CARLOS ANTONIO MASCIA GOTTSCHAL

Tese de Mestrado apresentada ao Curso de Pós-Graduação em Pneumologia do Departamento de Medicina Interna UFRGS. Prof. Orientador: Mario Rigatto.

'Porto Alegre, 1975.'
GOTTSCHELL, CARLOS ANTONIO MASCIA

DISPNEIA E SUA QUANTIFICACAO VENTILATORIA

DISSERT.

616.2
G687D
1975

1998/160445-5
1997/03/01
À Elisabete,
minha mulher.
<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APRESENTAÇÃO</td>
<td>7</td>
</tr>
<tr>
<td>I - INTRODUÇÃO</td>
<td>9</td>
</tr>
<tr>
<td>1. Alguns fatos sobre a ventilação</td>
<td>9</td>
</tr>
<tr>
<td>2. A sensação de dispnéia</td>
<td>12</td>
</tr>
<tr>
<td>3. Influências neurológicas sobre a sensação ventilatória</td>
<td>15</td>
</tr>
<tr>
<td>4. Modificação da sensibilidade ao desconforto respiratório</td>
<td>17</td>
</tr>
<tr>
<td>5. Classificação das causas de dispnéia</td>
<td>19</td>
</tr>
<tr>
<td>6. Conscientização da dispnéia</td>
<td>20</td>
</tr>
<tr>
<td>7. Quantificação ventilatória da dispnéia</td>
<td>26</td>
</tr>
<tr>
<td>8. Propósito do presente estudo</td>
<td>28</td>
</tr>
<tr>
<td>II - DELINEAMENTO EXPERIMENTAL</td>
<td>31</td>
</tr>
<tr>
<td>1. Pacientes</td>
<td>31</td>
</tr>
<tr>
<td>2. Métodos</td>
<td>36</td>
</tr>
<tr>
<td>III - RESULTADOS</td>
<td>41</td>
</tr>
<tr>
<td>1. Valores obtidos</td>
<td>41</td>
</tr>
<tr>
<td>2. Significâncias estatísticas</td>
<td>60</td>
</tr>
<tr>
<td>3. Correlações</td>
<td>65</td>
</tr>
<tr>
<td>IV - COMENTÁRIOS</td>
<td>65</td>
</tr>
<tr>
<td>V - CONCLUSÕES</td>
<td>72</td>
</tr>
<tr>
<td>VI - AGRADECIMENTOS</td>
<td>74</td>
</tr>
<tr>
<td>VII - BIBLIOGRAFIA</td>
<td>75</td>
</tr>
</tbody>
</table>
Esta é uma tese de Mestrado. Acredito que uma tese não deva ser improvisada: deve refletir o amadurecimento do tema tratado na mente e na experiência do autor; que não deva ter obrigatoriamente uma finalidade imediatista: deve representar um elo necessário, por mínimo que seja, na cadeia infinita do conhecimento; que não necessite conter uma revisão da literatura sobre o assunto abordado; deve assentar-se antes de tudo sobre aqueles pilares básicos que permitiram a progressão do saber. Uma tese não deve ser feita sem carinho: deve manifestar a estima que seu realizador tem pelo assunto que empolgou a ponto de transformá-lo em um marco na sua carreira. Com essas convicções interiorizadas, decidi escolher o tema da quantificação ventilatória da disnêia como objetivo deste estudo.

Na verdade, desde os últimos anos do curso médico venho me interessando pelas doenças cardiopulmonares, em especial por sua fisiopatogenia. Ingressei por esse motivo no mundo da exploração funcional pulmonar e circulatória. Fiquei fascinado pelo estudo clínico-funcional da disnêia e as maneiras de objetivá-lo quantitativamente. Trabalhei e trabalho com o pneumopata e o cardiopata examinando os clínica e funcionalmente. A idéia de correlacionar o sintoma com o número surgiu espontânea. Sem pressa. E fui anotando. E fui lendo. E fui coletando bibliografia. Sem tempo previsto para publicar. Um dia sairia. Chegou a ocasião. De material para eventual publicação em revista médica, passou a material para dissertação no Curso de Mestrado. Achei que dava para mais. E batizei-o de tese. Batizei-o porque tenho a convicção de que sintetiza uma experiência amadurecida de muitas centenas de exames clínico-funcionais pulmonares, é uma contribuição docu
mentada ao tema, assenta-se sobre bibliografia séria, e foi feito com carinho, não para vê-lo termi nado mas para ter continuação. Concordo quando al- guém diz que um trabalho científico não fica pron- to em menos de vinte anos. Vou mais longe. Penso que nunca fica completamente pronto. Mas um assun- to com o qual se convive há cerca de doze anos já serve para começar.

Ah, não poderia esquecer: uma tese não ne cessariamente deve conter uma homenagem mas esta con tém. Ainda que não referisse estaria implícito e mesmo o óbvio não é incompatível com a manifesta ção: a iniciação científica, o gosto pela pesquisa, a intransigência pela verdade, foram estimulados em maior ou menor escala pela convivência e pelo apren dizado que tenho tido ao longo de todos esses anos com essa figura Ímpar de Homem, Professor e Pesqui sador que se chama MARIO RIGATTO, cuja tenacidade imbatível na luta pelo ensino e pela pesquisa na á rea médica em geral e na Pneumologia em particular, permitiram-lhe, entre outros inúmeros e raros títu los, ser o criador e o dínamo do primeiro curso de Mestrado em Pneumologia reconhecido no Brasil. A e le em primeira instância deve ser creditado o que eventualmente tiver de bom este trabalho. Ele ati rou ouro no riacho. Não sei bem o que recolhi, se o ouro ou o cascalho, mas estou certo de que desse garimpo científico proveio o que de melhor ficou na minha persistente batélia.

Carlos Antonio Mascia Gottschall

Porto Alegre, novembro, 1975
I - INTRODUÇÃO

1 - ALGUNS FATOS SOBRE A VENTILAÇÃO

Aparelho Ventilatório. Normalmente um indivíduo em repouso ventila seus pulmões sem conscientizar esse ato mas com alguma atenção poderá saber muito sobre ele: o ritmo, a frequência, a amplitude. Essa habilidade perceptiva provavelmente provém de que a respiração utiliza musculatura voluntária e a vida animal requer que informações sobre a mesma sejam acessíveis à consciência. O correspondente e necessário fluxo de ar movimentado através das vias aéreas vale cerca de quatro a cinco litros por minuto por metro quadrado de superfície corporal, em repouso, o que assegura um volume de ventilação alveolar em torno de dois terços desse valor. O volume minuto respiratório pode aumentar quase vinte vezes em exercício intenso e vinte ou mais vezes voluntariamente, por breves períodos, sem que surja sensação de dificuldade respiratória, mesmo que tal ato atinja a consciência ou o indivíduo lhe dispensasse atenção, chegando mesmo a ser prazerozo, como na hiperpnéia do exercício ou dos momentos eróticos (7, 8, 73, 79, 92, 98, 164, 167 e 189). Para que isso ocorra o aparelho ventilatório precisa ser eficaz, o que se baseia fundamentalmente em (5, 46, 87, 155, 184): a) eficiente comando nervoso pelos centros respiratórios e quimiorreceptores centrais e periféricos; b) adequada resposta dos músculos respiratórios aos comandos nervosos; c) boa complacência torácica e pulmonar; d) ampla permeabilidade das vias aéreas.

