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ABSTRACT

Graph grammars are a suitable formalism to modeling computational systems. This

formalism is based on rules and data-driven transformations capable of simulating real

systems, rules have application conditions and post conditions that can change the

system state. Moreover the use of graphs allows an intuitive visual interface essential

for the modeler. It is well known that software systems are always evolving, evolutions

may range from minor refactorings or bug fixes to major interface changes or new

architectural design. The formalization of these evolution processes in graph grammars

is done via higher-order principles, which allows programmed higher-level rules to

induce modifications on lower-level rules, the system rules. In this work, we extend the

current framework of higher-order transformations for graph grammars in order to allow

the evolution of rules with negative application conditions. Besides this extension, we

provide the first working implementation of the whole framework of higher-order graph

grammars in the Verigraph tool enabling the practical usage of this techniques.

Keywords: Graph Transformations. Higher-Order Graph Grammars. Negative Applica-

tion Conditions. Critical Pairs Analysis.





RESUMO

Gramática de grafos é um formalismo para modelagem de sistemas computacionais. Este

formalismo é baseado em regras e transformações de dados capazes de simular sistemas

reais, regras tem pré e pós condições de aplicação que podem mudar o estado do sistema.

Além disso, o uso de grafos permite uma interface visual intuitiva, que é essencial para

o modelador. Se sabe que sistemas computacionais estão sempre evoluindo, essas evo-

luções podem varias de pequenas refatorações ou correções de problemas, até mudanças

maiores em interfaces ou nova arquitetura. A formalização deste processo de evolução

em gramáticas de grafos é feita com base em regras de segunda ordem, que possibili-

tam induzir modificações nas regras da gramática de primeira ordem. Neste trabalho, nós

estendemos o framework atual de gramáticas de grafos de segunda ordem de forma a per-

mitir evolução de regras com condições negativas de aplicação. Além desta extensão, nós

provemos a primeira implementação do framework de gramáticas de grafos de segunda

ordem na ferramenta Verigraph, possibilitando assim o uso na prática destas técnicas.

Palavras-chave: Transformação de Grafos. Gramáticas de Grafos de Segunda Ordem.

Condições Negativas de Aplicação. Análises de Pares Críticos.
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1 INTRODUCTION

Software is always evolving, usually undergoing many changes during its life cy-

cle. These changes can occur for many reasons: new features, fixing bugs, code reor-

ganization, etc. An important point when dealing with a particular evolution is: how it

changes the system behavior. Depending on the evolution purpose, the behavior must be

affected or kept unchanged. In fact, the task of predicting the evolution effect is generally

very difficult and expensive.

Instead code, it is possible to inspect the evolution over a model of the system. The

use of models also allow us to represent just some important part of the overall system,

making possible to study the evolution effects for specific parts. This approach can be

integrated to Model-Driven Software Engineering (STAHL; VOELTER; CZARNECKI,

2006), where models have a key role in the development of the system.

Graph grammars (GG) are a well suited approach to model complex sys-

tems (ROZENBERG, 1997; EHRIG et al., 1999). It is a formalism based on data-

driven transformations, and generally, it is used to model parallel and concurrent sys-

tems (TAENTZER, 1996). Graph rewriting models are commonly used to describe both

model transformations and operational semantics (TAENTZER et al., 2005). Since graphs

are a natural way of representing system states, a transformation (an execution) induced

by programmed rules (code) that can change a particular graph (system state). Further-

more, this formalism is intuitive since graphs are commonly represented by diagrams. A

tutorial introduction to graph transformations in the software-engineering perspective is

given in (BARESI; HECKEL, 2002).

The support for the evolution process in GGs was studied in (MACHADO, 2012),

which showed that higher-order principles for GG can be adequate in modeling and ana-

lyzing systems undergoing programmed modifications. The proposed framework allows

to model an evolution as a programmed rule scheme and execute this in a GG. Besides

that, a static analysis technique to predict an evolution effect is also introduced. However

this theory, called second-order graph grammars (SOGG) was not implemented in any

GG tool.

The theory besides GGs is vast, and many engines for graph transformation can

be found. In fact, the SOGG as defined in (MACHADO, 2012) is based on a partic-

ular kind of transformation. This uses only rules with positive application conditions,

which means that a programmed rule can only be applied if some structure do exist. A
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very commonly used feature in many GG approaches is to program negative application

conditions (NACs), allowing to specify rules that are applied only when some structures

do not exist, improving the expressiveness of graph transformation as a modeling tech-

nique (LAMBERS, 2010). The lack of support for evolving rules with NACs severely

limits the applicability of SOGG.

This work aims to improve second-order graph grammars, by providing a com-

plete implementation of second-order rewriting, and also extending this theory with

support for evolution of first-order rules with negative application conditions.

The text is organized in four parts: Chapter 2 introduces the fundamental idea this

work refers to by means of examples. Chapters 3 and 4 give the formal foundations of

this work; Chapter 5 reviews the studied concepts in the implementation point of view.

Chapters 6 and 7 present related work and conclusions. Detailed informations about the

chapters are presented below.

Chapter 2 presents two specifications in second-order graph grammars. Both are

used to introduce the concepts used in this work. This chapter aims to provide an intu-

ition of first-order graph transformations, graph grammars and second-order rules. This

chapter is presented in the modeler point of view, therefore all concepts are given by

means of examples and formal definitions are not given here. Furthermore, we present

two examples to enrich this theory with new cases of use.

The first specification is from (HECKEL, 1998), where we take a GG that models

deadlock detection algorithm and we propose some evolutions in a SOGG specification.

This example is to present a SOGG acting over a very common problem in computer

science, that deals with concurrent programming issues. The other specification models

a Pacman game, it is a classical example in GG. We extended it to SOGG with rules that

modify the game mechanics (COSTA; MACHADO; RIBEIRO, 2016). In this grammar

we show some interesting situations in the SOGG modeling. Besides that, results of

this work are already presented to these grammars in this chapter, in order to clarify its

potential. In later chapters these examples and results are referenced.

Chapter 3 reviews the foundations for graph transformations in the DPO approach,

giving precise definitions for the rule-based system modifications as presented in Chap-

ter 2. It also presents the formal foundations for second-order graph grammars. The main

concepts presented are the rule morphism, which defines a relation between two rules,

and the rule rewriting that allows a precise transformation for rules.
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Chapter 4 extends the theory of second-order graph grammars by adding support to

manipulate rules with negative application conditions. The evolution with NACs concept

is introduced, and we show precisely when evolution preserves the semantics of the NACs.

Chapter 5 is a general vision of the developed tool where concepts presented in

this work were implemented. This chapter explains why we choose to extend the Veri-

graph tool (COSTA et al., 2016), and its architecture that supports first- and second-order

transformation and analysis.

In the Chapter 6 we discuss the relation of the concepts presented in this disser-

tation with related work. Finally, Chapter 7 presents conclusions and discusses future

work.
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2 EXAMPLES AND RESULTS

In this chapter, we introduce some basic concepts about graph grammars (GGs)

that are used throughout the text. This chapter aims to explain the modeler point of view

when working with GGs, and to discuss how analysis techniques are utilized in a practical

way. Thus, we avoid formal definitions and focus on examples and informal descriptions.

This chapter also serves as a practical motivation for the following chapters.

Section 2.1 shows a MUTEX model. The basic definitions of GGs are explained

together with examples of this grammar (a first-order graph grammar). Moreover, two

analysis techniques are presented, the Critical Pairs and Critical Sequences (based on

conflicts and dependencies respectively) Finally, the concept of evolution for GGs is pre-

sented describing programmed changes on the rules of a rule-based system, and a new

conflict analysis technique for this process is introduced.

Section 2.2 presents a Pacman grammar. We introduce the first-order graph gram-

mar relative to this model, and after, we detail a second-order graph grammar (SOGG)

modeling a system evolution. The main SOGG concepts are detailed in examples related

to this grammar. Still in this section, we explain these second-order rules format (rules

that modify others rules), and show how this rules can induce evolutions on graph gram-

mars. Also, we reveal desired operations for SOGGs that are objects of study in this

dissertation.

2.1 MUTEX

Because graph grammars are good to model concurrent systems, many common

problems in computer science can be instantiated with this formalism. An example that

often occurs in operating systems is the resource management problem: it occurs when

resources are limited or they can only be accessed by one process at same time, and there

are many processes running in parallel in the system. This situation potentially generates

conflicts for the resources.

As example for this section, we use a grammar that models a distributed mutual

exclusion (MUTEX) algorithm (HECKEL, 1998). This grammar also simulates interac-

tions between processes and resources in a operating system, in such way that potentially

produces the mentioned conflicts. The atomic operations modeled are simple, for exam-

ple, new processes created, a process requests a resource, a process takes a resource, etc.
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However, their interaction can be very complex, and sometimes they lead to non desirable

states, as in the classical example of a deadlock situation.

This grammar was used in other works, for example as a performance benchmark

for graph transformation tools in (VARRO; SCHURR; VARRO, 2005).

2.1.1 System State and Type Graph

A system state is represented as a graph, which contains nodes and directed edges

linking them. In fact, we use a special kind of graph called typed graph. A typed graph

respects a signature, that is a type graph. The type graph contains all potential kind of

nodes and edges in that specification. A typed graph over a type graph respects these

types constraints.

Figure 2.1: Type Graph

process resourcenext

request

token

release
blocked

held_by

When modeling with graph grammars, the type graph is very important for an

initial understanding of the model, as a structure diagram. It is because the components

of the grammar must respect the same type graph. In our example, the type graph (in

Figure 2.1) represents all potential relations between processes and resources. The only

possible node types are process and resource. The edges have six possible types: next,

request, token, blocked, release and held_by. They model different situations: next, links

two processes indicating the next in a circular list; request, indicates a process requesting a

resource, note that this is the unique edge type from process to resource; token, it indicates

that the resource is in possession of that process; the other edge types are release, blocked

and held_by which explanation is self contained.

Two possible system states are described in Figure 2.2. In 2.2(a) three processes

form a circular list, one process holds the token of a resource, and another process is

using a resource. In 2.2(b) the system is in a deadlock state. Two processes, holding two

different resources, are requesting the resource of each other.
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Figure 2.2: Examples of System States as Graphs

process

process process resource

resource

next next

next held_by

token

(a) Simple State

process process

resource resource

next

next

request requestheld_byheld_by

(b) Deadlock State

2.1.2 Rules

This grammar is separated in three viewpoints: the system view (SYS) where pro-

cesses and resources are created and deleted; the token ring view (TR) that distributes

the resources over the processes; and the distributed deadlock detection view (DDD) that

detects and resolves deadlocks. In each viewpoint the interaction with the system state is

different, but all them act over the same graph. Below, we detail each of them, and we

show how they are modeled in the grammar.

In graph grammars, the actions that potentially change states are modeled as rules.

A rule contains pre and post conditions, that may be positive or negative. The positives

indicate all elements that must exist in the context, and the negatives indicate all elements

that must not exist. The post conditions specify the resulting state of the elements in the

transformation. For this work we consider: creation, deletion and preservation of graph

elements.

