact

on the video encoder quality.

This work proposes the implementation of a technique called "Bit Dropping" in

HEVC, as a way to implement Approximate Memory storage, which allows for energy

and performance gains with an acceptable (possibly barely perceived) degradation in the

visual quality of the encoded video. In this work, we propose a methodology that allows

for the evaluation of impact in quality according to the desired level of approximation.

This work is structured as follows: In Section 2 the background concepts related

to Video Coding and Memory Systems are presented, which focuses on the different in-

terpretations of Approximate Memory and the techniques that are employed to achieve it.

Related works are discussed in Section 3. In Section 4, the Methodology created for this

work is presented, and in Section 5, the following Results. Finally, Section 6 presents the

conclusions.
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2 REVIEW OF VIDEO CODING AND MEMORY SYSTEMS CONCEPTS

This chapter presents the essential concepts that are used throughout this Report.

First, the video coding concepts are reviewed, then the memory hierarchy principles and

the corresponding memory technologies are presented. Finally, approximate memory

techniques and other aspects that are covered in the related works (Section 3) are pre-

sented.

2.1 Video Coding

Video coding takes advantage of the spatial and temporal redundancies which are

inherent to the video capturing process, in order to represent the video with a smaller

amount of digital data, or a shorter bitstream (considering the transmission of the video

over a serial communication channel), than otherwise a coding of every pixel in RGB,

YUV or similar format would require.

2.1.1 High Efficiency Video Coding

The HEVC standard introduces innovations in practically all steps of the video

encoding/decoding process when compared to the previous standards. Figure 2.1 presents

a general block diagram of an HEVC encoder.

The data structures use the concept of coding tree unit (CTU) considering a size

selected by the encoder, L X L pixels where L can be chosen as 16, 32 or 64. Each

CTU consists of chroma and luma blocks. These blocks are divided into Coding Units

(CUs), and then a decision to code with intra or inter-prediction is performed. The CUs

are further divided into Prediction Units (PUs) - which become Prediction Blocks (PBs)

using its chroma and luma layers that can be of sizes 4x4 to 64x64 (SULLIVAN et al.,

2012). Figure 2.2 shows the breakdown of different units used by HEVC.

The encoder processes exhibited in Figure 2.1 are described as follows: (i) predic-

tion stage; (ii) residual coding; (iii) entropy coding; (iv) decoder process and (v) filters.

In the inter-prediction step, the motion vector prediction is performed, allowing

the exploration of spatial and temporal similarities between PBs.

The PBs residue is coded using cosine/sine discrete transforms, and quantization
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Figure 2.1: Block diagram of the HEVC encoder.

Source: (SULLIVAN et al., 2012)

considers the distribution of frequencies after this and removes the least relevant values

by a constant factor - the Quantization Parameter (QP). Large QP values mean more

residual data is lost in the process. This step is optimized using Rate-Distortion Optimized

Quantization (RDOQ), which consists of finding the best quantized transform coefficients

choosing the ones that provide a better Rate-Distortion (RD) trade-off. The RD cost

consists of calculations taking into account the distortion and the bit-stream required to

represent the current CTU.

A decoding block is necessary within the encoder. This reverse process provides

the current frame reconstruction. The result of this step is stored in memory and it is used

as a reference picture in the next encoding frames.

A result block is filtered by a deblocking filter within the inter-picture prediction

loop. This step is operated to remove visual artifacts introduced during the process.

At the end of the process, the lossless entropy coding is responsible for generating

the final bit-stream through the Context Adaptive Binary Arithmetic Coding (CABAC).

2.1.2 Motion Estimation

The Motion Estimation (ME) is a part of inter prediction in video encoders that is

responsible for exploiting the temporal redundancies between frames. ME is applied to
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Figure 2.2: Coding Units used by HEVC

Source: (Silveira et al., 2017)

each block in a frame and finds the most similar block. With that, the encoder is capable

of representing the current block as the difference between the current block and its best

match. This reduces the amount of information needed to represent a block, allowing for

better compression.

The Sum of Absolute Differences (SAD) is a metric used by the encoder in order

to measure how similar the blocks are. Each time the operation is performed, it calculates

the difference between the blocks’ pixel values, gets the absolute value and adds the values

referring to all of the pixels. This metric is extensively applied during the Integer Motion

Estimation (IME) in order to assess whether a candidate block is a better match than the

current best match (Abreu et al., 2017).

2.2 Metrics

The metrics used for comparison of results in video coding evaluate image quality

and compression. Quality metrics can be objective or subjective. Objective metrics eval-

uate quality measuring the distortion in the images, whereas subjective metrics consider

human observers. This work does not use subjective measurements, so they will not be

covered.

For objective measurements, the Peak Signal-to-Noise Ratio (PSNR) is used. PSNR

is represented in decibels (dB) and is inversely proportional to the Mean Squared Error.
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This metric is obtained by comparing the original and encoded video - the higher, the

better. A high PSNR means that the encoding process didn’t introduce a lot of distortion.

Usually, when more aggressive encoding is applied (resulting in a smaller bitstream), the

PSNR is lower.

The compression efficiency is evaluated by comparing bitstream sizes between

original and encoded video, or between the standard and a suggested technique or ap-

proach. A smaller bitstream means a better compression. We can also look at the bitrate

- the number of bits per second that must be transmitted to achieve the target frame rate.

Finally, since both measurements are valuable, we also use a metric that combines

quality and compression measurements in one: Bjøntegaard Difference (BD-Rate) (Bjon-

tegaard, 2001), which can be interpreted as the bitrate variation between the tested and

reference videos, for the same quality. A positive BD-Rate means the compression is

worse (larger bitrate) to achieve the same quality as the reference. The values used by

BD-Rate are four pairs of PSNR, bitrate in different data points, encoded using four QP

values: 22, 27, 32, 37. These pairs are used to interpolate a curve, which can be compared

to the reference video curve to determine the BD-Rate (Monteiro et al., 2014).

2.3 Memory Systems

2.3.1 Memory Hierarchy

The Memory Hierarchy organizes computer storage into a hierarchy based on ac-

cess time. Each lower level usually has a larger capacity for storing data but is also

slower to access. Figure 2.3 presents a simplified view of this organization, highlighting

the cache hierarchy which follows the same principle regarding access time and storage

capacity.

