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Resumo

Este trabalho aborda numericamente o problema da Interação Térmica Fluido-Sólido. Uma repre-

sentação precisa da transferência de calor é essencial no projeto de sistemas de aquecimento ou arre-

fecimento/resfriamento. Porém, para aplicações industriais, o entendimento da transferência de calor

turbulenta se mantem limitado, especialmente na vizinhança da interface fluido-sólido. Esta pesquisa

visa desenvolver uma ferramenta numérica original, simples de implementar e geometricamente flexível

no intuito de aportar no entendimento da transferência de calor turbulenta e problemas envolvendo trans-

porte escalar, via Simulação Numérica Direta ou Simulação Numérica Implícita de Grandes Escalas. As

equações governantes são resolvidas numericamente aplicando o código Incompact3d, que se baseia no

método de diferenças finitas compactas de sexta-ordem, para diferenciação espacial, e um esquema de

Adams-Bashforth de terceira-ordem em conjunto com o método do passo fracionado. A geometria do

sólido representada por meio de um Método de Fronteiras Imersas baseado na forçagem direta de quan-

tidade de movimento, aplicada ao escoamento turbulento periódico em canal plano fechado e conduto

circular. O escoamento em canal é avaliado para três condições de contorno térmicas: fluxo de calor

imposto (tipo Neumann), temperatura imposta (tipo Dirichlet) e interação térmica fluido-sólido (tipo Di-

richlet e Neumann) na parede/interface. O escoamento no conduto circular é avaliado para condição de

temperatura imposta na parede. A análise de convergência, para escoamento laminar, mostra até sexta-

ordem de precisão para canal plano submetido a temperatura constante e até segunda-ordem para as

outras condições térmicas na parede e para escoamento em conduto circular. Nos casos turbulentos, as

estatísticas básicas da velocidade e da temperatura tiveram um excelente ajuste a dados de referência, e

o fenómeno de transferência de calor foi representado consistentemente, ainda para resoluções menores

do que a espessura da camada limite viscosa.

Palavras chave: Escoamento Turbulento, Simulação Numérica de Alta Ordem, Interação Térmica

Fluido-Sólido, Método de Fronteiras Imersas.
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Abstract

This study deals numerically with Fluid-Solid Thermal Interaction. Accurate representation of fluid-

solid heat transfer is the key for designing heating and cooling systems. However, for industrial applica-

tions, the understanding of the conjugate heat transfer remains in deficit, especially near the fluid-solid

interface. This research aims to develop an original, straightforward, geometrically flexible and accurate

numerical tool to improve the understanding of turbulent heat transfer and problems involving scalar

transport, via Direct Numerical Simulation or Implicit Large Eddy Simulation. The fluid dynamic and

heat transfer governing equations are solved numerically by the Incompact3d code based on 6th-order

compact schemes of finite differences, for spatial differentiation in a Cartesian mesh. The time advan-

cement is carried on by a 3th-order Adams-Bashforth together with a fractional time step. The solid

geometry is represented by an Immersed Boundary Method based on momentum direct forcing. The

thermal interaction is studied in pipe and plane channel turbulent flow. Periodic channel flow was eva-

luated for three thermal boundary conditions: imposed heat flux (Neumann-type), imposed temperature

(Dirichlet-type) and fluid-solid thermal interaction (Dirichlet and Neumann type) at the wall/interface.

Periodic pipe flow was evaluated for an imposed temperature at the wall. The convergence analysis shows

a second order accuracy at the fluid-solid interface. The velocity and temperature statistics had an excel-

lent agreement with the reference results, and the turbulent heat transfer phenomenon was consistently

represented, even using lower spatial resolution than the thickness of the viscous sublayer.

Keywords: Turbulent Flow, High-order Numerical Simulation, Fluid-Solid Thermal Interaction,

Immersed Boundary Method.
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Chapter 1

Introduction

1.1 Relevance

Real fluid systems have physical boundaries such as solid walls and/or another fluids. Inside

the atmosphere, there is a wide variety of phenomena involving fluid-solid interaction (FSI).

FSI occurs when the flow and the solid are coupled and thus their responses co-exist by mean

a feedback relation. This feedback can be observed, for instance, in oscillations of a solid

submitted to certain flow conditions (fluid-solid dynamic coupling) or in heat transfer processes

between a flow and its solid boundaries (fluid-solid thermal coupling). This study focuses on

the analysis of the fluid/solid thermal interaction.

A fluid in movement can be an efficient way to transport heat from one source to other. In

industry, flows are commonly in the turbulent regime, then, the devices efficiency depends on

a high understanding of the heat transfer process in turbulent flows. In wall-bounded flows,

thermal interactions occur between fluid and solid. This interaction is so-called Conjugate heat

transfer (CHT), which represents the fluid-solid thermal coupling. Accurate representation of

fluid-solid CHT is the key for designing nuclear reactors, heat exchangers, and cooling and

heating systems. The difficulty in experimentally measuring turbulent quantities, inside very

thin boundary layers (Saha et al., 2014[89]), makes numerical simulation a superior tool to study

instantaneous turbulent flow structures (Kasagi, 1995[38]). However, the number of published

studies which validated near-wall statistics of turbulent heated flows is relatively small and, the

understanding on CHT, inside the thermal boundary layer, is limited, for industrial applications.

1
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1.2 Objectives

This research aims to develop an accurate numerical tools, using DNS or ILES in the im-

mersed boundary methods framework, to improve the understanding on fluid/solid thermal in-

teraction in turbulent heated internal flows. To accomplish this objective, the following specific

objectives have to be reached:

• To establish a methodology for coupling the streamwise heat source/sink term, in the

energy equation;

• to impose and validate a Dirichlet-type boundary condition for the temperature impo-

sition at the immersed fluid-solid interface;

• to develop, implement and validate a novel numerical approach to ensure a Neumann-

type boundary condition at the fluid-solid immersed interface;

• to represent the solid-fluid thermal coupling in periodic flow;

1.3 Principal contributions and developments

In this numerical research, the code Incompact3d is used as fluid dynamic solver. Then, all

developments are implemented in agreement with Incompact3d’s computational strategy. This

open source code (License GNU GPL v3, https://www.incompact3d.com/) was developed

at Université de Poitiers and Imperial College of London (Lardeau et al., 2002[53]; Laizet et al.,

2009[48] e 2011[50]). As Incompact3d solves the incompressible fluid dynamic equations in

a rectangular Cartesian mesh, the developments are framed in the recent customized immersed

boundary method (IBM) based on an adapted direct forcing (Gautier et al., 2014[22]).

In this framework, the main contributions of the present work are:

• The source term, which allows dealing with a periodic flow in horizontal ducts, was

coupled to the fluid energy equation for pipe and channel flow and three thermal boundary

conditions.

https://www.incompact3d.com/
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• For first time in Incompact3d, a customized IBM is used to prescribe a scalar derivative

at the fluid-solid interface. This original methodology allows imposing a scalar value on

the immersed boundary to virtually ensure a derivative.

• The capability of imposing derivative and value can be applied in solving problems on

turbulent fluid-solid heat transfer or even in problems involving scalar passive transport.

This was achieved by mean Direct Numerical Simulation (DNS) or Implicit Large Eddy

Simulations (ILES).

1.4 Structure of the text

The core of this text can be compiled into three parts: Review - Methodology - Results and

concluding remarks (Figure 1.1).

Figura 1.1: Flux-chart relating the text main topics.

As the present study deals with internal flows in the IBM framework, after an introduction
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to the problem in this chapter (Chap. 1), the literature review is distributed into two chapters:

2. Internal flows and 3. Immersed boundary methods. Each one of these chapters describes

the main highlights and, through a brief discussion, provides an introduction to the scientific

problem developed throughout the text.

The second part of this work involves details on the adopted methodology. Since this is a

numerical work in fluid mechanics, the second part includes two chapters: 4. Governing equa-

tions and 5. Numerical methodology. In Chapter 4, we present the mathematical models which

describe the fluid dynamics and the fluid-solid heat transfer in turbulent flows. Appendixes con-

tain details on the laminar solutions and deductions of the transient heat transfer equations in

a periodic flow. Chap. 5 presents the numerical solution of the governing equations including

spatial and temporal discretization, immersed boundary treatment, fluid-solid coupling, and the

computational parallel strategy. Note that the emphasis of this chapter is on the thermal field

treatment via immersed boundary method (IBM) and the fluid-solid thermal coupling, because

the main developments are consigned in these topics.

The remaining three chapters include the verification, validation and results (Chap. 6 and 7)

and conclusions (Chap. 8). In fluid-solid thermal coupling, we have made a complete study on

the order of error for the laminar solution. Moreover, validations are presented in pipe/channel

turbulent flows, for real fluid-solid thermal coupling and the most typical ideal thermal condi-

tions. Despite of every chapter has a partial concluding remarks at the end, in Chapter 8, the

developments and validation are discussed, concluding with the main highlights of this work.



Chapter 2

Internal flows

In internal flows, the fluid in motion is confined by solid walls. As the solid geometry is

determinant in the flow characteristics, this chapter focuses on pipe and channel periodic in-

ternal flows. Channel geometry is an academic geometry which enables rigorous estimation of

the formal error of the numerical scheme, while its 1D nature simplifies the methodology im-

plementation at a first stage. On the other hand, pipe geometry is typically used in engineering

designing, as heating/cooling systems and fluid distribution networks. Hence, in this chapter,

some highlights on internal flow and heat transfer are reviewed briefly.

In this kind of flows, it is convenient to use the bulk velocity (Ub) which, in incompressible

flows, is constant for ducts with a uniform cross-sectional area (A). In heating and cooling

applications, the physical properties of the fluid could change due to the temperature field.

However, for a great number of applications, these changes are not commonly considered while

tolerating their impact on the solution accuracy. On the other hand, sensible thermal energy

increment, related to the friction losses, is neglected, since it has usually not significant effects.

The bulk velocity is defined as

Ub =
ṁ∫

A
ρdA′

=

∫
A
ρ
(
~V ·~i

)
dA′∫

A
ρdA′

, (2.1)

where ~V = [Vx Vy Vz]T is the velocity field, ṁ is the rate of mass flow, ρ is the fluid density and~i

is an unitary vector normal to the cross-sectional area. This expression for incompressible flow

reads

5
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Ub =

∫
A

(
~V ·~i

)
dA′

A
=

Q
A
, (2.2)

where Q is the volumetric flow rate. Moreover, in ducts with uniform cross-sectional area, by

continuity the bulk velocity is uniform along the duct and thereby it can be computed as the

following volumetric-average

Ub =

∫
∀

(
~V ·~i

)
d∀′

∀
, (2.3)

where, ∀ = ALx is the volume of fluid contained in a length Lx of duct.

2.1 Flow regimes

Osborne Reynolds (1842 - 1912), in former paper published in 1883[87], identified three

flow regimes by injecting dye streaks inside a flow in a smooth circular pipe (Figure 2.1). By ob-

serving the dye trace patterns, for increasing velocities, he sequentially identified the following

flow regimes: laminar (straight dye trace), transitional (intermittent dye trace fluctuation) and

turbulent (high random dye trace fluctuations). Basically, the transition from laminar to turbu-

lent flow depends on the wall roughness, duct geometry, flow velocity field, type of fluid, fluid

temperature fluctuations, boundary conditions and duct vibrations. For smooth ducts, small

temperature fluctuations and far from the duct boundaries, the flow regimes are dominated by

the ratio of inertial (∼ ρU2
b L2

c) to viscous (∼ µUbLc) forces. From this relation, the Reynolds

number is defined as

Re ≡
ρUbLc

µ
=

UbLc

ν
, (2.4)

where Lc is a characteristic length and ν and µ are the cinematic and dynamic viscosity of the

fluid, respectively.

In this work, the characteristic length of pipe flow is the internal diameter (Lc = D), while

for channel flow is the internal channel height (Lc = H). The unstable transition regime is very

sensitive to flow disturbance (e.g. wall roughness and duct vibrations) thus the critical Reynolds
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Figura 2.1: Repetition of Osborne Reynolds experiment in a pipe flow. From top to bottom, the
dye trace shows the laminar, transition and turbulent flow regimes. Figure adapted from Van
Dyke (1982)[102].

number (Rec) which delimit the transition region is not easy to be experimentally well delimited,

but the regimes intervals are commonly defined as

REGIME PIPE FLOW [107] CHANNEL FLOW

Laminar Re . 1760 Re . 1000 [69]

Transition 1760 . Rec . 2300 1000 . Rec . 5772 [70]

Turbulent Re & 2300 Re & 5772

(2.5)

For pipe flow, Reynolds[87] found Rec ≈ 2000 whereas for experiments with more distur-

bance control, he found Rec ≈ 12000. Posterior experimental studies basically confirmed this

first value with estimation in the range 1760 . Re . 2300 ([4], [54], [11]). The most recent

experimental work of Mukund & Hof (2018)[65], on turbulent transition in pipe flow, shows a

more narrowed transition range: 2020 < Rec < 2060. On the other hand, by suppressing even

further the flow disturbances in smooth pipes, it has been experimentally shown that the laminar

regime can be maintained up to Re = 105 ([79]).

It should be pointed out that, a linear stability analysis shows that pipe flow is stable ([113]),

whereas channel flow is stable up to Rec ≈ 5772 ([70]). Experimental ([91]) and numerical

([100]) studies in channel flow have shown that the lower bound of the subcritical transitional

regime is Re ≈ 840.
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2.2 Pressure loss in ducts

The net viscous friction force at the wall, far from the entrance influence, yields a linear

pressure drop (fully developed flow region, Figure 2.2). From a momentum balance in an

infinitesimal duct length (dx), the cross-sectional averaged pressure gradient loss in streamwise

direction can be expressed as

(
1
ρ

)
d〈p〉
dx

= −
〈τw〉

ρ

P
A

+ g
dy
dx
. (2.6)

where τw is the shear wall stress, P is the wall perimeter, A is the cross-sectional flow area,

dy/dx is the duct slope and 〈·〉 denotes an average operator in azimuthal/spanwise and/or time.

Defining the (non-physical) friction velocity as

uτ ≡
(
τw

ρ

)1/2

, (2.7)

the duct slope, when the mean pressure gradient is null, is

dy
dx

=
〈uτ〉2

gDh
= Fr2

τ , (2.8)

where Dh = A/P is the ratio of the cross-sectional area to the wall perimeter and Frτ =
〈uτ〉2

gDh
is

a Froude number based on the friction velocity. This expression represents the slope that a duct

must have to ensure null mean pressure gradient. On the other hand, the dimensionless pressure

gradient loss for incompressible flow in horizontal ducts (dy/dx = 0) is given by

d〈Π〉
dx

=
d
dx

(
〈p〉
ρU2

b

)
= −

(
uτ
Ub

)2 Lc

Dh
. (2.9)

Note: For notational convenience and simplicity, in this expression and in the rest of the

text, the derivative operators are dimensionless, although the notation relative to the dimensional

operator in Eq. 2.6 did not change. Besides, the notation uτ is be considered as representing an

averaged friction velocity 〈uτ〉.

In wall-bounded flows, it is convenient to work with the quantities non-dimensionalized by

the friction velocity (in wall units). Then, the Reynolds number based on uτ is
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Figura 2.2: Developing streamwise velocity profile ux(r,x) and pressure drop in a duct. The
schematic is exemplifying a uniform circular duct (pipe flow) with radial coordinate r and axial
coordinate x. The same results can be extended to any uniform cross-sectional geometry. Figure
adapted from White 2011[107].

Reτ ≡
uτ(Lc/2)

ν
, (2.10)

which is also so-called friction Reynolds number. The streamwise velocity in wall units is

defined as

u+
x =

Vx

uτ
, (2.11)

and the distance to the wall (y) in wall units is

y+ =
yuτ
ν
. (2.12)
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From the definition of the friction Reynolds number and the global Reynolds number (Eq.

2.4), the expression 2.9 can be rewritten as

d〈Π〉
dx

= −

(
2

Reτ
Re

)2 Lc

Dh
. (2.13)

2.3 Velocity profile in wall-bounded flows

As a function of the distance to the wall, three flow layer can be identified: (i) viscous wall

layer or inner layer, (ii) outer layer and (iii) overlap layer (Figure 2.3). In the inner layer, the

velocity profile follows the linear viscous relation

u+
x = y+ (Inner layer). (2.14)

This expression is valid for y+ < 5, and then it is itself curved over to merge with the following

logarithmic law

u+
x =

1
κ

ln
(
y+) + B (Overlap layer), (2.15)

for y+ > 30. The accepted values for the constants are: κ ≈ 0.41 and B = 5 to 6. The outer

turbulent layer is sensitive to pressure variations, but the velocity profile is represented mostly

by the logarithmic law of the wall (Figure 2.4).

Figura 2.3: (a) Shear stress and (b) velocity profiles in wall-bounded flow. Figure adapted from
White 2011[107].
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Figura 2.4: Experimental verification of the inner, outer, and overlap layer laws relating
streamwise velocity profiles in turbulent wall-bounded flows. Figure adapted from White
2011[107].

2.4 Heat transfer in wall-bounded flow

In following, the governing equations and some previous studies are briefly discussed, in

order to establish the current scientific knowledge on heat transfer problem in turbulent flows,

particularly in internal flow, and to have a starting point to validate our numerical developments.

In internal flows, the convection energy rate can be obtained by integrating the product of

mass flux ρ
(
~V ·~i

)
and the thermal energy (or enthalpy) per unit mass cpT , over the cross section

A. From the convection rate, the bulk temperature is conveniently defined as

Tb ≡
1

cpṁ

∫
A
ρ
(
~V ·~i

)
cpTdA′, (2.16)

where ṁ =
∫

A
ρuxdA′ = ρUbA is the mass flow rate and cp is the fluid heat capacity ar constant

pressure. Under the assumptions of passive scalar, incompressible flow and uniform duct cross
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section, Equation 2.16 can be rewritten as

Tb =
1

UbA

∫
A

(
~V ·~i

)
TdA′, (2.17)

It means that the cross-sectional bulk temperature is identical to the volumetric bulk tempera-

ture. It should note that, for incompressible flow, the heat capacity under constant pressure cp is

equal to the heat capacity in constant volume cv. Furthermore, if the temperature T is uniform

along the duct the bulk temperature can be expressed by the following volumetric-average

Tb =
1

Ub∀

∫
∀

(
~V ·~i

)
Td∀′. (2.18)

2.4.1 Dimensional heat transfer equations

Most commonly, the temperature fluctuations in a moving fluid are considered not to modify

the fluid physical or thermal properties, then it is said that the temperature T is transported as a

passive scalar. Thus, the thermal energy balance inside the fluid can be expressed by mean a

convection-diffusion equation of the temperature driven by the incompressible velocity field ~V

(∇ · ~V = 0), as it follows

∂T
∂t

= −~V · ~∇T + α∇2T, in the fluid, (2.19)

where, α = λ/(ρcp) and λ are the thermal diffusivity and conductivity of the fluid, respectively.

The first term, on the right-hand side of the equation, accounts for heat transported by fluid

convection, while the second term refers to the heat transported by conduction. Under the

same assumptions, the energy equation inside the solid can be expressed in terms of the solid

temperature field Ts, by the following heat conduction equation

∂Ts

∂t
= αs∇

2Ts, in the solid, (2.20)

where αs is the thermal diffusivity of the solid. The energy equations inside the fluid and solid

domains (Eq. 2.19 and 2.20) are coupled by the thermal boundary conditions at the fluid/solid
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interface. On the fluid/solid interface ( |int), it must be verified the physical temperature conti-

nuity

T |int = Ts|int , (2.21)

and the continuity of the temperature derivative normal to the interface (derivate from energy

conservation through the interface)

λs
∂Ts

∂~n

∣∣∣∣∣
int

= λ
∂T
∂~n

∣∣∣∣∣
int
, (2.22)

where λs is the conductivity of the solid and ~n is an unitary vector normal to the interface

pointing towards the fluid.

After the presentation of the governing differential equations of energy and their respective

boundary conditions, maybe the immediate question is: which and where is the heat source or

sink? In internal flows, the heat source/sink typically acts on a surrounding fluid which transfers

heat through the external fluid/solid interface of the duct. In this case, three approaches are

commonly followed:

1. the temperature inside the solid, the internal fluid and the surrounding fluid is solved for

a given external heat source applied at the domain boundary or at some point of the

external still fluid;

2. the temperature inside the internal fluid and the solid is solved, and the heat source is

defined by the thermal boundary condition on the external fluid-solid interface, which

can be selected according to the dominant process: isothermal process (e. g. fluid phase

change) or isoflux of heat process (e. g. cooling or heating systems);

3. only the internal flow is solved and the heat source is represented by the boundary condi-

tion directly imposed on the internal fluid/solid interface.

The fluid/solid coupling modeled by the two first approaches has been so-called Conjugate

heat transfer (CHT). In CHT conditions, the equations of energy are solved and coupled either
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in the solid or in the fluid domain (Eq. 2.19, 2.20, 2.21 and 2.22). The third approach, refer-

red here as ideal locally imposed condition, is the most commonly applied. However, it only

considers the energy transport in the fluid while prescribing a thermal boundary condition at

the internal interface. Those ideal boundary conditions are an adequate representation of the

thermal process dominated by uniform conditions, as isothermal or isoflux processes.

Ideal locally imposed conditions

On the fluid-solid interface can be prescribed the temperature (ideal locally imposed tempe-

rature)

T = T |int on the inter f ace, (2.23)

or the heat flux (ideal locally imposed heat flux)

λ
∂T
∂~n

= ϕ|int on the inter f ace. (2.24)

It should be noted that the prescribed temperature (T |int) or heat flux (ϕ|int) are not necessary

non-fluctuating (in time) and uniform (in space). For instance, in a duct heated by thick solid

in contact with a surrounding fluid in phase change, the hypothesis of non-fluctuating and uni-

form temperature at the interface could be adequate (isothermal process). On the other hand,

in a cooling system, under certain conditions, the wall temperature along the duct is linearly

increasing, while the wall heat flux is approximately non-fluctuating and uniform (isoflux pro-

cess). The isoflux process at the wall can be modeled by imposing a non-fluctuating and linearly

increasing wall temperature (Dirichlet-type boundary condition, DBC) or by prescribing a non-

fluctuating and uniform heat flux (Neumann boundary condition, NBC). According to Tiselj et

al. (2001)[97], the DBC corresponds to the physical configuration in which a fluid with negligi-

ble density, heat capacity and thermal conductivity, is heated by a thick wall with high density,

heat capacity and thermal conductivity (thermal activity ratio K =
√

(ρcpλ)/(ρscpsλs) −→ 0).

Conversely, the NBC represents a hypothetical or ideal case in which thermal activity ratio is

infinity (K = ∞). As in practice, there are several cases of interest, many other configurations
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of thermal boundary conditions, based on the ideal locally imposed conditions, has been also

employed (Table 2.1).