2.1.2.1 System View

The system view is the simplest one, because it models processes and resources

interaction situations, thus it is the best for the initial rule examples. This view models

processes and resources being randomly created and deleted. A process always is inserted

in a circular list of processes, and we assume that some circular list initially already exists.

The rule newRule is shown on Figure 2.3(a), where the left hand side (LHS) determines

the positive preconditions, and the right hand side (RHS), the postconditions. Note that

some elements in the both sides have corresponding numerical identifiers, meaning that

these elements are preserved by the rule. The elements that are only in the LHS are

deleted, and those that are only in RHS are created. Finally, the rule newRule creates a
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new process between two already existent processes and the linking of them. As a reverse

of above, the rule killRule, in Figure 2.3(b), deletes a process in a list and remount the

linking between the remaining ones.

Figure 2.3: Rules of System View

LHS

1:process 2:processnext

RHS

1:process 2:processprocessnext next

(a) newRule

LHS

1:process 3:processprocessnext next

RHS

1:process 3:processnext

(b) killRule

LHS

1:process

RHS

1:process resourcetoken

(c) mountRule

LHS

2:process resourcetoken

RHS

2:process

(d) unmountRule

A resource is always linked to a process via a token edge, even when this process

is not using it, that indicates just a reference. A resource with only one incident token

edge is called idle. The rule mountRule, in Figure 2.3(c), creates an idle resource linked

to a process. The rule unmountRule, in Figure 2.3(d), deletes an idle resource linked to a

process.

This four simple rules model a working computational system, since it is used just

as a basis for the MUTEX algorithm, we maintain this view in a high level of abstraction.

Note that does not matter why processes and resources are being created and deleted, in

this grammar it is only important that these events eventually occur.

Rules model potential transformations on a graph, but the existence of a transfor-

mation depends of another element, called match. A match indicates a part of the graph

where a rule will be applied. In a practical way, besides having a rule, we must find in

the graph a region that satisfies the rule preconditions. In order to satisfy the positive pre-



25

conditions, any region of the graph which is identical to the LHS of a rule is sufficient (in

fact we will explain in the next chapters that depending of the rewriting system additional

constraints are needed). The set of negative preconditions are verified in such way: if the

match satisfies the positive preconditions then verify if each negative precondition also is

satisfied. More details are given when rules with negative conditions appear.

Figure 2.4: Transformation Examples

LHS RHS

1:process 2:process

G1 G2

3:next 1:process 2:process

5:next
4:process

6:next

1:process 2:process
3:next

next
1:process 2:process

5:next

next

4:process
6:next

m

(a) Transformation 1

LHS RHS

1:process

G1 G2

3:token

process processnext

m

1:process 2:resource

process 1:processnext

resource
token

process processnext

process 1:processnext

resource
token

2:resource
3:token

next next next next

(b) Transformation 2

Figure 2.4 shows two examples of transformations. Figure 2.4(a) utilizes the rule

newRule (LHS → RHS ). The match (m) relates the left hand side of newRule (LHS ) with

an arbitrary graph (G1), where numerical identifiers were added to help the identification

of the matched elements. Note that this match covers almost the graph G1. Finally, the

transformation removes the 3:next edge and adds the new 4:process with two (5,6):next
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edges linking it with other nodes in graph G2. Note that elements out of the match are

always preserved1.

Figure 2.4(b) utilizes the rule mountRule (LHS → RHS ). Only a small part of the

graph G1 is covered by the match (m). Note that this rule could be applied to any process

in G1, we arbitrary choose 1:process as matched element. The transformation adds an

idle 2:resource on this node without removing anything.

Considering a space state exploration, and starting from a typed graph with an

initial circular list of processes with at least two elements, the rules of this view have the

power of generate circular lists of processes with arbitrary size, each process linked with

an arbitrary number of idle resources. If the initial state is a typed graph with just one

process, we will be able to add an arbitrary amount of resources on it. However, if the

starting typed graph does not have any process node, no transformation can occur because

no rule will have its preconditions satisfied.

2.1.2.2 Token Ring View

The Token Ring View is responsible for the scheduling of the resources over the

processes. A process can request a resource at any time. While a resource is not in the

requested process, it walks through the list of processes. When a process has a requested

resource, it holds it for some time, disabling the movement of the resource. When it

eventually releases it, the resource is able to walk by the list of processes again.

The passRule, in Figure 2.5(a), passes the resource between two linked processes.

Although, the first negative precondition appears. It indicates that this rule is unable to

be executed if the resource that will be passed is requested by 1:process. It is modeled as

a NAC, that is, a graph which contains all the left hand side of a rule plus the forbidden

elements; in this case a request edge from 1:process to 3:resource. Note that the numerical

identifiers are used in the NAC to relate their elements with the LHS elements.

The requestRule, in Figure 2.5(b), models a process creating a new request for a

resource. This rule can not be applied in three situations that are represented by their neg-

ative preconditions: when the process already holds the resource to be requested; when

the process already requests another resource; and when the process already requests the

same resource. Out of this three situations, a process can (non deterministically) request

an existent resource.

1In some other approaches such as SPO and SqPO these elements could be delete in specific cases, this
situation is called side effect.
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Figure 2.5: Rules of Token Ring View

passNAC

1:process 2:process

3:resource

5:next

4:tokenrequest

LHS

1:process 2:process

3:resource

5:next

4:token

RHS

1:process 2:process

3:resource

5:next

token

(a) passRule

requestNAC1

1:process

2:resource

held_by

requestNAC2

1:process

2:resource

resource
request

extraRequestNAC

1:process

2:resource

request

LHS

1:process

2:resource

RHS

1:process

2:resource

request

(b) requestRule

LHS

1:process

2:resource

tokenrequest

RHS

1:process

2:resource

held_by

(c) takeRule

releaseNAC

1:process

2:resource

resource

3:held_by

request
LHS

1:process

2:resource

3:held_by

RHS

1:process

2:resource

release

(d) releaseRule

LHS

1:process 2:process

3:resource

5:next

release

RHS

1:process 2:process

3:resource

5:next

token

(e) giveRule

Figure 2.6 shows an example of a NAC disabling a transformation. The rule

requestRule has three NACs, but in this example we choose to focus only on ex-

traRequestNAC. This rule has a match m in the graph G, however since there is in G
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Figure 2.6: NAC Disabling Transformation

extraRequestNAC LHS

G

3:request

m

1:process

2:resource

1:process

2:resource

1:process

2:resource

3:request

process
next

token

a 3:request edge between 1:process and 2:resource then there exist a morphism from

extraRequestNAC to G. The transformation for this match m can not occur because there is

a morphism for (at least one of) the negative conditions from the LHS of the requestRule.

The takeRule, in Figure 2.5(c), models a process that requests and has token of

the same resource. This process gets the resource as indicated by the edge hold_by. In

the releaseRule, in Figure 2.5(d), a process holding a resource releases it. However, this

rule is not applicable when this process is requesting another resource. The giveRule, in

Figure 2.5(e), models a released resource being placed in the circular list of processes.

This view of the system is able to distribute resources over processes in a circular

list of them. Instead of System View, the Token Ring View can generates many complex

states, once many processes are requesting many resources. In particular, system states

with deadlock can be generated, as detailed below.

A possible path to transform the graph of the Figure 2.2(a) in a graph with dead-

lock (Figure 2.2(b)), is by applying a specific sequence of rules (with specific matches)

as Figure 2.7 shows. Consider the first graph as G1, the deadlock graph as G6 and the

application of a rule r as:
r−→. A possible sequence of rule applications that leads to this

transformation is G1
killRule−−−−−→ G2

requestRule−−−−−−−−→ G3
requestRule−−−−−−−−→ G4

takeRule−−−−−→ G5
requestRule−−−−−−−−→ G6. We

omit the matches due simplicity of information in the figures.

2.1.2.3 Distributed Deadlock Detection View

The Distributed Deadlock Detection View operates detecting and broking dead-

locks in the system. This view adopts the following approach: it detects a potential dead-
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Figure 2.7: Generating a Deadlock Situation
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lock, this detection triggers a search operation to verify if it is a real deadlock or not and,

in the positive case, the resource blocked is released.

This view is modeled with the four rules presented in Figure 2.8. The blocke-

dRule, in the Figure 2.8(a), acts sending a blocked message (an edge) for any process that

requests a resource with held_by with other process. However, sometimes this situation

does not generates a deadlock, in fact we can discard all blocked edges for processes that

do not hold any resource. For this reason ignoreRule (in Figure 2.8(b)) remove the blocked

edge for the process that do not hold any resource. The waitingRule passes the blocked

edge for another process. The unlockRule resolves the deadlock situation by releasing the

resource.

2.1.3 Analysis

The usage of graph grammars as a formal language leads to precisely defined

transformations, also, the visual representation of the system modeled, as well as the

system simulation though graph transformations, are important features in this area. Since
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Figure 2.8: Rules of Distributed Deadlock Detection View
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their are based on formal foundations, formal analysis techniques can be performed with

visual appeal. This analysis can be used to prove important grammar properties, which is

particularly important for modeling safety-critical systems.

Many formal analysis are defined for GGs, each of them usually tries to capture

specific behaviors of the system. We focus on Critical Pairs and Critical Sequences anal-

ysis, which identify if two rules are in conflict and dependency, respectively.

2.1.3.1 Conflicts

Two transformations are in conflicts when the application of one of them disables

the application of the other. The conflict situation highlights a decision point in a graph

transformation system, which is if a rule is applied then the other is not possible to be

applied in that same context. Some transformations are desirable to be in conflict, while
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others are not. It is possible to check if two rules have some potential transformations that

are in conflict, and also ensure the conflict-free situation. The technique that finds all this

potential conflicts is called Critical Pairs Analysis.

The first important point here is explain when two transformations are in conflict.

A conflict can have many causes, however they are generally classified in two groups, that

are detailed with examples below. The simplest cause is called delete-use, as explained

in Figure 2.9(a). It occurs when an initial graph has two possible transformations, and on

of them deletes an element used by the other. In this example, we have an Initial Graph

where two rules are possible to be applied: the first (takeRule), intends to ensure that the

process 1 held the resource 2; the second (waitingRule), tries to pass the blocked resource

6 through the processes (from 5 to 1). This conflict cause says that, in this state (or in

a bigger state, but that contains this subgraph) if we apply takeRule then waitingRule is

unable to be applied, and this information must be passed to the modeler to verify the

consistency.

The second cause is the produce-forbid, as explained in Figure 2.9(b). It occurs

when after a transformation, the state (middle) graph has some context forbidden by the

other transformation, since this does not exist before the first transformation. In the con-

text presented in this work, this is only possible when the first rule creates something

that the NAC of the second forbids. In the example, the rule requestRule was applied in

a graph, only the resulting state graph (Middle Graph) is showed. This transformation

turned the application of the rule passRule impossible due the NAC of this rule. In fact,

the process 1 had the token of the resource 2, before the application of requestRule, it was

not requesting this resource and then it was able to pass to the other process. However,

when requestRule was applied the process 1 turns to request the resource 2, and then it

can not pass anymore.

The Critical Pair Analysis technique constructs all potential conflicts, which are

showed in a table that contains all pairs of grammar rules, and the number of potential

conflicts between them. Figure 2.10(a) shows this table for the Mutex grammar. Any real

conflict that can occur in the grammar has its respective potential (and minimal) conflict

in this table.

