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Abstract: The compound Prussian Blue (PB), and its reduced form Prussian White (PW) are nowadays
considered, in applied and fundamental research groups, as potential materials for sustainable energy
storage devices. In this work, these compounds were prepared by potentiostatic electrochemical
synthesis, by using different deposition voltages and thicknesses. Thick, compact and uniform layers
were characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy.
Results have shown a well-defined transition voltage for growing Prussian Blue phases and a strong
dependence of the morphology/growing orientation of the samples as a function of applied potential
and thickness. For the negative potential tested of −0.10 V vs. SCE, a mixture of cubic and
rhombohedral phases was observed.
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1. Introduction

The crystal structure of Prussian Blue (PB) was described by Keggin and Miles [1] as a cubic
array with edges formed by Fe2+–C≡N–Fe3+ chains, with six cyano groups linked to each Fe ion,
corresponding to a cubic face-centered unit cell with a lattice parameter 10.2 Å. The chemical
forms (PB and analogs) associated to the metal–organic open framework of Prussian Blue are
described by the general formula AxMa

y

[
Mb(CN)6

]
z
, where A is an alkaline metal, M a transition

metal, a and b oxidation numbers and x, y, and z stoichiometric numbers. Prussian Blue has two
phases, Fe3+

4

[
Fe2+(CN)6

]
3

and KFe3+
[
Fe2+(CN)6

]
and its reduced forms K4Fe2+

4

[
Fe2+(CN)6

]
3

and

K2Fe2+
[
Fe2+(CN)6

]
, that are known as Prussian White (PW). The PB phase with the alkali metal is

usually called as soluble and the one without as insoluble [2], with the alkali metal occupying the
cubic cavities of the Fe–C≡N–Fe network.

Prussian Blue materials are relevant for several applications such as electrochromic systems [3],
electrochemical sensors [4,5], and energy storage devices [6–9]. Prussian Blue and analogs are also
potential materials for aqueous electrolyte and sodium ion batteries [6,10–15]. These materials are
usually prepared by chemical synthesis by precipitation methods [8,10,12,15–21]. Electrodeposition is
an alternative technique for growing Prussian Blue and analogs, adequate for producing films with
high reproducibility and low cost. Systematic studies of electrodeposition of Prussian Blue and White,
as a function of applied potential and thickness, for example, are not found in the literature. Intense
work was devoted in the past for understanding the potentiostatic deposition of PB and intercalation
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of K for the stabilization of the material in the soluble phase [22–26]. Electrodeposited samples of
Prussian Blue and analogs were also tested with success as electrodes for batteries [27–34].

Although the literature about hexacyanoferrates (Prussian Blue and analogs) is extensive, it is still
lacking a description of the properties of the Prussian Blue deposits when prepared by electrochemical
synthesis, i.e., using potentiostatic deposition. In the present work, we obtained thick and compact
thin films of both phases, Prussian Blue and Prussian White, that are suitable to be used as electrodes
in applications such as supercapacitors and batteries. At the same time, we demonstrated the influence
of electrodeposition potential and thickness on the structure and morphology of PB and PW layers,
and the deposition voltage where the transition from PB to PW occurs.

2. Experimental Section

The electrochemical deposition, potentiostatic mode, was performed at room temperature with
Au/Si substrates as working electrodes, a Pt foil as counter-electrode, and saturated calomel electrode
(SCE) as reference. All the voltages in the text refer to this reference electrode. The working electrodes
were prepared by evaporating 50 nm Au on 5 nm Cr on Si (100) substrates with sizes of 1cm × 1cm
at a pressure of 10−7 Torr. The deposits occurred in a circular area of 0.5 cm2 on the surface of the
working electrode, delimited by an adhesive tape. The electrolyte for the electrochemical synthesis
consisted of 0.25 mM K3Fe(CN)6, 0.25 mM FeCl3, 1.0 M KCl and 5.0 mM HCl [35], with a pH of 2.2. PB
and PW layer formation was promoted by applying constant potential values in the interval from −0.2
to 0.5 V, with different electrochemical charge values, using an Autolab PGSTAT 302N electrochemical
workstation, MetrohmAG, Herisau, Switzerland.