Tabela 2.1: Overview of turbulent heat transfer in wall-bounded flows. Table adapted from Saha
et al. (2011)[88].

2.4.2 Dimensionless heat transfer equations

Several of the previous studies (Tables 2.1, 2.2, 2.3) have focused on stationary periodic

internal flows, far from the entrance region, e. i., along the duct region where the thermal boun-

dary layer is completely developed (thermally fully developed flow, see Figure 2.5). It means
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Tabela 2.2: Computational parameters for previous wall-bounded DNS studies with imposed
linear temperature along the duct wall. Table adapted from Saha et al. (2011)[88].

Tabela 2.3: Recent works of turbulent heat transfer in internal flow.
Previous DNS Pr Reτ Re Lx nx nr,y nθ,z ∆x+ ∆y+ ∆(Rθ)+

Pipe flow
Saha et al. (2011)[88] 0.025, 0.71, 2.0 ≈ 170 5000 2πD 256 128 128 10.5 0.29 ∼ 1.04 8.84
Saha et al. (2014)[89] 1.0 ≈ 186 5500 7.5D 301 121 128 9.3 0.0649 ∼ 4.8 3.13
Channel flow
Tiselj et al. (2001)[97] 0.71 ≈ 150 5560 5πH/2 128 97 65 18.4 0.08 ∼ 4.9 7.4
Flageul (2015)[16] 0.71 ≈ 149 5560 25.6H/2 256 193 256 14.8 0.049 ∼ 4.8 5.1

that, the temperature profiles are similar along the duct, although the streamwise gradients of

the local temperature (∂T/∂x) and the bulk temperature (dTb/dx) are not necessarily nulls. For

instance, if an infinite channel flow constantly heated is considered, the bulk temperature in-
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creases linearly with x. A change of variable is used, to compensate this linear increase and

to allow periodicity in the streamwise direction. This gives rise to the source term in the fluid

energy equation.

Figura 2.5: Thermal boundary layer development in a heated circular tube (Incropera & Dewit,
2000[32]).

Taking advantage from the linearity of the temperature equations (Eq. 2.19 and 2.20), the

following linear transformation (non-dimensionalization) can be applied to the dimensional

fluid temperature T , in order to deal with a single normalized temperature field,

Θ(x,y,z,t) =
〈T |int〉(x) − T (x,y,z,t)
〈T |int〉(x) − Tb(x)

. (2.25)

Considering that the geometrical quantities are non-dimensionalized with the reference

length Lc (diameter for pipe and height for channel), the velocity field with the bulk velocity

(~u = ~V/Ub), the time with the ratio Lc/Ub and applying the transformation defined in Eq.2.25

to fluid temperature equation (Eq. 2.19), the following dimensionless temperature transport

equation is yielded

∂Θ

∂t
= −~u · ~∇Θ +

1
RePr

∇2Θ + fΘ, in the f luid, (2.26)

where Pr = ν/α is the Prandtl number which relates the viscosity (ν) with the thermal diffusivity

(α) of the fluid. The quantity fΘ acts as a source/sink term which maintains stationary thermal

behavior or, equivalently, constant bulk dimensionless temperature (Θb) along the duct. On the
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other hand, the energy transport dimensionless equation inside the solid reads

∂Θs

∂t
=

1
GRePr

∇2Θs in the solid. (2.27)

where G = λρscps/(λsρcp) is the fluid-to-solid ratio of thermal diffusivities.

The energy transport equations inside the fluid and solid domains are coupled by the ther-

mal boundary conditions at the fluid/solid interface

Θ|int = Θs|int , (2.28)

∂Θs

∂~n

∣∣∣∣∣
int

=
1

G2

∂Θ

∂~n

∣∣∣∣∣
int
, (2.29)

where Θs is the solid temperature and G2 = λs/λ is the ratio of thermal conductivities. It

should be pointed out that, for simplicity, the notation of the differential operators is the same

for the dimensional and dimensionless forms. More details on the dimensionless procedure of

the temperature can be found in Appendix A.

2.4.3 Dominant parameters

The difficult to measure experimentally turbulent quantities, in very thin boundary layers

(Saha et al., 2014[89]), makes numerical simulation a powerful and useful tool to study ins-

tantaneous turbulent flow structures (Kasagi, 1995[38]). During the validation procedure, the

computational fluid dynamic results are evaluated in relation to the real world physical observa-

tions. However, Saha et al. 2014[89] establish the following useful criteria for validating Direct

Numerical Simulation (DNS), with numerical data available in the literature.

The space-time thermal distribution strongly depends on the thermal boundary condition,

the friction Reynolds number number (Reτ) and the Prandtl number (Pr), while the streamwise

length of the computational domain (Lx) and the simulation time are decisive for the statistics

convergence.

The usual ideal thermal conditions at the wall, which consider imposed temperature (DBC)

or heat flux (NBC), correspond to the physical configuration in which thermal activity ratio
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K −→ 0 and K −→ ∞, respectively. The influence of these assumptions is reflected in the

temperature fluctuations which increase nearby the wall with increasing thermal activity ratio

(Figure 2.6).

Figura 2.6: Influence of the thermal activity ratio influence in temperature fluctuations in a
channel flow. Uniform heat flux imposition and linear temperature imposition corresponds to
the physical configurations with very high and very low activity ratio, respectively.

The mean and fluctuating temperature strongly depend on Reτ for approximately y+ >

10(Figure 2.7). The root mean square (rms) of the temperature fluctuation is shifted away

from the pipe center with increasing Reτ (Saha et al., 2014[89]). On the other hand, according

to Redjem-Saad et al. (2007)[84], the mean temperature and temperature fluctuations increase

with increasing values of Pr (Figure 2.8). For Pr > 1, temperature fluctuations at the wall do

not affect heat transfer and the average velocity and temperature profiles are similar (Kasagi et

al., 1989[37]; Li et al., 2009[56]).

Figura 2.7: Mean and fluctuating temperature profile (in wall-units) for different values of Reτ
at Pr ≈ 1 (Satake et al., 2000[92]).
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Figura 2.8: Temperature statistics in wall-units for different values of Pr at Reτ ≈ 186 (Re =

5500). Mean (left) and fluctuating (right) temperature profile. Figure adapted from RedjemSaad
et al. (2007)[84].

Tables 2.1, 2.2 and 2.3 summarize some parameters used in precedents studies on heat

transfer in pipe and channel flow. For the range of parameters defined in Saha et al. (2011)[88],

it was found that the convergence of the first and second order thermal statistics is achieved for

a minimum pipe length of Lx = 2π.

The mesh resolution effect, on the first and second order thermal statistics, is practically

negligible if it is compared with the Reτ, Pr and Lx/D effects (Saha et al., 2011-2014[88][89]).

Furthermore, in pipe and channel flows, the thermal boundary conditions modify the tempera-

ture statistics profiles (Piller, 2005[80]; Flageul et al., 2015[17]).

According to Saha et al. (2014)[89], some deviations could appear at the pipe center when

a cylindrical mesh is used. This depends on the strategy to overcome the singularity at the pipe

center. Certainly, in codes based on a Cartesian mesh, as Incompact3d [48], this singularity is

naturally bypassed.
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2.5 Concluding remarks

This study is focused on internal flows with heat transfer, specifically on channel and pipe

periodic flows. To describe this kind of flows, the bulk velocity Ub and the bulk temperature

Tb are important quantities. Ub is the velocity averaged in space (cross section or duct volume)

while Tb can be defined as average temperature pondered by the streamwise velocity. The

Reynolds number approximately defines if the flow is in laminar, turbulent or a transition regime

between these states. It is commonly accepted that the transition in pipes occurs in the interval

1760 . Re = UbD/ν . 2300 and in channels 500 . Re = UbH/ν . 2886. In wall-bounded

flows, it is convenient to work with the quantities scaled by the (non-physical) friction velocity

defined as uτ =
(
τw
ρ

)1/2
. Then, the Reynolds number based on uτ is Reτ ≡

uτ(Lc/2)
ν

. The net

viscous friction at the wall, without entrance influence, yields a linear pressure drop which can

be compensated by a streamwise momentum forcing term, in order to maintain the periodic

flow statistically stationary.

As a function of the distance to the wall y+, three flow layer can be identified: viscous wall

layer or inner layer, outer layer and overlap layer. In the inner layer (y+ < 5), the velocity profile

follows the linear viscous relation u+
x = y+ and the logarithmic law u+

x = 1
κ
ln (y+) + B, in the

overlap layer (y+ ≥ 30). The values accepted for the constants are: κ ≈ 0.41 and B = 5 − 6.

Despite of The outer turbulent layer is sensitive to pressure variations, the velocity profile is

represented mostly by such a logarithmic law of the wall.

Under certain conditions, the temperature fluctuations in the moving fluid can be considered

not to modify the fluid physical or thermal properties, then it is said that the temperature T

(energy) is transported as a passive scalar. Thus, the temperature transport is modeled by

a convection-diffusion equation inside the fluid, a conduction equation inside the solid and

temperature and heat flux continuity at the interface. Hence, the dimensionless governing

equations for energy transport are

in the fluid: ∂Θ
∂t = −~u · ~∇Θ + 1

RePr∇
2Θ + fΘ,

in the solid: ∂Θs
∂t = 1

GRePr∇
2Θs + fΘs ,

at the interface: Θ|int = Θs|int,

at the interface: ∂Θs
∂~n

∣∣∣
int

= 1
G2

∂Θ
∂~n

∣∣∣
int

.
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Just as the momentum streamwise forcing term in the fluid motion equations, the quantity

fΘ acts as a heat source/sink term which maintains stationary thermal behavior or, equiva-

lently, constant bulk dimensionless temperature (Θb) along the duct. More details on the non-

dimensionalization procedure of the temperature can be found in Appendix A.

Assuming a flow configuration in a duct surrounded by a heated/cooled still fluid, the inter-

nal/external fluids and the solid are solved. The fluid/solid coupling represented by this appro-

ach has been so-called Conjugate heat transfer (CHT). If the heat source directly is applied

to the internal fluid interface, only the internal fluid is solved. This simplified approach is here

referred to as an Ideal locally imposed condition.

The space-time thermal distribution strongly depends on the thermal boundary condition,

the friction Reynolds number (Reτ) and the Prandtl number (Pr), while the streamwise length of

the computational domain (Lx/D or Lx/H) and the simulation time are decisive for the statistics

convergence.

A process dominated by isoflux of heat at the wall can be modeled by imposing a non-

fluctuating and linearly increasing wall temperature (Dirichlet-type boundary condition,

DBC) or by prescribing a non-fluctuating and uniform heat flux (Neumann boundary con-

dition, NBC). The DBC and the NBC correspond to the physical configuration in which thermal

activity ratio K −→ 0 and K −→ ∞, respectively. For instance, the temperature fluctuations

increase nearby the wall with increasing thermal activity ratio, they are shifted away from the

pipe center with increasing Reτ. The mean temperature and temperature fluctuations incre-

ase with increasing values of Pr. For Pr > 1, temperature fluctuations at the wall do not affect

heat transfer and the average velocity and temperature profiles are similar. It was found that

the convergence of the first and second order thermal statistics is achieved for a minimum pipe

length of Lx = 2πD. The mesh resolution effect, on the first and second order thermal statistics,

is practically negligible if it is compared with the Reτ, Pr and Lx effects.

Finally, some deviations could appear at the pipe center when a cylindrical mesh is used.

This depends on the strategy to overcome the singularity at the pipe center. Such a issue, in

codes based on a Cartesian mesh, as Incompact3d, this singularity is naturally bypassed.



Chapter 3

Immersed boundary methods

Considering a numerical approach to the fluid-solid interaction problem, the geometrical so-

lid representation can be classified into two categories: body-conformal and non-body confor-

mal methods (Figures 3.1a and 3.1b). In the first category, the mesh follows the solid geometry

and thereby the computational boundaries of the mesh coincide with the solid boundaries. Thus,

Dirichlet or even Neumann boundary conditions on the solid surface can be prescribed direc-

tly. However, the generation of an appropriated body-conformal mesh could be more complex

than solve the fluid dynamic equations (Fortuna, 2012[19]). In order to represent adequately

the solid, this technique has to balance the total number of mesh points and the refinement near

the solid wall (Mittal & Iaccarino, 2005[61]). This balance can yield accuracy and convergence

problems due to an inappropriate mesh (Ferziger & Perić, 2002[15]). Apart from the comple-

xity and limited flexibility of functions used to generate the mesh, the body-conformal methods

commonly reduce the stencil of the numerical scheme at the fluid-solid interface leading to a

low order of precision in the computation of the discrete operators (Gautier, 2013[20]).

Immersed boundary methods (IBM) surge as a non-body conformal alternative to represent

solids submerged. The problem can be formulated and solved in a simple Cartesian stationary

mesh, even for complex solid geometries in movement. These methods were introduced for the

first time by Peskin (1972)[77] to simulate blood flow inside heart valves. Since then, the IBM

has been extensively applied to a wide range of problems: compressible flows ([24, 60, 59]),

particulate flows ([101, 110]), micro-scale flows ([2]), interaction with solid bodies ([26, 114],

among others), multi-phase flows ([23]), conjugate heat transfer ([30, 110]), environmental

23
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(a) (b)

Figura 3.1: Structured pipe meshes: (a) body-conformal radial mesh ([88]), (b) non-body con-
formal Cartesian mesh.

flows ([94]), bio-fluids ([14]), etc.

Numerical simulation with IBM allows using a mesh of simple topology as a Cartesian

structured mesh (with or without local refinement), which is desirable in terms of efficiency and

parallelization implementation ([59]). Basically, the non-body conformal methods consider the

solid as embedded in the mesh, and therefore the mesh does not depend on the body shape. IBM

allows making computations for moving boundaries simple and accurate, since the mesh does

not need to reformulate for every body displacement. Moreover, high order numerical schemes

can be straightforward implemented ([57, 68]). On the other hand, Dirichlet- and, especially,

Neumann-type boundary conditions could represent an implementation challenge essentially

related to the geometric complexity. More details about the basis of IBM can be found in the

reviews of Iaccarino & Verzicco (2003)[31], Mittal & Iaccarino(2005)[61] and Kim & Choi

(2019)[45]. In the following, the main IBM approaches and highlights are presented. This

includes the approaches for solving the mass, momentum and energy conservation equations in

a flow with a fluid-solid interface.
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3.1 Mass and momentum conservation equations

The motion of an incompressible and Newtonian fluid is governed by the mass and momen-

tum conservation equations, respectively, expressed as

~∇ · ~V = 0, (3.1)

∂~V
∂t

+ ~V · ~∇~V = −
1
ρ
~∇p + ν∇2~V , (3.2)

where ~V is the fluid velocity field, p the pressure field, ρ and ν = µ/ρ are the density and cine-

matic viscosity of the fluid, respectively. On the interface between fluid and the solid domain

( |int), equations 3.1 and 3.2 must respect the no-slip condition (kinematics condition)

~V
∣∣∣∣
int

= ~Vs

∣∣∣∣
int
, (3.3)

where ~Vs

∣∣∣∣
int

is the solid velocity at the interface.

If finite differences approach were adopted to solve the fluid motion equations, by using a

body-conformal method, the governing equations have to be solved in a transformed structured

grid, which follows the body shape. Whereas finite volume and finite element methods can

be employed in an unstructured grid fitted to the body, incorporating the body geometrical

information directly and locally in the discrete governing equations. This means that the discrete

differential operators have to be modified on the solid boundary.

The main advantage of IBM is that the mesh is independent of the body shape. Thus a

Cartesian mesh can be employed without coordinate transformation or complex modifications

on the discrete operators on the fluid-solid interface. Conversely, the boundary condition at

the interface is incorporated by modifying the governing equations near the solid surface. This

leads to the classification into two IBM approaches: continuous forcing approach and discrete

forcing approach. In the first approach, the body representation is carried out by adding a

momentum forcing term in the continuous equations to ensure the no-slip condition on the

interface. The second approach ensures this condition in the discrete equations form at the



3.1. Mass and momentum conservation equations 26

computational mesh nodes near the immersed boundary (IB). In the following sections, these

approaches are briefly discussed.

3.1.1 Continuous forcing approach

Several continuous forcing methods were developed since Peskin introduced the IBM. This

section concerns with methodologies associated with elastic and rigid stationary/moving boun-

daries. This approach consists in adding a forcing term ~fIB to the momentum equation (3.2),

in order to balance the fluid-solid forces and ensure the no-slip condition (Equation 3.3) on the

interface. Then, the modified equations of motion are

∂~V
∂t

+ ℵ
[
~V
]

+
1
ρ
~∇p = ~fIB, (3.4)

~∇ · ~V = 0, (3.5)

where ℵ
[
~V
]

= ~V · ~∇~V − ν∇2~V is the convective-diffusive term and ~fIB is the forcing term which

ensures the no-slip condition

~V
∣∣∣∣
int

= ~Vs

∣∣∣∣
int
. (3.6)

Elastic boundaries

The methodology introduced by Peskin is an Eulerian-Lagrangian methodology, which sol-

ves the governing equations in a Cartesian stationary mesh by finite differences. The methodo-

logy was developed to represent the coupled blood-membrane motion inside heart valves. The

immersed boundary is defined by elastic fibers whose motion is represented by tracking mass-

less Lagrangian points. The curve, that describes the body contour ~Xk(t), preserves the no-slip

condition of the kth Lagrangian point by

∂~Xk

∂t
(t) = ~V(~Xk, t). (3.7)

Note that this discrete form in a Lagrangian fashion is identical to the kinematic condition

defined in Equation 3.3. The forcing term ~fIB(~x, t), sometimes referred as force density, at the
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Eulerian mesh point ~xi, j located at a distance |~xi, j − ~Xk | from the kth Lagrangian point, is given

by

~fIB(~xi, j, t) =
∑

k

~Fk(t) δ(|~xi, j − ~Xk(t)|), (3.8)

where ~Fk(t) is the stress at the point k, and δ can be the sharp Dirac delta function or an improved

smooth function of the force distribution (Figure 3.2). ~Fk is related to the fiber deformation by

the constitutive laws as the Hooke’s law, an elastic energy function or the principle of virtual

work. The dynamic evolution of the fibers (Equation 3.7) is now performed through the δ-

function as

∂~Xk

∂t
(t) =

∑
i

∑
j

~V(~xi, j, t) δ(|~xi, j − ~Xk(t)|). (3.9)

Figura 3.2: Left: Transfer of forcing ~Fk from Lagrangian boundary point (~Xk) to surrounding
fluid nodes; shaded region signifies the extent of the force distribution. Right: Distribution
functions employed in various studies. Figure adapted from Mittal & Iaccarino, 2005[61].

This formulation finds its applications in biofluid problems concerning with elastic struc-

tures in which the external flow is not very important and it is commonly treated as periodic.

Rigid boundaries can be represented by extremely increasing the stiffness of the elastic fibers.

Stationary and moving rigid boundaries

Goldstein et al. (1993)[28] developed the virtual boundary method to simulate flow around

rigid bodies. The body can be seen as a damped oscillator (Iccarino & Verzicco, 2003[31])
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attached to an equilibrium location ~Xe
k . This model considers that the momentum forcing term

induced by the kth Lagrangian point at any grid point ~xi, j has the following feedback relation

with the surrounding velocities

~fIB(~xi, j, t) =
∑

k

~Fk(t) δ(|~xi, j − ~Xe
k |), (3.10)

with

~Fk(t) = αIBM

∫ t

0

~Vk(τ)dτ + βIBM ~Vk(t), (3.11)

where αIBM and βIBM are coefficients conveniently selected to best ensure the no-slip condition

~0 = ~V(~Xe
k , t) ≡

∑
i

∑
j

~V(~xi, j, t) δ(|~xi, j − ~Xe
k |). (3.12)

Angot et al. (1999)[1] and Khandra et al. (2000)[41] developed a penalty method, which

considers the domain as a porous medium where fluid (solid) has an hypothetical very high

(small) porosity φ, and thereby the governing equations are the Navier-Stokes/Brinkman equa-

tions (Brinkman, 1947[7]). This approach added is a particular case of the virtual boundary

method, in which αIBM ≡ 0 and βIBM ≡ µ/φ.

The feedback forcing near the boundary causes spurious oscillations, while the stability of

the method is restricted by the set of parameters (αIBM, βIBM), especially for highly unsteady

flows (high Reynolds numbers). Hence, Saiki te al. (1996)[90] extended the virtual boundary

method for controlling such spurious oscillations by specifying a velocity suppressor at the

boundary and using fourth order centered schemes. On the other hand, Lai & Peskin (2000)[46]

proposed to control the boundary motion by a very stiff spring (whose stiffness constant is

K � 1) which transfer a restoring force to remain the IB location ~Xk(t) close to the equilibrium

location ~Xe
k(t). Thus, the restoring force is expressed by

~Fk(t) = K
(
~Xe

k(t) − ~Xk

)
. (3.13)

Therefore, the forcing term in the momentum equation is
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~fIB(~xi, j, t) =
∑

k

~Fk(t) δ(|~xi, j − ~Xk |). (3.14)

This is another special version of the virtual boundary method when β ≡ 0. Note that moving

boundaries (∂~X/∂t , ~0) can be simulated by this methodology, and the boundary position is

updated by integrating

∂~Xk

∂t
= ~V(~Xk, t) ≡

∑
i

∑
j

~V(~xi, j, t) δ(|~xi, j − ~Xk |). (3.15)

General considerations

The continuous forcing approach was developed for elastic boundaries founding applicati-

ons in biological flows and multiphase flows. However, for rigid boundaries, it requires em-

ploying some simplified models to mimic the solid behavior, and the parameters used for these

models restrict the accuracy and stability of the method (Mittal & Iaccarino, 2005[61]). The

smooth δ-function, to represent a real sharp boundary transition, is particularly undesirable for

thin boundary layers associated with high Reynolds numbers (Mittal & Iaccarino, 2005[61]).

Furthermore, an adequate representation of thin boundary layers requires increasing the number

of mesh nodes, even inside the solid domain, where solving the governing equations is generally

unnecessary and increases the computational processing requirement.

3.1.2 Discrete forcing approach

As the Navier-Stokes equations do not allow extracting an analytical forcing term to en-

force the no-slip condition at the fluid-solid interface, the precedent approaches use a simplified

model to estimate ~fIB in the momentum equation continuous formulations. Conversely, Mohd-

Yosuf (1997)[62] and Verzicco et al. (2000)[103] propose to extract the forcing term directly

from the discrete form of the governing equations. Basically, in this approach, ~fIB acts as a

velocity corrector that ensures ~V = ~Vs at the interface.