2.1.3.2 Dependencies

The dependency concept is analogous to the conflict, but considering sequential

rather than parallel transformations. It captures situations where two transformations are
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Figure 2.9: Conflicts Example
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only possible to occur in sequence. Differently of the conflicts, the dependencies (due to

sequentially) basically raise from four causes. We split them in two kinds: triggered and

irreversible.

The triggered dependencies occurs when a transformation enables other transfor-

mation (that necessarily was disabled). They have two types: the produce-use, when a

transformation creates an element utilized by the other transformation; and the delete-

forbid, when a transformation deletes an element that was forbidden by some NAC of the

other transformation, turning it applicable. The Figure 2.11(a) shows a triggered depen-

dency, the second rule is able to be applied in that process because the first transformation

created the token edge.

The irreversible dependencies occurs when after two sequential transformations,

the first one can not be undone. Also, this dependency has two types: the deliver-delete,

when the second transformation deletes something utilized by the first; and, the forbid-

produce, when the second transformation produces something that is a NAC of the first.

The Figure 2.11(b) shows an irreversible dependency, in the Middle Graph the first rule

was applied, if the second rule also be applied then the first rule could not be applied

because the second created the request edge.

The Critical Sequence analysis is very similar to the Critical Pairs Analysis. All

potential dependencies are generated for all possible pairs of rules. Figure 2.10(b) shows

the Critical Sequence table for the Mutex grammar. These dependencies can be of any

type, in fact these details in actual tools can be verified one-by-one in theirs graphical



33

Figure 2.10: Results of Critical Pair Analysis and Critical Sequence Analysis
\ R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

R1 1 2 0 0 1 0 0 0 1 0 0 0 0
R2 2 5 1 0 1 1 0 0 1 0 0 0 0
R3 0 1 0 0 0 0 0 0 0 0 0 0 0
R4 0 0 0 1 1 2 0 0 0 0 0 0 0
R5 0 1 0 1 3 0 0 0 0 0 0 0 0
R6 0 1 0 2 1 2 0 1 0 0 0 0 0
R7 0 0 0 0 0 0 3 0 0 1 1 1 0
R8 0 0 0 0 0 0 0 1 0 1 1 0 1
R9 0 1 0 0 0 0 0 0 3 0 0 0 0

R10 0 0 0 0 0 0 0 0 0 0 0 0 0
R11 0 0 0 0 0 0 0 0 0 0 8 0 1
R12 0 0 0 0 0 0 0 0 0 0 0 1 1
R13 0 0 0 0 0 0 0 1 0 1 2 1 3

(a) Critical Pairs Analysis

\ R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
R1 4 10 2 0 2 2 0 0 2 0 0 0 0
R2 2 4 0 0 1 0 0 0 1 0 0 0 0
R3 0 0 0 2 2 4 0 0 0 0 0 0 0
R4 1 1 0 0 0 0 0 0 0 0 0 0 0
R5 1 2 0 2 4 1 2 0 0 0 0 0 0
R6 0 0 0 0 0 0 2 0 0 1 1 0 0
R7 0 0 0 0 1 1 0 3 0 1 1 0 2
R8 0 0 0 0 0 2 0 0 2 0 0 1 0
R9 1 2 0 2 4 0 2 0 0 0 0 0 0

R10 0 0 0 0 0 0 1 1 0 0 4 2 3
R11 0 0 0 0 0 0 1 1 0 0 8 2 3
R12 0 2 0 4 0 0 1 0 0 0 0 0 0
R13 0 0 0 0 0 1 0 0 2 0 0 1 0

(b) Critical Sequences Analysis
R1: newRule; R2: killRule; R3: mountRule; R4: unmountRule; R5: passRule; R6: requestRule;

R7: takeRule; R8: releaseRule; R9: giveRule; R10; blockedRule; R11: waitingRule;
R12: ignoreRule; R13: unlockRule
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Figure 2.11: Dependencies Example
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interface.

2.1.4 Evolution

The sections above follow the classical GG theory, hereinafter the concepts are

part of the SOGG theory based in (MACHADO, 2012). The basic concept here is called

evolution. An evolution can be any modification in a graph grammar, however we are

not interested in the system state graph and type graph modifications. The evolution that

we study must captures a modification in the set of grammar rules. For simplicity, we

analyze modifications for each rule once. In this sense, any modification of a single rule

is an evolution.

Evolutions can be done manually by a modeler in any graph grammar editor tool,

however to study and model this situations opens the opportunities to develop analysis

over this process. Predict desirable (or not) changes in the transformation system by

analysis over evolutions is an interesting perspective. In Section 2.1.4.1 we present an

analysis technique developed to capture conflicts in the evolution step.

In order to clarify this concept we give two examples of evolutions, the figures

present in the left side the old rule and in the right side the evolved rule. The first, in

Figure 2.12(a), could be inserted in a refactoring process of a model, because it is not

trying to change the overall system behavior. This evolution modifies the rule giveRule,

the modification inserted affects when a process releases a resource, before evolution the

resource is released and passed to the next process, after the evolution the resource is not
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Figure 2.12: Evolution Example
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passed, the token remains in the process that performs the release.

The second, in Figure 2.12(b), changes more deeply the behavior of the rule, con-

sequently of the grammar too. This evolution supposes a computational system where

resources are not created randomly. In this case the rule mountRule can not create the

node resource, it just attaches an existent node to a process. This modification aims to

model a system that works with limited and pre-instantiated resources.

2.1.4.1 Inter-level Analysis

Previous sections presented graph grammars, their graph transformations induced

by rules, and rule evolutions. An interesting analysis point emerges when two layers

interact. The analysis over these context are called inter-level analysis (MACHADO;

RIBEIRO; HECKEL, 2015). Specifically we deal with inter-level conflict analysis main

purpose is to raise all situations where an evolution disables the applicability of the

evolved rule in a graph. In this chapter we focus only in the results of this analysis.

In this section, we shown two examples of this analysis that are related to the

evolutions in the Figure 2.12. The first is in Figure 2.12(a), this evolution is a refactoring,

then we initially suppose that does not change the overall system behavior. The utilization

of the inter-level conflict analysis can be used as part of this verification process. In

fact, the analysis result is that the evolved rule is applicable on all situations that the non

evolved rule was. Then, this evolution is conflict-free in inter-layer terms.

The mountRule evolution, in Figure 2.12(b), has a different behavior. It adds a

new element in the pre condition of the rule, so it is potentially a conflict. In fact, this

addition on the pre condition turns this rule not applicable when there is not an existing

resource. A minimal situation of this is showed in Figure 2.13, where there is a graph
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Figure 2.13: Inter-level Conflict Graph Example

process

that, the rule before the evolution has a match, and after the match does not exist. This

cases are considered inter-level conflicts.

2.2 Pacman

The section introduces an example of second-order graph grammars: the Pacman

game. Naturally, we need to present the first-order Pacman grammar, and after we explain

the concepts of the second-order with the Pacman SOGG.

We start explaining the format of the Pacman rules, which are presented here in

the DPO format, unlike the MUTEX rules. The DPO format requires three graphs to form

a rule (L, K and R), L and R are the pre and post conditions, as in the MUTEX rules, and

the K graph (also called: interface graph) has the preserved elements. This format divides

the transformation in two parts, deletion (from L to K) and creation (from K to R). For

this examples, this rule format does not change the behavior of the transformation, then

all concepts of the section above can be reused.

2.2.1 First-Order Graph Grammar

First-Order Graph Grammar is a name that we use to differentiate the “level” of

the grammar, the first-order is used as synonymous of the (Typed) Graph Grammars as

introduced before in this work.

A simplified version of the Pacman game is modeled with graph grammars in

Figure 2.14. The type graph 2.14(b) allows four kind of nodes: ghost, pacman, berry

and block (filled circle). The edges indicate the position of the elements: ghosts, pacman

and berries can be found in blocks, and pacman can carries berries. The initial graph,

in 2.14(a), is an arbitrary typed graph specifying the initial state. The set of rules is:

{movePacman, moveGhost, killPacman, killGhost, getBerry, dropBerry} as shown in the

Figures 2.14(c...h), each of them depicted by its span of typed graphs (L, K and R, in this
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order).

In this simplified Pacman game, ghosts and pacmans move freely over the blocks,

according to rules 2.14(c) and 2.14(d). The pacman can obtain a berry, and occasionally

drop it in anywhere, as shown in rules rules 2.14(g) and 2.14(h). When a ghost and a

pacman are on the same block, two rules may be applied. If the pacman has a berry

then it kills the ghost, rule 2.14(f). Otherwise, the ghost removes pacman of the game,

rule 2.14(e). Notice that rule killPacman requires to check if pacman does not have a

berry, and therefore a NAC is necessary.

Figure 2.14: Example of Graph Grammar - Pacman
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2.2.2 Second-Order Graph Grammar

Second-Order Graph Grammars (SOGGs) models, evolutions on first-order graph

grammars. A second-order state is a set of first-order rules, and a second-order rule mod-

els a potential modification in a first-order rule. For simplicity, we work with a first-order

rule being modified at time. In this case, a second-order rule models a modification of a
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single first-order rule.

We present two examples of second-order rules, the first is used to exemplify the

second-order transformation, and the second to illustrate an open problem that motivates

this dissertation.

2.2.2.1 Evolution without NACs

Figure 2.15: Second-Order Examples
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(c) killPacman first-order rule evolved

The first example is named violence rule in Figure 2.15(a), it acts on first order

rules that removes a pacman of the block, it changes its behavior to a deletion of the

pacman. Therefore, its pre condition is a first order rule that deletes an edge from pacman

to block, as showed in the LHS rule (LHS L, LHS K and LHS R graphs). The RHS adds a

deletion of the node pacman, then it must contain this element only in RHS L, and not in

RHS K and RHS R graphs.

A second-order match occurs when the pattern of the rule is founded in the state,

in this example for each pacman removed of the block by some rule, then there is a

match. Figure 2.15(b) shows a first-order rule such that there is a match from violence

to killPacman (we omitted the NAC for simplicity). This match leads to a second-order

transformation, that is, an evolution. The evolved rule is showed in Figure 2.15(c), the
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evolution generate a rule that deletes the pacman node.

The second example is a second-order rule named addOnePreservedGhost. This

rule adds a preserved ghost to a block in any rule that already preserves this block. In

the pre condition there is a rule that preserves a block, and as pos condition it adds a new

preserved ghost on the same block. Figure 2.16 shows this second-order rule.

Figure 2.16: addOnePreservedGhost rule
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As in FOGGs, a rule can be applied in different areas of the current state graph.

Similarly, in SOGGs second-order rules can be applied in different areas of first-order

rules. As addPreservedGhost rule has an easily satisfied pre condition, it can be applied

to any first-order rule of the Pacman grammar, furthermore in rules movePacman and

moveGhost there are two different matches on two blocks each where the transformation

can take place.

2.2.2.2 Evolution with NACs

A second-order rule may trigger an evolution on a first-order rule. But if the

rule to be evolved has NAC, the theory must define how evolution of the NAC occurs.