Custo energético da ventilação. Dos três componentes do ciclo pulmonar da respiração (87, 155) ventilação, difusão e perfusão, só o primeiro requer trabalho por parte dos músculos respiratórios (TR) que é definido (38) como o produto do gradiente de pressão entre a cavidade pleural e o ar ambiente (ΔP) pelo volume de ar movimentado em cada instante.
(dV), ou seja: $\text{TR} = \int P \, dV$. Segundo Otis (139-141), num adulto normal, respirando com frequência de quinze ciclos por minuto, sessenta e três por cento do TR são consumidos em vencer a resistência elástica dos tecidos pulmonares, vinte e nove por cento em vencer a resistência ao fluxo nas vias aéreas e oito por cento é perdido na fricção tecidual. A energia gasta no processo ventilatório representa menos que dois por cento da total consumida pelo organismo. Essas relações se alteram na doença ou em aumentos de frequência e ou amplitude ventilatórias de modo que as condições que determinam enrijecimento pulmonar e ou torácico (6, 34-36, 86, 118, 121, 179), diminuindo as respectivas complacências, aumentam o TR a expensas da porção gasta em vencer a resistência elástica dos pulmões, enquanto que as condições que elevam a resistência ao fluxo aéreo (9, 19, 32, 55, 82, 101, 120) aumentam a porção gasta em mover o ar através dos condutos bronquicos. Em ambas as situações, o total da energia gasta no processo ventilatório ultrapassa os dois por cento em relação à energia total consumida pelo organismo, aumento que é proporcional à dificuldade ventilatória encontrada (19).

Ventilação em repouso. Os centros respiratórios (106, 114, 163) são sensíveis ao gasto energético da ventilação (47, 108) e tendem a minimizá-lo, otimizando (151) a combinação entre frequência e amplitude ventilatórias, concorrendo vários impulsos nervosos e humorais (106, 114, 163) para esse controle, tanto em repouso (163) como durante exercício (42, 54, 59): a) relação entre tensão e comprimento muscular - limitando-se o encurtamento dum músculo esquelético, mais energia se produz para que maior força contrátil se gere; b) atividade dos fios musculares - formações fusiformes musculares atuam reflexamente alterando o estado contrátil a fim de compensar desempenho muscular inadequado; c) aferentes parietais - mensagens a partir das articulações (e tendões) da parede torácica provêm informações para os centros respiratórios no caso de expansão inapropriadamente pequena; d) reflexo expiratório - paredes bronquiolares colapsadas pela deflação torácica estimulam terminais vagais proprioceptivos o que resulta em posterior inspiração; e) resposta
Integração dos controles. Admite-se que os diversos componentes de controle ventilatório atuam integradamente da seguinte maneira (39): Com base em estímulos químicos (106), em demandas reflexas (183) ou em ambos, os centros respiratórios decidem a magnitude da ventilação necessária e através de informações adicionais enviadas pelos aferentes pulmonares proprioceptivos determinam a melhor combinação entre frequência e amplitude ventilatória capaz de alcançar o necessário volume ventilatório com o menor TR possível. Essa demanda é sentida na porção do sistema nervoso central responsável pelo controle dos músculos respiratórios a qual determina os que devem ser ativados e a tensão contrátil que devem desenvolver. Os músculos respiratórios se contraem e, não havendo aumento da resistência à ventilação, produzem a esperada modificação no tórax e consequentemente nos volumes pulmonares. Havendo porém diminuição da complacência pulmonar e ou torácica e ou aumento da resistência das vias aéreas, um arco reflexo monossináptico, iniciado a partir dos fusos musculares, via corno anterior da medula, e com dois tipos de fibras motoras interatuantes, alfa e gama, estas específicas dos fusos, opera no sentido de as fibras musculares desenvolverem mais tensão contrátil e alcançarem a ventilação adequada às novas necessidades (59, 162, 173). A contração das fibras musculares, com o consequente encerramento do fuso, aliava o estiramento do elemento sensível, cessando ou atenuando o estímulo aferente medular. Essa resposta é por demais rápida para dever-se a mediação química e não é afetada por vagotomia, atuando muito mais prontamente que o controle humorai baseado nos gases e no pH sangüíneos, mantendo-os e ao meio interno em níveis tão constantes quanto possível (39).
Ventilação em exercício. O aumento da ventilação que ocorre com o exercício resulta de modificações nos componentes nervoso e humoral de controle ventilatório (42, 54, 97). Ao iniciar-se o exercício há aumento imediato da frequência e da amplitude ventilatória que ocorrem rápido demais para deverem-se a agentes humorais. Tais alterações são atribuídas a impulsos nervosos a partir dos centros respiratórios, provavelmente secundários a descargas corticais sobre os mesmos. Provavelmente também estimulam a respiração impulsos proprioceptivos a partir dos músculos ativos. Durante os primeiros minutos de exercício discreto ou moderado a ventilação aumenta até atingir um valor estável que é função linear do gasto energético. A maior parte desse aumento deve-se a estímulo hipóxico dos quimiorreceptores periféricos; o restante é devido ao gás carbônico e ao hidrogênio, que potenciam a hipóxia mas podem atuar em sua ausência, principalmente sobre a formação reticular respiratória. Durante exercício extremo a ventilação aumenta desproporcionalmente ao metabolismo. Essa mudança é mediada através do componente humorai de várias maneiras (42, 54, 97, 106): a) reforço do estímulo quimiorreceptor pela adrenalina ou outro agente; b) hiperacidemia, secundária à produção de ácido láctico pelos músculos exercitados; c) aumento da temperatura corporal; d) aumento do nível de sensibilidade da formação reticular respiratória. Esses fatores são grandemente influenciados pelo estado de treinamento físico e o débito cardíaco do indivíduo. Ao findar-se o exercício, a interrupção abrupta do componente neurogênico causa uma imediata e substancial redução ventilatória, sen do o seu subsequente declínio aos níveis de repouso governado pela velocidade de restabelecimento do componente humorai (54).