As this method is based on the discrete formulation, the time advancement from tn to tn+1,

by the pressure projection method (typical fractional steps), reads
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~V∗ − ~Vn

∆t
+ ℵ′

[
~V
]

+
1
ρ
~∇pn = ~f n+1

IB , (3.16)

~V∗∗ − ~V∗

∆t
−

1
ρ
~∇pn = 0, (3.17)

~∇ · ~V∗∗

∆t
= −

1
ρ
~∇2 pn+1, (3.18)

~Vn+1 − ~V∗

∆t
=

1
ρ
~∇pn+1, (3.19)

where ℵ′
[
~V
]

is the discrete operator, of the convective-diffusive term, associated to the deriva-

tive schemes. The time level at which this operator is applied depends on the time advancement

scheme. As it must be verified the no-slip condition (3.6) ~Vn+1 = ~Vn+1
s , then

~f n+1
IB =


~Vn+1

s − ~Vn

∆t
+ ℵ′

[
~V
]

+ 1
ρ
~∇pn near the interface;

0 elsewhere.
(3.20)

In practice, this approach is straightforward when the interface coincides with the mesh

nodes. Otherwise, an interpolation procedure is commonly required. Assuming that all flow

variables at tn are known and satisfy the boundary conditions on the computational domain

and on the immersed boundary, as it is described by Balaras (2004)[3], the basics steps of the

discrete forcing algorithm are summarized as:

1. First, predict an intermediate velocity field ~V∗ by the discrete Equation 3.16, omitting the

forcing term ~f n+1
IB . The resulting ~V∗ is not necessary divergence free, besides it will not

satisfy the boundary condition on the interface yet.

2. Then, compute ~f n+1
IB from Equation 3.20. The value of the velocity ~Vs at the forcing points

is estimated using an interpolation procedure. These forcing points can be placed outside

or/and inside the body, as it is used in a ghost cell method (Tseng & Ferziger (2003)[99]).

3. Recompute ~V∗ from the Equation 3.16 with the forcing term ~f n+1
IB . The resulting velo-
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city will satisfy the desired boundary condition on the immersed boundary but not the

incompressibility condition (3.5).

4. Compute ~V∗∗ from the Equation 3.17. This step eliminates the influence of the precedent

pressure field.

5. Update the pressure by solving the Poisson equation (pn+1 in Equation 3.18).

6. Update the velocity (~Vn+1 in Equation 3.19).

7. Go to step 1, to calculate the next time step, until ending.

Discrete forcing approach can be classified in indirect forcing ([103], [3]) and direct forcing

([62], [13]). The indirect forcing represents the immersed boundary condition by spreading

the forcing term into the surrounding flow region through the δ-function. For high Re, this

is particularly undesirable, and thus, to overcome this issue, the direct forcing modifies the

computational stencil near the immersed boundary to directly impose the boundary condition.

Therefore, the main difference between these discrete forcing approaches is the procedure used

to ensure the no-slip condition at the forcing points (step 2 of the algorithm).

Direct forcing approach

In order to ensure the boundary condition, the spectral method of Mohd-Yosuf (1997)[62]

mirrors the fluid velocity field across the fluid/solid interface (towards the solid region). It means

that the velocity is imposed inside the solid domain (internal forcing). On the other hand, Fadlun

et al. (2000)[13] proposed to impose the velocity at the first fluid node (external forcing). This

could be done by linear interpolation using information of the velocity at the interface and at the

second external mesh node (which is obtained by directly solving the Navier-Stokes equations).

This conceptually corresponds to applying the momentum forcing inside the fluid.

In the Mohd-Yosuf’s method, only the tangential (to the interface) component of the ve-

locity is used to prescribe the boundary condition. To deal with this issue, Zhang & Zheng

(2007)[112] implemented a bilinear interpolation/extrapolation which considers either the tan-

gential or the normal velocity components to reconstruct the velocity at the internal nodes. The
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forcing inside the solid can be done basically into two ways: by forcing all the inside nodes

and leaving free the pressure computation, or forcing the first internal node and leaving free the

velocity and pressure at the other internal nodes. Inspired in the first procedure, for circular

cylindrical geometries, Parnaudeau et al. (2004)[73] uses the forcing concept in all the inside

nodes by mirroring the external flow (bilinear interpolation) and modulating the flow by a si-

nusoidal function. This methodology deals with the singularity in the cylinder center and gives

continuity to the velocity profile, which is mandatory when, for instance, compact schemes in

finite differences are applied (see Section 5.3.1 for more details).

In order to achieve higher order representation at the interface, Tseng & Ferziger (2003)[99]

extended the idea of Faldun et al. (2000)[13] resulting in the so-called Ghost-cell finite-

difference approach. A ghost cell is defined as the cell in the solid that is adjacent to at least one

fluid cell. For each ghost cell, an interpolation scheme has to be applied to implicitly incorpora-

tes the boundary condition. As this interpolation do not consider the mass conservation law, the

reconstruction is not divergence free. This issue can be bypassed by the cut-cell finite-volume

approach proposed by Ye et al. (1999)[108], in which the discretization fulfills the conservation

laws due to the nature of the finite-volume approach.

3.1.3 Concluding remarks

The direct forcing approach improves the boundary layer representation for high Reynolds

numbers, since it makes a sharp representation of the immersed boundary, whereas the con-

tinuous forcing or the indirect forcing approaches spread the forcing through the surrounding

flow nodes. Furthermore, the stability constraints, associated with the user-specified set of pa-

rameters used in the feedback continuous forcing (Goldstein et al. (1993)[28]), are overcome.

Some drawbacks of the direct forcing method could be: (i) their accuracy, stability and discrete

conservation properties are strongly dependent on the discretization method, (ii) thus, these

methods are not always straightforward for implementing, and (iii) the inclusion of moving

boundaries can be more complex than in continuous forcing. The drawback (iii) is due to the

fluid nodes which were inside the solid at the previous time step do not have flow information

(“freshly-cleared” cells in Figure 3.3). Figure 3.4 shows an interaction scheme of the Euler
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grids and the Lagrange nodes at the immersed boundary.

Figura 3.3: Schematic of “freshly-cleared” cells on a fixed Cartesian grid due to boundary
motion from time step (t − ∆t) to t. Schematic indicates how the flow variables at one such cell
could be obtained by interpolating from neighboring nodes and from the immersed boundary.
Figure adapted from Mittal & Iaccarino, 2005[61].

Figura 3.4: Transfer of variables to satisfy the boundary conditions (no-slip condition and Cau-
chy stress theorem) for IBM methods: (a) direct momentum forcing for original IBM (Peskin,
1972[77]); (b) direct momentum forcing with a feedback approach (Goldstein, 1993[28]; Kim
& Peskin, 2006[42]) and with Navier-Stokes equations (Ulhmann, 2005[101]); (c) velocity re-
construction (Mohd-Yusof, 1997[62]; Borazjani et al., 2008[5]; Luo et al., 2010[58]). Figure
adopted from Kim & Choi (2019)[45].

The methods described above use commonly bilinear (trilinear in 3D) interpolation to repre-

sent the boundary condition. This is a disadvantage for a parallelization strategy by 2D domain

decomposition since flow information can only be acquired in one direction. Therefore, Gautier

(2013)[20] developed an alternative direct forcing method (so-called Reconstruction Method by
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Alternated Direction), which can deal with complex geometries and this parallelization strategy

(see Section 5.3).

The IBM has extensively applied to the momentum equation and can be completely extended

to solve scalar fields, as well. Some problems require to implement the conservation of energy

equation, and thereby the next section discusses some IBM strategies to deal with a scalar field.

3.2 Energy conservation equation (Fluid-solid heat transfer)

A fluid in movement can be an efficient way to transport heat from one source to another.

This advantage has motivated several Direct Numerical Simulations (DNS) in turbulent heated

flow, which consider the thermal energy (temperature) as a passive scalar transported inside the

fluid by conduction and manly by convection (e. g. [43, 36, 39, 97, 98, 82, 17, 18]).

In diabatic wall-bounded flows with thermal gradients, thermal interaction occurs between

fluid and solid. This interaction, frequently so-called Conjugate heat transfer (CHT), represents

the fluid-solid thermal coupled problem of turbulent heat transfer and unsteady heat conduction

in the solid wall. Recalling Section 2.4.1, the governing equations for the CHT are

in the fluid: ∂T
∂t = −~V · ~∇T + α∇2T ,

in the solid: ∂Ts
∂t = αs∇

2Ts,

at the interface: T |int = Ts|int,

at the interface: λs
∂Ts
∂~n

∣∣∣
int

= λ ∂T
∂~n

∣∣∣
int

.

Former papers have studied the CHT problem analytically and experimentally (e. g. [83,

40, 93, 37, 95]). However, the relevant simplifications of the analytical approaches and the

difficulty to measure experimentally turbulent quantities, in very thin boundary layers, makes

numerical simulation a powerful and useful tool to study instantaneous turbulent structures in

heated flows ([38, 89]).

One of the main challenges in numerically solving CHT problems is to couple, at the fluid-

solid interface, the convective-diffusive equation (in the fluid) with the conduction equation (in

the solid). To overcome this challenge, two techniques arise:
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• solving separately the fluid and solid energy equations and matching the boundary con-

ditions by iterative processes ([105]) or by tolerating a small temperature discontinuity at

the interface ([109, 97, 17, 18]);

• solving the energy equations in a unique computational domain by changing the diffusion

coefficients (viscosity or thermal conductivity) inside each domain or by imposing a vo-

lumetric source/sink term at the fluid-solid immersed interface ([44]), in order to ensure

the thermal boundary conditions. Evidently, the unique domain approach is appropriate

for applying an IBM.

Some of these methods deal with the sudden change of the diffusion coefficients in heat

transfer problems, by imposing an artificial very high viscosity inside the solid domain, to re-

present the no-slip condition (as the penalty method, [1]), and the harmonic mean formulation or

the concept of effective conductivity to impose the heat flux condition. Other IBM approaches

impose a momentum forcing term and a source/sink term at the fluid-solid interface, by recons-

truction (interpolation) techniques, to respectively enforce the no-slip condition and the thermal

boundary conditions in the discrete equations (e. g. [44, 71, 30, 111, 106, 34, 85, 86, 59]).

In order to approximate the real CHT thermal condition, it is common to only apply sim-

plified thermal conditions, at the fluid-solid interface, as the ideal locally imposed non-uniform

(IT) or uniform temperature (IUT), or locally imposed heat flux (IF). Most of the heat transfer

studies with IBM only consider Dirichlet-type boundary conditions (as IT or IUT), because the

Neumann-type boundary condition (IF), on immersed boundaries, represents a bigger challenge

([86]). Moreover, it should be remembered that, these ideal conditions are not satisfactory when

the thermal diffusivities of the solid and fluid are of the same order [17].

3.2.1 Source/sink energy term

Just as the momentum and mass equations respectively require forcing and mass-source

terms for imposing the boundary conditions at the interface, the energy equation can incorporate

source/sink term at the interface to represent a fluid-solid heat transfer scenario. Kim et al.

(2004)[44] introduced for the first time the source/sink term in the energy conservation equation
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in the fluid to account the effect of the hot/cool solid wall. Using information from the nearby

fluid points and applying linear or bilinear interpolation, this term is applied by forcing the

interpolated value at the nearest solid point to the interface. This methodology uses a finite

volumes formulation on a mesh staggered together with a fractional step method, to deal with

Dirichlet-type boundary conditions (DBC) and Neumann-type boundary conditions (NBC). The

discrete energy equation at the interface, incorporating the source term, reads

T |n+1
source − T n

∆t
= ℵ′ [T ] + f n+1

source, at the source/sink points, (3.21)

where T |source is the uncorrected temperature at the cells nearby the interface where the source

term is applied, ℵ′ [T ] is the discrete version of the convective-diffusive operator ℵ [T ] = −~V ·

∇T + α∇2T applied over the temperature. To induce the reconstructed target temperature T |int

which ensures the boundary condition, instead of the uncorrected one T |n+1
source, the source/sink

term should be

f n+1
source = −ℵ′ [T ] +

T |n+1
int − T n

∆t
, at the source/sink points. (3.22)

The variations of this method essentially differ in the selections of the source/sink points

and the reconstruction technique.

3.2.2 Effective thermal conductivity

An IBM applied to finite volume or finite elements schemes, the temperature imposition

(DBC) could not be complicated, however, the heat flux condition (NBC) is more demanding.

Hence, the penalty method IBM is based on suddenly change the properties of the medium

across the fluid/solid interface. In the penalty method framework, to impose NBC, it can be in-

troduced the concept of effective thermal conductivity at the interface ([64]). This method states

that effective conduction in the cell at the interface can be expressed as a linear combination of

the conductions inside each medium. For instance,
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1
2

(
λs
∂Ts

∂~n

∣∣∣∣∣
int

+ λ
∂T
∂~n

∣∣∣∣∣
int

)
= λe

∂Ts

∂~n

∣∣∣∣∣
int

at the interface cells, (3.23)

where λ is the effective thermal conductivity. Approximating the precedent derivatives numeri-

cally and considering the temperature continuity, for cells faces coinciding with the interface, it

can be obtained that the effective thermal conductivity is

λe =
G2∆x

G2∆x f + ∆xs
, (3.24)

where G2 = λs/λ is the thermal conductivities ratio, ∆x is the mesh spacing, ∆xs(∆x f ) is the

distance from the solid(fluid) temperature point to the interface location. On the other hand, if

the interface cuts the cells, λ can be computed as an average value along the interface surface

cut by the cells (S int)

λe =
1

S int

∫
S int

λ(S )dS ′. (3.25)

3.2.3 Concluding remarks

In diabatic wall-bounded flows, thermal interaction occurs between the fluid and solid (fre-

quently so-called Conjugate heat transfer, CHT). Mathematically, this interaction represents

the problem of the fluid-solid thermal interaction of turbulent heat transfer and unsteady heat

conduction in the solid. Typically some simplified thermal conditions, at the fluid-solid inter-

face, are considered: ideal locally imposed non-uniform (IT) or uniform temperature (IUT), or

locally imposed heat flux (IF). One of the main challenges in solving numerically CHT pro-

blems is coupling the convective-diffusive equation (in the fluid) with the conduction equation

(in the solid), at the fluid-solid interface.

Some techniques arise to solve this interaction problem, specifically to set the thermal boun-

dary conditions. The IBM appears as an accurate tool, which allows using a simple structured

mesh and eventually complex geometries. Among the IBM possibilities, two approaches can

be highlighted: (i) applying a source/sink term in the energy equation (equivalent to the forcing
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term in the momentum equation), or (ii) use a sudden or transitional change of the diffusive

coefficients across the fluid-solid interface. The fundamental proposal of the approach (i) is to

impose a momentum forcing term and a source/sink term at the fluid-solid interface, by recons-

truction (interpolation) techniques, to respectively enforce the no-slip condition and to set the

thermal boundary condition (e. g. [44, 71, 30, 111, 106, 34, 85, 86, 59]).

Recently, Song et al. (2017)[96] proposed an IBM which applies the effective thermal con-

ductivity concept and a modification of the convection terms. However, the code is only poorly

evaluated for laminar cases. Luo et al. (2017)[59] proposed a 2D ghost-cell IBM in explicit

finite differences to simulate compressible flows under temperature boundary conditions of Di-

richlet, Neumann, and Robin type, but without CHT. This methodology is applied to external

flow around a cylinder at low Reynolds numbers (2D flow). Iaccarino & Moreau, 2006[30] stu-

died the CHT in complex geometries on Cartesian mesh by applying a solver based on Reynolds

Averaged Navier-Stokes equations model (RANS) with immersed boundary so-called IBRANS.

Despite these efforts, to the best of our knowledge there are no LES/DNS studies considering

CHT fluid-solid interaction by mean IBM techniques.



Chapter 4

Governing equations

In this chapter, the governing equations associated to fluid-solid thermal interaction are

presented. The details concerning mathematical modeling of fluid dynamics of incompressible

flows, temperature passive transport in turbulent flows, and temperature conduction in the solid

are discussed. In order to solve the equations, the boundary and initial conditions are defined,

for pipe and channel periodic flow. To deal with the fluid-solid thermal coupling, the conjugate

heat transfer equations are presented.

4.1 Fluid dynamics model

All the flow governing equations are presented in the dimensionless form. The reference

velocity is the bulk velocity (Ub) and the reference length is the pipe diameter (D) or the channel

height (H). The incompressible flow dynamic of a Newtonian fluid can be mathematically

represented by equations of mass and momentum balance. In rectangular Cartesian coordinates,

these equations, respectively, read

~∇ · ~u = 0, (4.1)

∂~u
∂t

= ℵ
[
~u
]
− ~∇Π + ~fτ, (4.2)

and on fluid-solid interface, these equations must respect the no-slip condition (kinematics con-

39



4.1. Fluid dynamics model 40

dition)

~u
∣∣∣
int

= ~us

∣∣∣
int
, (4.3)

where ~us is the solid velocity, ~u is the fluid velocity field, Π the fluid pressure field, Re the global

Reynolds number and ℵ
[
~u
]

= −
(
~u · ~∇

)
~u + 1

Re∇
2~u. The momentum forcing therm ~fτ = [ fτ 0 0]T ,

constant in the space, acts in internal periodic flow to compensate the net viscous friction at the

wall and thereby it sustain stationary regime (Ub = 1, constant volumetric flux). Physically,

this term could represent the gravitational force caused by the duct slope such that it is balanced

with the net viscous force. In fully developed turbulent flow, the magnitude of fτ corresponds to

the mean pressure gradient loss −d〈Π〉y,z/dx, in streamwise direction. This quantity (as defined

in Section 2.2) can be expressed by

fτ(t) = −
d〈Π〉y,z

dx
= β

(
2Reτ
Re

)2

, (4.4)

where β = D/Dh = 4 for pipe flow and β = H/Dh = 2 for channel flow (with Dh = A/P).

In this work, internal flow corresponds to channel or pipe flow, in which the streamwise

direction coincides with the x axis, and the cross-section of the pipe or channel is parallel to the

yz plane (Figure 4.1). The channel or pipe is embedded inside of a rectangular parallelepipe-

dic domain (computational domain) aligned with a rectangular Cartesian system of reference.

Thus, the no-slip condition at the solid wall (Eq. 4.3) is ensured by an immersed boundary

method applied in the discrete formulation (Section 5.3.1), while periodic boundary conditions

are defined on the computational domain. However, in the case of conjugate heat transfer in the

channel, a Dirichlet boundary condition is adopted in y (wall-normal direction). The velocity

and pressure field are assumed statistically homogeneous and periodic in the streamwise direc-

tion. On the other hand, at Chapters 6 and 7, the validation process is performed in a Poiseuille

and turbulent flows, for both pipe and channel flow configurations, including the initial flow

conditions, corresponding to each simulation.
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Figura 4.1: Internal flow configurations.

4.2 Fluid/solid heat transfer model

The fluid-solid thermal interaction is commonly so-called Conjugate heat transfer (CHT).

This interaction can be mathematically modeled by solving the energy equations either in the

solid (heat conduction) or the fluid (heat convection-conduction), and coupling them at the

fluid/solid interface.

In internal flows, there are thermal boundary conditions at the internal ( |int) and the outer

( |out) fluid/solid interfaces. Just as the momentum and mass equations, the energy equations are

also normalized with the same geometrical, kinematic and mechanical quantities, but including

characteristic thermal quantities, as the interface temperature T |int and the bulk temperature

Tb, for the normalization (Appendix A). The dimensionless energy governing equations of a

heated/cooled flow, with constant properties, are

∂Θ

∂t
= −~u · ~∇Θ +

1
RePr

∇2Θ + fΘ, in the fluid, (4.5)

∂Θs

∂t
=

1
GRePr

∇2Θs, in the solid, (4.6)
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Θ|int = Θs|int , at the interface (4.7)

∂Θs

∂~n

∣∣∣∣∣
int

=
1

G2

∂Θ

∂~n

∣∣∣∣∣
int
, at the interface (4.8)

∂Θs

∂~n

∣∣∣∣∣
out

=
1

G2

〈
∂Θ

∂~n

〉∣∣∣∣∣∣
int

, at the interface (4.9)

where Θs is the temperature of the solid, Θ is the temperature of the fluid, ~n is a local unitary

vector normal to the interface pointing towards the fluid, Pr = ν/α is the Prandtl number,

α = λ/(ρcp) is the thermal diffusivity of the fluid, cp is the fluid heat capacity at constant

pressure, G = λρscps/(λsρcp) is the ratio of thermal diffusivities and G2 = λs/λ is the ratio of

thermal conductivities. The quantity fΘ acts as a source/sink term which maintains the bulk

temperature stationary (in time) and uniform (along the duct). The first two equations rise from

the energy conservation inside the fluid and the solid (Eq. 4.5 and 4.6), while the last three

equations represent the temperature and heat flux (Eq. 4.7, 4.8 and 4.9) continuity on the fluid-

solid interfaces.

As the fluid-solid interface is immersed inside the domain, the interface boundary conditi-

ons are ensured by an IBM based on a modified direct forcing approach (Section 5.3.2). Just

as for velocity, the temperature is assumed statistically homogeneous and periodic in the stre-

amwise direction. The domain boundary conditions are periodic in all direction, excepting for

CHT (fluid-solid thermal coupling) for which is used a Neumann-type boundary condition to

ensure the heat flux external source.

When the entire fluid-solid thermal coupling is not solved, it is commonly only solved the

energy equation in the fluid while imposing a temperature or a heat flux on the internal fluid-

solid boundary. These options are ideal conditions and respectively correspond to Dirichlet-type

and Neumann-type boundary conditions.
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4.3 Ideal thermal boundary conditions

The appropriate ideal thermal boundary condition depends on the dominant phenomenon

and the relation of the fluid/solid thermal properties. These are some thermal boundary conditi-

ons commonly used at the interface, to simulate heated/cooled channel/pipe flow:

(i) ideal locally imposed heat flux (IF),

(ii) ideal locally imposed non-uniform temperature (IT),

(iii) ideal locally imposed uniform temperature (IUT).

In this section the mathematical formulation briefly is presented for these ideal cases. Howe-

ver, at Appendix A, there is a complete description and discussion of the three cases. IF: cons-

tant and uniform heat flux at the wall; IT: linear streamwise variation of the temperature with

no temporal fluctuations at the wall; IUT: constant and uniform temperature at the wall (Fi-

gure 4.2). In ducts under IF thermal condition, the mean temperature varies linearly along the

conduct, and thus the IT condition mimics the IF with non-fluctuating temperature. Hence, in

absence of time fluctuations (laminar flow), both conditions (IT and IF) are equivalents. Only

the IF and IT conditions are considered in the simulations of this study. The initial conditions

are described for each case at Chapters 6-7.

For imposing certain ideal boundary conditions, some temperature transformations are more

adequate than others. In the following section, for each ideal boundary condition, the dimen-

sionless temperature forms are presented, including the source term and the Nusselt number

estimation. In Section A.4 is presented a relation between the more common and useful dimen-

sionless temperature forms.