In (MACHADO, 2012) NACs were not addressed in the evolution because the complexity

of preserve NACs semantics, otherwise that work aimed on structure a higher grammar

level.

In this work, we consider NACs starting from the left side of the rules, although

it is possible to extend this process to be used for NACs from the right side of the rules.

Because this, if the left side is not affected by the evolution, then the NAC will be main-

tained. This is the reason why in Figure 2.15 we omitted the NAC.

Using the second-order rule addOnePreservedGhost, we may evolve the rule kill-

Pacman with its NAC. There is just one possible match. The evolved rule will have a

new preserved ghost node. But this rule has a NAC, that forbids its application when the
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pacman has a berry, and once the evolution has changed the left-hand side, the NAC must

be evolved too.

Figure 2.17: Example of Evolution with NACs
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(b) killPacman with NAC Evolved

We propose to evolve the NAC using as basis the evolution of the left-hand side

of the first-order rule, Figure 2.17 shows an example of this evolution. The addPre-

servedGhost rule is modifying the killPacman rule by adding a preserved ghost. As the

NAC was evolved using as basis the transformation L → L′, the evolved NACs carry

the information of the new ghost. A set of NACs was generated because there is a NAC

for each match possibility where the NAC N could exists. In the case of L′ having less

elements than L the idea is the same, these missing elements must be deleted also for the

evolved NAC.

2.2.2.3 Manipulating NACs

The section above exemplified NACs transformation on rule evolutions. However

the NACs was modifications are induced only by the rule evolution itself (the left-side

evolution), another approach is to model arbitrary changes on the set of NACs. In this

section we briefly discuss how we can model first-order NAC modifications on second-

order rules.
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Originally first-order rules can be modified by second-order rules, but the second-

order rules have a “limited” expressiveness since they can not model changes in NACs.

We wish to define second-order rules that can modify the set of NACs arbitrarily.

Figure 2.18: Example of Second-Order Rule with NACs
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An example of what we propose is shown in Figure 2.18, where there is a second-

order rule, the non NAC part of the rule is preserved (but potentially could be modified).

However, this rule models a modification on the set of NACs, in LHS NAC the NAC forbids

one pacman in the block, after the evolution the new NAC (RHS NAC) forbids two pacmans

on the same block.

Since LHS has NACs, and it being the pre condition of a second-order rule, these

NACs are now part of the match of second-order. This work does not develop support

to this kind of transformations, however initial experiments was made and it is clearly a

future work.



42



43

3 FIRST- AND SECOND-ORDER GRAPH TRANSFORMATIONS

In this section, we review the basic concepts of the algebraic Double Pushout

Approach (DPO) for graph transformations including negative application condi-

tions (EHRIG et al., 2006) and then present the main concepts of Second-Order Graph

Transformation (SOGTs) as defined in (MACHADO; RIBEIRO; HECKEL, 2015), a

framework that allows to define rules, called second-order rules, to modify other rules,

called first-order rules. The current restriction of SOGTs is that first-order rules may not

have NACs. In the next section an extension to handle NACs in SOGTs will be provided.

To illustrate the concepts throughout the paper a simple Pacman game example is used.

3.1 The Double-Pushout Approach

The algebraic approaches for graph transformation use categorical operations in

order to perform the transformations defined by the rules (EHRIG; PFENDER; SCHNEI-

DER, 1973; EHRIG, 1978). The approach we follow uses two pushouts as gluing op-

erations, therefore it is called Double-PushOut approach (DPO). We start from the basic

definition of graph and morphism. This approach are based on graphs and graph mor-

phisms. Graphs are structures composed of nodes and edges, which allow the description

of complex situations in a visual, compact, clear, and intuitive way. In this paper we

use directed edges, therefore the source and target of each edge must be defined. Graph

morphisms are used in order to relate graphs, they map all elements of one graph into

the corresponding elements of another graph. This mapping must preserve the source and

target of each edge, i.e., if an edge e1 is mapped to an edge e2, the source and target nodes

of e1 must be accordingly mapped to the source and target of e2.

Definition 1 (graph, graph morphism). A graph G = (V, E, s, t) consists of a set V of

nodes, a set E of edges, and two functions, s, t : E → V, the source and target functions.

Given two graphs, G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), a graph morphism f :

G1 → G2 is composed by two total functions fV : V1 → V2 and fE : E1 → E2 such that

fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE. A graph morphism is injective/surjective/iso if both

components are injective/surjective/iso. The category of graphs and graph morphisms is

called Graph.

Figure 3.1 shows three graphs: G1, G2 and TG. As example the graph G1 for-
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mally is:
({

1, 2, 3:pacman, 5:ghost
}
, {a, b} , {(a, 3:pacman

)
, (b, 1)

}
, {(a, 1) , (b, 2)}). Fig-

ure 3.1 shows three graph morphisms: type1, type2 and f . The graph morphism type1

is
({

(1, x) , (2, x) ,
(
3:pacman, pacman

)
,
(
5:ghost, ghost

)}
, {(a, a) , (b, b)}).

Figure 3.1: Example of Typed Graph Morphism
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For practical applications, it is very convenient to distinguish different types of

vertices and edges in a graph. In the DPO approach, this can be achieved by the notion

of typed graph. A typed graph is defined by two graphs together with a typing morphism,

where the target graph is also called type graph. A typed graph morphism can only be

defined over graphs typed over the same type graph. A compatibility condition ensures

that the mappings of nodes and edges preserve types.

Definition 2 (typed graph, typed graph morphism). A typed graph is a triple

(G1, typeG1,TG), denoted by G1TG, where G1 and TG are graphs and type : G1 → TG

is a graph morphism. Given two typed graphs over the same type graph, GTG
1 and GTG

2 ,

and their respective typing morphisms typeG1 : G1 → TG and typeG2 : G2 → TG, a typed

graph morphism is a pair ( f , idTG), where f : G1 → G2 is a graph morphism and idTG is

the identity morphism of TG, such that: typeG2 ◦ f = typeG1. A typed graph morphism is

injective/surjective/iso if f is injective/surjective/iso.

G1

type1 !!

f
//

=

G2

type2}}

TG
The category of graphs typed over TG as objects and typed graph morphisms as

morphisms is called GraphTG. This category is the comma category (Graph ↓ TG).

Figure 3.1 presents an example of a typed graph morphism. G1 and G2 are graphs

typed over TG. The type graph defines the syntax of graph used in transformations. In

the example, pacman vertices may be connected to berry nodes, but ghost nodes may

not (because in the type graph TG there is no connection between these latter nodes). In
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the graphical notation, we will use the convention that nodes and edges with the same

names in the source and target of a morphism depict the same item (are mapped by this

morphism). To indicate the type we use the morphisms type1 and type2 that maps nodes

1 and 2 to the x node, which is a block (it is a place where other game elements can be),

the remaining elements are mapped to the corresponding TG elements accordling to their

own names.The morphism f in this case is an injective mapping, but it is not surjective

since G2 has elements that are no in the image of the morphism (for example, the edge c).

According to the DPO approach, a rule is a span of morphisms p = L
l←− K

r−→ R,

where L, K and R are called the left-hand side, interface and right-hand side of the rule,

respectively. Intuitively, a rule describes that, whenever an image of its left-hand side is

found in a graph representing the state, a copy of the rule’s right-hand side may replace

this image. Thus, the left-hand side (or LHS) of a rule defines the items that must be

present in the state to enable this rule’s application, the interface defines the elements

that must be present and will be preserved, and the right-hand side (RHS) defines which

elements will be created by the application of the rule. The items that will be deleted are

described indirectly: they are the elements that belong to the LHS and not to the interface

graph.

Definition 3 (rule). A (typed graph) rule p consists of two typed graph morphisms l and r

with the same typed graph as source, p = L
l←− K

r−→ R, where l and r are monomorphisms

(in the category GraphTG, monomorphisms are injective mappings).

The upper part of Figure 3.2 presents an example of rule, where mappings of

elements are induced by using the same names and positions in the involved graphs. The

pre-conditions to apply the rule in Figure 3.2 are: there must be a ghost and a pacman

connected to the same block (called x), the elements in L that are not in K are deleted by

the application, and the elements of R that are not in K are created, thus this rule deletes

the matched pacman and creates a ghost in its place.

Rules can be applied to typed graphs, a candidate for an application is called

match. A match as a typed graph morphism from the LHS of a rule to an arbitrary typed

graph. However, in the DPO approach, the simple existence of a match is not sufficient

to perform a graph rewriting. There are two situations that should be handled with care

when applying a graph rule to a graph G: (i) when a node is specified for deletion and

there are edges connected to it in G that are not in the image of the rule’s LHS (dangling

condition); and (ii) in the case that two distinct items of the rule, one to be deleted and

the other preserved, are mapped to the same element of G, or two different deleted items
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Figure 3.2: Example of Transformation
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are mapped to the same in G identification condition). To ensure that no such situations

occur when a rule is applied, the embedding of the LHS of the rule in the state graph must

satisfy a condition called gluing condition, that encompasses both the dangling and the

identification conditions. If a match satisfies this condition, it is possible to apply the rule,

and the result is obtained by a double pushout construction.

Definition 4 (match, typed graph transformation). Consider a rule p = L
l←− K

r−→ R and

a typed graph G, as in the diagram below. A match is an arbitrary typed graph morphism

from L to G.

A match m satisfies the gluing condition iff both conditions below are satisfied:

(dangling condition) All edges of G that are connected to nodes that are in the image of

m are also in the image of m;

(identification condition) If an element e of L is deleted (not in the image of l), no other

element of L may be mapped to m(e) in G.

Given a rule p and a match m, a (typed) graph transformation G
p,m
==⇒ H from

G to H is defined as the diagram below, where (1) and (2) are pushouts in the category

GraphTG.

L
(1)m

��

Kooloo // r //

��

R
(2) m′

��

G
q

Doo
l′
oo //

r′
// H
p

Figure 3.2 presents a match m, where the nodes’ mapping is { (x, 2),

(y:pacman, 1:pacman), (z:ghost, 2:ghost) } and the edges’ mapping is trivial.
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3.2 Rules with NACs

When describing behaviour using graph rules, it is usually very convenient to be

able to define a forbidden context that prevents rule application. This is called a Negative

Application Condition, or NAC (HABEL; HECKEL; TAENTZER, 1996). In DPO, NACs

are defined by embedding the left-hand side of the rule in the forbidden context. Then,

if there is an image of the graph consisting of the LHS plus the forbidden context in the

state, the rule is not applicable. A NAC may also forbid rule applications in which two

different elements of the LHS of a rule are mapped to the same in the state graph. We will

call the pair (LHS, NAC) of a rule as rule with NACs, or simply rule.

Definition 5 (NAC, rule with NACs, NAC satisfiability). Given a rule p = L
l←− K

r−→ R,

a negative application condition NAC(n) for p is an arbitrary typed graph morphism

n : L → N. A NAC n : L → N is satisfied with respect to a match m : L → G if and only

if @q : N → G such that q is injective and q ◦ n = m.

A rule with NACs (p,NACp) is composed by a rule p and a set of NACs for p

(NACp).

A match m : L → G satisfies NACp if and only if it satisfies all single NACs in

NACp, we denote as NACp � m (p,G).