The Memory Hierarchy relies on the effective access of data to bridge the gap

between the performance of processors and external memory (HENNESSY, 2012). Con-

sidering how data is accessed, in different layers of the hierarchy, especially in the caches,

spatial and temporal localities are explored (Mittal; Vetter; Li, 2015). Temporal locality

refers to the reuse of data shortly after it’s first accessed. Spatial locality refers to data

that is stored physically close (i.e. in the same word) since when the LL cache requests a

data element from the Main Memory, a full cache line is read.
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Figure 2.3: Memory Hierarchy
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2.3.2 Random-Access Memory

Random-Access Memory (RAM) allows for the direct access of any word in mem-

ory with identical time, regardless of where the word is located (HAO, 2014). A RAM

access is performed using a bit line (BL) and word line (WL) to select the cells. Usually,

multiple bits are accessed by the same address (depending on word size), and most high-

capacity RAM devices or embedded-RAM blocks do access multiple words (or one entire

row or block ) in one or a few cycles (JACOB, 2008).

2.3.3 Volatile Memories

2.3.3.1 Static RAM

Static Random-Access Memory (SRAM) has multiple cell models (JACOB, 2008).

One of the most popular structures consists of 2 inverters and 2 access transistors, for a

total of 6 transistors, as can be seen in Figure 2.4. Other SRAM schematics include 8 tran-

sistor cells (more robust, lower power consumption) and 4 transistor cells (higher static

power consumption).
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Figure 2.4: 6 Transistor SRAM Cell

Source: (JACOB, 2008)

2.3.3.2 Dynamic RAM

Dynamic Random-Access Memory (DRAM) stores bits in cells that consist of a

capacitor and a transistor (JACOB, 2008). The capacitor can either be charged or dis-

charged, representing bit states ’0’ or ’1’. The DRAM cell is represented in Figure 2.5.

Figure 2.5: DRAM Cell

Source: (JACOB, 2008)

The capacitors holding data slowly discharge, so it’s necessary to refresh the data

stored in regular time intervals to prevent the loss of information (JACOB, 2008). The

need to refresh the data in memory is the reason why it is called "dynamic", in contrast

to SRAM which keeps the data as long as power is supplied. The simple cell circuitry

allows DRAM to reach very high chip densities, making DRAM much cheaper per bit

than SRAM.
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2.3.4 Non-Volatile Memories

Non-Volatile Memories (NVMs) are promising technologies, that are being inves-

tigated because they are scalable and have latency and bandwidth characteristics close to

DRAM, with low static power dissipation when compared to SRAMs (HAO, 2014). One

of the main problems with this type of memory is the costly write operation, which ex-

ceeds DRAM and SRAM in both time and energy consumption. However, in applications

with a lot more reads than writes, this type of technology can perform better than volatile

memories.

Figure 2.6 presents the technologies available for memories, ordered by the num-

ber of cycles it takes to get the information. The emerging NVM technologies are much

faster than the traditional ones, and due to their advantages in comparison to volatile

memories, are suitable for certain applications such as video coding.

Figure 2.6: Memory Hierarchy access cycles, including NVMs

Source: (HAO, 2014)

2.3.4.1 Spin-Transfer Torque RAM

Spin-Transfer Torque Random-Access Memory (STT-RAM) uses a Magnetic Tun-

nel Junction (MTJ) device as the storage element in memory cells (Figure 2.7) (HAO,

2014). The two possible states are defined according to the resistance (parallel/anti-

parallel).
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Figure 2.7: STT-RAM Cell

Source: The Author

This memory technology is non-volatile, presents low leakage and high-speed ac-

cess (ZAND et al., 2016), which makes it a good candidate to substitute DRAMs (Suock

Chung et al., 2010). The drawbacks presented by STT-RAMs are the high write current,

and the wrong write cycle (2x more than the necessary for SRAMs (CHUN et al., 2013)).

Finding ways to overcome these challenges has been a topic of intense research.

2.3.4.2 Phase Change Memory

Phase Change Memory (PCM) presents memory cells that switch between amor-

phous state (high resistance or RESET) and crystalline state (low resistance or SET) by

applying an electrical current (ARJOMAND et al., 2016). Figure 2.8 shows the represen-

tation of a PCM cell.

Figure 2.8: PCM Cell

Source: The Author

In Multi-Level Cell Phase Change Memory (MLC-PCM) by dividing the resis-

tance range it’s possible to SET/RESET multiple times to represent multiple bits in a sin-

gle cell. PCM presents multiple challenges that need to be addressed, such as the lifetime

limitation due to the finite number of write operations a cell can endure. In MLC-PCM,

a way to stretch the lifetime of the chip is to use approximations introduced by limiting

the number of SET/RESET operations (thus representing different bits than intended).

(TEIMOORI et al., 2018)
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2.3.4.3 Resistive RAM

Resistive RAM (ReRAM), also known as memristor, is a memory based on elec-

trically induced resistive switching effects, similar to STT-RAM and PCM (Dong et al.,

2012). ReRAM cell consists of a metal oxide layer sandwiched by two metal electrodes.

The electronic behavior of the metal/oxide interfaces depends on the oxygen vacancy

concentration of the metal oxide layer (HAO, 2014).

Figure 2.9: ReRAM Cell

Source: (Dong et al., 2012)

ReRAM prototypes have been tested, displaying promising properties on fast switch-

ing speed and low energy consumption (Dong et al., 2012).

2.4 Approximate Computing

Approximate Computing is a design paradigm that can be employed in situations

where results do not have to be exact – applications that can tolerate a certain amount of

approximation errors and still produce useful outputs (Xu; Mytkowicz; Kim, 2016). This

leads to lower power consumption and overall performance gain in computer systems.

Such techniques are explored in Error-Tolerant Applications (ETAs), which include image

and video processing, neural networks, computer vision, web searches, machine learning,

etc.