The morphologies of deposits were investigated using a JEOL JSM-6701F field emission scanning
electron microscope (FEG-SEM JSM-6701F JEOL, Tokyo, Japan) at 5 kV. The thickness of the samples
was measured with a Dektak XT profilometer from Bruker Company, Billerica, USA and compared with
results obtained from FEG-SEM cross-section images. This procedure was done in many samples to
check the results obtained by both techniques and to confirm the good reproducibility of the deposition
process. Structural properties were studied by XRD (X-ray diffractometry) (X-Ray Diffractometer
model Xpert PRO MPD, Panalytical, Almelo, Netherlands, with CuKα1 radiation, 1.541 Å) and Raman
spectroscopy (Renishaw 2000 micro-Raman spectrometer, Gloucestershire, UK). Raman spectra were
obtained using an excitation wavelength of 514.5 nm, power set at 20 mW and spectral resolution of
0.33 cm−1. In order to increase the signal-to-noise ratio, ten spectra were obtained for each sample
(with an acquisition time of 10 s) and an average spectrum was obtained.

3. Results and Discussions

Figure 1a shows typical voltammograms at different scanning rates for the voltage ranging from
−0.25 to 0.70 V. The reduction peak is associated with the PW growth with simultaneous intercalation
of K and the oxidation peak at ~0.30 V is due to the deintercalation of K and consequent formation of
PB [35]. Figure 1b shows the current density values obtained from current transients in the saturation
region (long deposition times) for applied constant potentials in the range from −0.2 to 0.50 V. Figure 1c
shows the dependency of the thickness of the deposits as a function of deposition potential in the
same range of voltages. The depositions were stopped when the electrochemical charge hit 50 mC.
As a general trend, deposits grown at more positive potentials than 0.20 V presented smaller current
densities (in module) and were associated with the growth of PB, as was described above from the
voltammetric curves in Figure 1a. For potentials more negative than about 0.20 V, the growth of PW
layers is expected. Concerning the thickness, layers grown in the potential range of 0.22 to 0.30 V were
a factor 2 thicker than samples grown in the interval from 0.20 to −0.05 V. As the electrodeposited
charge is the same for these layers, the difference in the thickness is due to the fact that for PB formation
only one electron is needed to reduce the Fe3+ ions while for PW formation two electrons are needed
to reduce Fe3+ and [Fe(CN)6]3− species.
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Figure 1. (a) Voltammetric curves at different scanning rates (10, 50, 100 mV/s) on Au/Si substrates. 
(b) Current densities at saturation and (c) thicknesses as a function of the applied constant potential 
for growing the layers. 

In Figure 2, column 1 presents SEM–FEG images of films deposited at 0.40, 0.30, 0.20, 0.10, 0.00, 
and −0.10 V, from top to bottom, with a charge of 50 mC. In order to describe the structural evolution 
of the samples at different deposition potential conditions, X-ray diffractograms and Raman spectra 
were obtained from these samples and are presented in columns 2 and 3. The sequence of SEM 
images in column 1 shows that, for the most positive potential, small pyramidal grains are formed 
(less than 200 nm in lateral size). The formation of cracks also occurred, as previously observed for 
these relatively high voltages [26]. From 0.30 to −0.10 V, large grains are grown and the morphology 
that starts as cubes evolves to pyramids and returns back to cubes with decreasing voltage. 
Following this morphology with X-rays, we can see in column 2 that for the deposition potential of 
0.40 V the growth of pyramids is predominant, i.e., <111> out-of-plane orientation, but other 
reflections as (200) and (311) are also present in the diffractogram that indicates the presence of 

Figure 1. (a) Voltammetric curves at different scanning rates (10, 50, 100 mV/s) on Au/Si substrates.
(b) Current densities at saturation and (c) thicknesses as a function of the applied constant potential for
growing the layers.