4.3.1 Ideal locally imposed heat flux

The ideal locally imposed heat flux assumes that the heat flux along the duct is constant and

uniform while the temperature is free (Θ|int ≡ f ree, ∂~n Θ|int ≡ constant). When heat flux is

imposed (IF and CHT) the dimensionless form adopted is
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Figura 4.2: Streamwise variation of temperature in thermal fully developed flow, for some ideal
thermal boundary conditions. Top: dimensional temperature; bottom: dimensionless tempe-
rature. The derivative operator normal to the wall is dimensionless and the normal vector is
pointing towards the fluid. The temperature streamwise gradient is inversely proportional to the
Reynolds and Prandtl numbers.

Θ = −
1

Nu

(
T − Tb

〈T |int〉 − Tb

)
=⇒

∂Θ

∂~n

∣∣∣∣∣
int

= 1, 〈Θ|int〉 = −1/Nu, Θb = 0, (4.10)

where Nu = hLc/λ is the average Nusselt number, h is the average convective heat transfer

coefficient (from Newton law of cooling, Eq. A.14), Lc is the characteristic length, where

~n = [nx ny nz]T is a unitary vector normal to the wall (pointing towards the fluid) and 〈·〉 is

an average operator in spanwise/azimuthal and time. As Θ|int is free, through its average, the

Nusselt number can be estimated as

Nu ≈ −
1
〈Θ|int〉

. (4.11)
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The temperature transport equation and the interface boundary conditions, for thermal con-

dition of ideal locally imposed heat flux, respectively are

∂Θ

∂t
= −~u · ~∇Θ +

1
RePr

∇2Θ + ux
β

RePr

(
∂Θ

∂~n

∣∣∣∣∣
int

)
, (4.12)

∂Θ

∂~n

∣∣∣∣∣
int

= 1, (4.13)

By the concept of directional derivative, the relation between the normal heat flux
(
∂Θ
∂~n

∣∣∣
int

)
and the flux Cartesian components can be expressed as

(
nx
∂Θ

∂x
+ ny

∂Θ

∂y
+ nz

∂Θ

∂z

)∣∣∣∣∣∣
int

=
∂Θ

∂~n

∣∣∣∣∣
int
, (4.14)

For channel flow ~n = [0 1 0]T , Equation 4.14 can be simplified as

∂Θ

∂~n

∣∣∣∣∣
int

=
∂Θ

∂y

∣∣∣∣∣
int
. (4.15)

For a pipe with dimensionless diameter D = 1 and longitudinal axis collocated with x-axis,

the normal vector at the wall location [x y z]T is ~n = 2
D [x y 0]T . Then, the heat flux have two

cartesian components

2
(
x
∂Θ

∂x
+ y

∂Θ

∂y

)∣∣∣∣∣∣
int

=
∂Θ

∂~n

∣∣∣∣∣
int
, (4.16)

4.3.2 Ideal locally imposed non-uniform temperature

This ideal boundary condition assumes a fixed dimensional temperature at the wall variating

linearly along the duct. After the variable transformation, the dimensionless imposed tempera-

ture at the wall is constant and uniform while the heat flux is free (Θ|int ≡ constant, ∂~n Θ|int ≡

f ree). The temperature is normalized as

Θ =
T |int − T
T |int − Tb

, =⇒

〈
∂Θ

∂~n

∣∣∣∣∣
int

〉
= Nu, Θ|int = 0, Θb = 1. (4.17)
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Equalities on the right-side of the arrow can be easily obtained analogously to the IF case.

The temperature transport equation and the corresponding boundary condition for locally im-

posed temperature respectively are

∂Θ

∂t
= −~u · ~∇Θ +

1
RePr

∇2Θ +

(
−ux

β

RePr

〈
∂Θ

∂~n

∣∣∣∣∣
int

〉)
, (4.18)

Θ|int = 0, (4.19)

where the amplitude of the source term fΘ/ux is

fΘ
ux

=
β

RePr

〈
∂Θ

∂~n

∣∣∣∣∣
int

〉
= −

βNu
RePr

, where β =


2, f or channel f low,

4, f or pipe f low.
(4.20)

From average values of the source term amplitude or of the dimensionless heat flux at the

interface (Section 5.2.2), the Nusselt number can be estimated as

Nu ≈
RePr
β

〈
fΘ
ux

〉
or Nu ≈ 〈∂~n Θ|int〉. (4.21)

4.3.3 Ideal locally imposed uniform temperature

This boundary condition corresponds to the hypothetical case in which the temperature is

constant and uniform. The temperature transport equation and interface boundary condition,

respectively, are

∂Θ

∂t
= −~u · ~∇Θ +

1
RePr

∇Θ + Θ
βNu
RePr

[
−ux +

βNu
(RePr)2

]
, (4.22)

Θ|int = 0. (4.23)

It is interesting to note that this source term also depends on the temperature field. As it

is shown in Appendix A, this dependence occurs because of the variation of the streamwise
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bulk temperature gradient along the duct causing that the scaling factor of the temperature

normalization (T |int − Tb) is function of x (Figure 4.2).

In heated/cooled internal flow, the temperature increases/decreases along the duct, thus the

temperature is scaled to compensate these increments/decrements. This give rise to the stre-

amwise energy source term. In order to summarize the previous considerations on ideal thermal

boundary conditions, the Table 4.1 shows the dimensionless temperature, the forcing term ex-

pression and some relevant quantities including the bulk temperature, temperature value and

gradient at the wall.

Tabela 4.1: Main considerations of the ideal boundary conditions.

∂Θ

∂t
= −~u · ~∇Θ +

1
RePr

∇2Θ + fΘ

Thermal boundary Dimensionless Forcing term Relevant dimensionless
condition temperature Θ fΘ quantities

IF −
1

Nu

(
T − Tb

T |int − Tb

)
ux

β

RePr

(
∂Θ

∂~n

∣∣∣∣∣
int

)
∂Θ

∂~n

∣∣∣∣∣
int

= 1, 〈Θ|int〉 = −1/Nu, Θb = 0

IT
〈T |int〉 − T
〈T |int〉 − Tb

ux
β

RePr

〈
∂Θ

∂~n

∣∣∣∣∣
int

〉 〈
∂Θ

∂~n

∣∣∣∣∣
int

〉
= Nu, Θ|int = 0, Θb = 1

IUT
〈T |int〉 − T
〈T |int〉 − Tb

Θ
βNu
RePr

[
−ux +

βNu
(RePr)2

] 〈
∂Θ

∂~n

∣∣∣∣∣
int

〉
= Nu, Θ|int = 0, Θb = 1

4.3.4 Domain configuration

For IF and IT cases, the computational domain contains the inner fluid, the two solid slabs

for channel (or the solid cylindrical shell for pipe) and the outer domain with still fluid. On the

other hand, under CHT, the computational domain does not contain outer fluid domain, thus

the outer slab faces coincide with the computational boundary (Figure 4.3). The computational

domains is periodic in all directions, excepting for CHT case, for which a Neumann boundary

condition is imposed on the outer boundary.
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Figura 4.3: Scheme of the domain configuration and thermal boundary conditions, for channel
setup. Top: imposed temperature (IT) or heat flux (IF); bottom: Conjugate heat transfer. In
black, the boundary conditions at the domain faces; in red, the boundary conditions at the
immersed boundary.



Chapter 5

Numerical methodology

A current challenger problem of great interest is to develop numerical methods for the con-

servation laws with the following properties: that it be conservative, high-order accurate, geo-

metrically flexible, computationally efficient, and simply formulated and implemented. Aiming

to deal with these challenges, in solving heat transfer in internal flows, the numerical metho-

dology is described at this chapter. This includes descriptions of the numerical schemes (for

the spatial and temporal discretization), the immersed boundary strategy (to represent the solid

geometry), considerations on numerical stability, fluid-solid coupling strategy (to deal with the

fluid-solid thermal interaction) and the parallel computing strategy.

In order to solve numerically the fluid dynamic (Eq. 4.1, 4.2 and 4.3) and heat transfer (Eq.

4.5, 4.6, 4.7, 4.8 and 4.9) governing equations, the code Incompact3d is employed (Laizet &

Lamballais, 2009[48]). The Incompact3d code is an open source code written in Fortran90/95,

for solving incompressible turbulent flows via Direct numerical simulation (DNS) and Large

eddy simulation (LES and implicit-LES - ILES ). The code is based on 6th-order compact

schemes of finite differences, for spatial differentiation in a Cartesian mesh. By default, the

code has implemented 4 explicit temporal schemes: Adams-Bashforth (2nd- and 3th- order) and

Runge-Kutta (3th- and 4th- order) schemes. Runge-Kutta schemes use sub-time steps, which

requires matrix inversion every time step and, according to Laizet et al. (2010)[49], it could

lead to deterioration of the no-slip condition at the immersed solid boundary. Thus, a 3th-order

Adams-Bashforth scheme is adopted, for time advancement. To treat the incompressibility

condition, a fractional step method requires solving a Poisson equation of pressure, which is

49
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fully solved in spectral space by a 3D Fast Fourier Transform. More information and versions

of the code can be found in http://www.incompact3d.com/.

In this work, especial atention is given to the body geometrical representation which is

carried out by mean of an immersed boundary method (IBM) based on an adapted direct forcing

method (Gautier et al., 2014[22]). This method consists in reconstructing the field inside the

immersed mesh region, in order to ensure smoothness (e. i. first derivative continuity) at the

fluid-solid interface and improve the performance of high-order compact schemes.

5.1 Spatial discretization

The spatial derivatives, in a Cartesian computational mesh, are computed via compact sche-

mes of finite differences described by Vichnevetsky & Bowles (1982)[104], Lele (1992)[55],

Guerreiro (2000)[29] and Moin (2001)[63]. The mesh spacing is adopted as uniform in all

directions (no stretching).

5.1.1 Compact schemes

Here, it will be assumed a computational domain of size [0, Lx], with uniform mesh spacing

∆x, and discrete coordinates xi = (i − 1)∆x (with 1 ≤ i ≤ Nx). If the function f (x) evaluated

at xi is f (xi) = fi, the first and second discrete derivatives ( f ′i and f ′′i ) can be estimated by the

numerical schemes presented in Table 5.1 and Table 5.2, respectively. For periodic and free-slip

boundary conditions, the 6th- order scheme can be applied over all the mesh nodes (1 ≤ i ≤ Nx),

while, for Dirichlet boundary conditions, the boundary nodes (i = 1 and i = Nx) are treated with

a 3th- order scheme and the nodes adjacent to the boundary (i = 2 and i = Nx − 1) with a 4th-

order scheme.

The compact schemes, presented in Tables 5.1 and 5.2, can be expressed in matricial form

as

A′x ~f
′ = B′x ~f , (5.1)

A′′x ~f
′′ = B′′x ~f , (5.2)

where, A′x, B′x, A′′x and B′′x are matrices of size Nx × Nx. ~f , ~f ′ and ~f ′′ are vectors containing,

http://www.incompact3d.com/
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Tabela 5.1: Compact numerical schemes of finite differences to compute the first derivative ( f ′i )
of the function fi = f (xi) at the nodes xi = (i − 1)∆x, 1 ≤ i ≤ Nx, uniform mesh spacing ∆x.
Table adapted from Pinto (2012)[81].

Scheme Mesh nodes: 3 ≤ i ≤ Nx − 2 Coefficients

6th-order α′ f ′i−1 + f ′i + α′ f ′i+1 = a′
fi+1 − fi−1

2∆x
+ b′

fi+2 − fi−2

4∆x
+ α′ =

1
3

; a′ =
14
9

;

centered c′
fi+3 − fi−3

6∆x
b′ =

1
9

; c′ = 0

Mesh nodes: i = 1 and i = Nx Coefficients

3th-order f ′1 + α′ f ′2 =
a′ f1 + b′ f2 + c′ f3

∆x
α′ = 2; a′ = −

5
2

;

non-centered f ′N + α′ f ′N−1 =
−a′ fNx − b′ fNx−1 − c′ fNx−2

∆x
b′ = 2; c′ =

1
2

Mesh nodes: i = 2 and i = Nx − 1 Coefficients

4th-order α′ f ′1 + f ′2 + α′ f ′3 = a′
f3 − f1

2∆x
α′ =

1
4

; a′ =
3
2

centered α′ f ′Nx−2 + f ′Nx−1 + α′ f ′Nx
= a′

fNx − fNx−2

2∆x

Tabela 5.2: Compact numerical schemes in finite differences to compute the second derivative
( f ′′i ) of the function fi = f (xi) at the nodes xi = (i−1)∆x, 1 ≤ i ≤ Nx, and uniform mesh spacing
∆x. Table adapted from Pinto (2012)[81].

Scheme Nodes: 3 ≤ i ≤ Nx − 2 Coefficients

6th-order α′′ f ′′i−1 + f ′′i + α′′ f ′′i+1 = a′′
fi+1 − 2 fi + fi−1

∆x2 + α′′ =
2
11

; a′′ =
12
11

;

centered b′′
fi+2 − 2 fi + fi−2

4∆x2 + c′′
fi+3 − 2 fi + fi−3

9∆x2 b′′ =
3

11
; c′′ = 0

Mesh nodes: i = 1 and i = Nx Coefficients

3th-order f ′′1 + α′′ f ′′2 =
a′′ f1+b′′ f2+c′′ f3+d′′ f4

∆x2 α′′ = 11; a′′ = 13; b′′ = -27;

non-centered f ′′Nx
+ α′′ f ′′Nx−1 =

a′′ fNx +b′′ fNx−1+c′′ fNx−2+d′′ fNx−3

∆x2 c′′ = 15; d′′ = -1
Mesh nodes: i = 2 and i = Nx − 1 Coefficients

4th-order α′′ f ′′1 + f ′′2 + α′′ f ′′3 = a′′
f3 − 2 f2 + f1

∆x2 α′′ =
1

10
; a′′ =

6
5

centered α′′ f ′′Nx−2 + f ′′Nx−1 + α′′ f ′′Nx
= a′′

fNx − 2 fNx−1 + fNx−2

∆x2
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respectively, the function, the first derivative and second derivative evaluated at the Nx mesh

nodes. The matrices A′x and A′′x are tridiagonal, while B′x and B′′x are pentadiagonal, but their

characteristics depend on the boundary condition. For instance, a periodic domain is represen-

ted by cyclic matrices. More considerations on boundary conditions are discussed in Gautier

(2013)[20].

When c′ , 0 and c′′ , 0 (Table 5.1 and 5.2) the scheme is up to 8th-order accurate (B′x and

B′′x would be heptadiagonal) under the coefficients constraints

a′ + b′ + c′ = 1 + 2α′, a′′ + b′′ + c′′ = 1 + 2α′′, O(∆x2), (5.3)

a′ + 22b′ + 32c′ = 23!
2!α
′, a′′ + 22b′′ + 32c′′ = 4!

2!α
′′, O(∆x4), (5.4)

a′ + 24b′ + 34c′ = 25!
4!α
′, a′′ + 24b′′ + 34c′′ = 6!

4!α
′′, O(∆x6), (5.5)

a′ + 26b′ + 36c′ = 29!
8!α
′, a′′ + 26b′′ + 36c′′ = 8!

6!α
′′, O(∆x8), (5.6)

5.1.2 Modified wave number

It can be shown that, in the spectral Fourier space, the derivatives of the function f ( f̂ ′ and

f̂ ′′) can be written as being proportional to the Fourier transform of the function ( f̂ )

f̂ ′ = ıkx f̂ , (5.7)

f̂ ′′ = −k2
x f̂ , (5.8)

where ˆ(·) is the Fourier transform operator, ı =
√
−1 and kx is the wavenumber. If the function is

time-spatial dependent, the wavenumber analysis can be strictly applied, only if the function can

be decoupled in the product of a time dependent by a space dependent functions. Numerical

schemes can be applied over the spatial function f (for instance, schemes in Table 5.1 and

5.2) to estimate its derivatives ( f ′ ≈ f ′f d and f ′′ ≈ f ′′f d), and through the concept of modified

wavenumber k′x and modified square wavenumber k′′x to obtain the following relation

f̂ ′f d = ık′′x f̂ , (5.9)
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f̂ ′′f d = −k′′x f̂ . (5.10)

Now, the relation between the numerical approximation and the exact solution of the de-

rivatives can be established by comparing the exact and modified wavenumbers of Equations

5.7 and 5.8 to Equations 5.9 and 5.10. Applying 6th-order compact schemes (with c′ , 0 and

c′′ , 0) to the test function f (x) = eιkx x, in the framework of the Fourier analysis, it can be

verified that

k′x∆x =

2a′sin(kx∆x) +
b′

2
sin(2kx∆x) +

c′

3
sin(3kx∆x)

1 + 2α′cos(kx∆x)
, (5.11)

k′′x ∆x2 =

2a′′ (1 − cos(kx∆x)) +
b′′

2
(1 − cos(2kx∆x)) +

2c′′

9
(1 − cos(3kx∆x))

1 + 2α′′cos(kx∆x)
. (5.12)

Figure 5.1 shows the performance of explicit schemes in relation to compact schemes, by com-

paring the modified wave number from the numerical scheme (k′x and k′′x ) to the exact one (kx).

In this figure, it is also considered the 6th-order scheme with coefficients (c′, c′′) , (0, 0),

which is obtained by an optimization algorithm (Annex B of Flageul (2015)[16]). From this

algorithm, the optimal set of coefficients, to compute the first derivative, is

(
α′, a′, b′, c′

)
≈ (0.469, 1.58, 0.401, −0.0407) . (5.13)

Compact schemes have better performance than the explicit counterparts, which is more

evident for the wavenumber associated to the first derivative (Figure 5.1).

5.1.3 Numerical dissipation (Implicit Large Eddy Simulation)

Lamballais et al. (2011)[51] propose a simple methodology to adjust the numerical dissipa-

tion in the second derivative computed by compact schemes. This approach permits to control

the shape of the dissipation spectrum (Figure 5.1b) in the smallest scales (around the cutoff

wavenumber: kx∆x|cuto f f = kxc∆x = π). In DNS, this property could be used in wiggles control,

while within Large Eddy Simulation (LES) framework, connections with hyperviscosity ([6],

[52]) and spectral vanish viscosity ([35], [75]) can be established. The recent work of Dairay

et al.(2017)[10] presents this numerical dissipation as an alternative strategy to perform Impli-
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(a) first derivative (b) second derivative

Figura 5.1: Modified wavenumber associated to the first and second derivative (k′x and k′′x ),
for explicit schemes (dx(e)) of 2nd-, 4th- and 6th- order (adapted from Tables 5.1 and 5.2 with
α′ = α′′ = 0), and compact schemes (dx(i)) of 4th- and 6th- order. Figure adapted from Ph.D.
work of Flageul (2015)[16].

cit Large Eddy Simulation (ILES), by equivalence with explicit sub-grid-scale modeling with

physic basis, as spectral vanish viscosity.

It is possible to modulate the numerical dissipation by selecting the appropriate set of coef-

ficients associated to the second-derivative discrete operator. From Equation 5.12, the modified

square wavenumber admits a singularity at kxc∆x when α′′ −→ 1/2 (k′′xc
∆x −→ ∞). This sug-

gests that the dissipation can be modulated at the cutoff scale. By evaluating k′′x at kxc (Equation

5.12) and preserving the 6th-order accuracy (constraints 5.3, 5.4 and 5.5), it can be establish

α′′ =
272 − 45k′′xc

∆x2

416 − 90k′′xc
∆x2 , a′′ =

48 − 135k′′xc
∆x2

1664 − 360k′′xc
∆x2 , b′′ =

528 − 81k′′xc
∆x2

208 − 45k′′xc
∆x2 ,

c′′ =
−432 + 63k′′xc

∆x2

1664 − 360k′′xc
∆x2 .

(5.14)

In theses expressions, the modified square wavenumber at the mesh cutoff k′′xc
can be freely

selected by the user as proportional, for instance, to the exact value of the cutoff square wave

number k2
xc

(k′′xc
= αcutk2

xc
= αcutπ

2/∆x2, where αcut is the proportionality factor). Figure 5.2

displays the k′′x ∆x2 against k2
x∆x2, for the conventional 6th-order scheme (c′′ = 0, Table 5.2)

and various modified square cutoff wavenumber (k′′xc
∆x2 = αcutπ

2 with αcut = 1, 2, ..., 10).
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The numerical dissipation is concentrated in the smallest scales, even for high values of k′′xc
∆x2.

This bandwidth can be extended by fixing another k′′x ∆x2 in an intermediate value (kxm∆x). If

c′′ = 0, this requires reducing the scheme order to 4th-order, since the new constrains are 5.3,

5.4 and Equation 5.12 evaluated in kxc and kxm . However, by selecting c′′ , 0 and adding the

constrain 5.5 the 6th−order accuracy can be preserved. Lamballais et al.(2011)[51] discusses

this strategy with more details. Note that in the present work, only k′′xc
∆x2 = αcutπ

2 is adjusted

in each simulation, depending on the flow configuration.

When k′′xc
∆x2 is incremented, it should be pointed out that numerical stability is limited by

the Fourier number

ν∆t
∆x2 ≤

σr

k′′xc
∆x2 =

σr

αcutπ2 , (5.15)

where, σr depends on the stability region of the time advancement scheme in the real axis

(σr ≈ −0.545 for an Adams-Bashforth 3th-order scheme).

Figura 5.2: Modified square wavenumber in compact centered schemes of 6th-order accuracy.
Comparison between the cutoff wavenumber k′′xc

∆x2 = αcutπ with αcut = 1, 2, ..., 10 (blue lines),
the exact modified square wavenumber k2∆x2 (green dotted line) and the scheme presented in
Table 5.2 with c′′ = 0 (red dashed line). Figure adopted from Lamballais et al. (2011)[51].

5.1.4 Staggered mesh for pressure

A Cartesian collocated mesh (velocity and pressure solved at the same mesh nodes) can

yield spurious pressure oscillations, as it was identified by Laizet & Lamballais (2009)[48].
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According to Perot (2000)[76], a staggered mesh does not exhibit spurious pressure mode and

shows conservative properties of mass, momentum and kinetic energy. These characteristics led

to employ a staggered mesh for pressure computation (Figure 5.3). Thus, the Poisson equation

(Subsection 5.2.1), to solve the pressure field, requires to interpolate the pressure and interme-

diate velocity (associated to the fractional time step, Section 5.2) to the center of the mesh.

Figura 5.3: Schema 2D of a Cartesian staggered mesh for pressure (◦) and collocated for
velocity (•). Figure adopted from Laizet & Lamballais 2009[48].