Media applications are intrinsically inexact since the data that is encoded varies

with the capture equipment used, such as the camera or sensors (Xu; Mytkowicz; Kim,

2016). Furthermore, slight changes in pixel values will not be perceived by the user due

to human perceptual limitations (Xu; Mytkowicz; Kim, 2016). For other applications, it

may not be feasible to get the best result due to time limitations, yet the approximate result
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is acceptable, like in heuristics and probabilistic algorithms (SHAFIQUE et al., 2016). It

is important to note that for most systems it is mandatory to have exact storage for critical

data, such as control variables, preventing errors that could cause application crashes and

invalid outputs.

Approximate memory subsystems in hardware bring these approximations to the

data storage level. By relaxing the output quality requirements, gains in power/performance

can be achieved, which draws considerable interest from researchers, since memory is the

major bottleneck for performance and power (SAMPAIO et al., 2014). The literature

presents broad interpretations of the term “Approximate Memory". Paper (SAMPAIO et

al., 2015) defines approximate storage as a memory unit without protection against error

for reading/writing operations. Some papers, such as (FRUSTACI et al., 2016) employ

techniques at the circuit level to achieve approximate storage. Other published works use

software to simulate errors in memory (e.g. controlled bit-flip probability) such as (STAZI

et al., 2017), (MATIVI, 2018).

In this section, we introduce several aspects of Approximate Memories that have

been explored in the literature and will be further discussed in Chapter 3. Figure 2.10

summarizes the following concepts.

Figure 2.10: Approximate Memory Overview

Source: The Author

2.4.1 Quality Management

Management schemes proposed in the literature are usually a static solution, (i.e.

a certain gain is achieved for each solution), but some dynamic management proposals



25

can also be found. such as (TEIMOORI et al., 2018). Dynamic in this context means that

it’s possible to alter the quality of the output results while the application is running.

2.4.2 Memory Hierarchy Levels

Most papers focus on a single memory level, but it is also possible to explore

approximate memory hierarchies by using multiple approximate memory levels; for ex-

ample, with on-chip and off-chip memories. An exploration of this scenario is presented

in (TEIMOORI et al., 2018).

2.4.3 Approximation Scheme

The approximation schemes refer to the moment when the approximation (loss of

information) occurs. Three categories were identified:

• Pre-Storage: schemes that involve representing fewer bits per byte, a lossy com-

pression of data which is done prior to any memory writes;

• In Memory: schemes that may introduce errors while the data is in memory, such

as Unreliable Retention and Selective/Priority Based ECC;

• During Access: schemes in which the errors may occur due to inaccuracy in read

or write operations, which is the case for Unreliable Memory Access and Selective

Write Assist.

2.4.4 Approximation Techniques

2.4.4.1 Bit Dropping

Bit dropping refers to dropping one or more bits in each byte of the approximate

memory portion. This is done by disabling the bit lines of the bits that are being ap-

proximated, as seen in figure 2.11. The usual approach is to drop bits from the Least

Significant Bits (LSBs) since for figures the Most Significant Bits (MSB) influence the

Peak Signal-to-Noise Ratio (PSNR) the most (ZEINALI et al., 2018), (FRUSTACI et al.,

2016).

Paper (FRUSTACI et al., 2016) takes this approach one step further: since all
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Figure 2.11: Bit dropping technique

Source: (FRUSTACI et al., 2016)

the bit positions incur the same energy/access cost, boosting only the MSB bits during

a write, while using the LSBs as Error-Correcting Codes (ECC) for the MSB improves

the robustness of the data overall while still saving energy when compared to the exact

approach.

2.4.4.2 Unreliable Retention

This technique focuses on DRAMs and consists of refreshing with longer intervals

than the maximum guaranteed retention of the cells, or ignoring refresh altogether. With

this, the bits that store a ’1’ may lose their stored value due to the discharge of the capac-

itors. It is important to note that if data rows are accessed, this effect will be avoided for

some time – in a read operation, the bits will be amplified (similar to what would happen

in a refresh), and in a write operation, the data is overwritten.

2.4.4.3 Unreliable Memory Access

This refers to approximations introduced by errors during write/read operations

in memory. (SAMPAIO et al., 2015) uses this concept in MLC-STT-RAMs. (STAZI

et al., 2017) implements the same idea at the Operating System level - in its memory

management functions - allowing for the program to allocate approximate memory, which

may introduce errors in bits with a controlled probability for each memory access.
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2.4.4.4 Selective/Priority-Based ECC

Selective Error-Correcting Codes (SECC) are ECCs applied to a portion of the

memory cells (i.e. the bits that have more impact on quality). The other bits have no

redundancy and are prone to errors (FRUSTACI et al., 2016). A Priority-Based ECC

(PB-ECC) has also been proposed and validated for video coding in H.264, applying a

stronger ECC for the MSBs than the LSBs (LEE et al., 2013).

2.4.4.5 Voltage Scaling

Voltage scaling (VS) is a circuit-level technique that allows the control of the

supply-voltage in different domains of blocks of a system-on-chip (Gonzalez; Gordon;

Horowitz, 1997). Usually, the memory blocks - like SRAM caches, embedded-DRAM,

etc - use their specific supply-voltage management to control read/write margins, static

power, and access times. Scaling the RAM voltage down impacts PSNR drastically to

achieve better power savings. To avoid this problem and still achieve considerable power

savings, the literature suggests applying voltage scaling together with other techniques.

2.4.4.6 Selective Write Assist

The Write Assist (WA) techniques aid the bit cell in changing the state during

write operations and are widely used in low power SRAMs (CHANDRA; SHARMA,

2012). Some WA implementations available are word line boosting, negative bit line,

VDD lowering and VSS raising. Negative Bitline Boosting (NBB) is used alongside

Voltage Scaling in (FRUSTACI et al., 2014) for the MSBs only, reducing the cost added

by the WA and increasing the robustness of the MSBs.