Ni��
q

��

G Lm
oo

ni

OO

Figure 3.3 presents an example where a NAC forbids an application of a rule. The

NAC n1 forbids the application of the rule when the block that contains the pacman and

the ghost is linked to another block. There is an injective morphism q that commutes with

n1 and m (mapping x to 2 and w to 3), and thus this match does not satisfy this NAC.

Figure 3.3: Example of Negative Application Condition

m

L

G1

y:pacman z:ghost

2

2:ghost

1

33:ghost

x

1:pacman

N 1

y:pacman z:ghost

x
n1

q

w
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Definition 6 ((first order) graph transformation system). A (first order) Graph Transfor-

mation System consists of a set of (typed graph) rules with NACs1 and a typed graph,

called initial or start graph. The rules of a first-order graph transformation system are

called first-order rules.

We use the term first-order here because the next section introduces second-order

graph transformations.

3.3 Second-Order Graph Transformations

In this section we review the notion of rule-based modification of typed graph rules

without NACs presented in (MACHADO, 2012; MACHADO; RIBEIRO; HECKEL,

2015). This rewriting of rules is based on the DPO approach, thus the rule format re-

mains : L ← K → R. However, instead of rewriting graphs, rules will be used to rewrite

other rules. This new rule scheme is called second-order rule, or 2-rule for simplicity, and

it requires the definition of morphisms between rules.

Definition 7 (span, span morphism). A (typed graph) span is a diagram with shape G
l←−

G′
r−→ G′′ in the category of T-typed graphs. For convenience, we refer to spans as the

pair of morphisms (l, r) with common source. A span morphism f : s → s′ between

spans s = (l, r) and s′ = (l′, r′) is a triple ( fL, fK , fR) of typed graph morphisms between

the objects of the spans such that the diagram below commutes.

L
=fL

��

K
=fK

��

loo r //

��

R
fR
��

L′ K′
l′

oo

r′
// R′

A rule morphism is mono/epi/isomorphic if all three morphisms are also mono/epi/isomor-

phic. Spans and span morphisms constitute a category, named Span.

Definition 8 (rule, rule morphism, span of rule morphisms). A (typed graph) rule r is

a span L
l←− K

r−→ R such that l and r are monomorphisms, i.e. injective typed graph

morphisms. A rule morphism f : r → r′ is a span morphism ( fL, fK , fR) between rules.

Notice that fL, fK and fR are not always injective. A span of rule morphisms is a span

A
a←− B

c−→ C such that a and c are rule morphisms.

1In (MACHADO, 2012) this rules did not have NACs



49

Figure 3.4 shows two rule morphisms, l and r, between the dashed rules. These

rule morphisms represent relations between rules, in this case, both are embeddings of

rule K into rules L and R.

Figure 3.4: Example of Second-Order Rule
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Definition 9 (second-order rule (2-rule)). A second-order rule is a span of monomor-

phic rule morphisms. A second-order rule with (second-order) NACs is a pair (s,NACs)

composed by a second-order rule s and a set of (second-order) NACs for s, where a

second-order NAC is defined as a rule morphism with source on the left hand side of s.

The LHS of the 2-rule presented in Figure 3.4 can be applied to any first-order rule

which deletes a ghost. This 2-rule models the deletion of the ghost and the creation of a

berry, that is, it will transform a rule that deletes a ghost into a rule that creates a berry,

leaving the rest of the rule unchanged.

The transformation of a rule by means of a 2-rule is defined by means of a DPO

diagram in the category Span, as in the case of graphs. One caveat exists, however: the

resulting span may not be a valid rule because injectivity is not necessarily preserved by

the rewriting. To mitigate this, it is possible to build (for each individual 2-rule) a set of

structure preserving NACs that forbids any match that would result in a ill-formed rule.

In the following, we omit this set of structure-preserving NACs because they only affect

the selection of 2-rule matches, not the second-order rewriting itself. The construction of

this set of NACs is detailed in (MACHADO, 2012; MACHADO; RIBEIRO; HECKEL,

2015).

Definition 10 (second-order transformation). Consider a second-order rule α =

(L{L,K,R} ← K{L,K,R} → R{L,K,R}), and a first-order rule p = (L ← K → R), as in the

diagram below. The upper part of this diagram is a 2-rule as the corresponding names
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with Figure 3.4 indicating. A second-order match is a rule morphism from L{L,K,R} to p.

Let l = (LL ← KL → RL), k = (LK ← KK → RK) and r = (LR ← KR → RR). A

second-order transformation p
α,m{1,2,3}
=====⇒ p′′ (L′′ ← K′′ → R′′) is defined by the diagram

below, where L
l,m1
==⇒ L′′, K

k,m2
==⇒ K′′ and R

r,m3
==⇒ R′′ are typed graph transformations and

(L′ ← K′ → R′) and (L′′ ← K′′ → R′′) are valid typed graph rules.

Given a second-order transformation, the span p ← p′ → p′′ is called rule evo-

lution.

LR

m3

��

KR

��

oo // RR

��

LK

m2

��

==

}}

KK

��

<<

oo //

||

RK

��

<<

||

LL

m1

��

KL

��

oo // RL

��

R R′oo // R′′

K
<<

||

K′
;;

oo //

{{

K′′
;;

{{

L L′oo // L′′

Figure 3.5 shows an example of rule evolution from a rule P to a rule P′′ using the

2-rule depicted in Figure 3.4.

Figure 3.5: Example of Second-Order Transformation
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4 SECOND-ORDER TRANSFORMATIONS AND NACS

NACs are widely used in practice, being very important in the modeling of real

systems. The fact that second-order rewriting as defined in (MACHADO, 2012) does

not provide support for modifying rules containing NACs, is an important lack for this

definitions and practical usage.

Including NACs on the rule evolution can be made in many ways. We envision

two scenarios in which NACs interact with second-order rewritings:

• Evolution of first-order NACs. In this scenario, given a rule with NACs (p,NACp)

and a second-order transformation p ⇒ p′′ transforming p = L ← K → R into

p′′ = L′′ ← K′′ → R′′, the question is how to obtain a set NACp′′ to build a rule

with NACs (p′′,NACp′′) maintaining, as much as possible, the same semantics of

the set NACp with respect to p.

• Programmed transformation of first-order NACs. In this scenario, particular

manipulation of the NACs themselves are integrated into the second-order trans-

formation framework, allowing the second-order rule to operate on both the span

p = L← K → R and the set NACp.

It is important to mention that NACs for 2-rules (second-order rules that manipu-

late the first-order ones) have already been considered in (MACHADO, 2012). Also all

rule evolution definitions used are inherited and kept from that work. However, this work

purposes a study of new definitions, where first-order rules are allowed to have NACs in

their evolution context, in according with already defined second-order transformation.

The next section elaborates on the first of these scenarios, i.e. evolution of first-

order NACs. A version of these ideas also appear in (COSTA; MACHADO; RIBEIRO,

2016), however in a very preliminar stage.

4.1 Evolution of first-order NACs

Given a second-order transformation p⇒ p′′ transforming rule p into p′′ and a set

of NACs for p, we wish to obtain a set of NACs for p′′ keeping (as much as possible) the

same semantics as the original set of NACs for p. In other words, the ideal scenario is that

the original and the transformed NACs should forbid exactly the same kind of structures.

However, as the preconditions (the left-hand side) of the rules can be modified, also NACs
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must undergo alterations in a compatible way. In this section we formalize this notion of

semantic preservation, and characterize the situations where it holds. For a fixed graph G,

we start by defining when a match of p over G is related to a match of p′′ over G.

Definition 11 (Related matches). Given a rule evolution p
l←− p′

r−→ p′′ (where p = L ←
K → R, p′ = L′ ← K′ → R′ and p′′ = L′′ ← K′′ → R′′), a typed graph morphism

m: L → G (representing a match for p in G) and a typed graph morphism m′′: L′′ → G

(representing a match for p′′ in G). We say that m and m′′ are related matches (by means

of the rule evolution) if and only if

• m satisfies DPO gluing conditions for p

• m′′ satisfies DPO gluing conditions for p′′

• the equation m ◦ lL = m′′ ◦ rL holds, i.e. the following diagram commutes

R R′
lRoo

rR // R′′

K

88

yy

K′
lKoo

rK //

88

xx

K′′
77

ww
L

m

$$

L′
lLoo

rL // L′′

m′′

yy
G

Intuitively, given a match m : L → G, a related match m′′ : L′′ → G has the same

mapping as m in the part of the rule precondition (left-hand side) preserved by evolution.

In this way, m and m′′ are related in the sense of matching equally the same elements after

and before the evolution.

Definition 12 (Preservation of NAC-behavior). Let p ← p′ → p′′ be a rule evolution,

NACp be a set of NACs for p and NACp′′ be a set of NACs for p′′.

We say that

• NACp′′ preserves the NAC-blocking behavior of NACp when, for every m : L → G

and related m′′ : L′′ → G, we have

NACp 2 m⇒ NACp′′ 2 m′′

• NACp′′ preserves the NAC-allowing behavior of NACp when, for every m : L → G
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and related m′′ : L′′ → G, we have

NACp � m⇒ NACp′′ � m′′

• NACp′′ preserves the NAC-behavior of NACp whenever NACp′′ preserves the NAC-

blocking behavior and NAC-allowing behavior of NACp.

Before continuing with our analysis, it is helpful to review a concrete example

of the behavior of NACs in DPO under arbitrary matches. In essence, NACs can be

designed to enable or disable a match m : L → G based on characteristics encoded in the

NAC itself:

• presence of additional elements in G, which do not appear in L;

• identification of preserved elements in L (when they appear non-identified in the

NAC);

• non-identification of preserved elements in L (when they appear identified in the

NAC);

These effects can be observed in the Figure 4.1. The match m1 is disabled because

of NAC n1, due to the presence of a star in G1. The match m2 is disabled because of NAC

n2 due to the identification of the circles. The match m3 is not disable by n2 because n2

does not identify the squares, even considering that m3 identify the circles as specified by

n2. This is a consequence of the definition of NACs requiring a factoring monomorphism

to disable a given match.

We now show how, given a rule evolution p ← p′ → p′′ and a set NACp of

negative applications for p, it is possible to build a set NACp′′ of NACs for p′′. We will

show that NACp′′ preserves the NAC-blocking behavior of NACp. We also present a

counter-example that shows that a NAC-allowing behavior preservation is not possible in

general, considering arbitrary evolutions.

As first approach, let us consider the consequences of attempting to use DPO

rewriting to update the NACs. Taking as first-order rule the span L ← L′ → L′′ and

n : L → N as match, by employing DPO transformation we could obtain as result the

diagram below, and consider an evolved NAC the morphism n′′ : L′′ → N′′.
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Figure 4.1: NACs enabling and disabling matches.
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This definition give us a suitable transformation for NACs, since it is defined over

the widely used DPO operations for typed graph transformations. It is also is well known

that DPO transformations not always exist in this situation we define that the resulting

NACs is true, which means it is always satisfied.