Considering that the values of f at the coordinate xi = (i−1)∆x are known, the function value

( fi+1/2) and the first derivative ( f ′i+1/2) at the center of the mesh can be, respectively, computed

as

αI fi−1/2 + fi+1/2 + αI fi+3/2 = aI fi+1 − fi

2
+ bI fi+2 − fi−1

2
, (5.16)

α′ f ′i−1/2 + f ′i+1/2 + α′ f ′i+3/2 = a′
fi+1 − fi

∆x
+ b′

fi+2 − fi−1

3∆x
. (5.17)

This schemes have 6th-order accuracy when (αI , aI , bI) = (3/10, 3/4, 1/20) and (α′, a′, b′) =

(9/62, 63/62, 17/62). The matricial form reads

DI
x
~f = EI

x
~f , (5.18)

D′x ~f
′ = E′x ~f , (5.19)

where, vec f and ~f ′ respectively are the vectors of the function and its first derivative at the

staggered mesh. The matrices are defined in the Ph.D. Thesis of Laizet (2005)[47], for periodic,

Dirichlet and free-slip boundary conditions.
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5.2 Temporal advancement

By default the Incompact3d code has 4 explicit temporal schemes implemented: 3th- and

4th- order Runge-Kutta schemes and 2th- and 3th- order Adams-Bashforth schemes. For the

terms associated with the first derivative (convective terms), the time step ∆t must verify the

following stability criteria:

max(ux) ∆t
∆x

≤
σı

max
(
k′x

) , (5.20)

where σı is the limit of the stability region in the imaginary axis (σı ≈ 0.723 for 3th-order

Adams-Bashforth scheme). The stability criteria is exemplified for x-direction, but the same

could be adopted in y- and z- directions with the corresponding velocity component (uy or uz),

mesh spacing (∆y or ∆z) and modified wavenumber (k′y or k′z).

5.2.1 Fluid dynamics equations

Runge-Kutta schemes require matrix inversion every sub-time step and could lead to accu-

racy loss on the no-slip condition at the immersed boundary (Laizet et al., 2009[48]). Thus,

fluid dynamic equations (4.1 and 4.2) are integrated in time by a 3th- order Adams-Bashforth

scheme together with a fractional time step method, to deal with the pressure, couple the

incompressibility condition and ensure a constant bulk velocity. As first step, an intermediary

velocity (~u∗) is predicted by

~u∗ − ~un

∆t
=

3
2
ℵ′

[
~un] − 1

2
ℵ′[~un−1], (5.21)

where ℵ′
[
~u
]

is the convective-diffusive discrete operator computed by compacts schemes (Sec-

tion 5.1.1) and the superscript represents the time level at which the variable is evaluated (for

instance, ~un = ~u(tn,x,y,z)). It should be stressed that the convective term is computed in the

skew-symmetric formulation

ℵ′
[
~u
]

= −
1
2

[
~∇′

(
~u ⊗ ~u

)
+

(
~u · ~∇′

)
~u
]

+
1

Re
∇2′~u, (5.22)

where the apostrophe indicates discrete operators. Remark: the forcing term ~fIB, which arises
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from the IBM direct forcing formulation, does not appears. This is, basically, due to the 1D

nature of the Reconstruction Method by Alternated Direction ([21]) used in this study, since

the forcinf term ~f n+1
IB cannot be explicitly expressed in the volumetric form, but it is considered

during the discrete derivatives computation (ℵ
[
~u
]
).

As the pressure has not been considered, the intermediate velocity ~u∗ is not divergence

free. Moreover, the pressure drop has not been compensated and thereby the bulk intermediate

velocity U∗b is not unitary. Then, in a second stage the velocity is corrected into two steps

~u∗∗ − ~u∗

∆t
= ~f n+1

τ , (5.23)

~un+1 − ~u∗∗

∆t
= −~∇Πn+1. (5.24)

where the constant streamwise forcing term ~fτ = [ fτ 0 0]T appears in periodic flow to compen-

sate the net viscous friction at the wall, driving the flow in streamwise direction. This means

that fτ compensates the streamwise mean pressure gradient lost due to friction stresses. For

the simulations in this work, the instantaneous mean pressure gradient d〈Π〉y,z/dx is adjusted

every time step. This is done in such a way that the bulk velocity becomes constant and unitary

throughout the simulation (Ub = 1, in such a way that volumetric flow rate remains constant):

f n+1
τ =

d〈Πn+1〉y,z

dx
≈ f ∗τ =

(
Ub − U∗b

)
∆t

, (5.25)

where the unadjusted bulk velocity U∗b is time dependent, thus the magnitude of this adjustment

is time-averaged to estimate Reτ and uτ by Equation 4.4. It means, that Re is set while Reτ is

estimated by

Reτ ≈
Re
2

√√√
1
β

Ub −
〈
U∗b

〉
∆t

. (5.26)

Note that uτ = (ν/Lc) Reτ is a space/time-average estimation since the adjustment was ap-

plied to the mean pressure gradient.
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Pressure treatment

Applying divergence operator on both sides of Equation 5.24, the following Poisson equa-

tion can be written

∇2Πn+1 =
~∇ · ~u∗ − ~∇ · ~un+1

∆t
. (5.27)

In order to locate the immersed body (in IBM context) a variable ε is introduced, which

is ε = 1 inside the solid and ε = 0 outside. Under this consideration, the incompressibility

condition in Equation 5.27 is estimated by

~∇ · ~un+1 = ~∇ ·
(
ε~un+1

)
≈ ~∇ ·

(
ε~u∗

)
, (5.28)

giving the following Poisson equation

∇2Πn+1 =
~∇ ·

[
(1 − ε)~u∗

]
∆t

, (5.29)

Before proceeding to solve the pressure field, ~u∗∗ is taken to the staggered mesh via the

6th-order interpolation (Equation 5.16).

Equation 5.29 in the spectral space is

Π̂k+1
lmn =

D̂lmn

Flmn
, (5.30)

where D̂lmn is the divergence in the spectral domain, and the spectral factor is expressed by

Flmn = −[(k′xTyTz)2 + (k′yTxTz)2 + (k′zTxTy)2]∆t, (5.31)

where the transference functions (T j with j = x, y, z) are

T j(k j∆ j) =
2a cos(k j∆ j/2) + (2b/3) cos(3k j∆ j/2)

1 + 2α cos(k j∆ j)
. (5.32)

The numerical transformation from the physical to the spectral space is carried out by ap-

plying a 3D Fast Fourier Transform (Laizet, 2005[47]). After solving the inverse transform of

Π̂k+1
lmn at the staggered mesh, ~∇Πk+1 is computed and then interpolated to the collocated mesh
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(Equations 5.16 and 5.17), in order to correct the velocity field in tn+1 by Equation 5.24.

5.2.2 Fluid-solid thermal equations

As the thermal equations in fluid and solid domain have not pressure (Eq. 4.5 and 4.6), they

are integrated in time without the fractional time step associated to the projection technique.

After solving the velocity field in the fluid domain, the fluid temperature is predicted by a

3th-order Adam-Bashforth scheme expressed by

Θ∗ − Θn

∆t
=

3
2

(
~un∇Θn +

1
RePr

∇2Θn

)
−

1
2

(
~un−1∇Θn−1 +

1
RePr

∇2Θn−1
)
, (5.33)

Θn+1 − Θ∗

∆t
= f n+1

Θ , (5.34)

while, the solid temperature is giving by

Θn+1
s − Θn

s

∆t
=

1
GRePr

{
2
[
∂2Θs

∂x2 + (1 − κ)
∂2Θs

∂y2 +
∂2Θs

∂z2

]n

−

[
∂2Θs

∂x2 + (1 − κ)
∂2Θs

∂y2 +
∂2Θs

∂z2

]n−1

+κ
∂2Θn+1

s

∂y2

}
,

(5.35)

where the fΘ is the source term which compensate the streamwise mean temperature gradient

in order to ensure constant bulk temperature Θb = constant. This is equivalent to the forcing

term fτ, in the momentum equation, which compensates the streamwise mean pressure gradient.

However, fτ is uniform in space, whereas fΘ is proportional to the streamwise velocity ( fΘ ∝ ux)

and thereby is is not uniform but function of space. As fΘ ∝ ux, it can be stated that the

amplitude of the source term is constant fΘ/ux = constant (Table 4.1). Applying volumetric

bulk operator on Equation 5.34, it can be expressed as

1
Ub∀

∫
∀

un+1
x f n+1

Θ d∀′ =

1
Ub∀

∫
∀

(
un+1

x Θn+1 − un+1
x Θ∗

)
d∀′

∆t
, (5.36)

or, by taking advantage from fΘ/ux = constant, operating and rearranging the terms, this ex-

pression becomes
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(
fΘ
ux

)n+1 1
Ub∀

∫
∀

(
un+1

x

)2
d∀′ =

Θn+1
b − 1

Ub∀

∫
∀

un+1
x Θ∗d∀′

∆t
, (5.37)

where the unknown velocity field in tn+1 can be estimated by the intermediate velocity (un+1
x ≈

u∗x), yielding the following temperature source term

f n+1
Θ ≈ f ∗Θ = u∗x

1
1

Ub∀

∫
∀

(
u∗x

)2 d∀′
Θn+1

b − Θ∗b

∆t
, (5.38)

where Θn+1
b = (1 or 0) is the value of the target bulk temperature after adjustment, which allows

the source term ensures constant bulk temperature at tn+1.

The time advancement scheme of the conduction equation is a 1st-order scheme based on the

implicit Euler scheme. The coefficient κ modules the level of implicitness of the diffusive term

in y-direction, however here this term is explicitly computed by using κ = 0. On the other hand,

the Neumann-type (NBC) and Dirichlet-type (DBC) boundary conditions of the temperature

for the real Conjugate heat transfer problem (Eq. 4.7, 4.8 and 4.9) or the ideal cases (Eq. 4.13,

4.19 and 4.23) are ensured by the IBM described in Section 5.3.

As the temperature is convected by the flow velocity and spatial derivatives are computed

by mean compact schemes in the same velocity mesh, the stability criterion for the convective

term is the same employed in the fluid dynamic equation. However, the diffusive criterion now

is based on the thermal diffusivities

α∆t
∆x2 ≤

σr

αcutπ2 , in the fluid, (5.39)

αs∆t
∆x2 ≤

σr

αcutπ2 , in the solid, (5.40)

where σr corresponds to the limit of the stability region, of the numerical scheme, in the real

axis (σr = 0.545 for 3th-order Adam-Bashforth, for instance).
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Relation between source/sink term and Nusselt number estimation

In turbulent heated flow in a duct, the magnitude of the local Nusselt number is normally

fluctuating and unknown. However, if the a cross-sectional and time averaged Nu is known,

under ideal locally imposed temperature (IT), the amplitude of the source term ( fΘ/ux) could

be applied as a averaged-constant value (Eq. 4.12)

〈
fΘ
ux

〉
=

β

RePr

〈
∂Θ

∂~n

∣∣∣∣∣
int

〉
=
β〈Nu〉
RePr

, where β =


2, f or channel f low

4, f or pipe f low.
(5.41)

or by adjusting the bulk temperature Θ∗b every time step (as it is actually done in this work), in

order to maintain Θb = 1 (Figure 5.4)

fΘ
ux

(t) =
1

1
UbA

∫
A

(
u∗x

)2 dA′
Θb − Θ∗b(t)

∆t
. (5.42)

By averaging in time this equation, the expression for the mean amplitude of the forcing

term is

〈
fΘ
ux

〉
=

1
1

UbA

∫
A

〈(
u∗x

)2
〉

dA′
Θb − 〈Θ

∗
b〉

∆t
. (5.43)

The integrations, required to obtain the precedent term, are numerically computed by quadrature

rules based on interpolating functions (Simpson rule in channel flow or midpoint rectangle rule

in pipe flow). Substituting Eq. 5.41 in Eq. 5.43, the Nusselt number can be estimated as

〈Nu〉 ≈
RePr
β

(
Θb − 〈Θ

∗
b〉

∆t

)
1

1
Ub∀

∫
∀

〈(
u∗x

)2
〉

d∀′
, where Θb = (1 or 0). (5.44)

It can be shown (Jakob M, 1958[78]) that Nu is constant along x, thus eliminating any

ambiguity in its use as a global quantity. For ideal locally imposed heat flux the source term

is applied in the same form of Equation 5.43, but the Nusselt number is estimated from the

average dimensionless temperature at the interface
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Figura 5.4: Schema of procedure to adjust bulk temperature.

〈Nu〉 = −
1

〈Θ|int〉
. (5.45)

5.3 Immersed boundaries treatment

Cartesian mesh is not always compatible or straightforward to be implemented in body

conformal methodologies. Thus, the Immersed Boundary Method (IBM) is adopted to represent

pipe/channel thermal coupling.

5.3.1 Velocity field

For the velocity field, the main objective of the IBM is to ensure the no-slip condition at

the fluid-solid interface. In the direct forcing framework, the simplest approach to represent the

solid is to force the target velocity ~u0 to be equal to the solid velocity ~us in the solid mesh nodes.

For a cylinder in polar coordinates, this is written as

~u0(r,θ,z,t) = ~us(r,θ,z,t)

with 0 ≤ r ≤ D/2 and 0 ≤ θ ≤ 2π.
(5.46)
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When the target velocity is forced to be null in all the solid nodes, the no-slip condition and

the continuity of the velocity could be ensured, but not necessarily the continuity of the first

derivative at the fluid-solid interface. In order to solve this undesirable issue, in the compact

schemes context, Parnaudeau (2003)[72] a mirrored target velocity field (Figure 5.5). It means,

that ~u0 is computed by mirroring the external flow (~u) around the interface and multiplying

by a convenient modulate function to deal with the singularity at the cylinder center (r = 0).

Adopting this strategy, the target velocity reads

~u0(r,θ,z,t) = ~us +
(
~us − ~u(D − r,θ,z,t)

)
sin

(
2πr2

D2

)
, (5.47)

Figura 5.5: Streamwise target velocity inside a cylinder at Re = 40, to represent immersed
boundaries. Adapted from Narváez (2015)[66].

The techniques (5.46) and (5.47) will be denoted as IBMuni f and IBMmirr, respectively.

As ~u0 is defined in a Cartesian mesh the reflected field in the polar system ~u(D − r,θ,z,t) has

to be interpolated. According to Parnaudeau et al. (2008)[74], the no-slip condition at the

immersed boundary cannot reach accuracy higher than second order. Then, a bilinear spatial

interpolation is enough to mirror the external flow. Figure 5.6 shows vorticity iso-lines for flow

around a cylinder at Re = 40 by using the direct forcing methods IBMuni f and IBMmirr. The

induced discontinuity of the IBMuni f technique implies accuracy reduction, which is projected

in spurious pressure and velocity oscillations at the interface (Gautier, 2013[20]).

When the submersed solid geometry is not as simple as the cylindrical one, the IBMmirr

technique has some limitation listed below:

• Difficulty to select a convenient modulate function to avoid singularities.
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Figura 5.6: Vorticity iso-lines around a cylinder at Re = 40 by using the direct forcing method
IBMuni f (top) and the mirrored flow method IBMmirr (bottom). With internal flow (left) and
without internal flow (right). Adapted from Gautier (2013)[20].

• Geometric problems to deal with edges.

• Incompatibility with the computational parallelization strategy, while the parallelization

requires 1D derivations, the IBMmirr needs 2D information.

These limitations reduce widely the applicability range of the code to represent complex

geometries. Therefore, Gautier (2013)[20] developed an alternative direct forcing method (so-

called Reconstruction Method by Alternated Direction, IBMinterpol.) which can deal with com-

plex geometries and the parallelization strategy. Roughly, this technique consists in to use

information from the fluid domain, to adjust a Lagrange interpolating polynomial in the so-

lid domain (Figure 5.7) during the derivatives computation. This interpolation process will be

referred to as reconstruction of the velocity or thermal field.

5.3.2 Thermal field

The Dirichlet-type thermal boundary conditions, required at the fluid-solid interface (Eq.

4.19, 4.23 and 4.7), are imposed in the same way in which the velocity no-slip condition is

ensured (Subsection 5.3.1). On the other hand, under IF and CHT thermal conditions, the heat

flux prescription (first directional derivative) is required at the fluid-solid interface (Eq. 4.19,

4.23 and 4.7) and the computational boundaries (Eq. 4.9). In this work, this condition is not
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Figura 5.7: 2D reconstructed velocity profiles inside a cylinder via Reconstruction Method by
Alternated Direction. Streamwise velocity (left) and cross-wise velocity (right). Figure adapted
from Gautier (2013)[20].

achieved by imposing the derivative, but adjusting the temperature at the wall (Θ|int), in order

to virtually ensure the target derivative value (Appendix A of Dairay Ph.D. thesis[8] has more

details of the principle, accuracy, and convergence of the method). It means that a Dirichlet-type

boundary condition (DBC) is applied to ensure a Neumann-type boundary condition (NBC).

In the IBM framework, the solid boundary does not always intercept a mesh node. In such

case, Θ|int is not prescribed at a mesh node, but it is indirectly defined by the interpolation

required during the reconstruction.

Figura 5.8: 1D Reconstruction scheme to represent solid by an Immersed Boundary Method.
Case in which the variable in the fluid is reconstructed in the solid domain. This example uses
5th-order Lagrange interpolating polynomials, which requires 6 points information.

At the computational domain boundary and the fluid/solid interface, it was applied a 3th-

order not centered scheme. For the computational boundary with a uniform mesh spacing, the

scheme reads
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−11Θ1 + 18Θ2 − 9Θ3 + 2Θ4

6∆x
=
∂Θ

∂x

∣∣∣∣∣
int
, (5.48)

−11ΘNx + 18ΘNx−1 − 9ΘNx−2 + 2ΘNx−3

6∆x
=
∂Θ

∂x

∣∣∣∣∣
int
. (5.49)

At the immersed boundary the distance to the nearest fluid mesh node is not always the

same, then the scheme is slightly modified, obtaining

a Θ|int + bΘi+1 + cΘi+2 + dΘi+3 =
∂Θ

∂x

∣∣∣∣∣
int

=⇒ Θ|int =
−bΘi+1 − cΘi+2 − dΘi+3 + ∂Θ

∂x

∣∣∣
int

a
, (5.50)

where

a = −b − c − d,

b =
1

∆xint
+

∆xint + ∆x1 + ∆x2

∆x1∆x2
−

∆xint + ∆x1

∆x2 (∆x1 + ∆x2)
,

c = −∆xint
∆xint + ∆x1 + ∆x2

∆x1∆x2(∆x1 + ∆x2)
,

d = ∆xint
∆xint + ∆x1

∆x2(∆xint + ∆x1 + ∆x2)(∆x1 + ∆x2)
.

In this work a two-fields approach is employed, in which the fluid and solid temperature

field are stored in different computational variables. Figure 5.9 illustrates the reconstruction

of the fluid temperature variable inside the solid domain. Equivalently, the solid temperature

can be reconstructed inside the fluid domain. This and the derivative prescription at immersed

boundary are new features implemented in Incompact3d to deal with the fluid-solid thermal

(Real Conjugate Heat Transfer condition) coupling via IBM.

Heat flux imposition in complex geometries

When the heat flux has to be prescribed on the interface, the derivative imposition has to

consider the local orientation of the interface. For the Cartesian mesh, this means that the heat
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Figura 5.9: 1D reconstruction scheme to define the first derivative. Case used to prescribe a
derivative in the fluid domain.

flux has to be projected in its Cartesian components, in order to apply the 1D reconstruction

technique. Directional derivative gives two relations between the normal/tangential derivative

and its Cartesian components. However, in 3D geometries, three relations are required to com-

pute each Cartesian component of the heat flux. Thus, if it can not be taken any assumption

about the tangential heat flux, there will not be enough equations for the problem closure.

The conservation of energy at the fluid-solid interface (Eq. 4.8), in Cartesian projections,

can be expressed as

(
~∇Θs −

1
G2

~∇Θ

)∣∣∣∣∣∣
int

· ~n = 0. (5.51)

two scenarios, in which Eq. 5.51 is satisfied, can be distinguish:

(
~∇Θs −

1
G2

~∇Θ

)∣∣∣∣∣∣
int

· ~n = 0⇐⇒


(i) : ~∇Θs

∣∣∣∣
int
− 1

G2
~∇Θ

∣∣∣∣
int

= ~0

or

(ii) :
(
~∇Θs

∣∣∣∣
int
− 1

G2
~∇Θ

∣∣∣∣
int

)
⊥ ~n.

(5.52)

The temperature continuity at the interface (Θ = Θs) requires that solid and fluid tempe-

rature gradients, tangential to the interface (~s ⊥ ~n), be identical. From this consideration, it can

be defined two scenarios:
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(
~∇Θs − ~∇Θ

)∣∣∣∣
int
· ~s = 0 =⇒


(iii) : ~∇Θs

∣∣∣∣
int
− ~∇Θ

∣∣∣∣
int

= ~0

(iv) :
(
~∇Θs

∣∣∣∣
int
− ~∇Θ

∣∣∣∣
int

)
⊥ ~s (‖ ~n),

(5.53)

where ~s = [sx sy sz]T is a local unitary vector contained in the plane yz and tangential to the

fluid/solid interface.

The combined scenario (i)+(iii), in Eq. 5.52 and 5.53, is only possible when the fluid and

solid thermal conductivities are equals (G2 = 1). In this scenario, the thermal gradients in the

solid and fluid are parallels, and thereby the energy boundary condition can be decoupled into

its Cartesian components as

~∇Θs

∣∣∣∣
int

= ~∇Θ
∣∣∣∣
int
−→



∂Θs

∂x

∣∣∣∣∣
int

=
∂Θ

∂x

∣∣∣∣∣
int
,

∂Θs

∂y

∣∣∣∣∣
int

=
∂Θ

∂y

∣∣∣∣∣
int
.

, (5.54)

which is desirable for the present 1D reconstruction technique.

The scenario (ii)+(iii), in Eq. 5.52 and 5.53, is not possible because, conversely to the

condition (ii), condition (iii) requires that the solid and fluid temperature gradients be parallel.

On the other hand, the combined scenarios (i)+(iv) and (ii)+(iv) are completely possible (∀G2 >

0), but the temperature gradients can not be decoupled and the equation system which must be

verified is

(
nx
∂Θs

∂x
+ ny

∂Θs

∂y
+ nz

∂Θs

∂z

)∣∣∣∣∣∣
int

=
1

G2

(
nx
∂Θ

∂x
+ ny

∂Θ

∂y
+ nz

∂Θ

∂z

)∣∣∣∣∣∣
int

,

(
sx
∂Θs

∂x
+ sy

∂Θs

∂y
+ sz

∂Θs

∂z

)∣∣∣∣∣∣
int

=

(
sx
∂Θ

∂x
+ sy

∂Θ

∂y
+ sz

∂Θ

∂z

)∣∣∣∣∣∣
int

.

(5.55)

where the second condition should be ensured by the temperature continuity condition. As

this formulation requires gradients information in all directions, the combined scenarios which

become in these conditions are not desirables neither for the 1D reconstruction technique nor

the parallelization strategy.