2 - A SENSAÇÃO DE DISPNEIA

Conceito. Dispneia, a mais marcante e angustiante sensação de limitação física por comprometimento anatômico e ou funcional cardíopulmonar, tem como definição mais aceita pelos fisiopatol
logistas aquela proposta por Meakins (128) em 1934, ou seja, a consciência da necessidade de um esforço respiratório aumentado. Fica implícito nesses termos a subjetividade do seu reconhecimento pelo paciente. Logo, não pode existir nos estados de inconsciência, por maior que seja o comprometimento respiratório. Muitas vezes acompanha mas não se liga obrigatoriamente à hiperpnéia (amplitude ventilatória aumentada com frequência normal ou alta), à taquipnéia (frequência ventilatória aumentada com amplitude normal), à polipnéia (amplitude ventilatória diminuída com frequência aumentada), à hiperventilação (ventilação além das necessidades metabólicas), à hipoventilação (ventilação aquém das necessidades metabólicas), à ponopnéia (ventilação dolorosa) (71, 86, 87, 107, 127). Pode manifestar-se do mais intenso exercício ao mais absoluto repouso, desenvolvendo-se ao longo de anos ou surgindo repetidamente, e, conforme a origem, assumir a forma de ortopnéia (posição característica para aliviar a dispnéia das congestões pulmonares), de trepopnéia (posição característica para aliviar a dispnéia dos derrames pleurais), de respiração periódica (ritmos respiratórios anormais de distúrbios circulatórios, neurológicos e ácido-básicos) (149). Pode ainda ser predominantemente expiratória ou inspiratória, conforme as condições de sua fisiopatogenia. A partir de todas essas formas de apresentar-se, cuja consciência da necessidade de aumentar o esforço ventilatório é referida pelo paciente das mais diversas maneiras, como falta de ar, respiração curta, respiração difícil, sufocação, desde discreto desconforto até asfixia com agonia extrema, exterioriza-se a dispersabilidade cardiopulmonar em enfrentar as solicitações ventilatórias no momento considerado. Dispnéia pode ocorrer ainda em indivíduos normais ao realizar exercícios extremos para sua capacidade física. O nível da atividade provocadora do sintoma varia largamente com idade, sexo, superfície corporal, treinamento, condições ambientais e emocionais. Só indica doença ao ocorrer numa atividade abaixo do esperado ou do já experimentado antes. Discreta dispnéia em determinado grau de exercício para um atleta treinado pode representar maior comprometimento cardíaco e ou pulmonar que dispnéia moderada ou intensa pa
ra um indivíduo sedentário desacostumado à mesma sobrecarga.

Subjetividade. A subjetividade da dor tem sido comparada com a da dispneia, tendo a primeira receptores periféricos, vias aferentes e projeções centrais bem determinadas, e sendo ainda específica da como profunda, urenente ou dolente. Dispneia, ao que tudo indica um sintoma mais complexo, estimulado a partir de vários receptores, com maior número de aferentes e de centros integrativos, é geralmente usada como termo único para descrever diversos tipos de sensações, em que participam graus variados de fadiga, fraqueza, doença, apreensão, angústia. Seja como for, sua subjetividade, tal como para a dor, o frio ou a fome, é assegurada por uma base neuroanatômica, com componentes centrais e periféricos. Receptores sensoriais, vias aferentes, centros talâmicos e corticais são responsáveis pela percepção do desconforto ventilatório e pela reação a esse estímulo (149). Como no caso da dor, um paciente pode sentir pouca (mínimo estímulo sensorial) mas sofrer muito (máxima resposta central) ou sentir muita dor (máximo estímulo sensorial) e sofrer pouco (mínima resposta central), com gama infinita de variações, outro pode ter pequena dificuldade respiratória (mínimo estímulo sensorial) mas muita dispneia (máxima resposta central) ou muita dificuldade respiratória (máximo estímulo sensorial) e pouca dispneia (mínima resposta central). A resposta a uma mesma dificuldade respiratória manifesta-se, assim, individual e emocionalmente por maior ou menor desconforto, dentro de uma faixa cuja média se relaciona, via de regra, a uma correspondentemente maior ou menor sensibilidade ao aumento do esforço respiratório pelo paciente considerado (29, 31, 63, 64, 138, 145, 150).

Interrogações. Embora o denominador comum de todas essas sensações seja o desconforto respiratório, qualquer pessoa pode perceber que apnêia, res trição torácica, respiração contra um tubo estreitado, sufocação, exercício extenuante, graus variáveis de aumento ventilatório não são sentidos de igual maneira, o que também é verdade para pacientes entrevistados com vários tipos de doenças torácicas ou
neurológicas (101, 149). Também, em todos os casos, uma muito grande variedade de influências ambientais e orgânicas, combinadas com as condições emocionais e psicológicas do momento, alteram grandemente a sensibilidade ao estímulo (29, 31, 63, 64, 138, 145, 150). Não está completamente respondido se o desprazer de todas essas sensações é mediado pelos mecanismos comuns que servem ao ato ventilatório ou por mecanismos especiais, ou se representa distúrbio qualitativo ou quantitativo, muito provavelmente representando ambos: Especula-se (39) se a sensação se deve aos mesmos mecanos ou quimiorreceptores que atuam em condições normais, se se deve a descargas excessivas dos centros respiratórios a atingirem áreas da consciência, se é causada pela ativação de receptores especiais a impulsionar diretamente centros conscientes ou respiratórios, se depende da modificação do padrão de impulsos para mais, para menos, ou assimétricamente. Ainda há dúvidas se tais receptores são peribrônquicos, alveolares, arteriais pulmonares, parenquimatosos, pleurais, ósseos, articulares, ligamentosos, musculares, tendinosos, se são receptores para tosse, químico, termo, baro ou tensorreceptores, sensíveis à retração, à distensão, à mudança de volume, de posição, correndo suas fibras pelo vago, pelo simpático ou pelos nervos somáticos. O mais provável é que a maioria dessas estruturas representa um papel na complexidade do sintoma. É certo, porém, que influências sobre todos os níveis do sistema nervoso, desde os músculos até a corticalidade, atuam de maneira muito definida sobre o ato ventilatório e a maneira de percebê-lo.

3 - INFLUÊNCIAS NEUROLÓGICAS SOBRE A SENSAÇÃO VENTILATÓRIA

Segundo Plum (149), experiências com doenças neurológicas sugerem ser a percepção sensorial da dispneia mais relacionada com descargas de estruturas centrais que com estímulos periféricos. O efeito dessas doenças sobre a respiração e a capacidade de senti-la dependem antes da distribuição das lesões que da especificidade da doença. Desde os múscules...
culos respiratórios, passando pelos nervos periféricos, medula, bulbo, ponte, diencéfalo e córtex, o ato respiratório e a sensação sofrem influências peculiares e específicas.

Músculos e nervos periféricos. Em alguns casos, o grau da dispneia se relaciona mais aos músculos comprometidos que à magnitude da ventilação (149): para um mesmo grau de comprometimento ventilatório, a paralisia do diafragma produz muito maior dificuldade respiratória que a dos intercostais e acessórios. São invocadas três possíveis explicações para esse fato, que dever-se-ia ou a diferentes eficiências dos músculos comprometidos, ou à especificidade de aferentes sensoriais ou à atividade de estruturas centrais condicionadas especificamente. Esses achados são consistentes com a origem central da sensação, se considerar-se que o padrão da descarga respiratória supraespinhal é relativamente imutável. O efeito da paralisia muscular torácica implica em que ao menos parte da satisfação respiratória provém da contração muscular, uma vez que costuma ocorrer desconforto por demanda ventilatória acima das necessidades metabólicas, mesmo se tais pacientes forem ventilados artificialmente, tornando-se evidente que o desejo para respirar não se neutraliza devido à inapropriada atividade periférica retrógrada (45, 138, 145).