2.4.4.7 Progressive Scaling

This technique uses STT-RAM cell scaling in order to provide lower Bit Error

Rate (BER) to the MSB, while LSBs are stored in cells with higher BER, following the

same idea used for bit dropping which relates the quality of the output with different bit

positions.
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3 RELATED WORK

Previous works have been published to analyze the performance of video encoders

for different design targets, such as energy consumption and total memory accesses. In

(SINANGIL et al., 2012) a comparative analysis between coding efficiency and memory

costs for HEVC is presented. Their results indicate that a higher bandwidth often results in

higher power consumption, as expected. The paper (IRANPOUR; KUCHCINSKI, 2006)

investigates the impact of different memory architectures on performance and energy con-

sumption, using MPEG-4 and H.264/AVC encoders. The authors provide a comparison

of dedicated memories and multilevel hierarchies, concluding that the performance im-

provement of dedicated memories is not significant for the target application, presenting

higher energy requirements with small performance gains. Most of these works approach

the Motion Estimation (ME) encoder step as the main target, as it represents a significant

cost in the video coding process. Furthermore, paper (ZATT et al., 2011) reports that 90%

of the energy consumption by the ME comes from on-chip storage and off-chip memory

accesses.

Many papers design approximate hardware accelerators for video coding. Re-

cently, more and more papers have been published using approximate memories for this

application. Table 3 presents an overview of the literature in approximate memories ac-

cording to the parameters explained in Chapter 2.

Table 3.1: Approximate memory related works

Paper
Quality

Management
Approximation

Scheme Techniques

(FRUSTACI et al., 2016) Dynamic Pre/During Storage BD, VS, SECC, SWA
(SAMPAIO et al., 2015) Static During Access Unreliable Access

(STAZI et al., 2017) Static During Access Unreliable Access
(ZEINALI et al., 2018) Static Pre-Storage Progressive Scaling
(RANJAN et al., 2017) Dynamic Pre-Storage Unreliable Retention
(NGUYEN et al., 2018) Dynamic During Storage Unreliable Retention

(JUNG et al., 2016) Static During Storage Unreliable Retention
(TEIMOORI et al., 2018) Dynamic During Access Unreliable Access

Paper (FRUSTACI et al., 2016) uses a 28-nm SRAM test chip to test many dif-

ferent techniques. They cover bit dropping, voltage scaling, selective ECC and selective

write assist, as well as combinations of these techniques at the same time. In (SAM-

PAIO et al., 2015), an STT-RAM cache architecture is used, and the approximation is
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achieved by relaxing the protection that is in the memory cells - which makes them less

reliable, thus introducing the approximation. The paper (STAZI et al., 2017) implements

a software layer in the OS that simulates the behavior of memory with unreliable access,

which means that there is a probability of the data being approximated every time it is

being accessed. How realistic is this approach at the OS level concerning the real data

degradation present in a given hardware platform (processor and memory subsystems)

was not discussed in the paper. In (ZEINALI et al., 2018), the idea of progressive scaling

is explored with STT-RAM cells. Cells are scaled in a way that the LSBs are allocated to

cells with higher BER (which can be interpreted as more approximation), and the MSBs

are in cells that are prone to a lower BER. Papers (NGUYEN et al., 2018) and (JUNG et

al., 2016) use DRAMs, where the authors use the properties of refresh and cell retention

times to save energy and keep the most important data in the cells that are less prone to

errors. In (TEIMOORI et al., 2018), the authors implement a memory hierarchy using an

STT-RAM scratchpad and PCM main memory. They implemented a scheme to improve

the lifetime of PCM as well.
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4 METHODOLOGY

This chapter contains the discussion of the framework that is used to evaluate bit

dropping in video coding. We begin by choosing a module of the HEVC encoder to use

the approximate memory on. Then, different NVMs were simulated in order to obtain

energy estimations that will be used in this methodology to assess the energy costs.

4.1 Framework

This methodology is mostly implemented as Python scripts. In Figure 4.1 it can

be observed that three main tools compose the framework:

• Encode Process Data: the x265 encoder software (MULTICOREWARE, 2019) is

considered as the tool to run the encoding of the test video sequences.

• Cache Memory Behavior Data: the Cachegrind tool used in this context is part of

an instrumentation framework called Valgrind (NETHERCOTE; SEWARD, 2007),

which allows simulating different cache memory hierarchy configurations, e.g., the

number of accesses, hits, misses and read/write operations for the first level (L1C)

and for the last level (LLC) of the modeled cache memory. Cachegrind is the third-

party tool responsible for profiling the x265 software cache memory accesses.

• Memory Simulation Data: the power and timing data for each memory technology

and memory capacity considered will be extracted from NVSim (Dong et al., 2012),

which is a tool similar to Cacti that can generate accurate energy estimations for

NVMs.

Note that the HEVC x265 encoder software was used in this study, but the frame-

work could be used for other software applications. The x265 encoder uses optimizations

that were developed by the coding experts (both in software and in video coding) for faster

encoding. The main script was performed to target different cache memory configurations

and the HEVC encoding structures can be easily adjusted by input parameters.

The Bit Dropping technique consists of disabling the Least Significant Bit Lines

(LSBs) in the approximate portion of memory to reduce the dynamic energy. The dynamic

energy for memory accesses is reduced for each dropped bit.

These masked bits are used in the Absolute Differences Sum (SAD) modules, for

all of the reference frames. SAD is one of the most important modules used during motion
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Figure 4.1: Methodology
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Table 4.1: Masks used for Bit Dropping

Bit Mask Dropped LSBs Word sizes
1111 1111 0 16, 32, 64
1111 1110 1 14, 28, 56
1111 1100 2 12, 24, 48
1111 1000 3 10, 20, 40
1111 0000 4 8, 16, 32

estimation in the Inter-prediction step, and by approaching the memory used for reference

frames, we ensure that the approximation impact is limited to Inter-prediction and does

not affect other encoder modules. The compatibility in the encoder side can be easily

implemented as well.

This implementation using masks of Table 4.1 can be considered a good abstrac-

tion of the hardware implementation since, when the bit lines are deactivated in the mem-

ory, we still work with multiple bytes, each still comprising 8-bit lines. The deactivated

bit lines will be read as zeros, just as the masked bits used here.

4.2 Experimental Setup

4.2.1 Video Coding Scenario

The HEVC Common Test Conditions (CTC) (BOSSEN, 2013) were considered to

define the video coding setup. The sequences used in our experiments are shown in Table

4.2.1.