In Figure 2, column 1 presents SEM–FEG images of films deposited at 0.40, 0.30, 0.20, 0.10, 0.00,
and −0.10 V, from top to bottom, with a charge of 50 mC. In order to describe the structural evolution
of the samples at different deposition potential conditions, X-ray diffractograms and Raman spectra
were obtained from these samples and are presented in columns 2 and 3. The sequence of SEM images
in column 1 shows that, for the most positive potential, small pyramidal grains are formed (less
than 200 nm in lateral size). The formation of cracks also occurred, as previously observed for these
relatively high voltages [26]. From 0.30 to −0.10 V, large grains are grown and the morphology that
starts as cubes evolves to pyramids and returns back to cubes with decreasing voltage. Following this
morphology with X-rays, we can see in column 2 that for the deposition potential of 0.40 V the growth
of pyramids is predominant, i.e., <111> out-of-plane orientation, but other reflections as (200) and (311)
are also present in the diffractogram that indicates the presence of crystals with cubic and inclined
pyramids morphology, respectively. In the sequence of tested potentials, we observed that the film
deposited at 0.30 V has a <100> preferential growth direction in agreement with the cubes morphology
at the surface, i.e., intense reflections associated with (200) and (400) planes are observed. Lower values
of deposition potentials, from 0.20 to 0.00 V, resulted in the preferential growth of the <311> direction
with some crystals in the <111>, also in agreement with SEM images. Finally, the film grown at the
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negative applied potential of −0.10 V had a predominantly cubic morphology with <100> preferential
orientation, again in concordance with the corresponding SEM image in column 1. For this sample
and the sample prepared at 0.00 V, it was possible to observe peaks with low intensity at 2θ~25

◦
that

are associated with the rhombohedral phase [19,36]. This phase could be responsible for the change in
morphology of the sample prepared at −0.10 V, where the rhombohedral peak is more intense.
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In column 3 of Figure 2, the structural results obtained by Raman spectroscopy are presented. 
The Raman spectrum for hexacyanoferrates exhibits CN stretching bands, ν(CN), between 2200 and 
2000 cm-1. The ν(CN) bands observed in the spectrum obtained for PB films grown at 0.40 V 
exhibited three broad cyanide vibration peaks at about 2160, 2120, and 2080 cm-1. The broadness of 
the peaks indicates strain in the layers [37], in agreement with the cracks observed by SEM. In the 
spectrum of the sample prepared at 0.30 V, the vibration bands appear more defined, consistent with 
the large crystals observed on the surface by SEM, with peaks at 2160, 2122, and 2090 cm-1. For 
deposits with the voltage in the interval from 0.20 to −0.10 V, the stretching mode at 2160 cm-1 is 

Figure 2. FEG–SEM images (column 1), XRD diffractograms (column 2), and Raman spectra (column 3)
of thin films electrodeposited with 50 mC at 0.40, 0.30, 0.20, 0.10, 0.00, and −0.10 V (from top to bottom).
The peaks indicated by (*) are from the Au substrate. The dotted lines correspond to peak positions for
the PB structure as obtained from the ICSD database code: 23102.

In column 3 of Figure 2, the structural results obtained by Raman spectroscopy are presented.
The Raman spectrum for hexacyanoferrates exhibits CN stretching bands, ν(CN), between 2200 and
2000 cm−1. The ν(CN) bands observed in the spectrum obtained for PB films grown at 0.40 V exhibited
three broad cyanide vibration peaks at about 2160, 2120, and 2080 cm−1. The broadness of the peaks
indicates strain in the layers [37], in agreement with the cracks observed by SEM. In the spectrum of the
sample prepared at 0.30 V, the vibration bands appear more defined, consistent with the large crystals
observed on the surface by SEM, with peaks at 2160, 2122, and 2090 cm−1. For deposits with the voltage
in the interval from 0.20 to −0.10 V, the stretching mode at 2160 cm−1 is much less intense or even
disappears. Since the wavenumber peaks at ~2210 and 2090 cm−1 can be associated with the cyanide
group attached to Fe2+, and the 2160 cm−1 peak with Fe3+ íons [38–41], the disappearance of this last
peak by using more negative deposition potentials promotes the reduction of Fe3+ species to Fe2+ and
the consequent formation of PW, as expected, which was also observed by other authors [8,9,42,43].
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Figure 3 shows SEM–FEG images for samples prepared using different deposition potentials
and charges. SEM images are presented in column 1, 2 and 3 for 10, 30 and 50 mC, respectively.
The deposition potentials are 0.30 V in the first line, 0.10 V in the second and −0.10 V in the
third one. An increase in the grain size can be observed for all samples as the film grows, i.e.,
as a function of reduced charge (thickness). Films deposited at 0.30 and 0.10 V presented predominantly
cubic and pyramidal morphologies, respectively, for all the analyzed charges. On the other hand,
samples deposited at −0.10 V started growing as pyramids and evolved to cubes with the increase of
electrodeposited charge, showing the dependency of the film growth on the thickness. In this case,
the change in the growth orientation could have been induced by the emergence of the rhombohedral
phase observed in Figure 2 for −0.10 V. In the cross-section images, column 4, films grown at 0.30,
0.10 and −0.10 V and the same growth charge of 50 mC have thickness of 1000, 500 and 800 nm,
respectively. A compact and columnar layer is observed, with larger grains on the top, especially for
samples grown at 0.30 V.
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Figure 3. Columns 1, 2 and 3 show SEM–FEG top-view images of samples with an electrodeposited
charge of 10, 30 and 50 mC, respectively. The lines 1, 2 and 3 are for deposition potentials of 0.30, 0.10
and −0.10 V, respectively. Column 4 is cross-section SEM–FEG images of samples grown with 50 mC
at the three different potentials used.