Medula e bulbo espinal. Pacientes com lesões medulares apresentam-se incapazes de detectar resistência externa à via aérea. A constatação de que, em animais, as vias aferentes dos receptores articulares torácicos, ao situarem-se numa mesma zona que a da lesão medular, comprometem a detecção de resistência aérea, sugere que isso se deve a perda de informação desses mesmos receptores (50). Lesões que afetam a porção caudal do quarto ventrículo comprometem ou destroem o automatismo respiratório, sem qualquer sensação acompanhante de dificuldade ventilatória, desenvolvendo esses pacientes hipoventilação crônica, porém responsiva a solicitações voluntárias, o que configura quadro clínico idêntico ao da síndrome de hipoventilação dita primária (71). Ressalte-se que muitos pacientes com hipoventilação crônica por paralisias torácicas de várias origens e
importante comprometimento da mecânica ventilatória tornam-se capazes de tolerá-la sem sentir dispnéia (149).

Ponte e diencéfalo. Disfunção do segmento caudal do segmento pontino induz arritmia respiratória grave que inclui apnéia (149). Em grau menos grave, produz reduzida resposta ao estímulo hipercapeâmico, com falha acompanhante do controle rítmico respiratório. O fato de que doença neurológica do tronco cerebral inferior não só destrói o ato respiratório mas também a sensação de dispnéia sugere que a mesma se relaciona de algum modo a descargas de centros medulares. Destruição da ponte produz coma e hipernéia. Danificação diencéfálica resulta em grande hiperventilação permanente, especialmente se as lesões se situarem na parte média da formação reticular. (149)

Cortex cerebral. Doença afetando os hemisferios cerebrais produz três tipos de anormalidade (149): a) compromete o controle voluntário da ventilação; b) ocasiona apnéia pós-hiperventilação; c) remove influências corticais inibitórias sobre estruturas subcorticais. Dessa forma, a doença cerebral aumenta a instabilidade potencial do ato respiratório, provocando respiração periódica tipo Cheyne-Stokes. O efeito inibitório da córtex cerebral sobre a respiração foi descoberto por Heyman, Birchfield e Sieker (100) ao notarem anormalmente agudas as curvas de resposta ventilatória ao gás carbônico, em pacientes com infarto cerebral bilateral. Resposta similar ocorre em animais após a remoção do cérebro.

4 - MODIFICAÇÃO DA SENSIBILIDADE AO DESCONTO FORTO RESPIRATÓRIO

Experimentações em humanos demonstram várias influências capazes de modificar a percepção ao estímulo ventilatório. As mais significativas são o exercício, a corticalidade e o bloqueio nervoso.

Exercício. Kontos, Shapiro e Patterson
(109) demonstraram que o nível de ventilação alveolar requerido para produzir desconforto ventilatório após inalação de CO₂ é significativamente menor em repouso que durante exercício. Um indivíduo respirando mistura de CO₂ com ar tornou-se dispneico com ventilação de 49 l/min. mas, quando exercitado, o nível correspondente foi de 64 l/min. Em outros, esses números foram respectivamente de 40 e 73, 37 e 59, 31 e 55 e 19 e 44. Todos toleraram maiores frequências respiratórias em exercício que em repouso. Comportamento similar também é verdadeiro para a dor. Atribui-se à liberação de catecolaminas papel importante na modificação da sensibilidade das estruturas centrais ao estímulo ventilatório (97).

Corticalidade. A corticalidade é capaz de exercer controle voluntário sobre o ato respiratório (63, 64), sobrepassando o mecanismo involuntário de controle central e alterando transitoriamente a atividade automática através de estímulos atuantes sobre a mesma. Muitos indivíduos com doença cardíopulmonar ausente, discreta ou moderada queixam-se de dispnéia incapacitante (21). A quase totalidade apresenta características psicopáticas, seja psicose depressiva, seja personalidade obsessiva, com grande ansiedade, tensão e insegurança. Em inúmeros, a tensão se transfere aos músculos respiratórios, mantendo-os incompletamente relaxados, dando a esses indivíduos sensação quase constante de incapacidade inspiratória. Outros cultivam a invalidez respiratória como forma de compensação familiar, profissional ou por iatrogenia. Em outros grupos, ainda, a presença e a magnitude da dispnéia correlaciona-se com crises interpessoais, familiares, profissionais. Também, um contingente apreciável de inválidos respiratórios, permanentemente ou em crises, são portadores de disritmia cerebral, evento associado frequentemente à asma brônquica (89).

Bloqueio nervoso. Smith, numa experiência (citado em 40), submeteu-se à curarização e cons tatuou dispnéia, mesmo em presença de adequadas oxigenação e ventilação pulmonar artificial, relaciona da às características ventilatórias do momento. Posteriormente, observou fenômeno similar em pacientes com paralisia respiratória parcial por anestesia es
piñal alta, sugerindo que a sensação respiratória desconfortável pode ocorrer a despeito de oxigenação e ventilação normais, devido a distúrbio do padrão e sequência dos impulsos cinéticos iniciados a partir da musculatura respiratória. Eisele e cols. (58) e Guz e cols. (93, 94) observaram em dois indivíduos voluntários que bloqueio vagal aumenta o tempo de apneia em todos os volumes pulmonares, atenua a sensação de urgência respiratória, mesmo que haja grande hipercapnia, mas não prejudica a capacidade de detectar aumento de resistência ventilatória, demonstrando que as duas sensações são diferentes. Foi constatado nesses indivíduos normais e em um paciente com sarcoidose que em pequenos volumes pulmonares o desconforto ventilatório transita pelo vago, não tendo sido evidenciado o reflexo de deflação nos normais. O estímulo pode chegar a consciência ou pode ser que a apneia inicie a sensação a partir dos músculos respiratórios e não dos pulmões o que é sugerido por Campbell e cols. (30) ao demonstrarem que paralisia muscular consequente à curarização permitiu que um indivíduo mantivesse apneia por 240 segundos sem desconforto respiratório paralelo. Gold e Nadel (81) estudaram um homem com dispneia incapacitante em exercício devido a doença pleural localizada, associada a vago desconforto no hemitórax direito. Bloqueio anestésico dos nono e décimo nervos intercostais direitos aboliu no momento e ainda meses após a sensação de dispneia. Provavelmente a mesma originou-se de impulsos aferentes de receptores sensoriais dos músculos intercostais com movimentos restringidos, e não em consequência de hiperventilação, pois, exceto para pequeno espessamento pleural, pulmões e tórax não apresentavam anormalidades nem de resistência nem de complacência.

5 - CLASSIFICAÇÃO DAS CAUSAS DE DISPNEIA

Os multiformes mecanismos de desconforto ventilatório podem ser reunidos em três grupos de sensações afins, segundo Fletcher (68) (Quadro I). O primeiro grupo deve-se a aumento ventilatório normal, com aumento do consumo de oxigênio. O segundo deve-se a dificuldade respiratória por mecanismos
obstrutivos e ou restritivos com consumo de oxigênio normal ou baixo. O terceiro deve-se a necessidade ventilatória por paralisia ventilatória parcial ou total ou por apneia voluntária ou involuntária, com baixo consumo de oxigênio.