However, for solid geometries with local normal vector ~n parallel to a Cartesian mesh direc-
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tion (as channel flow), this restriction is bypassed. In channel flow, the Cartesian derivative, to

respect the energy conservation at the interface, can be defined as

∂Θs

∂y

∣∣∣∣∣
int

=
1

G2

∂Θ

∂y

∣∣∣∣∣
int
, (5.56)

For pipe flow the system to be verified to ensure the conservation of energy trough the

interface is

(
x
∂Θs

∂x
+ y

∂Θs

∂y

)∣∣∣∣∣∣
int

=
1

G2

(
x
∂Θ

∂x
+ y

∂Θ

∂y

)∣∣∣∣∣∣
int

,

(
y
∂Θs

∂x
− x

∂Θs

∂y

)∣∣∣∣∣∣
int

=

(
y
∂Θ

∂x
− x

∂Θ

∂y

)∣∣∣∣∣∣
int

.

(5.57)

Hence, if the solid temperature gradients are known, the fluid temperature gradient in Car-

tesian coordinates can be computed through the previous relations and imposed at the interface

trough our technique defined by Equation 5.50. Remark: ideal locally imposed conditions can

be represented trough selecting conveniently the thermal properties, in order to obtain very high

(IF condition) or very small (IT condition) activity ratio.

5.4 Fluid-solid thermal coupling

In order to economize computational time, an efficient weak coupling is adopted. It means,

every time step the fluid dynamic equations (4.2 and 4.1) and the thermal equations (4.5 and 4.6)

are solved sequentially, while a strong coupling solves the fluid and solid governing equations

simultaneously by iterative procedure. In DNS or even in LES framework, a strong coupling

is very restrictive due to the flow field has to be converged every time step, which increases

substantially the computational time.

Although the explicit nature of the weak coupling can imply stability limitations, Giles

(1997)[25] shows that this kind of thermal coupling can be more stable when a Dirichlet condi-

tion is applied in the fluid and a Neumann condition in the solid.

The coupling strategy presented in Flageul (2015)[17] is adapted in the next steps:
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1. The fluid temperature at the interface is updated by the mean value of the precedent tempe-

rature at solid and fluid: Θn+1 = 0.5
(
Θn + Θn

s
)
. This step allows a small discontinuity in the

temperature at the interface (Equation 4.7).

2. The temperature derivative
(
∂Θn+1

∂~n

)
is computed at the wall with information of the fluid

domain (left side of Eq. 5.50).

3. The solid temperature at the interface is updated (right side of Eq. 5.50) in order to ensure

the energy conservation at the wall (Eq. 4.8 and Eq. 4.9 for the domain boundary):
∂Θn+1

s

∂~n
=

1
G2

∂Θn+1

∂~n
.

5.5 Parallelization strategy

3D flow problems with a great number of mesh nodes are highly demanding in terms of

computational processing time, particularly when the problem is solved sequentially in one

computational core. The parallelization is the computational strategy whose objective is to

reduce the processing time by distributing the same problem in many cores working simultane-

ously (in parallel). The most recent version of Incompact3d adopts the domain decomposition

technique (Figure 5.10). The computational domain is decomposed in sub-domains (pencil),

for which each core computes the discretized Navier-Stokes equations. As these equations have

discrete derivative operators acting in three dimensions, when the domain decomposition is

done in x-direction (Figure 5.10a), only the derivatives in x are computed. Then, information

is swapped to y-pencil (Figure 5.10b) to compute the derivatives in y-direction (as analogously,

it would be done for derivatives in z-direction: Figure 5.10c). Figure 5.11 displays the Incom-

pact3d structure and the swap processes required in every time loop. The Message Passing

Interface (MPI) standard allows swapping the information from one direction to the other. The

parallelization strategy is supported by the 2DECOMP&FFT (http://www.2decomp.org) to

generate the decomposition and compute the Fast Fourier Transform in the sub-domains. This

kind of parallelism in pencils (so-called 2D domain decomposition) was implemented in in-

compact3d by Laizet & Li (2011)[50]. The strategy has shown high scalability since it has been

used in solving great problems in up to O(106) computational cores (Flageul, 2015[16]).

http://www.2decomp.org
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(a) (b) (c)

Figura 5.10: Domain decomposition in 4 × 4 MPI processes. (a): pencils in x-direction,
(b): pencils in y-direction and (c): pencils in z-direction. Figure adapted from Laizet & Li
(2011)[50]

Figura 5.11: Incompact3d structure represented in one time step. On right side is shown
the swap processes required by the 2D decomposition strategy. This is based on the main
Incompact3d structure, adding the present implementations (Laizet e Li, 2011[50]).
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The novel dual IBM developed in this thesis requires to solve the energy equation separately

inside the fluid and the solid. Two computational fluid/solid temperature fields are employed,

where the solid/fluid temperature exists all over the computational domain, but it is physically

meaningful only in the corresponding domain. The fluid domain is the immersed region for

the solid temperature and conversely for the fluid temperature solid. In practice, as Figure 5.11

shows, solving the energy equation requires nine global swap operation to compute the spatial

derivatives in the fluid, eight additional global operations for the solid energy equation and four

global operations to compute the streamwise momentum forcing and heat source/sink terms.



Chapter 6

Error analysis in laminar flow

The error analysis, described in this chapter, is based on velocity and temperature fields

in the laminar solutions of channel/pipe flow, for ideal imposed uniform-constant heat flux

(IF, Sec. 4.3.1), imposed non-uniform temperature (IT, Sec. 4.3.2) and the real conjugate

heat transfer (CHT, Sec. 4.2). A rigorous and extensive analysis of the error sources, error

order and spatial distribution, is presented. Pipe flow is only evaluated for the IT case, since a

mathematical and numerical extra effort is required to solve the problem of imposing heat flux

in a non-cartesian geometry, as the pipe geometry. However, at Subsection 5.3.2 some initial

steps are presented in order to solve this problem.

The deviation of the numerical solution f from the exact solution fe can be evaluated at every

mesh node i (with the maximum absolute value equal to the norm L∞) or estimated globally

through the computation of the norm L2. These error norms of the variable f are defined as

L∞[ f ] = max
(∣∣∣ fi − fei

∣∣∣) , (6.1)

and

L2[ f ] =
1
n

√∑
i

( fi − fei)2 (6.2)

where fi is the numerical solution at the node i and n is the total number of nodes evaluated.

The error sources in the velocity solution, due to the discrete approximation, are:

1. the velocity and pressure decoupling by the projection method (not for laminar internal
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flow, since wall-normal pressure gradient is null);

2. the computation of the convective term, velocity divergence, pressure gradient (first deri-

vative);

3. the diffusive term computation (second derivative);

4. the time advancement error (temporal scheme);

5. the computation of the bulk velocity Ub, for correction of the streamwise pressure gradient

every time step (spatial integration scheme).

As the temperature scalar field is passively transported by the flow, the temperature solu-

tion has the same error sources plus the errors associated to the numerical solution of the energy

equation:

1. convective term computation (first derivative);

2. diffusive term computation (second derivative);

3. time advancement error (O(∆t3) for the fluid convective-diffusive equation; ∼ ∆t1 for solid

conduction equation);

4. computation of the bulk temperature Θb for correction of the streamwise temperature

gradient every time step (∼ ∆x4 mean point integration scheme).

The error accuracy of a numerical scheme can be illustrated by a graph of an error norm (e.

g. L∞ and L2) against a refinement or resolution parameter (η). In terms of the spatial resolution,

for instance, two convenient options for η could be the mesh spacing (∆x) or its inverse (∆x−1).

If η = ∆x, the error graph should follows an increasing potential law (error = ηO), conversely,

if η = ∆x−1, the curve follows a decreasing potential law (error = η−O), where the error is

measured by an error norm (as L∞ or L2) and O is the accuracy order of the applied numerical

scheme. This potential curve in a log-log scale is reduced to a linear curve with slope O or −O,

as it is shown in Figure 6.1. For convenience at the present work, the refinement parameter is

mainly selected as η = ∆x−1, since this illustrates the error decrement as the spatial refinement
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increases. On the other hand, the spatial distribution of the error is analyzed for a normalized

error profile/map, in order to compare different resolutions. The normalized profile/map of a

function f is obtained by

fnormalized =
| f − fe|

max | f − fe|
. (6.3)

Figura 6.1: Error convergence illustration.

6.1 Error in channel configuration

6.1.1 Error in the fluid/solid interface location

When the interface coincides with mesh nodes, it is referred to as collocated, otherwise it

is referred to as staggered. The magnitude of the error, in the fluid/solid interface location,

is reduced by generating a highly refined sub-mesh ∆xre f < ∆x (where, ∆xre f = ∆x/m with

m ∈ Z). Then, when the fluid/solid interface does not coincide with a mesh node location, the

error caused by the sub-mesh method is of the order of ∆x1, as Figure 6.2 shows. The channel

flow is selected for this error evaluation, because the error of the interface location is the same

over the entire interface (e. i. L∞ = L2).

Laminar solutions of velocity (Eq. 6.4) and temperature (Eq. 6.5 and 6.6) are polynomial

functions of the distance from the wall y. As the lowest power of the polynomial solutions is

O(y2), it is expected an error of O(∆y2) when the interface is not coinciding with mesh nodes,

because the error in the interface location is O(∆y).
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Figura 6.2: 1st-order error in the IB location in channel geometry, when fluid/solid interface
(wall) location is not collocated with mesh nodes, for ∆xre f = ∆x/10. Using the sub-mesh
method to reduce the error magnitude on the interface location.

6.1.2 Error in the derivatives computation

With no IB and using consistent periodical boundary conditions, the error on the spatial

derivatives computation should be O(∆x6) all over the domain. When Dirichlet or Neumann

boundary conditions are applied, the error is O(∆x3) at the computational boundary (see Tables

5.1-5.2, approximations 5.48-5.49 and annexe A of Dairay’s thesis [8]). Conversely, when IBM

is employed, the accuracy of the derivatives typically decreases at the fluid/solid interface, due

to the numerical treatment given to the physical discontinuity imposed by the sudden medium

change. The accuracy at the interface depends on the IB technique employed to overcome this

discontinuity.

To establish the difference of accuracy between the cases with and without IBM, the error

in computation of the first and second derivative is evaluated. Considering velocity and tem-

perature analytical solutions for the laminar channel, the derivatives are numerically computed

and compared to the analytical derivative, for several spatial resolutions. The analytical solu-

tions for the velocity and temperature fields in the laminar Poiseuille channel heated flow, in

−H/2 ≤ y ≤ H/2, are

ux(y) =
3
2

(
1 − 4y2

)
Ub , uy = uz = 0, (6.4)
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Θ(y) =
Nu
16

(
5 − 24y2 + 16y4

)
, for IT (6.5)

Θ(y) =
1

16

(
5 − 24y2 + 16y4

)
−

1
Nu

, for IF/CHT (6.6)

with Nu = 140/34 ≈ 4.118 at any Reynolds and Prandtl numbers. When CHT is considered,

the temperature profile inside the solid is linear

Θs(y) =
1

G2

(
1
2
−
|y|
H

)
−

1
Nu

, for H/2 ≤ |y| ≤ Ly/2. (6.7)

The temperature solution employed corresponds to the IT condition because, as it is shown

at Section 4.3.4, this configuration enables using periodic computational domain for the sce-

nario with IBM, without introducing error associated to the derivative imposition at the wall

(conversely to IF and CHT). A different number of fluid nodes information (npi f ) is employed

to reconstruct the solution in the immersed domain and establish its relation to the error con-

vergence order. The error is computed for collocated and staggered interface, in order to define

the difference.

The results of this analysis are shown in Figure 6.3, for collocated interface location. As

expected, the greatest error is located at the immersed boundary (IB). The convergence order in-

creases (up to 6th-order) with an increasing number of information points used. This means that

the error order of the derivation scheme is achieved at the immersed fluid-solid interface when

the polynomial reconstructed is high enough. This is because a higher polynomial order has a

higher continuous derivative, thus higher order terms are considered in the Taylor expansion of

the solution around the interface (Linnick & Fasel, 2003[57]).

For staggered interface, Figure 6.4 shows the error in the computation of the first and second

derivatives of velocity and temperature. the temperature and the velocity increases up to 3th and

2nd-order, respectively, with increasing information of fluid nodes. The interval in which this

tendency is maintained is clearer and wider for the temperature than for the velocity, but, in

practice, both converge with the same accuracy order for a high number of information nodes.
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Figura 6.3: Error in the spatial derivatives computation of channel velocity and temperature
laminar solutions, where IBM has been applied to represent the solid walls with different number
of information nodes to each fluid side (npif ). The immersed boundary is collocated with mesh
nodes. The error distribution is practically the same for all the derivative estimations, and it
shows twos clear peaks close to the wall while the error in the channel core is negligible, in
comparison.

6.1.3 Error in the integration to compute bulk quantities - forcing/source

term

The forcing term implementation requires to compute bulk quantities (Eq. 5.38), which

are computed by applying a Simpson scheme. This scheme is 4th-order accurate all over the

integration domain. Besides, for a 1D-function f whose second derivative is null, the Simpson’s

scheme is exact. In practice, this means that, for laminar solution, the error in the bulk velocity

computation is up to the machine accuracy (because ∂2ux/∂y2 = 0).

Bulk quantity is used to compute the forcing/source term in the momentum/energy equation
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Figura 6.4: Error in the spatial derivatives computation of channel velocity/temperature laminar
solution, where IBM has been applied to represent the solid walls with different number of
information nodes to each fluid side (npi f ). The IB is staggered with mesh nodes. The error
distribution is the same presented for the collocated case (Figure 6.3).

enabling to employ periodic streamwise domain. This source term could be implemented as a

constant value or computed every time step to compensate the streamwise pressure/temperature

gradient. The second alternative is attractive because allows the Nusselt number and friction

Reynolds number estimation and that is the reason why, it is applied in this work.

6.1.4 Convergence to the laminar solution

In this section, the time evolution of the velocity and temperature, described by the gover-

ning equations, is considered. Although the laminar solution is not time-dependent, for any

defined initial condition, the solver should be able to converge to an established flow, corres-
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ponding to the steady laminar solution. Thus, for every simulation, it has been checked that the

solution is fully established and converged in time, allowing to consider the numerical errors

as only due to spatial discretization. However, aiming to minimize the transient stage during

which the numerical solution has to adapt, the solutions (6.4, 6.5 and 6.6) are employed as initial

conditions.

The analytical temperature and velocity solutions are compared with the corresponding nu-

merical solution, in order to verify the code for IF/IT (both thermal conditions are physically

equivalents in Poiseuille flow, Figure 4.2) and CHT thermal conditions.

The 3D version of the code Incompact3D is employed with arbitrary spanwise/streamwise

domain size Lx = Lz = 0.5 and resolution Nx = Nz = 10, since the solution is independent

on spanwise or streamwise directions. Table 6.1 shows the mesh resolution in normal-wall

direction y, for the three thermal condition (IT, IF and CHT).

In the foregoing sections, the highest convergence order is reached by setting the number

of fluid nodes used in the reconstruction to npi f =9 (to each fluid side) and the employing

collocated interface on the mesh nodes. Thus, the same parameters are adopted for following

test of convergence to laminar solution. It should be pointed out that for CHT case, there are not

the external buffer regions with still fluid and thereby the information nodes used corresponds

to the closer nodes to the opposite wall.

Tabela 6.1: Spatial resolution Ny and domain size Ly of simulations, for verification of
heat transfer in Poiseuille Chanel Flowa over locally imposed temperature (IT)b, locally
imposed heat flux (IF) and conjugate heat transfer (CHT) thermal boundary conditions
(TBC).

TBC Ny Ly ∆y × 10−3 G2

IT/IF (128, 256, 512, 1024, 2048) 1.28 (20, 10, 5, 2.5, 1.25, 0.625) −

CHT (201, 401, 801, 1001, 2001) 2 (20, 10, 5, 2.5, 1.25, 0.625) (1, 2, 4)
a Neither the velocity or the temperature solutions depend on Re or Pr.
b IF and IT are physically equivalents in Poiseuille flow (none velocity/temperature temporal fluctuation).

The present implementation of dual IBM, for the CHT case, consists in representing the solid

temperature and the fluid temperature by two temperature fields. This very useful capability

enables to simulate scenarios with different fluid-to-solid ratios of the conductivity (G2 = λs/λ),

having, at the interface, a sharp transition of the physical meaningful temperatures but even

continuous derivatives (Figure 6.5).
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Figura 6.5: Temperature profiles at the fluid-solid interface for different conductivity ratios
(G2 = λs/λ).

As expected, the velocity has a 6th-order of convergence when the computational boun-

dary domain can be considered as periodic in the normal-wall direction (top of Figure 4.3),

corresponding to the thermal configurations IT and IF (Figure 6.6). Whereas, for CHT, the

computational domain has to be considered with Dirichlet-type boundary condition and thereby

the convergence order is reduced to 2nd-order. In practice, 6th-order convergence is obtained

for the Nusselt number and the temperature for IT (Figures 6.7 and 6.8), while, for the more

demanding configurations IF and CHT, only 2nd-order is reached for the temperature.

Figura 6.6: Velocity convergence using interface collocated on mesh nodes and nine information
fluid nodes, to each side of the IB, to reconstruct the solution in the immersed region. As
the computational domain is not periodic in the wall-normal direction, for CHT, the velocity
convergence order is reduced.
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Figura 6.7: Temperature convergence in laminar channel, considering interface collocated on
mesh nodes, IT/IF/CHT thermal conditions and nine fluid points of information for the recons-
truction of the solution inside the immersed region (npi f = 9).

Figura 6.8: Nusselt number convergence for IT. Computed from the source term fΘ.

6.2 Error in pipe configuration

Conversely to the channel, the pipe is a 2D geometry, then the interface location relative

to the nodes changes along with the interface. This means that the pipe solid wall cannot be

collocated with mesh nodes everywhere, thus the error in the interface location and its influence

on the solution have to be accepted.

Here, the code verification is carried out for IT thermal conditions (equivalent to IF). In

laminar Poiseuille flow, the analytical solution of the velocity profile is

ux(r) = 2
(
1 − 4r2

)
Ub, uθ = ur = 0. (6.8)

where r is the radial coordinate, uθ and ur are the azimuthal and radial velocities, respectively.
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Incropera [32] deduced the following temperature profile, for IF/IT:

T (r,x) = T |int (x) −
UbD
2α

(
dTb

dx

) [
3
16

+ r4 − r2
]
, (6.9)

Then, changing variable to Θ = (T |int − T )/(T |int − Tb), the dimensionless temperature

solution is

Θ(r) = 2Nu
[

3
16

+ r4 − r2
]

with Nu = −
∂Θ

∂r

∣∣∣∣∣
int

= 4.36. (6.10)

It is important to stress that Θ(r) does not depends on Re, Pr nor x.

All the simulations were initialized with the analytical solution (Equations 6.8 and 6.10).

The error on the computation of the derivatives is analyzed while evaluating the quality of the

solution in terms of:

• procedure to apply the thermal source term fΘ;

• proximity of the IB to the computational boundary (orientation of the IB relative to the

Cartesian mesh);

• exact velocity field or solved velocity field.

Similar to the channel laminar simulations, pipe flow solution does not depend on the stre-

amwise coordinate, thus the size and the resolution in this direction are arbitrarily adopted as

(Lx, Nx) = (0.5, 10). Table 6.2 shows the transversal resolution Ly/Ny = Lz/Nz for three domain

sizes, where the two highest are only used to evaluate the domain size influence.

Tabela 6.2: Parameters of simulations for verification of heat transfer in Poiseuille Pipe Flow
and IF/IT thermal boundary condition.

Ny = Nz Ly = Lz ∆y = ∆z
(
×10−3

)
(32, 64, 128, 256) 1.28 (40, 20, 10, 5)
(44, 88, 176, 362) 1.76 (40, 20, 10, 5)

(64, 128, 256, 512) 2.56 (40, 20, 10, 5)
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6.2.1 Error in the derivatives computation

In addition to the solution quality, the error on the computation of the spatial derivatives

is first analyzed (as it was done in Subsection 6.1.2, for channel flow). As the pipe geometry

imposes a restriction of staggered IB relative to the mesh nodes, the expected maximum error

on the derivatives is of 2nd-order. The derivatives normalized error distribution on the pipe

cross-sectional area (Eq. 6.3), for various resolutions, is presented in Figure 6.9. The first

derivative shows sensibility to the orientation of the IB relative to the mesh orientation, in such

way that the error in the first-derivative in z is concentrated at the left and right sides of the

pipe, while the first-derivative error in y tends to concentrate at the top and bottom of the pipe

sectional-area. Besides, the first-derivative in x shows some error fluctuations for the lowest

resolution and these fluctuations can be associated with the very poor resolution of this test.

On the other hand, the second-derivate error is more homogeneously distributed on the pipe

section, excepting some points near the wall with apparently uniform azimuthal spacing. Again,

the second-derivative in x only shows error for the poorest resolution.

Figura 6.9: Normalized error maps of the first/second derivative and the convective/diffusive
term, for different spatial resolutions. The error is normalized by the maximum error, then
white tones illustrate the highest errors and the black tones the lowest ones.
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6.2.2 Influence of the source term

At subsection, it already is considered time advancement of the variables of interest. The

differences between the bulk temperature adjustment and the constant source term are discussed,

in terms of the quality of the numerical solutions, time per iteration and error spatial distribution

(Figures 6.10 and 6.11). As a 2nd-order accuracy is expected (Subsection 6.1.1), for simplicity,

the bulk quantities (employed in the Θb adjustment procedure) are computed by rectangle inte-

gration method, corresponding to 3th-order accuracy, when the mid point is used.

The error in Θ, when Θb is adjusted, is higher for almost all the resolutions, but the conver-

gence order (2nd-order) is similar or even higher than the case of constant fΘ.
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Figura 6.10: Convergence of Θ for two imposition procedures of fΘ.

The results do not show considerable differences in term of time per iteration (Figure 6.11),

however the error distribution changes (Figure 6.12). When fΘ = const. the high errors are

mainly concentrated near the immersed boundary, while for the case Θb adjusted ( fΘ = variable),

an error appears on the center of the pipe sectional-area. This variation on the error distribution

is due to integration error in computing Θb. Furthermore, the error maps show an azimuthal

distributed pattern with a cross-shape at regions which are closer to the computational domain

boundary.
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Figura 6.11: Real simulation time per iteration (Treal/it) estimated for two different procedures
to impose the source term.

Figura 6.12: Normalized error maps of temperature Θ, for different imposition procedures of
the source term. White tones illustrate the highest errors and the black tones the lowest ones.

The main advantage of adjusting the temperature is the capability to compute the Nusselt

number, which also shows second order of convergence (Figure 6.13).
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Figura 6.13: Nusselt number convergence.

6.2.3 Computational boundary proximity

Starting from the assumption that the proximity of the IB to the computational boundary

defines the error pattern, the convergence order is evaluated for three domain sizes (Table 6.2).