Figure 4.2: NACs that can not be transformed
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1 2 2 2
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N N K N R

2

L L' L ' '

1 2 1 1

1

(b) dangling

In fact, a transformation can not occur only in two cases exactly when the identi-

fication and dangling conditions are violated. In the following we show that, when this

happens, the forbidden structure of the NAC before the evolution does not exist in the

evolved rule, and therefore the NAC is useless and may be removed.



55

In the case of the identification condition, Figure 4.2(a), a NAC forbids the appli-

cation when the circles 1 and 2 are mapped to the same circle (1, 2). Since the evolution

deletes the circle 1, this NAC does not make sense after evolution. In the case of dangling

condition, Figure 4.2(b), a NAC forbids the application when the circles 1 and 2 are con-

nected by an edge 1 → 2. However the evolution deletes the circle 2, therefore after the

evolution there is not no need for this NAC.

However, DPO transformations fail to forbid some expected situations in this pro-

cess. Suppose an evolution where the left-side of the evolved rule had a node and it

changes to have another linked node to the old one. At same time, this rule has a NAC

that forbidden the connection between these two nodes, as in Figure 4.3. In this specific

evolution context, there must be a set of resulting NACs to forbid the same situations that

the original NAC forbids. The DPO transformation is well-known that returns only one

morphism.

Figure 4.3: Situation that DPO fails to generate all NACs
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Since DPO does not allow to translate a set of NACs over a morphism preserv-

ing the NAC-blocking behavior, another approach is required. A solution was found

in (LAMBERS, 2010) where the authors show how to construct, from a graph A with

NACs, a set of equivalent NACs on a graph B via a morphism t : A → B. A shifting

of NACs example was shown in the evolution with NACs example, in Figure 2.17, the

evolved NACs were generated by the shift operation.

The shift of a NAC along a morphism is a set of NAC-shifts, where a NAC-shift

diagram can be build in some constraints.

Definition 13 (NAC-shift (over a morphism)). Given a NAC n : A → N, a morphism
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A→ B and the diagram below, (1) is a NAC-shift if:

(i) (1) commutes.

(ii) t′ and n′ are jointly epi.

(iii) t′ is mono.

Here Dt (n) is the shift from one NAC.

Definition 14 (Shift of a NAC along a morphism). Given a NAC n : A → N and a

monomorphism t : A→ B:

N t′ // N′

(1)

A t
//

n

OO

B

n′
OO

Dt (n) = {n′ | n′ : B→ N′, t′ : N → N′} where (1) is a NAC-shift.

Then it is possible to shift a set of NACs.

Definition 15 (Shift of a set of NACs). Dt (NAC) =
⋃

n∈NAC
Dt (n)

Using shift of NACs it is possible to define the evolution of them. This process is

a transformation in two steps, as in DPO, the first deletes NAC elements or also the entire

NAC, and second the creation of the resulting NACs.

In this way, we can describe the NACs evolution process as a transformation

where: first a pushout complement as in DPO transformations, and after the shift of

NACs over a morphism as defined above. Note that in this process each NAC can be

evolved to zero or many NACs, which is not a problem since our aim is only to preserve

the forbidden structures, and not the NACs themselves.

Definition 16 (Evolution of a set of NACs). Let p← p′ → p′′ be a rule evolution, where

p = L ← K → R, p′ = L′ ← K′ → R′ and p′′ = L′′ ← K′′ → R′′. Let NACp be a set of

NACs for p. We define the evolved set of NACs NACp′′ as

NACp′′ = Dt(NACp)

Theorem 1 (Preservation of NAC-blocking behavior). Let p ← p′ → p′′ be a rule evo-

lution, where p = L ← K → R, p′ = L′ ← K′ → R′ and p′′ = L′′ ← K′′ → R′′. Let

m : L → G and m′′ : L′′ → G be related matches. Let NACp be a set of NACs for p, and

NACp′′ = Dt(NACp).

If NACp 2 m (p,G) then NACp′′ 2 m′′ (p′′,G).
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Proof. The proof of the equivalence of set of NACs in A and the set of NACs in B can be

found in (LAMBERS, 2010). �

Given that the constructed set of NACs preserves NAC-blocking behavior, we now

discuss the possibility of preservation of NAC-allowing behavior. Unfortunatelly, this is

not possible in the general case, as the following counterexample exposes.

Figure 4.4: Evolution where NAC-allowing behavior is not preserved.

evolution

G3

m3 m3 ' '

n2n2

Example 1 (Invalidation of NAC-allowing behavior). Figure 4.4 depicts an example of

evolution of a rule with NACs. The original rule deletes a star in the presence of two

circles and two squares. Its only NAC n2 : L → N2 forbids the application whenever the

preserved circles are identified. Notice that m3 : L→ G3 is not disabled by n2, since there

is only one square, and therefore there is no injective factorization e : N2 � G3. The

evolution consists of removing one of the preserved squares from the rule, generating a

rule that deletes a star in the presence of two circles and one square. The associated NAC

evolution calculates a single evolved NAC n′′2 : L′′ → N′′2 , without the deleted square.

Notice, however, that the only thing that prevented the NAC n2 from disabling m3 was the

impossibility of identifying the squares in a mono factorization. Given that there is now

only one square, there is actually a possible factorization e′′ : N′′2 � G3 for n′′2 , and

therefore n′′2 disables the match m′′3 , which is related to m3 by the evolution.

The situation occurs because some NACs are not triggered due to the identification

of some elements by the match. When an evolution deletes some of these preserved
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elements, the distinction between matches that would be allowed or disabled by the NAC

disappear. In this case, the NAC disables the resulting match. This is actually an effect of

the pushout complement part of the NAC evolution definition.

If, however, we restrict ourselves to injective matches, these distinctions which are

dependent on identifications are not allowed, and it is actually possible to have preserva-

tion of NAC-allowing behavior.

Theorem 2 (Preservation of NAC-allowing behavior for injective matches). Let p ←
p′ → p′′ be a rule evolution, where p = L ← K → R, p′ = L′ ← K′ → R′ and

p′′ = L′′ ← K′′ → R′′. Let m : L � G and m′′ : L′′ � G be related injective matches.

Let NACp be a set of NACs for p, and NACp′′ = Dt(NACp).

If NACp � m (p,G) then NACp′′ � m′′ (p′′,G).

Proof.

• (by definition)

If for all n : L → N ∈ NACp there is no monomorphism e : N → G such that

e ◦ n = m, then for all n′′ : L′′ → N′′ ∈ NACp′′ there is no monomorphism

e′′ : N′′ → G such that e′′ ◦ n′′ = m′′.

• (contrapositive)

If exists n′′ : L′′ → N′′ ∈ NACp′′ and monomorphism e′′ : N′′ → G such that

e′′ ◦ n′′ = m′′, then exists n : L → N ∈ NACp and monomorphism e : N → G such

that e ◦ n = m.

• (existence of monomorphism e) consider the diagram below:

H G

N N′ N′′

L L′ L′′

y
v

y

eu

lN rN

e′ e′′

n

m

n′

lL rL

n′′

m′′

– assume monomorphisms m : L � G, m′′ : L′′ � G and e′′ : N′′ � G

in the diagram above. Notice that each n′′ ∈ NACp′′ was created from some
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n ∈ NACp by means of a pushout complement and a NAC shift commutative

square, as shown in the diagram;

– n′′ : L′′ → N′′ is mono because m′′ = e′′ ◦ n′′ and m′′ is mono. By a similar

argument, note that n′ and n are also mono.

– let e′ : N′ → G be the composition of monos e′′ ◦ rN;

– let (u, v) be the pushout of (e′, lN). Because the category of graphs is adhesive,

pushouts preserve monomorphisms and, therefore, both u : N → H and v :

G → H are mono;

– let e : N → G be the unique arrow from pushout square (n′, lL, LN , n) towards

the cospan (m, e′);

– e : N → G is mono because u = v ◦ e, and u is mono.

�

As Theorems 1 and 2 show, NACs preservation is constrained by the kind of mor-

phism allowed as a rule match:

• with general matches, only preservation of blocking behavior is possible.

• with injective matches, preservation of allowing and blocking behavior is possible.

Considering this scenario, we use Definition 16 as appropriated algorithm for evolving a

set of NACs. This is the basis of our implementation of a second-order transformation

model for first-order rules with NACs.
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5 IMPLEMENTATION

In the graph transformation area, there are many tools that support simulation and

analysis of various kinds of graph grammars models. We highlight below three tools

that are important to our work since they implement related notions of first-order graph

transformations.

The Attributed Graph Grammar System (AGG) (TAENTZER, 2000) is a tool that

supports typed graph grammars. The rewriting engine is based on single pushout (SPO)

approach, that differs from DPO used in this work, however SPO with NACs can sim-

ulate DPO adding some configurations. This tool supports attributed graphs, that is the

graph elements can have algebraic types, in this case Java types. AGG focuses on static

analysis, critical pairs and sequences analysis very closed to the defined in this work is

implemented, besides that concurrent rules, termination and consistency checking are also

available.

The Graphs for Object-Oriented Verification (GROOVE) Tool Set (RENSINK,

2004) is another tool for modeling graph grammars, its rewriting operation also follows

the SPO approach. GROOVE graphs are typed over a system of labeling, that simulates

types. The focus of this tool is generation and exploration of state space, and it is very

efficient in the search for isomorphic states.

A more recent tool is the Verigraph (COSTA et al., 2016). It implements a rewrit-

ing system based on the DPO approach. Static analysis as critical pairs/sequences and

concurrent rules are implemented. At the moment, there is an initial version of a state

space exploration with model checking through CTL expressions. Nonetheless the main

contribution of Verigraph is its architecture, where high-level algorithms can be defined

using categorical operations in the sense of adhesive HLR systems (EHRIG et al., 2004).

This approach allowed the development of the first SOGG implementation of second-

order rewriting.

The development of Verigraph from a graph manipulation tool to a transformation

system was made along with this work. Many features were made to support this work,

such as: (i) implementation of second-order rewriting and related analysis techniques, as

in (MACHADO, 2012); (ii) implementation of the framework to handle modifications in

rules with NACs. The next section follows from (COSTA et al., 2016), it details the struc-

ture of this tool, after we present how the second-order transformation was implemented.
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5.1 Verigraph

The Verigraph1 tool comes from the need of the Verites2 research group of a tool

that supports a quick prototyping of graph transformation theoretical concepts. Devel-

oped in Haskell, an initial version of this tool was published in (BECKER, 2014). From

this initial study, this tool developed in various directions. In (BEZERRA; RIBEIRO,

2016) the calculation of concurrent rules in Verigraph is presented, at the same sympo-

sium (COSTA; MACHADO; RIBEIRO, 2016) presented the initial ideas for this disser-

tation that was already implemented in this tool. The main contributions of Verigraph

are published in (COSTA et al., 2016), where the internal architecture is detailed and the

main results are summarized.

The next sections review these structures, we present the needed code in order

to present, at the final of this chapter, the implementation of the NAC manipulation as

proposed in this dissertation.

5.1.1 Architecture Overview and Data Structures

Verigraph’s architecture is based on abstract classes that map important theoreti-

cal notions, such as morphism, DPO transformation, Adhesive HLR system among oth-

ers. High level operations are described over these abstract notions, for example, a DPO

transformation is automatically available for a class that implements pushout, pushout

complement, search of morphisms and others. The concrete classes of the tool are based

on integer sets, which are enriched in order to simulate graphs, and then graph morphisms

and others in a incremental way, as text below describes.