QUADRO I

CAUSAS DE DISPNÉIA

I - Aumento ventilatório (com aumento do consumo de oxigênio)

1. Normal - hiperpnéia (exercício)
2. Anormal - hiperventilação
 a) respostas orgânicas (gravidade, obesidade, anemia, febre)
 b) respostas metabólicas (acidose)
 c) respostas reflexas (fibrose, estenose mitral, pneumonia, infarto, pleuriz)
 d) respostas psicogênicas (síndrome de hiperventilação)

II - Dificuldade ventilatória (com ou sem aumento do consumo de oxigênio)

1. Insuficiência ventilatória obstrutiva (asma, bronquite, enfisema, corpo estranho)
2. Insuficiência ventilatória restritiva (ci-foescoliose, fibrose, estenose mitral, insuficiência ventricular esquerda)

III - Necessidade ventilatória (com diminuição do consumo de oxigênio)

1. Insuficiência ventilatória neuromuscular (poliomielite, miastenia, curare)
2. Apneia (voluntária, depressão medicamentosa, lesão neurológica, miopatia)

6 - CONSCIENTIZAÇÃO DA DISPNÉIA

Várias teorias (30, 40, 120, 154, 181,
187) têm sido propostas para explicar a conscientização da sensação respiratória. Fundamentalmente, se dividem em: 1) Aumento do trabalho respiratório; 2) Isquemia dos músculos respiratórios; 3) Estímulo excessivo dos centros respiratórios; 4) Desproporcionalidade entre solicitação e ventilação.

1) **Aumento do trabalho respiratório** - Provavelmente na primeira tentativa de explicar a conscientização da dispneia, Gad, em 1880 (citado em 40), sugeriu que a mesma ocorreria por dispêndio inútil de energia, após notar que vagotomia aumentava consideravelmente o esforço dispensado em relação à ventilação produzida, a qual apesar disso, não aumentava ou mesmo diminuía. Concluiu esse autor que o controle vegetal sobre o ato ventilatório tornava-o efetivo com mínimo dispêndio de energia. Christie e cols. (34-36) e Marshall e cols. (120) demonstraram que a dispneia em exercício relaciona-se com o pico da pressão intrapleural inspiratória a qual, por seu turno, é função da força contrátil exercida pelos músculos respiratórios, popularizando o conceito de que dispneia aparece quando o trabalho respiratório (TR) excede certo limite. O surgimento de dificuldade ventilatória é quase constante em todas as condições cardiopulmonares que aumentam o TR, seja por mecanismo obstrutivo, seja por mecanismo restrictivo, pulmonar ou torácico. Usado conforme estritamente definido em física, o TR não se relaciona com dispneia em todos os casos, pois em muitos a presença do sintoma é constatada com ausente ou pequeno aumento do TR, e, em outros, o TR, em termos matemáticos, pode ser nulo, desde que, por exemplo, obstrução total das vias aéreas impeça contração muscular. Nesses casos, os músculos torácicos podem desenvolver muita força, com grande consumo de oxigênio, sem correrem nenhuma distância, transformando a equação do TR baseada em força (pressão) x distância (volume) em força x 0. Até conseguir-se uma definição mais aceitável para trabalho muscular, incluindo também esforço estático, é melhor relacionar dispneia diretamente com a força agindo sobre o pulmão ou a caixa torácica ou com o consumo de oxigênio devido ao esforço respiratório. Mesmo assim, este conceito não explica a dispneia dos pacientes com paralisia muscular e ventilação adequada através de ventiladores.
artificiais.

2) Isquemia dos músculos respiratórios –
Em 1950, Harrison (96) propôs que a dispnéia seria conscientizada sempre que o TR excedesse a capacidade de circulatória de suprir os músculos ventilatórios com oxigênio e de remover catabolitos locais. Estímulos de receptores musculares sensoriais enviariam impulsos a centros da consciência. O mais importante estímulo humoral da ventilação a partir de músculos inadequadamente perfundidos deve-se à lactacidemia resultante de metabolismo anaeróbio (124). Mas é somente no exercício severo que a anaerobiose assume papel importante, sendo possível detectar um limiar de exercício abaixo do qual lactato não se acumula nos músculos e acima do qual acidose se desenvolve. Esse limiar é alto nos indivíduos bem treinados fisicamente, menor nos não treinados (124, 178) e menor ainda nos com insuficiência cardíaca, os quais para um mesmo TR têm um custo ventilatório de oxigênio duas vezes maior que os normais, o que demonstra a reduzida eficiência dos músculos respiratórios nessas condições (124). A hiperventilação resultante aumenta o TR, tanto mais sentido quanto mais grave a disabilidade respiratória. Alguns negam e outros sugerem a existência de receptores intramusculares relativos ao suprimento sangüíneo inadequado e também à elevação da temperatura local (124). Nos pacientes com insuficiência cardíaca, a lentidão circulatória prolongaria o tempo de exposição dos receptores aos estímulos. Marshall (Discussão em 124) explica o aumento da ventilação quatro vezes maior para os braços que para as pernas, para um mesmo trabalho muscular, como evidência de estímulo neurogênico, o que nem todos aceitam. A importância do estímulo periférico pode ser exemplificada por duas situações opostas: a) Larsson e cols. descreveram (citado em 124) uma mialgia metabólica hereditária com mioglobinúria paroxística devida à glicólise anormal, em que os aparelhos circulatório e respiratório são normais mas há sério comprometimento da utilização de oxigênio pelos músculos esqueléticos, ocorrendo importante lactacidemia, hiperventilação, dispnéia, taquicardia e palpitações em níveis de trabalho físico comparáveis às aqueles em que pacientes com insuficiência cardíaca...
interrompem exercício; b) ao contrário, na síndrome de Mc Ardle (122, 160) há uma deficiência específica da enzima miofosforilase B nos músculos, comprometendo seriamente a transformação de glicogênio em lactato, e o estímulo humorlal, tão saliente nos casos anteriores, torna-se nulo. Mc Ilroy (124), estudando em exercício um paciente com essa síndrome, sem e com infusão prévia de substrato, observou que o mesmo, no primeiro caso, não desenvolveu dispnéia, apesar do aumento ventilatório e da frequência cardíaca, o que indicaria estímulo neurogênico da ventilação, sendo a atividade limitada por contraturas e caibras musculares; no segundo caso, a hiperventilação e a taquicardia foram menores para o mesmo exercício, sugerindo que o estímulo durante trabalho sem infusão de substrato provém de músculos inadequadamente perfundidos. Embora sirva para explicar muitos casos de dispnéia, esta teoria não explica a que ocorre por obstrução vascular pulmonar ou por paralisia dos músculos respiratórios.