The convergence order does not show significant differences and the spatial error pattern is

maintained and only intensified with increasing computational domain size (Figures 6.14 and

6.15). Therefore, it could be conclude that this pattern is associated with the IB orientation

relative to the mesh and it is slightly influenced by the domain size.
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Figura 6.14: Convergence of Θ for different domain sizes Ly × Lz = 1.28 × 1.28; 1.76 ×
1.76; 2.56 × 2.56.
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Figura 6.15: Normalized error maps of temperature Θ, for different spatial resolutions and
domain sizes.

6.2.4 Influence of the velocity solver

In this subsection the convergence error is compared between the case in which the velocity

solver is employed against the case in which the velocity analytical solution is applied (no ve-

locity error). When the temperature transport equation is solved in couple with the momentum

and continuity equations, the convergence analysis shows a wide influence of the velocity solver

on the temperature solution (Figure 6.16). When velocity solver is employed, the convergence

curve of the velocity and temperature has the same behavior and convergence order ( first row

of Figure 6.16). In both cases, the norm L2 norm shows higher than 2nd-order of convergence, but

the maximum error (L∞) is up to 2nd-order of accuracy. When the velocity analytical solution is

adopted instead of using the velocity solver, the convergence curve (slope) is more uniform and

the magnitude of the error is lower, however, the error convergence is of 2nd-order (second row



6.3. Concluding remarks 90

of Figure 6.16).
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Figura 6.16: Convergence of Θ and ux. First raw: applying Velocity solver; second row: assu-
ming analytical velocity field.

6.3 Concluding remarks

At the foregoing sections, the code is verified for laminar channel and pipe flow. The channel

flow is evaluated for three thermal boundary conditions at the IB, while the pipe flow is evaluated

only for IT boundary condition. The main remarks of the results are listed below. By the present

source term imposition, the Nusselt number can be accurately computed either in channel or in

pipe plow.

In channel flow

• The convergence order increases with increasing order of the polynomial reconstructed

inside the immersed region (increasing the polynomial order implies to increase the num-

ber of fluid nodes information).

• When consistent periodic boundary conditions on the computation domain can be impo-
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sed (IT condition) and the IB is collocated on mesh nodes, up to 6th-order accuracy is

reached.

• Up to 2nd-order of convergence is reached for IF and CHT (since imposed heat flux is

required).

• Due to the error in the interface location is O(∆y), in staggered interfaces location, it is

expected an error of O(∆y2) in the velocity/temperature polynomial solutions (correspon-

ding to polynomials of lowest 2nd-order power).

• As the velocity/temperature analytical solution is a 2nd/4th-order polynomial function of

the distance to the IB location, when the IB is not collocated with mesh node, the IB

location error is ∼ ∆x1 and thereby the lowest polynomial (velocity solution) will impose

the convergence order corresponding to 2nd-order.

• The dual IBM, for the CHT case, allows simulating scenarios with different fluid-to-solid

conductivity ratios (G2) by efficiently representing the sudden medium transition and even

maintaining continuous derivatives.

In pipe flow

• The distribution of the first-derivative error strongly depends on the direction in which

the derivative is computed, while the second-derivative error distributes almost homoge-

neously with some peaks near the IB.

• The main influence of the procedure to impose the energy (temperature) source term is

identified on the error distribution, which has a local peak at the pipe center when Θb is

adjusted, conversely to the case fΘ = const.

• It was found that the pattern of error distribution is not only associated to the domain size

but it strongly depends on the orientation of the IB interface relative to the mesh.

• As the velocity drives the temperature error, even using the exact velocity solution th-

roughout the simulation, the 2nd-order convergence of the maximum error is preserved.
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On the other hand, the norm L2 shows higher error, since it considers error located in the

pipe core far from the IB.



Chapter 7

Turbulent flow

This chapter focuses on the presentation and discussion of the basic turbulent quantities

(as profiles of mean streamwise velocity, Reynolds stresses, mean temperature, temperature

fluctuations and streamwise turbulent heat flux) compared to DNS reference results obtained by

techniques without IBM. This is carried out for three thermal boundary conditions (IT/IF/CHT)

in channel flow, while the IT case is studied in pipe flow.

Table 7.1 shows the platforms used to perform the simulations, where the Galileu platform

is mainly employed for laminar simulations (Chap. 6), while LoboC and Curie supercomputers

were employed for the more demanding turbulent simulations. Finally, it should be stressed that

the pipe flow is not analyzed for IF or CHT conditions.

Tabela 7.1: Characteristics of the high performance computers employed.
Platform (station) Processor Speed

(GHz)
Computational
cores

RAM

Galileu Intel core i7 3.3 12 32Gb

LoboC Intel Xeon 2.7 6048 2.7Gb/core

Curie Intel SandyBridge 2.7 80640 4Gb/core

7.1 Validations of turbulent channel flow

Turbulent results were validated by comparing with the DNS works of Flageul et al. (2015[17],

2017[18]), since in those works the same 6th-order compact schemes are employed. Further-

93
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more, Flageul et al. do not use any IBM, discretize the solid domain in a Chebyshev mesh and

the fluid domain in a stretched mesh (highly refined at near wall region) while computing impli-

citly the second derivatives in y-direction. This last allows using short computational time step

and refined mesh to represent the thermal sublayer. For this purpose, our simulation were per-

formed employing the same parameters of Flageul (Tables 7.2 and 7.3). However, our uniform

mesh spacing requires to use a higher number of nodes. It should be stressed that the reference

works of Flageul were deeply validated with the spectral DNS works of Kasagi et al. (1992)[36]

and Tiselj et al. (2001a)[97], whose parameters and the present simulation parameters are also

presented in Table 7.3.

Tabela 7.2: Main simulation parameters, for turbulent cases. Thermal boundary conditions
(TBC): imposed temperature (IT), imposed heat flux (IF), conjugate heat transfer (CHT). Time
step set to ∆t = 0.003.

TBC Re Pr Nx × Ny × Nz Lx × Ly × Lz

IT 4560 0.71 256 × 256 × 256 12.8 × 1.28 × 4.26
IF 4560 0.71 256 × 256 × 256 12.8 × 1.28 × 4.26
CHT 4560 0.71 256 × 401 × 256 12.8 × 2 × 4.26

Tabela 7.3: Simulation parameters in wall-units compared to the reference ones.

Quantity Current work Flaguel et al.,
2015[17]

Kasagi et al.,
1992[36]

Tiselj et al.,
2001[97]

〈Reτ〉 148 149 150 150
Re′τ rms 0.77 − − −

Pr 0.71 0.71 0.71 0.71
〈Nu〉 15.1a − − −

N′u rms
0.27a − − −[

L+
x , L+

y , L+
z

]
[3789, 296, 1259] [3814, 298, 1269] [2356, 300, 942] [2356, 300, 471]

∆y+ 1.5 [0.49; 4.8] [0.08; 4.9] [0.08; 4.9]
[∆x+,∆z+] [14.8, 4.9] [14.8, 4.9] [14.8, 7.4] 18.4
∆t+ 0.03 0.02 0.12 0.12
Duration 2900 29000 2100 6000
Scheme Compact+IBM Compact Spectral
a One classical and widely applied correlation, valid for smooth tubes over a large Reynolds number range inclu-

ding the transition region, is provided by Gnielinski (1976)[27]. At Re = 4560, Gnielinski’s correlation estimates
〈Nu〉 = 15.76, corresponding to about 4% of deviation from the present estimation.

In order to develop and establish a turbulent state, a simulation is performed at Re = 19000,

employing uniform unitary velocity with white noise and temperature laminar solution as ini-

tial conditions. After obtaining an established turbulent state, the velocity/temperature fields
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yielded are used as the initial condition for the simulations at Re = 4560. A turbulent simu-

lation is considered as fully established when the time histories of Reτ and Nu are statistically

stationaries (Figure 7.1). For Re = 4560, Gnielinski’s correlation estimates 〈Nu〉 = 15.76, cor-

responding to about 4% of deviation from the present estimation. The friction Reynolds number

Reτ is underestimated in 0.7% in relation to Flageul (2015)[17], while the mean velocity and

the Reynolds stresses profiles have a good agreement (Figures 7.1 and 7.2). The deviation from

the reference values is associated with the low normal-wall resolution (∆y+) at near-wall, which

is three times lower than the used by Flageul.
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Figura 7.1: Time history of Reτ =
uτ(H/2)

ν
and Nu =

hH
λ

.

In the next sections, the present turbulent statistics are evaluated for channel and three ther-

mal boundary conditions (IT/IF/CHT). For the velocity and temperature fields, basic statistics

were evaluated, corresponding to spanwise-averaged profiles of mean velocity 〈ux〉
+, Reynolds

stresses 〈uiu j〉
+, mean temperature 〈Θ〉+, temperature fluctuations Θ+

rms and turbulent heat flux

〈uxΘ〉
+.
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〉
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7.1.1 IT and IF in channel flow

For IT and IF cases, the temperature statistics have an excellent agreement (Figures 7.3 and

7.4), excepting the temperature rms, in IF case, which is slightly overestimated up to 5% at

near-wall region, for y+ < 10. As Flageul et al. use near-wall refinement, conversely to the

present uniform mesh spacing, Flageul et al. mesh resolution is higher at the near-wall and

lower in the channel center, in comparison with the present resolution (Table 7.3). Considering

the variation between Flageul et al. methodology and the present approach, in future works

our results could be even improved by increasing the number of nodes in y−direction, using

near-wall stretching, prescribing the heat flux at the interface with a higher order numerical

scheme, or/and modifying the IBM reconstruction strategy (e. g. reconstruct the solution in the

immersed region by cubics splines or Hermite polynomials, for instance).
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7.1.2 Conjugate heat transfer in channel flow

In the IBM framework, the computational domain contains solid and fluid domains. Then,

the temperature field in the solid is reconstructed in the fluid domain and the fluid velocity/temperature

fields are reconstructed in the immersed solid domain (Figure 7.5).

Despite of the present fluid-solid weak coupling, the present original implementation is

stable, accurate and capable to represent smoothly the heat fluxes at the interface, which is

desirable when high order compact schemes are employed. It should pointed out that the tem-

perature variance at the interface is directly associated to the dissipation rate discontinuity as

Flageul et al. (2017)[18] addresses. The behavior of the discontinuity is highly dominated by

the thermal diffusivity (G) and conductivity (G2) ratios ([18]). In a Poiseuille flow, Figures 6.5

(for G = 1 and G2 = 1, 2, 4) and 7.5 (for G = 1 and G2 = 2) shows the temperature continuity

condition (Θ = Θs) and the energy conservation
(
∂Θs
∂y = 1

G2
∂Θ
∂y

)
at the interface. The turbulent

CHT simulation is performed for unitary diffusivity and conductivity ratios (G = G2 = 1) in

order to ensure intermediate condition among the ideal imposed temperature (G2 → 0) or heat

flux (G2 → ∞) conditions.

Figura 7.5: Streamwise velocity and temperature fields reconstruction. Illustration for laminar
channel flow with G = 1 and G2 = 2.

Figure 7.6 shows instantaneous velocity, fluid temperature and solid temperature fields em-

bedded in the same computational domain. Turbulent structures either in the center of the
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channel or the near-wall region are transferred from the flow to the temperature field. In most

of the solid region, the temperature has a linear distribution, since the turbulent fluid-solid heat

transfer only has considerable influence close to the interface.

Figura 7.6: Streamwise velocity ux, fluid temperature Θ and solid temperature Θs, employing
the corresponding temperature dimensionless form, for CHT case. The simulation applies uni-
tary diffusivity and conductivity ratios G = G2 = 1. Blue field in the bottom row represents the
fluid domain.

Temperature statistics have a good global agreement with the reference work (Figure 7.7).

Temperature fluctuation and heat turbulent flux have an excellent agreement, for y+ > 20, while

having a poorer agreement, for y+ < 20. This deviation relative to the reference can be associ-
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ated with the weak thermal coupling at the interface, however, taking into account the present

coarser mesh, this deviation is considered acceptable.
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7.2 Validation of turbulent pipe flow

In this section, the basic velocity/temperature statistics in Turbulent Pipe Flow (TPF) are

validated and discussed for imposed temperature at the wall (IT), for different Reynolds and

Prandtl numbers. The spatial resolution (Nx×Ny×Nz) = (640×256×256), domain size (Lx×Ly×

Lz) = (12.5× 1.28× 1.28) and the version of the velocity solver is the same employed in Dairay

et al. (2017)[9] to perform simulations in turbulent pipe flow represented by an IBM. Figure

7.8 displays a 2D view of computational domain, uniform mesh employed in the pipe flow

simulations and Table 7.4 presents the simulation parameters. At Re = 17000, two simulations

are performed with different square modified wave number at the cutoff mesh: one for k′′c =4π2

and a second one with k′′c =8π2 in order to see the influence of the numerical dissipation over the

smallest scales.

Figura 7.8: 2D visualization of the computational mesh in pipe flow. Figure adapted from
Narváez et al. (2018b)[67].

Tabela 7.4: Flow parameters of simulations for verification of heat transfer in Turbulent Pipe
Flow (TPF) and imposed temperature at the wall (IT). The time step was set at ∆t = 8 × 10−4.

Simulation k′′c Re Pr
TPF1 4π2 5500 1.0
TPF2 4π2 17000 0.71
TPF2.1 8π2 17000 0.71
TPF3 4π2 19000 0.71

Analogously to channel flow (Sec. 7.1), a field yielded from the Simulation TPF3 is em-
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ployed as the initial condition for the simulation at Re = 5500. Just as in channel flow, a tur-

bulent simulation is considered as fully established when the time histories of Reτ and Nu are

statistically stationaries (Figure 7.9). These quantities are respectively related to the correction

on the streamwise pressure gradient in the momentum equation and the streamwise temperature

gradient in the energy equation. Note that Reτ and Nu are outputs estimated and compared with

the DNS reference works and the classical correlation of Gnielinski (1976)[27] (Figure 7.10 and

Tables 7.5 and 7.6). Relative to any of the references works, Table 7.5 shows that the normal-

wall refinement, close to the wall, is coarser in the present simulations. Under this consideration

and regarding that the Nusselt number is globally estimated trough the energy source/sink term,

deduced in this work (Eq. 5.44), the estimation in relation to the numerical and experimental

references is considered very satisfactory (Figure 7.10 and Table 7.6).

Figure 7.9 shows the time history of the friction Reynolds number and the Nusselt number,

normalized by the corresponding average value. The fluctuations of the Nusselt number relative

to its average (N′u rms
/〈Nu〉) are greater than the friction Reynolds number fluctuation relative to

its average (Re′τ rms/〈Reτ〉). In other words, in proportion to the corresponding average value,

the Nusselt number shows higher fluctuations than the friction Reynolds number. Besides,

conversely to N′u rms
/〈Nu〉, the magnitude of the Nusselt number fluctuations (N′u rms

), for TPF2

and TPF3, slightly decreases with increasing Reynolds number. This means that, in proportion

to the averaged Nusselt number 〈Nu〉, the fluctuations increase when Reτ increases (reinforce

this affirmation with two last columns of Table 7.6).

To take the velocity/temperature information from the Cartesian mesh to a cylindrical mesh,

it is adopted the 2th-order projection procedure applied in Dairay et al. (2017)[9]. This proce-

dure yields azimuthal-averaged profiles function of the radial distance to the wall, with a radial

resolution ∆r equal or more refined than the Cartesian one ∆x = ∆y (Figure 7.11).
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Tabela 7.5: DNS references and the present simulations. Spatial resolution in wall-units and
numerical method.FD: Finite differences method; FV: finite volumes method; SE: spectral ele-
ments method.

Work ∆z+ Radial Azimuthal Numerical
method

TPF1 7.5 ∆x+ = ∆y+ = 1.9 ∆x+ = ∆y+ = 1.9 6th-order FD
Redjem-Saad[84] 10.5 ∆r+ ∈ [0.29; 1.04] ∆ (Rθ)+ = 8.84 2th-order FD
Saha[89] 9.3 ∆r+ ∈ [0.061; 3.85] ∆ (Rθ)+ = 9.13 SE
El Khoury[12] [3.03; 9.91] ∆r+ ∈ [0.14; 4.44] ∆ (Rθ)+ = [1.51; 4.93] SE
Satake [92] 10.5 ∆r+ ∈ [0.29; 1.04] ∆ (Rθ)+ = 8.84 FV
Isshiki [33] − − − Experimental
TPF2 19.4 ∆x+ = ∆y+ = 5.0 ∆x+ = ∆y+ = 5.0 6th-order FD
TPF2.1 19.3 ∆x+ = ∆y+ = 4.9 ∆x+ = ∆y+ = 4.9 6th-order FD
TPF3 21.5 ∆x+ = ∆y+ = 5.5 ∆x+ = ∆y+ = 5.5 6th-order FD
Satake [92] 14.6 ∆r+ ∈ [0.1; 2.6] ∆ (Rθ)+ = 8.18 FV
El Khoury[12] [3.06; 9.99] ∆r+ ∈ [0.15; 4.49] ∆ (Rθ)+ = [1.45; 4.75] SE

Tabela 7.6: DNS references. Friction Reynolds number, Prandtl number and Nusselt number.
Work Re 〈Reτ〉 Re′τ rms Pr 〈Nu〉 N′u rms

TPF1 5500 186.46 1.223 1.0 21.73 0.631
Redjem-Saad[84] 5500 186 − 1.0 − −

Saha[89] 5500 186 − 1.0 − −

El Khoury[12] 5300 181 − − − −

Satake [92] 5300 186 − 0.71 18.74 −

Isshiki [33] 5300 180 − − 20.06 −

TPF2 17000 495.79 1.675 0.71 46.05 0.637
TPF2.1 17000 494.38 1.681 0.71 45.90 0.574
TPF3 19000 550.51 1.694 0.71 50.83 0.577
Satake [92] 17000 500 − 0.71 ≈ 52.74 −

El Khoury[12] 19000 550 − − − −

Figura 7.11: sketch of the parameters for the projection from the Cartesian grid (xi,y j) to the
discretized radial coordinate rk. Figure adopted from Dairay et al. (2017)[9].
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Comparing the present results with the DNS references (Figure 7.12), an excellent agree-

ment of the velocity statistics at Re = 5500 (Reτ = 186) and a poorer agreement at Re = 17000

(Reτ = 500) and Re = 19000 (Reτ = 550) were reached. The poorer agreement is observed in

the estimation of the peak of the streamwise Reynolds stressed 〈uxux〉, which is underestimated

in about 7.5%. As the present mesh is uniform and the reference one is a near-wall stretched

mesh, Dairay et al. (2017)[9] suggest that this poor agreement at Re = 19000 and Re = 17000

could mainly related to the coarser resolution in the wall-normal direction. The simulations at

Re = 17000 with different numerical dissipation at the cutoff mesh do not show appreciable

differences (center row of Figure 7.12).

At Reτ = 186, the temperature statistics show excellent agreement with the most recent

reference work (Figure 7.13), however, the peaks of the temperature fluctuations rms (Θ+
rms) and

the turbulent heat flux (
〈
u′xΘ

′
〉+) are slightly higher than the references ones (around 2% and

3%, respectively).

On the other hand, at Reτ = 500, in the core of the pipe, our results are considerably higher

than the data of Satake et al (2000)[92] (Figure 7.14). Considering the moderate Reτ, our

coarser resolution and our high precision numerical scheme, in contrast with the finite volume

of Satake et al, the results are considered very satisfactory and consistent. Moreover, the typical

protuberance of the statistics in the pipe core region (y+ > 100), associated to large turbulent

scales for the highest Reynolds numbers, is consistently reproduced and slightly intensified for

Reτ = 550 in relation to Reτ = 500. It should be stressed that this protuberance is also identified

in the present velocity statistics (Figure 7.12) and it was already reported in the review section

of this work (Figure 2.4 for velocity and Figure 2.7 for temperature).

Figures 7.15 and 7.16 (for Reτ = 186 and Reτ = 550, respectively) show instantaneous

velocity and fluid temperature fields in a cross section at the middle of the pipe. As temperature

transport is driven by the velocity, the instantaneous temperature fields show turbulent structures

highly correlated with velocity. As expected, for the higher Reynolds number (Reτ = 550) the

size distribution of the observed turbulent structures is richer than the simulation for Reτ =

186. This is also identifiable in the iso-surfaces of temperature illustrated in Figures 7.17 and

7.18. The turbulent biggest (in the core of the pipe) and smallest (near-wall) structures are well
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represented and no numerical artificial oscillations are visually identified near the wall, where

the IBM has the most incidence.
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Figura 7.15: Instantaneous temperature Θ (first row) and streamwise velocity ux (second row)
fields at cross section in x = Lx/2, at Reτ = 186 (Re = 5500) and Pr = 1.

Figura 7.16: Instantaneous temperature Θ (first row) and streamwise velocity ux (second row)
fields at cross section in x = Lx/2, at Reτ = 550 (Re = 19000) and Pr = 0.71.
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Figura 7.17: Iso-surfaces of temperature, at Reτ = 186 (Re = 5500) and Pr = 1.

Figura 7.18: Iso-surfaces of temperature Θ, at Reτ = 550 (Re = 19000) and Pr = 0.71.
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7.3 Concluding remarks on turbulent results

In the foregoing sections, the implementations are validated for turbulent channel and pipe

flow by comparing the basic velocity/temperature statistics, the friction Reynolds number Reτ

and the Nusselt number Nu estimations to DNS reference works based on a body-fitted and

near-wall stretched mesh. The channel flow is evaluated for three thermal boundary conditions

at the IB, while the pipe flow is evaluated and studied for IT boundary condition. The main

remarks of the results are listed below.

The friction Reynolds number is estimated (Eq. 5.26) with small deviation from the refe-

rence works, especially for pipe flow. The source/sink term deduced, implemented and applied

in this work allows estimating a global averaged Nusselt number 〈Nu〉 with considerable accu-

racy (Eq. 5.44).

The turbulent velocity/temperature structures are well represented and do not show artificial

numerical oscillations at the near-wall, where the IBM has the most impact.

In channel flow:

• For imposed temperature (IT) and imposed heat flux (IF) at the wall, the velocity/temperature

has an excellent agreement with the reference works. However, in IF case, the tempera-

ture fluctuation are slightly greater than the reference, for y+ < 10.

• For the most demanding conjugate heat transfer (CHT) case, an excellent global agree-

ment is reached, with a present sequential coupling.

In pipe flow:

• The velocity/temperature statistics have an excellent agreement, however the peak of

the streamwise Reynolds stresses
〈
u′xu

′
x
〉

are slightly underestimated for Re = 17000

(Reτ = 500) and Re = 19000 (Reτ = 550). At Re = 5500 (Reτ = 186), the second

order temperature statistics (e. i. Θ+
rms and 〈uxΘ〉

+) show small deviation from the DNS

references. At Reτ = 500 and Reτ = 550, the temperature statistics are higher than the

DNS reference in the core of the pipe, where our simulations clearly show a consistent

protuberance associated to the biggest turbulent scales.
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• Our simulations based on numerical modulated viscosity together with the IBM and the

azimuthal averaging procedure can represent accurately the temperature statistics in ther-

mal sublayer, even for coarser resolution than the layer thickness.