An analysis of the modules of the encoder was performed to support the decision
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Table 4.2: Video Sequences

Name FPS Bit Depth Resolution
BasketballDrill 50 8 832x480

BQMall 60 8 832x480
RaceHorses 30 8 832x480

BasketballDrive 50 8 1920x1080
BQTerrace 60 8 1920x1080

Cactus 50 8 1920x1080
NebutaFestival 60 10 2560x1600
PeopleOnStreet 30 8 2560x1600

Traffic 30 8 2560x1600

about which encoder parameters have the most impact on the encoder. The results of this

investigation are presented in Figure 4.2. This chart shows that the most demanding mod-

ule is the Inter-Prediction, with 72.9% of the total cache memory accesses, as discussed

previously in Chapter 1.

Figure 4.2: Distribution of memory accesses per HEVC module
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4.2.2 Memory Configuration

4.2.2.1 Cache Profiling

For the memory access data, we used the Cachegrind configuration as seen in

Table 4.2.2.1. Cachegrind can simulate only the first and last level, with any intermediate
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levels that could exist being abstracted. This is still a good enough abstraction since any

misses in the last level of cache would incur in main memory accesses and we can model

those. The sizes considered for the caches are the usual sizes for embedded cores.

Table 4.3: Cache Memory Configuration

First Level Cache 32 KB
Last Level Cache 1 MB
Associativity 4-way
Word Size 32 bit

In this context, results in (IRANPOUR; KUCHCINSKI, 2006) were considered,

where the authors concluded that going beyond 8-way associativity provides no signifi-

cant improvement. Hence, the 4-way associativity for LLC was used in further experi-

ments.

The hardware platform used for the simulations is an Intel Core i5 with 4 cores

running at 2.6 GHz and 4 GB of main memory. To ensure data cache accesses results reli-

ability, each physical core worked with a single thread. The code was compiled for x86-64

architecture using GNU Compiler Collection (GCC) without performance optimization.

4.2.2.2 Energy Estimation

In this investigation, NVMs are used together with an approximate storage ap-

proach (implemented with bit dropping), in order to achieve more energy savings. NVMs

are particularly interesting for video coding applications since inherently the memory

considered will be subject to many more read accesses than write accesses - which helps

to overcome some of the challenges pointed in Chapter 2.

The energy consumption estimates are provided by the NVSim tool. The first and

last level caches were simulated considering word sizes of 8, 16, 32, and 64, on RRAM,

SRAM, STTRAM, and PCM. The different word sizes are considered in order to have

more data points to be used in interpolation, because NVSim only allows the simulation

of base 2 word sizes, and the dynamic energy that will be used when bits are approximated

with bit dropping needs to consider word sizes that are not base 2, as shown in table 4.1.

For the first level, a 32 KB cache is simulated, and 1 MB is used for the last level. The

energy results for the first level cache can be seen in Table 4.4 and the PCM SET and

RESET estimations, in Table 4.5.
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Table 4.4: NVM Energy Results

Cell
Data

Width

Read
dynamic
energy

(pJ)

Read
leakage
energy

Write
dynamic
energy

(pJ)

Write
leakage
energy

Leakage
Power
(mW)

RRAM

8 1.822 0.0238 nJ 5.399 .37393 nJ 18.540
16 2.883 0.0177 nJ 10.383 .28393 nJ 14.078
32 5.012 0.0148 nJ 20.352 .23941 nJ 11.870
64 10.184 0.0317 nJ 40.159 .48471 nJ 23.947

SRAM

8 6.638 17.599 pJ 0.639 17.599 pJ 38.999
16 6.644 14.887 pJ 0.685 14.887 pJ 37.636
32 6.658 13.581 pJ 0.778 13.581 pJ 36.956
64 6.685 12.942 pJ 0.965 12.942 pJ 36.619

STTRAM

8 2.033 0.0230 nJ 2.599 .08763 nJ 16.579
16 3.444 0.0221 nJ 4.803 .08475 nJ 16.033
32 6.559 0.0227 nJ 9.152 .08805 nJ 16.667
64 12.438 0.0223 nJ 17.844 .08680 nJ 16.428

PCM

8 1.361 3.7427 pJ 1.626 2.8542 nJ 14.998
16 1.449 2.5814 pJ 3.242 2.3301 nJ 12.244
32 1.612 1.8787 pJ 6.483 2.0709 nJ 10.884
64 2.391 2.8771 pJ 12.964 2.2308 nJ 11.715

Table 4.5: PCM SET and RESET Energy

Cell Data Width
RESET dynamic

energy (nJ)
SET dynamic
energy (nJ)

PCM

8 0.811 0.810
16 1.621 1.621
32 3.242 3.241
64 6.482 6.482
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5 RESULTS

In this chapter, the implementation of bit dropping in x265 software will be eval-

uated using the objective metrics for video coding, the cache performance analysis, and

energy estimation metrics.

5.1 BD-Rate

In order to obtain the BD-Rate, extensive simulations were done, using 9 differ-

ent video sequences: Class C videos - 832x480 (BasketballDrill, BQMall, RaceHorses),

Class B videos - 1920x1080 (BasketballDrive, BQTerrace, Cactus), and Class A videos

- 2560x1600 (NebutaFestival, PeopleOnStreet, Traffic). 100 frames from each sequence

were encoded using bit dropping and different bit masks, where the exact result (zero bits

dropped) was used as the reference for every data point. Each of these simulations was

performed for four different QPs in order to calculate the BD curves, as required by the

quantitative BD delta methodology to compare video encoders. Figure 5.1 shows these

results.

Figure 5.1: BD-Rate impact per number of LSBs dropped

The data points show that there is very little increase in bit rate when 1 and 2 LSBs

are dropped for the same quality as the exact approach. In some cases, there is even an
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improvement in the compression quality when bit dropping is considered, which could be

a result of better entropy coding ( a lossless binary arithmetic coding) at the end of the

encoding process. Overall, dropping up to two bits results in a negligible bit rate increase,

and could be used to leverage energy gains.