3) Estimulação excessiva dos centros respiratórios — Um terceiro conceito, baseado no reflexo de Hering e Breuer, foi proposto por Wright e Branscomb (187) em 1954 e subsidiado posteriormente por experiências de Fowler (69). Sugere os autores da teoria que dispnéia dever-se-ia ou à descarga intensa e prolongada dos centros inspiratórios ou a anormalmente fracos estímulos inhibitórios dos receptores proprioceptivos pulmonares sobre os mesmos, tornando sua atividade perceptível à consciência. Apnéia não conduz imediatamente à dispnéia mas após um certo tempo suficiente para elevar a PaCO₂ a cerca de 70 mmHg e baixar a PaO₂ a cerca de 40 mmHg (69). Entretanto, nesse ponto, a urgência respiratória é aliviada por inspiração profunda de mistura de 7,4% de CO₂ em nitrogênio. A inspiração profunda também alivia dispnéia em indivíduos exercitando-se com restrição respiratória extratorácica. Este conceito deixa de explicar muitos casos de respiração difícil que ocorrem na ausência de restrição inspiratória ou mesmo em presença de ventilações amplas e rítmicas. Além disso, deve considerar-se que (93, 94, 183): a) a efetividade do reflexo de Hering e Breuer nos adultos é questionada, embora a
tue nos recém-nascidos e em pneumopatias restritivas; b) estas experiências foram realizadas em baixos volumes pulmonares, capazes de gerar estímulos vagais que não ocorrem em volumes maiores; c) pode ter havido alteração da substância tensioativa produzindo colapso alveolar; d) indivíduos treinados conseguem manter apnéia por maiores períodos, se inibirem os centros respiratórios medulares com deglutições repetidas.

4) Desproporcionalidade entre ventilação e solicitação - Baseados em experiências para determinar a habilidade de indivíduos normais em detectar cargas mecânicas adicionadas à respiração, Campbell e Howell (29-32, 101), em 1961, lançaram aquela que parece ser, até o momento atual, a mais consistente teoria para explicar a conscientização da dispnéia. Acreditam que a mesma provém de um desequilíbrio entre a demanda ventilatória com origem central (desenvolvimento de tensão muscular) e a ventilação realmente produzida (modificação no comprimento muscular). Estimulados por quimiorreceptores, por centros superiores, por aferentes proprioceptivos, os centros respiratórios medulares reguladores da frequência e da amplitude ventilatória mandariam proporcionais impulsos aos neurônios motores, produzindo tensão e encurtamento muscular, tensão nos tendões, deslocamento posicional das articulações, maior negatividade da pressão intrapleural e variação dos volumes pulmonares. A ventilação alcançada seria sentida através de receptores aferentes proprioceptivos sensíveis à distensão pulmonar (sinalizando modificação nos volumes pulmonares) ou, mais provavelmente, através de receptores aferentes com projeção subcortical ou cortical, situados nas cápsulas articulares (sinalizando modificação nos volumes torácicos), ou também a partir dos fusos musculares, através dos neurônios alfa e gama, de maneira não completamente esclarecida, enquanto que receptores tendinosos sinalizariam modificações na tensão muscular, restritas apenas a nível segmentar medular. Esta teoria pode ser considerada um denominador comum a englobar as fragmentárias explicações propostas pelas anteriores. Consegue, assim, explicar, além dos casos de anormalidade ventilatória res
tritiva ou obstrutiva, dispneia desacompanhada das mesmas, como a da hiperventilação do exercício ou altitude, como a da paralisia medicamentosa ou patológica dos músculos torácicos (45), sempre por demanda neural inadequada para o encurtamento muscular necessário. Pensam os autores que níveis subconscientes, condicionados por experiências prévias, compararam relações de ventilação com atividade, demanda ventilatória com ventilação alcançada, expansão torácica conseguida com tensão muscular exercida e, detectando desproporcionalidade entre o obtido e o esperado além de certo limite, a informação atinge a consciência ou permanece em níveis subconscientes, tornando-se desconfortável quando excessiva. As vantagens desta teoria sobre a do TR aumentado são (32): a) a baseada em aumento do TR não se adequaria à detecção de cargas adicionais porque sensação de TR de desacompahhada de outra informação não poderia distinguir ventilação aumentada com carga normal de ventilação normal com carga aumentada; b) carga aumentada até o extremo de impedir modificação ventilatória transforma o TR em zero mas não prejudica a sensação de impropriedade; c) mecanismo neural para apreciação de componentes do TR seria necessariamente mais complicado que aquele para avaliar proporcionalidade ou desproporcionalidade entre comprimento e tensão. "Estatuída de uma forma geral a teoria da proporcionalidade meramente sugere que certas sensações podem requerer comparações entre dois tipos de informação ou que as sensações geradas por tais comparações podem ser mais fortes ou mais reais que o conteúdo separado dos dois tipos de informação" (32).

Apreciação global. As teorias mencionadas, particularmente a última, respondem pela explicação da grande maioria dos casos de dispneia, que, ainda assim, fica sem ser explicada convincentemente em alguns indivíduos normais e doentes. O mais provável, como ocorre em tantas outras situações, é que não exista uma única maneira de ver e de abordar o problema, ainda mais que não existe uma única sensação de dispneia mas muitas sensações de dificuldade ventilatória. É verdade que isso não exclui a possibilidade de um mecanismo comum, porém, representando
7 - QUANTIFICAÇÃO VENTILATÓRIA DA DISPNÉIA

Tentativas de quantificar a dispnéia

Sendo a dispnéia uma sensação subjetiva, mas na maior parte dos casos ligada a esforço ventilatório, que, por sua vez, depende de diversos tipos e graus de comprometimento anatomo-funcional dos pulmões, e cebíbel, e várias indicações experimentais e clínicas apontam nesse sentido, que alterações de parâmetros funcionais pulmonares mensuráveis em laboratório correlacionem com a intensidade do sintoma. Em outras palavras, na maioria dos casos existe uma ou mais anormalidades mensuráveis que aumentam o esforço ventilatório e também nessa maioria o grau de dispnéia se relaciona com o grau de anormalidade encontrada. Exploramos a seguir as etapas que consideramos mais importantes no estabelecimento dessa correlação clínico-funcional: Desde que os volumes pulmonares começaram a ser quantificados por Hutchinson (102), em 1846, vêm sendo feitas tentativas de medir a capacidade funcional dos pulmões e correlacioná-las com os sintomas apresentados. No seu trabalho pioneiro, Hutchinson (102) que criou a expressão "capacidade vital" relacionou-a no indivíduo normal principalmente com a altura, informando que aquele volume decresce com a idade, com excesso de peso e com pneumopatia, estabelecendo prognósticos. Porém, o relacionamento desse parâmetro funcional pulmonar com a dispnéia só foi considerado seriamente por Peabody (146, 147), em torno de 1916, que também estudou aspectos da ventilação desses pacientes.
(147). O uso da capacidade vital forçada como índice ventilatório da dispnéia foi antecipado por Strohl em 1919 (citado em 41). Em 1932, a mensuração da capacidade ventilatória máxima foi introduzida como teste dinâmico de função pulmonar por Jasen, Knipping e Stromberger (citado em 41), e Hermannsen (98), pela primeira vez, em 1933, mediu a ventilação voluntária máxima, antecipando sua correlação com a sensação de dispnéia. Em 1934, Christie e cols. (34, 35) exploraram e determinaram o papel das alterações da complacência pulmonar no desenvolvimento da dificuldade respiratória. Cournand, Richards e Darling (46, 48) popularizaram a partir da década de quarenta a medida espirométrica da ventilação pulmonar, introduziram várias técnicas e novos conceitos, demonstrando que a reserva de ventilação, ou seja, a diferença entre a ventilação voluntária máxima e o volume minuto respiratório, expressada percentualmente em relação à primeira, era provavelmente o melhor índice funcional pulmonar mensurável capaz de correlacionar com a dispnéia originada por doença pulmonar (46). A mensuração do fluxo aéreo através da curva espirométrica foi introduzida por Tiffeneau (176, 177) e Gaensler (75) e, vem sendo usada cada vez mais como um índice muito válido de quantificação funcional pulmonar, com a vantagem de ser um teste realizável em uma única manobra (1, 3, 22-27, 33, 72, 78, 144, 168, 186). Em 1964, Wilson e cols. (186) delinearam várias fórmulas baseadas em correlações entre parâmetros clínico-funcionais de indivíduos normais e pneumopatas, estabelecendo e propondo uma classificação capaz de definir por esses meios o grau de disabilidade pulmonar, o qual mostra muito boa correlação com a dispnéia do paciente com doença pulmonar obstrutiva crônica.