Figure 4a shows the lattice parameter (a) as a function of deposition potential. The values were
obtained throughout XRD spectra by analyzing the (200) peaks. A clear step can be seen at 0.20 V
that defines the transition from PB (a ~ 10.23 Å) to PW (a ~ 10.06 Å). The incorporation of K+ ions to
maintain the charge neutrality reduces the lattice parameter of the atomic structure. The observed
transition voltage is well defined by the XRD data and is in agreement with results from current
transients, thickness and Raman presented above in Figures 1 and 2. Figure 4b and 4c shows the
(200) XRD peak for samples prepared at 0.30 and −0.10 V for electrodeposited charges of 10, 20, 30,
40 and 50 mC, i.e., for increasing thicknesses. Both sample sequences have a preferential growth at
[200] orientation. As expected, higher peak intensities are seen for thicker samples. For the sample
deposited at 0.30 V, Figure 4b, one can see that the electrodeposited charge has no influence on the
lattice parameter. However, for the films deposited at −0.10 V, Figure 4c, higher values of the lattice
parameter can be inferred for the thin layers.
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samples deposited at (b) 0.30 V and (c) −0.10 V for electrodeposited charges of 10, 20, 30, 40 and 50 mC
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Figure 5a shows a sequence of five Raman spectra of samples prepared with the applied voltage
decreasing from 0.50 to 0.26 V. The intensity of the peak at higher wavenumbers, characteristic of PB
phase, increases significantly for potentials close to the lower limit of this interval, i.e., in the region
where the maximum thickness was observed (see Figure 1c). At the same time, a linear increase in the
wavenumber of this peak from 2144 up to 2160 cm−1 is observed, as plotted in Figure 5b. In this figure,
the stable value of 2160 cm−1 is also observed for depositions at -0.10 V, a voltage that is typical for
PW growth. The wavenumbers lower than 2160 cm−1 are probably due to the formation of defective
PB layers associated with the decrease in the deposition efficiency observed in Figure 1c for potentials
above 0.30 V and also taking into account that the CN stretching band is sensitive to variations in: (i)
oxidation state of the coordinating metal, (ii) atomic structure and (iii) coordination number [44,45].
From these Raman data and the thickness plot of Figure 1c, we could define a deposition voltage
interval, from 0.30 to 0.22 V, suitable for the growth of PB deposits. The vibration peak at 2160 cm−1

that appears in the spectrum of film grown at −0.1 V (see Figures 2 and 5b) would be an indication of
the existence of Fe3+ species in these layers, an unexpected fact for this deposition potential that needs
further investigation.
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4. Conclusions

Thick, compact and uniform layers of Prussian Blue and Prussian White were obtained
with morphology and structure that are dependent on the deposition potential and thickness,
as demonstrated by SEM images, X-Ray diffractograms, and Raman spectra. A sharp transition was
observed in the applied voltages for growing PB and PW, delimitating the regions for electrodeposition
of these materials. A restricted voltage interval from 0.30 to 0.22 V was considered as adequate for
growing PB layers with high quality and efficiency. Preferential growth in the <111>, <200> and <311>
directions was observed, with the formation of cubes and pyramids on the surface, that was strongly
dependent on the deposition potential. For voltages of 0.00 and −0.10 V, a mixture of the cubic and
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