When 3 and 4 bits are dropped, we see a more noticeable impact on the BD-Rate

- up to 5.3% increase in the bit rate for the same quality. This is still acceptable for many

applications, especially when considering a mobile platform for video display, in which

saving energy is a major concern to allow continuous viewing without battery recharging.

5.2 Cache Performance

In Sections 5.2 and 5.3, due to the great increase in simulation time from using

Cachegrind, associated with the limited computing power at our disposal for performing

this study, the simulations were limited to a Group of Pictures (GoP) and just one video

sequence of each class of video resolution. Each GoP, for the encoder configurations used,

consists of five frames. Table 5.2 shows the configuration used for the video encoder.

Table 5.1: Video sequences used for cache profiling

Name Frames Resolution
BasketballDrill 5 832x480

Cactus 5 1920x1080
Traffic 5 2560x1600

In Figure 5.2 the number of cache memory accesses is compared to the exact

approach for each dropped bit. For the first sequence (BasketballDrill), the number of

accesses went down when 1 and 2 bits were dropped. This might be the result of the

motion estimation step stopping earlier in some of the blocks considered. In every other

case, we can see an increase of less than 3% in the number of accesses. The increase is

likely due to having certain blocks that take a longer time to find the best match for the

motion estimation step.

Regarding the impact caused by bit dropping on the miss rates, in Table 5.2, we

can see that there is very little difference in the miss rates for the first and last level - in the

best case we see a reduction of 1.329% and in the worst case, an increase 1.722%, which

are percentages on top of already very low miss rates. This shows that this approximation

technique doesn’t incur more accesses to the main memory when compared to the exact

approach. Since the number of bits dropped does not seem to impact the miss rates, the
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Figure 5.2: Increase in number of cache accesses

decision of how many LSBs to drop could be based more on the energy savings and on

the BD-Rate impact.

5.3 Energy

In order to find the data points for dropped bits, with word sizes as shown in Table

4.1, an interpolation function was written in SciLab and used to get the data points for the

word sizes of 1, 2, and 3 dropped LSBs. Even though the cache profiling was done only

for 32-bit words, and considering their bit dropping versions, it is better to have more data

points to interpolate the energy estimation. Thus, Table 5.3 shows the interpolated data

for the first level cache. The same process was done for the last level cache (LLC).

For the energy evaluation, the interpolated data offers support to simulate the bit

dropping energy behavior. The deactivated bit lines, that correspond to the dropped LSBs,

will result in a reduction of dynamic power, that is proportional to the number of bits

dropped. Figures 5.3, 5.4, and 5.5 present the dynamic energy reduction for each se-

quence.

We can observe that the NVMs have the best energy reduction when dropping bits

in comparison to the exact approach, being close to the ideal linear reduction. The SRAM

does not scale so well in this scenario, leading us to believe that the best configuration for
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Table 5.2: First and last level cache miss rates for different video sequences

Sequence LSBs Dropped L1 Miss Rate (%) LL Miss Rate (%)

BasketballDrill

0 0.2030450 0.02271163
1 0.2054960 0.02273629
2 0.2048948 0.02291351
3 0.2039843 0.02285334
4 0.2032863 0.02277724

Cactus

0 0.1738354 0.02103040
1 0.1739784 0.02103356
2 0.1741161 0.02113628
3 0.1737670 0.02083800
4 0.1729797 0.02075086

Traffic

0 0.1527935 0.01953888
1 0.1529883 0.01980358
2 0.1525972 0.01943880
3 0.1524330 0.01963800
4 0.1524972 0.01987552

bit dropping would be one of the studied NVMs.
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Table 5.3: Interpolated values for 32 bit word size with bit dropping

Data
Width

Read
dynamic
energy

(pJ)

Write
dynamic
energy

(pJ)

RESET
dynamic
energy

(nJ)

SET
dynamic
energy

(nJ)

RRAM

16 2.883 10.383 – –
20 3.408 12.876 – –
24 3.935 15.368 – –
28 4.468 17.861 – –
32 5.012 20.352 – –

SRAM

16 6.644 0.685 – –
20 6.647 0.708 – –
24 6.650 0.731 – –
28 6.654 0.754 – –
32 6.658 0.778 – –

STTRAM

16 3.444 4.803 – –
20 4.196 5.896 – –
24 4.970 6.984 – –
28 5.760 8.069 – –
32 6.559 9.152 – –

PCM

16 1.449 3.242 1.621 1.621
20 1.487 4.076 2.026 2.026
24 1.526 4.891 2.431 2.431
28 1.567 5.692 2.836 2.836
32 1.612 6.483 3.242 3.241

Figure 5.3: Dynamic energy reduction - BasketballDrill
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Figure 5.4: Dynamic energy reduction - Cactus

Figure 5.5: Dynamic energy reduction - Traffic
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6 CONCLUSIONS

This work presented an analysis of approximate memory applied in motion esti-

mation for video coding, using the bit dropping technique. The motivations for exploring

video coding as an application for approximate memories were discussed, and the anal-

ysis of related works suggested that exploring NVMs in this context could result in even

higher energy savings when compared to conventional CMOS SRAM caches.

Bit dropping was implemented in the x265 video encoding software, with the

methodology implementation through a Python script, containing the different tools used

to simulate the cache memory behavior. The cache access profiling was extracted using

Cachegrind, and the results of simulations were parsed accordingly. The approximate

storage was evaluated in the cache memory hierarchy level, where the impact in video

compression and quality was measured using BD-Rate, a metric that combines both PSNR

and bit rate metrics. The energy savings with bit dropping were simulated using NVSim,

a non-volatile memory simulator, for SRAM, STT-RAM, RRAM, and PCMs.

The results have shown that the approximation impact in BD-Rate can be tolera-

ble, especially considering the energy savings that can be achieved - up to 49% reduction

in dynamic energy. The cache access behavior did not seem to be impacted by the ap-

proximations introduced with bit dropping. We conclude that NVMs are ideal for the bit

dropping technique when evaluating the reduction that can be achieved in the dynamic

energy.