The first structure in Verigraph is the Graph type, in Figure 5.1, which consists

of a list for nodes and another for edges. Nodes and edges have numeric identifiers that

are unique within a graph. They may also carry a payload information, which is not used

by now but allows to adding additional information, which should be used in the future

to implement attributed graphs. In the figure, basic functions for manipulating graphs

were omitted, such as insertNode, insertEdge, removeNode, removeEdge,

incidentEdges, neighbourNodes, among others.

The next natural structure for graph transformation are graph morphisms. As de-

1<https://github.com/verites/verigraph>
2<http://www.ufrgs.br/verites>

https://github.com/verites/verigraph
http://www.ufrgs.br/verites
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Figure 5.1: Implementation of graphs

data Node a = Node
{ nodePayload :: Maybe a
} deriving (Show, Read)

data Edge a = Edge
{ source :: NodeId
, target :: NodeId
, edgePayload :: Maybe a
} deriving (Show, Read)

data Graph a b = Graph
{ nodeMap :: [(NodeId,Node a)]
, edgeMap :: [(EdgeId,Edge b)]
} deriving (Read)

fined in the formal definition, it consists of domain and codomain graphs, as well as

two relations, mapping nodes and edges identifiers. Figure 5.2 shows the corresponding

code. We implement a polymorphic Relation type, it has functions such as compose,

inverse, domain, image and apply. The usage of graph morphisms demands only

the functional relations for this type.

Figure 5.2: Implementation of graph morphisms

data GraphMorphism a b =
GraphMorphism {

domain :: Graph a b
, codomain :: Graph a b
, nodeRelation :: Relation NodeId
, edgeRelation :: Relation EdgeId
} deriving (Read)

Typed graphs, in Figure 5.3, are implemented as graph morphisms whose

codomain is a type graph. In this way TypedGraph is a synonym for

GraphMorphism. Typed graph morphisms (TGMs) also follow the formal definition:

they consist of a domain and codomain typed graphs, as well as a mapping (a graph mor-

phism) between them.

We have presented the implementation of morphisms of two different categories,

Graphs (graphs as objects and their morphisms as arrows) and GraphsTG (introduced in

Definition 2). Therefore, a whole class of operations relative to morphisms is relevant for

both data types. In order to uniformly deal with both morphism types, the Morphism

type class was defined. It may be seen in Figure 5.4, note that the type morphism depends

of the type m to be a concrete type. Since every morphism type has an associated type for

representing objects of that category, standard Haskell would not suffice to express these
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Figure 5.3: Implementation of typed graphs and their morphisms

type TypedGraph a b = GraphMorphism a b

data TypedGraphMorphism a b =
TypedGraphMorphism {

domain :: TypedGraph a b
, codomain :: TypedGraph a b
, mapping :: GraphMorphism a b

} deriving (Show, Read)

ideas We therefore employed a compiler (GHC) extension allowing type families, which

are essentially functions at the type level (SCHRIJVERS et al., 2008).

Figure 5.4: Type class for morphisms

class (Eq m) => Morphism m where
type Obj m :: *

compose :: m -> m -> m
domain :: m -> Obj m
codomain :: m -> Obj m
id :: Obj m -> m

isMonomorphism :: m -> Bool
isEpimorphism :: m -> Bool
isIsomorphism :: m -> Bool

Besides the basic operations for morphisms of general categories, many of the

algorithms implemented in Verigraph depend on operations available in Adhesive High-

Level Replacement (HLR) categories (EHRIG et al., 2004), such as pushouts and pull-

backs. Morphisms of such categories must therefore implement the operations of the

AdhesiveHLR type class, which may be seen in Figure 5.5. These type classes de-

couple the implementation of DPO rewriting from the implementation of the category in

which it occurs.

Having an abstract notion of morphism, the implementation of productions may be

polymorphic on the morphism type, as may be seen in Figure 5.6. The operations related

to productions, such as checking the applicability of a match (existence of gluing condi-

tion and satisfiability of NACs) and doing the actual transformation, are implemented in

terms of the AdhesiveHLR class.

Also, two different notions for checking the NAC satisfiability were implemented:

the classical one (as presented in Chapter 3) and the partial injective version as defined

in (LAMBERS, 2010) and implemented in AGG.

The last type is DPO. This abstract class has two needed functions: inverse to



65

Figure 5.5: AdhesiveHLR Class

class (Morphism m) => AdhesiveHLR m where

calculateInitialPushout :: m -> (m, m, m)

calculatePushout :: m -> m -> (m, m)

-- Tests if a pushout complement exists
hasPushoutComplement :: (MorphismType, m) -> (MorphismType, m) -> Bool

-- Assumes a pushout complement exists
calculatePushoutComplement :: m -> m -> (m, m)

calculatePullback :: m -> m -> (m, m)

Figure 5.6: Data Production
data Production m =
Production
{ left :: m
, right :: m
, nacs :: [m]
}

invert a production, and shiftNac to shift a set of NACs over a production. The imple-

mentation of these presented functions for a type allows the usage of abstract functions

such as findAllMatches, findApplicableMatches, nacDownwardShift,

satisfiesRewritingConditions.

Note that the Graph, GraphMorphism, TypedGraph and Production

types allow malformed instances (e.g. a Graph with an edge that references an undefined

node as source or target). Therefore, a well-formedness condition must be implemented,

which was done by defining the type class Valid, instantiated for those types, providing

a single predicate valid for its verification. In order to reduce the runtime overhead

of such checks, the algorithms implemented in Verigraph are designed to construct and

preserve well-formedness. Thus, it must only be checked when values are obtained from

external sources.

This implementation is sufficient to perform first-order graph transformations. Be-

sides that, a generic structure to support other kinds of transformations is defined. This

allows us to easily adapt Verigraph for transformation on other similar Adhesive HLR

categories.
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5.1.2 Analysis Techniques

In this section we aim to explain how are implemented the analysis techniques

in the Verigraph tool. A set of analysis is currently implemented, such as critical pairs

and sequences, concurrent rules, inter-level analysis and graph processes. For this work,

inter-level analysis is particularly relevant.

In order to illustrate how these methods were implemented, we present the code

that detects delete-use and produce-dangling conflicts.

This algorithm in Figure 5.7 checks if a pair of transformations are in one of these

conflict types. A delete-use occurs when a transformation deletes something used by

other, in this sense there is not exists a morphism from the left side of a production to the

interface of the transformed object. The produce-dangling occurs when a transformation

produces some structure that unable (via dangling condition) other transformation, in the

diagram it is reflected when there is a match for the left side of a production on the

transformed object of the other production, but it is not a valid match.

Figure 5.7: Delete-Use and Produce-Dangling Verification Algorithms

deleteUseDangling :: DPO m =>
Production m -> Production m -> (m, m) -> Maybe ConflictType

deleteUseDangling p1 p2 (m1,m2) =
case (null h21, dangling) of

(True,_) -> Just (Left (m1,m2)) -- delete use case
(False,True) -> Just (Right (m1,m2)) -- produce dangling case
_ -> Nothing -- free overlap case

where
(k1,d1) = calculatePushoutComplement m1 (getLHS p1)
(_,e1) = calculatePushout k1 (getRHS p1)
l2TOd1 = findMorphisms (domain m2) (domain d1)
h21 = filter (\x -> m2 == compose x d1) l2TOd1
h21_e1 = compose (head h21) e1 --h21 is unique if it exists
dangling = not (satisfiesGluingConditions p2 h21_e1)

&& satisfiesNACs p2 h21_e1

This function receives two transformations (two productions p1 and p2, and theirs

matches (m1,m2) on a same graph) and returns: Just DeleteUse if there is not the h21

morphism; Just ProduceDangling case there is h21 and dang is true; and returns Nothing

otherwise. The proximity of code and theory can be verified with this example. Note that

all operations are in a high-level of abstraction, such as calculatePushoutComplement,

findMorphisms, compose, calculatePushout, among others.

As discussed above, this function works for any morphism type that implements

these basic operations. We already presented that Typed Graph Morphism implements
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these operations, but in the next section another kind of morphism that implements the

AdhesiveHLR class is presented.

5.1.3 Second-Order Transformation

Second-Order Graph Grammars (SOGG) as proposed in (MACHADO, 2012) are

a new kind of transformation that can model evolution of typed graph grammars. As

presented in Chapter 3, the new rewriting system is based on rule morphism concept.

In Verigraph we implemented directly the RuleMorphism type as showed in

Figure 5.8. This type is composed by two rules and three morphisms between their ele-

ments, note that the well-formedness is guaranteed only in the Valid implementation for

this type. The RuleMorphism type also implements others classes such as Morphism,

FindMorphism, EpiPairs and Cocomplete, more details in the Verigraph reposi-

tory.

Figure 5.8: Implementation of Rule Morphism

data RuleMorphism a b =
RuleMorphism {

rmDomain :: Production (TypedGraphMorphism a b)
, rmCodomain :: Production (TypedGraphMorphism a b)
, mappingLeft :: TypedGraphMorphism a b
, mappingInterface :: TypedGraphMorphism a b
, mappingRight :: TypedGraphMorphism a b
} deriving (Eq, Show, Read)

Due to the fact that SOGG form an adhesive HLR category with NACs, we also

implemented the functions in AdhesiveHLR and DPO classes for the RuleMorphism

type. In this way, in the theory and in the implementation the analysis proposed for

adhesive HLR categories are also valid for this type, for example the algorithm showed in

Figure 5.7.

5.1.3.1 Pushout Complement

The pushout complement operation is responsible for the deletion process in the

DPO approach. For this reason it is also performs the NACs deletion in the second-order

transformation. A NAC is deleted when it does not fulfills the gluing conditions in the

transforming process, as discussed in Section 3.1.

The algorithm for the pushout complement for second-order transformations in the
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Verigraph is presented in Figure 5.9. It receives two RuleMorphism instances m and

l, and returns theirs respective morphisms k and l′. According to diagram in the figure,

usually l is a left morphism of a 2-rule, m is the second-order match and H the rule after

the deletion process.