Nós mesmos, através de trabalhos anteriores (83-85, 88, 91), estudando a associação entre grau de dispnéia e nível de reserva ventilatória em cerca de duzentos indivíduos concluímos que: a) há associação negativa entre grau de dispnéia e nível de reserva ventilatória em indivíduos portadores de insuficiência ventilatória; b) nos normais, a reserva ventilatória situa-se numa faixa alta e estreita, em média 95%, excepcionalmente caindo abaixo de 90%; c) entre 90% e 70% de reserva ventilatória situam-
se os indivíduos com dispnéia aos grandes, médios e pequenos esforços; d) há diferença quanto à reserva ventilatória entre os diversos graus de dispnéia de esforço; e) indivíduos com reserva ventilatória inferior a 70% costumam apresentar dispnéia em repouso; f) nos casos de insuficiência ventilatória obstrutiva e restritiva, o comportamento da reserva ventilatória relativa à dispnéia é até certo ponto semelhante, situando-se porém o nível da reserva, no caso da restritiva, cerca de 5 a 10% acima da obstrutiva para o mesmo grau clínico de dispnéia; g) as conclusões acima são válidas principalmente para grupos, e estatisticamente significantes para um alfa de 0,1%.

É claro que nenhum teste de capacidade mecânica ventilatória mede o sintoma dispnéia em si mas algumas das alterações que o provocam. Afortunadamente para o fisiopatologista a correlação entre essas alterações e o sintoma costuma ser muito estreita nas doenças cardiopulmonares, que são as que mais lhe interessam quanto ao diagnóstico, prognóstico e determinação de capacidade laborativa.

8 - PROPÓSITO DO PRESENTE ESTUDO

Nos trabalhos citados não ficou definido, entretanto, se a associação entre dispnéia e outros parâmetros de função pulmonar seria maior ou menor que a já evidenciada para com a reserva ventilatória. Por outro lado, seria interessante do ponto de vista utilitário e econômico o estabelecimento de um valor de simples mensuração, capaz de manter alta correlação com o grau de dispnéia do paciente, se possível tão ou mais expressivo que a medida da reserva ventilatória, usando, por exemplo, a curva expiratória forçada, sem necessitar realizar-se a manobra de ventilação voluntária máxima ou utilizar-se as relativamente complicadas fórmulas para determinar o grau de disabilidade pulmonar, ambos sujeitos a influência de maior número de variáveis, mais demorados de determinar e capazes de representarem maior cansaço para o paciente e o examinador.
Coloca-se assim em foco um problema de pesquisa de alcance ao mesmo tempo doutrinário e prático, qual seja, a investigação do comportamento de múltiplos parâmetros funcionais pulmonares em várias dos tipos e categorias de insuficiência ventilatória obstrutiva e restritiva, com a finalidade de esclarecer-se se permitem quantificar, com maior ou menor acurácia que a reserva ventilatória: a) aparecimento de dispneia de esforço; b) associação e ou correlação com diferentes graus de dispneia de esforço; c) associação e ou correlação com aparecimento de dispneia de repouso; d) distinção funcional para um mesmo grau de dispneia se por insuficiência ventilatória obstrutiva ou restritiva.

Com esses objetivos em mira, planejamos estudo prospectivo para estudar a quantificação ventilatória da dispneia na insuficiência ventilatória obstrutiva e na insuficiência ventilatória restritiva.
...
II - DELINEAMENTO EXPERIMENTAL

1 - PACIENTES

Características gerais. Estudaram-se duzentos e setenta indivíduos, cento e oitenta com insuficiência ventilatória obstrutiva (IVO), setenta com insuficiência ventilatória restritiva (IVR) e vinte normais (NIS). As idades variaram de treze a oitenta e sete anos, sendo duzentos e vinte do sexo masculino e cinquenta do sexo feminino. Os pacientes com insuficiência ventilatória apresentavam diversos graus clínicos de dispneia. As tabelas Ia, Ib e Ic expõem as principais características biométricas desses indivíduos.

Origem. Todos foram encaminhados para estudo funcional no Laboratório Cardio-Pulmonar do Service Central de Cardiologia da Santa Casa de Misericórdia de Porto Alegre, ligado ao Departamento de Medicina Interna da Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, ou por seu médico assistente, ou por órgão pericial, ou, quando hospitalizado, por solicitação do médico-visitador do leito, para quantificação, diagnóstico e prognóstico funcional pulmonar. Os indivíduos normais eram apresentados por empregados do hospital, enfermeiros, estudantes de medicina e médicos-residentes, procurando-se evitar pessoas ligadas ao laboratório, devido a sua familiaridade com os testes.

Recomendações prévias. Solicitava-se aos fumantes e aos em uso de broncodilatador absterem-se, tanto quanto possível, do cigarro e do medicamento, pelo menos uma hora antes do exame, que geralmente era efetivado à tarde, no mínimo duas horas após uma refeição leve. Afora essas recomendações, os pacientes não mudavam seus hábitos de vida.

Identificação clínica. Chegando ao local do exame, após repouso em cadeira, geralmente de dez
a trinta minutos, eram entrevistados através de questionário padrão do Serviço, dando-se ênfase especial à profissão, hábito de fumar, sintomas respiratórios, atividade física, antecedentes profissionais, familiares e mórbidos. Após, realizava-se sumário e exame físico, constando de inspeção, palpação, percussão e auscultação cardíaca e pulmonar, examinando-se outro segmento corporal se julgado necessário. A maioria dos pacientes referia ou trazia consigo resultados de exames radiológicos, exames laboratoriais e eletrocardiograma, os quais, se ausentes, e havendo dúvida diagnostica, muitas vezes eram solicitados. Computava-se a idade relativa ao último aniversário e pesavam-se todos, com roupa leve, sendo medidos descalços, sempre na mesma balança. A altura e o peso, depois de descontado aproximadamente o do vestuário, eram registrados respectivamente em centímetros e em quilogramas, em relação à unidade mais próxima. Calculava-se a superfície corporal pela tabela de Dubois (56).