This implementation of bit dropping is focused on the SAD modules used by the

motion estimation step. Although it is the most relevant module in terms of computing

demand, in order to better understand the impact of a real approximate memory chip for

video coding reference frames, the impact in the Sum of Absolute Transformed Differ-

ences (SATD) and motion compensation modules should also be evaluated. This addi-

tional aspect of bit dropping will be explored in a future work.

Another possible follow up for this work is the addition of other approximate

memory techniques to the same evaluation methodology. By doing that, we will have a

more complete scenario to compare how different approximation schemes perform in the

context of video coding applications.
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Abstract. The Approximate Computing paradigm explores the energy, area and
performance benefits that can be achieved through hardware level approxima-
tions for applications that are resilient enough to produce useful outputs even in
the presence of errors, called Error-Tolerant Applications (ETAs).
Approximate Memories are explored in ETAs, with many implementations avail-
able in the literature, covering single or multiple memory hierarchy levels, using
emerging and established memory technologies. A wide range of papers brings
the challenge of comparing and analyzing the approaches taken. In this work,
we attempt to categorize these techniques and find new ground for exploration.

1. Introduction
Approximate Computing is a design paradigm that can be employed in situations where
results do not have to be exact – applications that can tolerate a certain amount of ap-
proximation errors and still produce useful outputs. This leads to lower power consump-
tion and overall performance gain in computer systems. Such techniques are explored in
Error-Tolerant Applications (ETAs), which include image and video processing, neural
networks, computer vision, web searches, machine learning, etc.

Media applications are intrinsically inexact, since the data that is encoded varies
with the capture equipment used, such as the camera or sensors. Furthermore, slight
changes in pixel values will not be perceived by the user due to human perceptual limita-
tions.

For other applications, it may not be feasible to get the best result due to time
limitations, yet the approximate result is acceptable, like in heuristics and probabilistic
algorithms [Shafique et al. 2016].

Approximate Memories bring these approximations to the data storage level. By
relaxing the the output quality requirements, gains in power/performance can be achieved,
which draws interest since memory is the major bottleneck for performance and power
[Sampaio et al. 2014].

The literature presents broad interpretations of the term ”Approximate Memory”.
Paper [Sampaio et al. 2015] defines approximate storage as a memory unit without pro-
tection against error for read/write operations. Some papers, such as [Frustaci et al. 2016]
employ techniques in circuit level to achieve approximate storage. Other works use
software to simulate errors in memory (e.g. controlled bit-flip probability) such as
[Stazi et al. 2017].

It is important to note that for most systems it is interesting to have exact storage
for critical data, such as control variables, preventing errors that could cause application
crashes and invalid outputs.



In Section 2 the literature overview is presented, which focuses on the different
interpretations of Approximate Memory and the techniques that are employed to achieve
that. Related works are discussed in Section 3. Finally, in Section 4 the idea for the
continuation of this work is presented.

2. Background
2.1. Memory Hierarchy
The Memory Hierarchy organizes computer storage into a hierarchy based on access time.
Each lower level usually has a larger capacity for storing data, but is also slower to access.
Figure 1 presents a simplified view of this organization, highlighting the cache hierarchy
which follows the same principle regarding access time and storage capacity.
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Figure 1. Memory Hierarchy

The Memory Hierarchy relies on the effective access of data to bridge the gap
between the performance of processors and external memory. Considering how data is
accessed, in different layers of the hierarchy, specially in the caches, spatial and temporal
localities are explored. Temporal locality refers to the reuse of data shortly after it’s first
accessed. Spatial locality refers to data that is stored physically close (i.e. in the same
word), since when the LL cache requests a data element from the Main Memory, a full
cache line is read.

2.2. Random-Access Memory
Random-Access Memory (RAM) allows for the direct access of any word in memory us-
ing bitline (BL) and wordline (WL) to select the cells. Usually, multiple bits are accessed
by the same address (depending on word size), and some RAM devices can also access
multiple words in one cycle.

2.3. Memory Technologies
2.3.1. Static RAM

Static Random-Access Memory (SRAM) stores bits in cells consisting of 2 inverters and
2 access transistors, for a total of 6 transistors. SRAM is more expensive to produce, but



is much faster and requires less dynamic power than DRAM. Because of that, SRAMs
are usually used for processor caches.

Figure 2. 6 Transistor SRAM Cell

Different SRAM cell schematics exist, such as 8 transistors (more robust, lower
power consumption) and 4 transistors (higher static power consumption).

2.3.2. Dynamic RAM

Dynamic Random-Access Memory (DRAM) stores bits in cells that consist of a capacitor
and a transistor. The capacitor can either be charged or discharged, representing bit states
’0’ or ’1’.

Figure 3. DRAM Cell

The capacitors holding data slowly discharge, so it’s necessary to refresh the data
stored in regular intervals to prevent the loss of information. The need to refresh the data
in memory is the reason why it is called ”dynamic”, in contrast to SRAM which keeps the
data as long as power is supplied. The simple cell circuitry allows DRAM to reach very
high chip densities, making DRAM much cheaper per bit than SRAM.



2.3.3. Spin-Transfer Torque RAM

Spin-Transfer Torque Random-Access Memory (STT-RAM) uses a Magnetic Tunnel
Junction (MTJ) device as the storage element in memory cells. The two possible states
are defined according to the resistance (parallel/anti-parallel).

Figure 4. STT-RAM Cell

This memory technology is non volatile, presents low leakage and high speed
access [Zand et al. 2016], which makes it a good candidate to substitute DRAMs. The
drawbacks presented by STT-RAMs are the high write current, and the wrong write cycle
(2x more than the necessary for SRAMs [Chun et al. 2013]). Finding ways to overcome
these challenges has been a topic of intense research.

2.3.4. Phase Change Memory

Phase Change Memory (PCM) presents memory cells that switch between amorphous
state (high resistance or RESET) and crystalline state (low resistance or SET) by applying
an electrical current [Arjomand et al. 2016].