Chapter 8

Conclusions

This thesis deals numerically with the fluid-solid thermal interaction via a dual immersed

boundary method (IBM). The configurations studied are internal pipe and channel laminar tur-

bulent flows. The high precision code Incompact3d is employed as fluid dynamic solver and all

developments are carried out on this code. The Incompact3d derivative operators are also used

to solve the energy governing equations for the temperature, which are coupled at the fluid-solid

interface by mean an efficient weak coupling. The main methodological contributions of this

work are listed below.

• A time dependent temperature (energy) source/sink term is deduced, implemented, ap-

plied and validated, which allows compensating the streamwise temperature gradient ena-

bling to deal with a periodic internal flow, in three different thermal boundary conditions.

• A methodology in Incompact3d code, which allows prescribing temperature Dirichlet and

Neumann boundary conditions by using a customized immersed boundary method, is de-

veloped, implemented and evaluated. The biggest challenges lies on the implementation

of the Neumann-type boundary condition, because for Dirichlet-type boundary condition

the velocity IBM was harnessed.

Channel flow is evaluated for three types of thermal boundary conditions (TBC) at the fluid-

solid interface: ideal locally imposed temperature (Dirichlet-type boundary condition), ideal

locally imposed heat flux (Neumann-type boundary condition) and real conjugate heat transfer
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(Dirichlet and Neumann type boundary conditions). Pipe flow is evaluated for the imposed

temperature case.

Laminar cases are verified by comparing with analytical solutions, while turbulent cases are

validated with references DNS works. The friction Reynolds number is accurately estimated,

especially for pipe flow. The variable energy source/sink term proposed in this work allows

estimating a global averaged Nusselt number with considerable accuracy.

In channel flow

• The convergence order of the error increases with increasing order of the polynomial

reconstructed inside the immersed region (increasing the polynomial order implies to

increase the number of fluid nodes information). For IT case with the immersed boundary

(IB) collocated on mesh nodes, up to 6th-order accuracy is reached. At the IB, up to 2th-

order of convergence is achieved for IF and CHT (since imposed heat flux is required).

• In internal laminar flows (no pressure gradient in wall-normal direction) with staggered

IB location, the velocity/temperature convergence order is closely relate to the IB location

error (∼ ∆x1). Thus, the second-order accuracy reached for this case is consistent with the

velocity analytical solution, which is a second-order polynomial function of the distance

to the wall.

• The thermal basic statistics have an excellent agreement with the DNS references, howe-

ver, for IF and CHT our results show a deviation from the reference data in y+ < 10 and

y+ < 20, respectively.

• The dual IBM, for the CHT case, allows simulating scenarios with different fluid-to-solid

ratios of the conductivity (G2) by efficiently representing the sudden medium transition

and even maintaining continuous derivatives.

In pipe flow

• The distribution of the first-derivative error shows a strong dependence on the direction in

which the derivative is computed. Then it was shown that the pattern of error distribution
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depends on the orientation of the IB interface relative to the mesh.

• The main impact of imposing a variable energy source term (adjusting Θb) is identified

on the error spatial distribution, which has a local peak at the pipe center.

• The maximum errors are located near to the immersed boundary, thus the norm L∞ shows

2th-order convergence, while norm L2 shows a higher order of convergence, since this

norm considers the errors in the pipe core, which are certainly smaller than the error

close to the immersed boundary.

• At Re = 17000 (Reτ = 500) and Re = 19000 (Reτ = 550), the velocity/temperature sta-

tistics have an excellent agreement with the reference DNS. At Reτ = 500 and Reτ = 550,

the temperature statistics are higher than the DNS reference in the core of the pipe, where

our simulations are able to capture a protuberance associated to the biggest turbulent

scales.

• Our simulations, based on numerical modulated viscosity, together with the IBM and

the azimuthal averaging procedure can represent accurately the temperature statistics in

thermal sublayer, even for coarser resolution than the layer thickness.

The present customized immersed boundary method (IBM) is capable to prescribe Dirichlet

and Neumann boundary conditions at the interface. The IBM can represent Dirichlet boundary

conditions with high precision, even in the thermal sublayer and using coarser mesh than the

DNS references. When the solid geometry is compatible with the Cartesian mesh (e. g. channel

flow), the strategy can represent a Neumann-type boundary condition with a small deviation of

the temperature root mean square in the near-wall region. Real conjugate heat transfer is simu-

lated and, although there are slight discrepancies in the temperature statistics, the phenomenon

is consistently represented. The versatility, the relative low computational capacity required and

the simple implementation of fluid-solid thermal coupling make this IBM approach a promising

candidate to continue studying fluid-solid thermal interaction.



Appendix A

Thermal energy equation (Source/sink

term in pipe/channel periodic flow)

The dimensional energy equations in the fluid domain, with invariant properties, can be

expressed by the temperature convection-conduction equation

∂T
∂t

= −~V · ∇T + α∇2T, (A.1)

where the first term on the right-hand side represents the heat transport by convection of the

temperature in fluid with a velocity field ~V , while the second models the heat transfer by con-

duction. Sometimes is convenient to normalize the temperature, i. e., making a variable change.

For instance, considering a heated/cooled internal flow in x-direction, by substituting the dimen-

sionless temperature by

Θ =
〈T |int〉(x) − T (x,y,z,t)

Tr(x)
, (A.2)

in Equation A.1, we obtain

∂Θ

∂t
= −~u · ∇Θ +

1
RePr

∇2Θ + fΘ, (A.3)

where Tr is the reference temperature (scaling factor), T |int is the wall temperature (translation

factor), 〈·〉 is the average operator in spanwise/azimuthal-time, Re is the Reynolds number and
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Pr = ν/α is the Prandtl number which relates the fluid viscosity and its thermal diffusivity. The

additional quantity, fΘ, is a source term expressed by

fΘ = −
ux

Tr

[
Θ

(
dTr

dx

)
−

d〈T |int〉

dx

]

+
1

RePr
1
Tr

[
Θ

(
d2Tr

dx2

)
+ 2

∂Θ

∂x

(
dTr

dx

)
−

d2〈T |int〉

dx2

]
. (A.4)

As it will be shown, fΘ allows making a correction in the temperature gradient to maintain

dimensionless bulk temperature uniform in streamwise direction (Θb = constant), which is

desirable in streamwise periodic flows.

In a thermal fully developed flow under ideal thermal boundary conditions with tempera-

ture profile similarity, an appropriate scaling factor Tr(x) could ensure the dimensionless mean

temperature profile 〈Θ〉 and the bulk temperature Θb invariant along x

∂〈Θ〉

∂x
=

∂

∂x

[
〈T |int〉(x) − 〈T 〉(x,y,z)

Tr(x)

]
= 0 (A.5)

and

∂Θb

∂x
=

∂

∂x

[
〈T |int〉(x) − Tb(x)

Tr(x)

]
= 0, (A.6)

which is true for

Tr ∝ 〈T |int〉 − Tb. (A.7)

The equalities A.5 and A.6 and the proportionality condition A.7 can be established for

ideal locally imposed uniform flux heat (IF), ideal locally imposed non-uniform tempera-

ture (IT) or ideal locally imposed uniform temperature (IUT) boundary conditions (Figure

A.1). It should be pointed out that, both IF and IUT boundary conditions can not be imposed si-

multaneously, because uniform-constant wall heat flux (ϕ|int = constant) implies d〈T |int〉/dx ,

0 (T |int , constant), while, uniform-constant wall temperature (T |int = constant) implies

d〈ϕ|int〉/dx , 0 (ϕ|int , constant). However, as the second column of Figure A.1 shows, the

wall temperature can be imposed to be linearly variable in x (T |int = T |int(x)) to maintain the

heat flux uniform in mean, d〈ϕ|int〉/dx = 0 (ϕ|int , 〈ϕ|int〉 = constant). In the present text,
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Figura A.1: Streamwise variation of temperature in thermal fully developed flow, for some
ideal thermal boundary conditions. Top: dimensional temperature; bottom: dimensionless tem-
perature. The derivative operator normal to the wall is dimensionless and the normal vector is
pointing towards the fluid.

this ideal thermal condition is referred as ideal locally imposed linear temperature boundary

condition which corresponds to a particular case of ideal locally imposed non-uniform tem-

perature (IT). This ideal condition is the so-called mixed-type condition in Piller (2005)[80].

It is interesting to note that expanding and averaging Equation A.5 with Tr = 〈T |int〉 − Tb,

the following useful relation between the averaged streamwise temperature gradients

∂〈T 〉
∂x

=
d〈T |int〉

dx
−
〈T |int〉 − 〈T 〉
〈T |int〉 − Tb

(
d〈T |int〉

dx

)
+
〈T |int〉 − 〈T 〉
〈T |int〉 − Tb

(
dTb

dx

)
. (A.8)

Furthermore, by applying an overall energy balance to a differential volume control of pipe/channel

(Pdx) submitted to IF (ϕ|int ≡ constant), from Incropera and Dewit[32], an expression for the

bulk temperature streamwise gradient is
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dTb

dx
=

P ϕ|int

ṁcp
=
β ϕ|int

ρcpUb
, (A.9)

where ṁ =
∫

A
ρuxdA = ρUbA is the mass flux, P is the wetted perimeter, A is the cross-sectional

duct area, cp is the fluid heat capacity and β = 4 for pipe flow and β = 2 for channel flow.

Integrating this equation, it can be found

Tb(x) = Tb(x0) +
P ϕ|int

ṁcp
(x − x0). (A.10)

In contrast, for IT (T |int = constant), it can be demonstrated

−
1
Tr

dTr

dx
=
βNu
RePr

=⇒ 〈ϕ|int〉(x) = 〈ϕ|int〉(x0)exp
(
−
βNu
RePr

x
)

(A.11)

and

1
Tr

d2Tr

dx2 =

(
βNu
RePr

)2

. (A.12)

The Reynolds number Re and the Nusselt number Nu are based on characteristic length Lc

(≡ D or ≡ H for pipe or channel flow, respectively). The Nusselt number is defined as

Nu =
hLc

λ
= f unction(Re, Pr), (A.13)

where h is the local convection heat transfer coefficient from Newton’s law of cooling expressed

by

〈ϕ|int〉(x) = h (〈T |int〉 − Tb) . (A.14)

The coefficient h can be a function of x in the entrance region, but is constant along the duct

where the thermal fully developed condition was reached.
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A.1 Ideal locally imposed uniform heat flux

When 〈ϕ|int〉 = constant, from Equation A.14, it can be deduced that

dTb

dx
=

d〈T |int〉

dx
, ϕ|int = constant. (A.15)

Substituting this result in Equation A.8 and using Expression A.9, the following equalities

must be satisfied

∂〈T 〉
∂x

=
d〈T |int〉

dx
=

dTb

dx
=
β ϕ|int

ρcpUb
, ϕ|int = constant. (A.16)

This means that streamwise temperature gradients does not dependent on space. Then,

equivalently as was done in the momentum equation (Eq. 4.2), in periodic flow it should be

done a correction in the streamwise temperature gradient to maintain constant the rate of change

of Tb (Saha et al., 2001[88]). From Equations A.4 and A.16, the source term, added to the

temperature transport equation (Eq. A.3), becomes

fΘ =
ux

Tr

[
d〈T |int〉

dx

]
=

ux

Tr

[
β ϕ|int

ρcpUb

]
. (A.17)

Then, using the Fourier’s law, the heat flux normal to the wall towards the fluid (~n = [ny nz]T )

is

ϕ|int = −
k
D
∂T
∂~n

∣∣∣∣∣
int

or −
k
H
∂T
∂~n

∣∣∣∣∣
int
, (A.18)

and the source term can be rewritten as

fΘ =
βux

RePr

(
∂Θ

∂~n

∣∣∣∣∣
int

)
, (A.19)

where the dimensionless temperature gradient through the wall (∂~nΘ|int) depends on the assu-

med normalization. As the normalization is function of known quantities, they should be defined

for the corresponding thermal boundary condition. The values of the normal-wall temperature

gradient for different dimensionless for are
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∂Θ

∂~n

∣∣∣∣∣
int

=



Nu, i f Θ =
〈T |int〉 − T
〈T |int〉 − Tb

RePr, i f Θ =
〈T |int〉 − T

ϕ|int

ρcpUb

1, i f Θ =
1

Nu

(
〈T |int〉 − T
〈T |int〉 − Tb

− 1
)

(A.20)

Some interesting quantities can be obtained if T is substituted by 〈T |int〉 or Tb, aiming to

found an expression for the dimensionless temperature at the wall (Θ|int) or the bulk dimensi-

onless temperature Θb, respectively. Moreover, the values of the dimensionless wall heat flux

were obtained by applying normal derivative operator (∂~n(·)) to the right-hand expressions of Θ

in Eq. A.20, and evaluating it at the wall.

Tabela A.1: Temperature dimensionless expressions. The Nusselt number Nu is an output com-
puted from the quantities with the average operator 〈·〉. The last dimensionless form corresponds
to the last one in Equation A.20.

Dimensionless Wall temperature Bulk temperature Temperature normal-wall
temperature Θ Θ|int Θb gradient

Θ =
〈T |int〉 − T
〈T |int〉 − Tb

Θ|int = 0 Θb = 1
〈
∂Θ

∂~n

∣∣∣∣∣
int

〉
= Nu

Θ =
〈T |int〉 − T

ϕ|int

ρcpUb

Θ|int = 0 〈Θb〉 =
RePr
Nu

∂Θ

∂~n

∣∣∣∣∣
int

= RePr

Θ =
〈T |int〉 − T

ϕ|int

ρcpuτ

Θ|int = 0 〈Θb〉 =
ReτPr

Nu
∂Θ

∂~n

∣∣∣∣∣
int

= ReτPr

Θ = −
1

Nu

(
T − Tb

T |int − Tb

)
〈Θ|int〉 = −1/Nu Θb = 0

∂Θ

∂~n

∣∣∣∣∣
int

= 1

The dimensionless form used for the IF boundary condition is the last one in Eq. A.20

and in Table A.2. It is easy to show that Θb = 0 since the numerator is canceled when T =

Tb. In addition, by applying the average operator over Eq. 4.10, at the wall T = T |int, it

can be shown that dimensionless temperature at the interface is 〈Θ|int〉 = −1/Nu. Finally, the
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average dimensionless heat flux is unitary, which can be proved by applying dimensionless

directional derivative operator ∂~n(·) over this equation and combining Newton’s law of cooling

and Fourirer’s law (− λL∂~nT = h(〈T |int〉 − Tb)).

A.2 Ideal locally imposed linear temperature (IT)

For the Dirichlet-type boundary conditions (IT and IUT ), it will be used the first dimensi-

onless form of the Table A.2. The source term continues being the same as for IF (Equation

A.19), while imposing the wall temperature implies that Θ|int = 0. Then, if

T |int = 〈T |int〉(x), (A.21)

the boundary condition, for the so-called IFT thermal condition, is

Θ|int = 0. (A.22)

It should be pointed out, that, although, this Dirichlet boundary condition implies that at the

wall T = T |int (Θ|int = 0), T |int continues being linear function of x (Figure A.1), while ensuring

the mean heat flux by the source term (Eq. A.19).

A.3 Ideal locally imposed uniform temperature (IUT)

To consider T |int = constant implies

d T |int

dx
=

d 〈T |int〉

dx
= 0, T |int = constant, (A.23)

then, from Equation A.8

∂〈T 〉(x,y,z)
∂x

=
T |int − 〈T 〉(x,y,z)

T |int − Tb

(
dTb

dx

)
T |int = constant. (A.24)

Conversely to IF, this shows that the streamwise temperature gradient depends on spatial

coordinates, which implies that the correction in the streamwise temperature gradient must be
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function of them. Hence, substituting the results of Equations A.8, A.11, A.12 and A.23 in

Equation A.4, the source term in the temperature transport equation is

fΘ(x,y,z) = Θ

[
−ux

(
1
Tr

dTr

dx

)
+

1
RePr

(
1
Tr

d2Tr

dx2

)]

= Θ

[
−ux

(
βNu
RePr

)
+

1
RePr

(
βNu
RePr

)2]
, (A.25)

A.4 Relation between dimensionless temperatures

The governing equations can be solved considering any of the dimensionless expression.

Some of these expressions sometimes are more convenient than others. However, a relation

can be established between them, in such a way that after obtaining the simulation results, it is

possible to transform one into the other one (Table A.2).

Tabela A.2: Relation between temperature dimensionless expressions.

Temporal Dimensionless form Expression
notation in wall units (Θ+)

ΘT
〈T |int〉 − T
〈T |int〉 − Tb

ΘT =
Nu

ReτPr
Θ+

Θϕ

〈T |int〉 − T
ϕ|int

ρcpUb

Θϕ =
Re
Reτ

Θ+

Θ+
〈T |int〉 − T

ϕ|int

ρcpuτ

Θ+

ΘNu −
1

Nu

(
T − Tb

T |int − Tb

)
ΘNu =

Θ+

ReτPr
−

1
Nu

In the previous expression, the friction Reynolds number is defined as

Reτ =
uτ(D/2)

ν
or

uτ(H/2)
ν

. (A.26)
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Conjugate heat transfer in channel flow -

Laminar solution

Conjugate heat transfer (CHT) represents the fluid-solid thermal coupling. Thus, the trans-

port equation in the fluid domain (Ω) and the diffusion equation in the solid domain (Ωs) are

coupled by the thermal boundary conditions at the fluid-solid interface ( |int) and the outer solid

boundary ( |out). The dimensionless energy equations read

∂Θ

∂t
= −~u · ∇Θ +

1
RePr

∇2Θ + fΘ in Ω, (B.1)

∂Θs

∂t
=

1
GRePr

∇2Θs + fΘs in Ωs, (B.2)

Θ|int = Θs|int , (B.3)

∂Θs

∂~n

∣∣∣∣∣
int

=
1

G2

∂Θ

∂~n

∣∣∣∣∣
int
, (B.4)

∂Θs

∂~n

∣∣∣∣∣
out

=
1

G2

∂〈Θ〉

∂~n

∣∣∣∣∣
int
, (B.5)

where Θ (Θs) is the fluid (solid) temperature, G = λρscps/(λsρcp) the ratio of thermal diffusivi-

124



125

ties and G2 = λs/λ the ratio of thermal conductivities. Equation B.3 represents the temperature

continuity on the interface, and the Equation B.4 imposes the heat flux at that interface which

physically represents the energy conservation.

Considering the dimensionless temperature form as

Θ =
1

Nu

(
1 −

T |int − T
T |int − Tb

)
, (B.6)

the dimensionless temperature at the interface is

Θ|int = Θs|int =
1

Nu
, (B.7)

the bulk temperature is

Θb = 0 (B.8)

and the source term in the fluid energy equation (B.1) is

fΘ = −2
ux

RePr
. (B.9)

The temperature was conveniently normalized (B.6), in order to ensure that, in fully develo-

ped flow, the dimensionless mean temperature 〈Θ〉 has not streamwise variation (x−direction).

It means that, in steady flow, ∂Θ/∂x = 0 or Θ = Θ(y), since Θ has not spanwise gradient

(z−direction). For Pouseuille channel flow (1D steady flow), energy equations in the fluid and

the solid (B.1 and B.2) can respectively be rewritten as

0 =
d2Θ

dy2 − 2ux, (B.10)

0 =
d2Θs

dy2 , (B.11)

Θ|int = Θs|int , (B.12)
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dΘs

dy

∣∣∣∣∣
int

=
1

G2

dΘ

dy

∣∣∣∣∣
int
, (B.13)

dΘs

dy

∣∣∣∣∣
out

=
1

G2

∂Θ

∂y

∣∣∣∣∣
int
, (B.14)

where

ux =
3
2

(
1 − 4y2

)
. (B.15)

Remembering that, for simplicity, in the equations above, the symbols |int and |out indicate

respectively that the variable is evaluated at the fluid/solid interface or at the solid outer (compu-

tational) boundary. The second derivative of the fluid temperature field is a parabola (Equations

B.10 and B.15) and the second derivative in the solid is null (Equation B.11). Hence, from those

equations, it can be observed that the temperature solution in the solid and fluid must be a first

and second order polynomials, respectively.

The solid plane plates at the top and bottom of the channel are normal to the y axis and are

located at y = ±0.5. Assuming that the plate have thickness δs, the fluid domain is defined in

|y| 6 0.5, and the solid domain in 0.5 6 |y| 6
(
0.5 + δs = Ly/2

)
, where Ly is the computational

domain size in y-direction. Integrating Equation B.10 between the center of the channel (y = 0)

and the interface (y = ±0.5), it follows

∫ dΘ
dy

∣∣∣∣
int

0

dΘ

dy
= 3

∫ ±0.5

0

(
1 − 4y2

)
dy, (B.16)

dΘ

dy

∣∣∣∣∣
int

=


−1, at y = 0.5,

1, at y = −0.5.

(B.17)

dΘ

dy

∣∣∣∣∣
int

= ∓1, at y = ±0.5, (B.18)
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dΘ

dy

∣∣∣∣∣
int

= −
y
|y|
. (B.19)

Then, an energy balance (Equations B.13 and B.14) shows that

dΘs

dy

∣∣∣∣∣
int

=
dΘs

dy

∣∣∣∣∣
out

=


−

1
G2
, at y = 0.5,

1
G2
, at y = −0.5.

(B.20)

Now, integrating Equation B.10 between a generic point (y) and the interface (y = ±0.5),

we obtain

∫ dΘ
dy

∣∣∣∣
int

=∓1

dΘ
dy (y)

(
dΘ

dy

)′
= 3

∫ ±0.5

y

(
1 − 4y′2

)
dy′, (B.21)

dΘ

dy
(y) = 4 |y|3 − 3 |y| f or |y| 6 0.5. (B.22)

Integrating again, the temperature field can be written as

∫ Θ|int

Θ(y)
dΘ′ =

∫ ±0.5

y

(
4y′3 − 3y′

)
dy′, (B.23)

Θ(y) − Θ|int =
1

16

(
16y4 − 24y2 + 5

)
, f or |y| 6 0.5 (B.24)

Finally, by integrating Equation B.11 twice, the solid derivative and temperature solutions

respectively are

dΘs

dy
= −

y
|y|

(
1

G2

)
, f or 0.5 6 |y| 6 Ly/2 (B.25)

Θs(y) −Θs|int =
1

G2
(0.5 − |y|) , f or 0.5 6 |y| 6 Ly/2 (B.26)

It should be stressed that the solution in the fluid, for the dimensionless form adopted, is

independent on the conductivity ratio G2 = λs/λ, contrarily to the solution in the solid (Figure



128

B.1).
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Figura B.1: Temperature distribution in a Pouseuille channel flow, for various conductivity
ratios G2 = λs/λ. For dimensionless temperature solution in the fluid is independent on G2.
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