Figure 5.9: Implementation of Pushout Complement with NACs

instance AdhesiveHLR (RuleMorphism a b) where

-- Pushout Complement for second-order with deletion and transposing of NACs.
-- It runs the pushout complement without NACs,
-- filters the NACs in the matched rule (ruleG) selecting the non deleted,
-- and updates the rule H with the transposed NACs.
--
-- l
-- L<------K
-- | |
-- m | | k Pushout Complement Diagram
-- V V
-- G<------H
-- l'
calculatePushoutComplement

m@(RuleMorphism _ ruleG matchL matchK matchR)
l@(RuleMorphism ruleK ruleL leftL leftK leftR) = (k,l')
where

(matchL', leftL') = calculatePushoutComplement matchL leftL
(matchK', leftK') = calculatePushoutComplement matchK leftK
(matchR', leftR') = calculatePushoutComplement matchR leftR

leftH = commutingMorphismSameCodomain
(compose leftK' (getLHS ruleG)) leftL'
matchK' (compose (getLHS ruleK) matchL')

rightH = commutingMorphismSameCodomain
(compose leftK' (getRHS ruleG)) leftR'
matchK' (compose (getRHS ruleK) matchR')

validNACs = filter (satisfiesNACRewriting leftL') (getNACs ruleG)

newRuleNACs =
map (\nac -> fst (calculatePushoutComplement nac leftL')) validNACs

ruleH = buildProduction leftH rightH newRuleNACs
k = RuleMorphism ruleK ruleH matchL' matchK' matchR'
l' = RuleMorphism ruleH ruleG leftL' leftK' leftR'

This algorithm constructs the ruleH with typed graph morphisms le f tH and

rightH obtained of the first-order pushout complement plus a commuting constraint. This

part is complete for the transformation without NACs. Furthermore, in ruleH are added

the newRuleNACs, these NACs can be obtained from a filtering of application conditions

on left’ of ruleG NACs.
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5.1.3.2 Pushout

The operation used for the creation step is the pushout, consequently it is also used

by the creation of NACs in the second-order transformation. This algorithm must create

NACs when there is some NAC on the received rule, that is a NAC that is being transposed

as defined in Section 4.1.

This pushout in Verigraph is implemented as in Figure 5.10. It receives two

RuleMorphism instances g and f , usually a right morphism of a 2-rule and a resulting

morphism of the pushout complement, respectively. It returns f ′ and g′ that are mor-

phisms with codomain in the resultant ruleP.

Figure 5.10: Implementation of Pushout with NACs

instance AdhesiveHLR (RuleMorphism a b) where
...
-- Pushout for second-order with creation of NACs.
-- It runs the pushout without NACs (from cocomplete),
-- generates all NACs (considering arbitrary matches) for the rule H,
-- and updates the morphisms f and g to get the new NACs.
--
-- g
-- K------>R
-- | |
-- f | | f' Pushout Diagram
-- V V
-- D------>P
-- g'
calculatePushout

f@(RuleMorphism _ ruleD _ _ _)
g@(RuleMorphism _ ruleR _ _ _) = (f',g')
where

(RuleMorphism _ preRuleP f'L f'K f'R,RuleMorphism _ _ g'L g'K g'R) =
Abstract.Cocomplete.calculatePushout f g

ruleP = buildProduction (getLHS preRuleP) (getRHS preRuleP) transposedNACs

f' = RuleMorphism ruleR ruleP f'L f'K f'R
g' = RuleMorphism ruleD ruleP g'L g'K g'R

transposedNACs = concatMap (nacDownwardShift g'L) (nacs ruleD)

Since the RuleMorphism type implements Cocomplete, we can define the

pushout without NACs from this class. In this code the rule preRuleP is obtained in this

operation. The NACs part is added by transposedNACs. The transposed are obtained

directly by the first-order shift NACs over ruleD NACs.

Finally, according to Definition 16 second-order transformations can be repre-

sented in Verigraph tool based on above operations. It is important to note that it is the
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first tool to implement these second-order transformations, moreover according tool archi-

tecture all DPO properties are inherited, conflicts and dependencies analysis for example.

The extension of the Verigraph tool towards second-order transformation with

NACs is one of the major contributions of this work. The development was mainly guided

by the need for an implementation of second-order rewriting: at the start, Verigraph was

in a simple state, with only first-order rewriting implemented. Most analysis techniques

for first-order layer and support for NACs in rules were implemented within the scope

of this work. Verigraph was initially used for proof of concepts, to assist the theoretical

study, but quickly the tool started to become useful for analysis of graph transformation in

general. As an example, it was used in (CORRADINI et al., 2018) to perform experimen-

tal evaluation of distinct ways of calculating parallel independence for the double-pushout

and sesqui-pushout approaches.
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6 RELATED WORK

In this chapter, we compare our work with other approaches found in literature

that deal with evolution on rule-based systems considering negative application condi-

tions. The works listed in this section are not restricted to the classical graph grammars

scope, however we list the closest results from the works founded using NACs evolution

strategies.

We searched related works in literature for evolution in rule-based systems, and

we apply a filter to select the ones with some NACs evolution concepts, however we faced

difficulty to find works with these constraints. Sections 6.1 and 6.2 review for two well-

known techniques of rule-based transformations for works that deal with NACs evolution.

6.1 Petri-nets

A Petri-net (PETRI, 1962) is a formal language usually applied to describe dis-

tributed systems. As in graph grammars, Petri-nets use a visual notation to represent the

rule-based models. Petri-nets have been widely studied in the literature, with different ap-

proaches to modeling different aspects of the systems. One propose that shares similarities

with SOGGs is called reconfigurable nets (HOFFMANN; EHRIG; MOSSAKOWSKI,

2005), in addition to the petri-nets classical place-transition system, also there is a set

of graph grammars rules modifying the petri-net place-transitions. This graph grammar

layer can be considered as a second-order layer of the system transformation. Algebraic

foundation for these systems in the framework of adhesive HLR rewriting systems are

given in (PRANGE et al., 2008).

In (REIN et al., 2008) is proposed Petri-nets together with a set of graph rules with

negative application conditions that also allow dynamic changes in a net. Since these rules

have compatibility with adhesive HLR systems with NACs, their results are inherited from

HLR theory such as local Church-Rosser, critical pairs and sequences, concurrency, etc.

The usage of a graph grammar layer over a place transition system remind us the

second-order graph grammars, where a rule-based system is acting over other rule-based

system. However, we note that this “second-order” modeling is more related to our first-

order graph transformation than our second-order, since in the second-order there are

two adhesive HLR rewriting systems with NACs acting inter-leaved, and in these works

with petri-nets there are a place-transition and an adhesive HLR rewriting systems with
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NAC running. Still besides these differences, the NACs used in these papers are more

related to our second-order transformations, since they act forbidding their own order

rules, differently from the NACs proposed in our work where the NACs in the higher

level affects the NACs of the lower level.

6.2 Triple Graph Grammars

The concept of triple graph grammars (TGGs) arises in 1994 from (SCHÜRR,

1995). They introduced TGG as a formalism to specify translations between different

graph languages. The key is that each graph language is representing a model, and the

translation between these languages are model transformations but formalized. Another

point is that a bi-directionality of the graph relation is needed in order to maintain the

verifiability of the consistency between the models.

Figure 6.1: Triple Graph Rule
LA KA
oo // RA

LK

��

OO

KK

��

OO

oo // RK

OO

��

LB KB
oo // RB

TGGs use triple graph rule as basis to related two graph models, its format is

described in Figure 6.1. The model relationship from a part of their specification A

(LA ← KA → RA) to other specification of other model B (LB ← KB → RB) is done

by an intermediate common language K (LK ← KK → RK) that unify concepts of the two

languages. The diagram is very similar to the 2-rules, however TGGs are used in a dif-

ferent context such that their constraints are also different. For example, in this diagram

there is no restriction to the morphism type, but in 2-rules they must to be injective, this

small difference changes deeply the interpretation of these rules.

In TGG theory also the NACs are considered, some works in this area discuss

them usage, specially in (SCHÜRR; KLAR, 2008; HERMANN et al., 2010; ANJORIN;

LEBLEBICI; SCHÜRR, 2016) where the authors argue that NACs are real needed for

TGGs in practice and they discuss the difficulties to translate them appropriately. They

also emphasize that most approaches restrict the usage of NACs in some way.

The addition and verification of negative application conditions in TGG is dis-

cussed by many papers:



73

• A series of papers work on formal definitions of model transformations based on

triple graph rules with NACs (EHRIG et al., 2009; HERMANN et al., 2010; GO-

LAS; EHRIG; HERRMANN, 2011; HERMANN et al., 2014). The usage of NACs

appear as necessarily due their expressiveness but at same time it is difficult to main-

tain crucial properties needed in TGGs. Still these NACs are given in a second-order

transformation sense, since they are only forbidden situations on the same level that

they are modeled.

• In (SCHÜRR; KLAR, 2008) the authors focus on open problems in the interpre-

tation and the expressiveness of TGGs. They propose a precise formalization of

compulsory properties in TGG translation with NACs. These properties are very

important in TGG transformations, usually they are consistency, completeness, ef-

ficiency and expressiveness. In this work the addition of NACs obviously increased

the expressiveness however the completeness can not be guaranteed, which is in-

teresting in comparison with our work when the translation of NACs also are not

complete once not any NAC can be evolved.

It is important to note that the NACs semantic are added to the theory depending

of the specific objective of that work, this is the main contact point between that works

and ours. As the graph rules, the NACs also are utilized to modeling in specific domains,

its semantic is given according to different aims.
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7 CONCLUSIONS

This dissertation is about evolution and manipulation of negative application con-

ditions in first-order graph grammars, by means of second-order graph grammars produc-

tions. Besides formal foundations, this work addresses also the implementation of the

covered concepts in the Verigraph tool.

The purpose of this work emerged from future work section of (MACHADO,

2012), in which there are several questions about transformation of NACs and which

effects it triggers. We believe that some of theses questions have an initial answer in this

dissertation, specially the question: "how to update first-order NACs to conform them to

an arbitrary rule rewriting?".

We overview the two main contributions of this work:

• Rule evolution with NACs: we defined evolution for rules with NACs, an extension

of rule evolution. We face the problem of evolve NACs in the Section 3, we pro-

posed the NACs evolution according to DPO rewriting, and defined that the evolved

NAC may not exist when the transformation is infeasible. Thus we discovered that

this evolution, unlike the older definition, is not always reversible, this result oc-

curs because some NACs in a context do not have a correspondent in the evolved

context. We expected this behavior since rules with NACs are not always reversible

too.

• Implementation of SOGG rewriting and analysis techniques: an extension of the

Verigraph tool to support classical and extended second-order transformations was

presented in Section 5.1.3. All concepts covered by this dissertation were imple-

mented in this tool, which also implements concepts of others areas of graph gram-

mars. The second-order grammars are implemented under the AdhesiveHLR

typeclass, in this way many operations for these categories are automatically avail-

able for SOGGs such as critical pairs and sequences, concurrent rules, etc.

7.1 Future Work

This dissertation presented a new rewriting system, it is an upgraded version of the

second-order system (MACHADO, 2012). There are many investigations worth pursuing

since this kind of graph transformation is not usual on graph grammars works. We list
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some of open ideas below:

• NACs creation/deletion operations: beyond the proposes of this work, it is possible

to provide algorithms to create and delete NACs programmatically. It is an exten-

sion of SOGGs where 2-rules could also have first-order NACs, as this work added

NACs on the evolved rules.

• Adhesive HLR category: a great result will be a proof that this whole new rewriting

system form an adhesive HLR category. In this case many results will be inherited

from this framework such as parallelism, critical pairs, concurrence, etc. However

we doubt that this extension with NACs as exactly as proposed here fits in this

category, but we believe that a slightly restricted version of this grammars can form

an adhesive HLR category.

• A tool with graphical user interface: the current tool used for second-order graph

transformations has been very reliable, besides it is the only one that computes this

transformations as defined here. However it fails on have a GUI, up to now this part

for whole verigraph tool is in development stage. It is possible to have as result of

this development, a GUI focused on second-order transformations, which is very

important due the difficulty of modeling second-order rules in the current system.
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