Figure 5. PCM Cell

In Multi-Level Cell Phase Change Memory (MLC-PCM) by dividing the resis-
tance range it’s possible to SET/RESET multiple times in order to represent multiple bits
in a single cell. PCM presents multiple challenges that need to be addressed, such as
the lifetime limitation due to the finite number of write operations a cell can endure. In
MLC-PCM, a way to stretch the lifetime of the chip is to use approximations introduced
by limiting the number of SET/RESET operations (thus representing different bits than
intended). [Teimoori et al. 2018]



Figure 6. Approximate Memory Overview

2.4. Quality Management

Management schemes proposed in the literature are usually a static solution, (i.e. a certain
gain is achieved for each solution), but some dynamic management proposals can also be
found. Dynamic in this context means that it’s possible to alter the quality of the output
results while the application is running.

2.5. Memory Hierarchy Levels

Most papers focus on a single memory level, but it is also possible to explore approx-
imate memory hierarchies by using multiple approximate memory levels; for example,
with on-chip and off-chip memories. An exploration of this scenario is presented in
[Teimoori et al. 2018].

2.6. Approximation Scheme

The approximation schemes refer to the moment when the approximation (loss of infor-
mation) occurs. Three categories were identified:

• Pre-Storage: schemes that involve representing less bits per byte, lossy compres-
sion of data

• In Memory: schemes that may introduce errors while the data is in memory, such
as Unrealiable Retention and Selective/Priority Based ECC

• During Access: schemes in which the errors may occur due to inaccuracy in read
or write operations, which is the case for Unreliable Memory Access and Selective
Write Assist

2.7. Approximation Techniques

2.7.1. Bit Dropping

Bit dropping refers to dropping one or more bits in each byte of the approximate memory
portion. The usual approach is to drop bits from the Least Significant Bits (LSBs), since
for images the Most Significant Bits (MSB) influence the Peak Signal-to-Noise Ration
(PSNR) the most.



Paper [Frustaci et al. 2016] takes this approach one step further: since all the bit
positions incur the same energy/access cost, boosting only the MSB bits during a write,
while using the LSBs as Error-Correcting Codes (ECC) for the MSB improves the robust-
ness of the data overall while still saving energy when compared to the exact approach.

2.7.2. Unreliable Retention

This technique focuses on DRAMs, and consists of refreshing with longer intervals than
the maximum guaranteed retention of the cells, or ignoring resheshes altogether. With
this, the bits that store a ’1’ may lose their stored value due to the discharge of the capac-
itors. It is important to note that if data rows are accessed, this effect will be avoided for
a period of time – in a read operation, the bits will be amplified (similar to what would
happen in a refresh), and in a write operation, the data is overwritten.

2.7.3. Unreliable Memory Access

This refers to approximations introduced by errors during write/read operations in mem-
ory. [Sampaio et al. 2015] uses this concept in MLC-STT-RAMs. [Stazi et al. 2017] im-
plements the same idea at the Operating System level, allowing for the programmer to
allocate approximate memory, which may introduce errors in bits with a controlled prob-
ability for each memory access.

2.7.4. Selective/Priority Based ECC

Selective Error-Correcting Codes (SECC) are ECCs applied to a portion of the memory
cells (i.e. the bits that have more impact on quality). The other bits have no redundancy
and are prone to errors [Frustaci et al. 2016]. A Priority Based ECC (PB-ECC) has also
been proposed and validated for video coding in H.264, applying a stronger ECC for the
MSBs than the LSBs [Lee et al. 2013].

2.7.5. Voltage Scaling

This technique consists of applying a lower supply voltage to SRAMs. Scaling the voltage
down impacts PSNR drastically to achieve better power savings. To avoid this problem
and still achieve considerable power savings, the literature suggests applying voltage scal-
ing together with other techniques.

2.7.6. Selective Write Assist

The Write Assist (WA) techniques aid the bit cell in changing the state during write op-
erations and are widely used in low power SRAMs [Chandra and Sharma 2012]. Some
WA implementations available are wordline boosting, negative bitline, VDD lowering
and VSS raising. Negative Bitline Boosting (NBB) is used alongside Voltage Scaling in



[Frustaci et al. 2014] for the MSBs only, reducing the cost added by the WA and increas-
ing the robustness of the MSBs.

2.7.7. Progressive Scaling

This technique uses STT-RAM cell scaling in order to provide lower BER to the MSB,
while LSBs are stored in cells with higher BER, following the same idea used for bit
dropping which relates the quality of the output with different bit positions.

3. Related Work
Specifically for video coding, many papers focus on approximate hardware accelerators.
Recently, more papers have been published targeting approximate memories for video
coding. Table 3 presents an overview of the literature according to the parameters ex-
plained in Section 2.

Paper Quality Management MH Levels Approx. Scheme Techniques
[Frustaci et al. 2016] Dynamic Single Pre/During Storage BD, VS, SECC, SWA
[Sampaio et al. 2015] Static Single During Access Unreliable Access

[Stazi et al. 2017] Static Single During Access Unreliable Access
[Zeinali et al. 2018] Static Single Pre-Storage Progressive Scaling
[Ranjan et al. 2017] Dynamic Single Pre-Storage Unreliable Retention
[Nguyen et al. 2018] Dynamic Single During Storage Unreliable Retention

[Jung et al. 2016] Static Single During Storage Unreliable Retention
[Teimoori et al. 2018] Dynamic Multiple During Access Unreliable Access

4. Work Proposal

Figure 7. Activities Timeline for 2019

Video coding has been explored in Approximate Computing with interesting gains
in performance/power in exchange for acceptable degradation in quality. The previous
studies targeting cache memory hierarchy [Mativi et al. 2016] support further investiga-
tion related to memories, specially regarding to the modules that perform the most mem-
ory accesses. HEVC runs in platforms with complex memory hierarchies, and because
of the great impact both in execution time and energy consumption associated to memory



accesses, improving the memory architecture, video coding and memory configurations
can bring interesting trade-offs in execution time, coding efficiency, and power savings.

This work proposes the use of Approximate Memories for High Efficiency Video
Coding (HEVC or H.265), with the development of a methodology to evaluate the impact
in the output quality and energy consumption. The memory access pattern of the HEVC
encoder will be recorded as a memory trace and used to extract power results. The quality
degradation produced by the approximations will be evaluated with objective metrics used
by the literature such as PSNR, BD-BR.

The activities are organized for a 5 month timeline in Figure 7.
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