Caracterização da dispnéia. Dispensava-se especial atenção ao tipo e ao grau de dispnéia apresentado pelos pacientes, que era definido da seguinte maneira: a) **Dispnéia aos grandes esforços (DGE)**, aparecendo ao correr, ao subir ladeiras ou escadas ou ao praticar esportes em níveis comparáveis aos trabalhados por indivíduos da mesma faixa etária, com hábitos e características semelhantes, porém normais; b) **Dispnéia aos médios esforços (DME)**, aparecendo ao caminhar no plano com passo comparável ao de indivíduos normais na mesma faixa etária, com hábitos e características semelhantes, porém normais, mas podem do caminhar mil ou mais metros no plano no seu próprio passo; c) **Dispnéia aos pequenos esforços (DPE)**, aparecendo com os atos de banhar-se, vestir-se, falar ou caminhar mais de cem metros no plano; d) **Dispnéia em repouso (DRE)**, manifestando-se de maneira não paroxística mesmo na ausência de qualquer atividade física. A dispnéia em repouso quando presente não era de molde a impedir a consecução do exame. Categorizava-se a dispnéia em qualquer dos grupos levando em conta as manifestações no dia do exame.
TABELA 1a

CARACTERÍSTICAS BIOMÉTRICAS DOS INDIVÍDUOS COM IVO E DIVERSOS GRAUS DE DISPNÉIA

<table>
<thead>
<tr>
<th>IDADE (a)</th>
<th>ALTURA (cm)</th>
<th>PESO (kg)</th>
<th>SUPERFÍCIE (m²)</th>
<th>SEXO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPNÉIA (grau)</td>
<td>AV</td>
<td>M±DP</td>
<td>M±DP</td>
<td>AV</td>
</tr>
<tr>
<td>(c.v.)</td>
<td></td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
</tr>
<tr>
<td>DGE</td>
<td>16,0 a 68,0</td>
<td>146,0 a 178,0</td>
<td>44,0 a 85,0</td>
<td>1,39 a 2,00</td>
</tr>
<tr>
<td></td>
<td>44,5 ± 12,0</td>
<td>165,2 ± 6,8</td>
<td>65,6 ± 12,2</td>
<td>1,71 ± 0,17</td>
</tr>
<tr>
<td>(26,9)</td>
<td>(4,1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>13,0 a 76,0</td>
<td>147,0 a 184,0</td>
<td>35,0 a 92,0</td>
<td>1,25 a 2,15</td>
</tr>
<tr>
<td></td>
<td>47,4 ± 12,6</td>
<td>165,8 ± 8,2</td>
<td>59,7 ± 12,9</td>
<td>1,65 ± 0,19</td>
</tr>
<tr>
<td>(26,5)</td>
<td>(4,9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPE</td>
<td>18,0 a 87,0</td>
<td>146,0 a 186,0</td>
<td>32,0 a 108,0</td>
<td>1,09 a 2,23</td>
</tr>
<tr>
<td></td>
<td>54,4 ± 12,4</td>
<td>164,0 ± 8,5</td>
<td>58,7 ± 14,7</td>
<td>1,63 ± 0,21</td>
</tr>
<tr>
<td>(22,8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRE</td>
<td>16,0 a 73,0</td>
<td>150,0 a 178,0</td>
<td>35,0 a 87,0</td>
<td>1,35 a 2,01</td>
</tr>
<tr>
<td></td>
<td>51,5 ± 14,1</td>
<td>165,4 ± 7,2</td>
<td>55,3 ± 12,2</td>
<td>1,60 ± 0,17</td>
</tr>
<tr>
<td>(27,3)</td>
<td>(4,4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M±DP = MÉDIA ± DESVIO PADRÃO
c.v. = COEFICIENTE DE VARIAÇÃO (%)
CARACTERÍSTICAS BIOMÉTRICAS DOS INDIVÍDUOS COM IVR E DIVERSOS GRAUS DE DISPNÉIA

<table>
<thead>
<tr>
<th>DISPNÉIA (grau)</th>
<th>IDADE (a)</th>
<th>ALTURA (cm)</th>
<th>PESO (kg)</th>
<th>SUPERFÍCIE (m²)</th>
<th>SEXO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AV</td>
<td>M±DP (c.v.)</td>
<td>M±DP (c.v.)</td>
<td>M±DP (c.v.)</td>
<td>M±DP (c.v.)</td>
</tr>
<tr>
<td>DGE</td>
<td>13,0 ± 70,0</td>
<td>137,0 ± 183,0</td>
<td>36,0 ± 94,0</td>
<td>1,17 ± 2,05</td>
<td>16</td>
</tr>
<tr>
<td>DME</td>
<td>35,5 ± 17,2</td>
<td>163,8 ± 105,5</td>
<td>59,4 ± 14,8</td>
<td>1,63 ± 0,22</td>
<td>(13,5)</td>
</tr>
<tr>
<td>DPE</td>
<td>21,0 ± 49,0</td>
<td>152,0 ± 177,0</td>
<td>40,0 ± 82,0</td>
<td>1,33 ± 1,94</td>
<td>14</td>
</tr>
<tr>
<td>DRE</td>
<td>31,0 ± 8,6</td>
<td>163,7 ± 6,9</td>
<td>59,3 ± 11,3</td>
<td>1,63 ± 0,17</td>
<td>(10,4)</td>
</tr>
<tr>
<td></td>
<td>14,0 ± 59,0</td>
<td>132,0 ± 170,0</td>
<td>24,0 ± 136,0</td>
<td>0,96 ± 2,23</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>38,3 ± 13,8</td>
<td>157,3 ± 9,3</td>
<td>61,7 ± 24,7</td>
<td>1,60 ± 0,29</td>
<td>(18,1)</td>
</tr>
<tr>
<td></td>
<td>26,0 ± 55,0</td>
<td>148,0 ± 185,0</td>
<td>37,0 ± 75,0</td>
<td>1,26 ± 1,92</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>41,7 ± 12,8</td>
<td>164,0 ± 11,4</td>
<td>50,6 ± 13,1</td>
<td>1,54 ± 0,21</td>
<td>(13,6)</td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M±DP = MÉDIA ± DESVIO PADRÃO
c.v. = COEFICIENTE DE VARIAÇÃO (%)
<table>
<thead>
<tr>
<th>IDADE (a)</th>
<th>ALTURA (cm)</th>
<th>PESO (kg)</th>
<th>SUPERFÍCIE(m²)</th>
<th>SEXO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>M</td>
</tr>
<tr>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
<td>F</td>
</tr>
<tr>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td></td>
</tr>
</tbody>
</table>

21,0 a 54,0 149,0 a 184,0 46,0 a 103,0 1,36 a 2,13 15 5 20
30,2 ± 8,0 168,7 ± 8,8 64,3 ± 12,5 1,73 ± 0,37
(26,5) (5,2) (19,4) (21,4)

AV = AMPLITUDE DE VARIAÇÃO
M±DP = MÉDIA ± DESVIO PADRÃO
c.v. = COEFICIENTE DE VARIAÇÃO (%)
2 - MÉTODOS

Rotina de investigação funcional. Todos os indivíduos eram submetidos no mesmo dia a provas de função pulmonar (87) que constavam, na seguinte ordem de: a) Espirometria; b) Determinação do volume residual; c) Medida da distribuição da ventilação; d) Oximetria e ou gasometria arterial (148). O intervalo de repouso entre as diversas etapas mediam em torno de quinze minutos, durando a avaliação funcional completa cerca de duas horas, computados os intervalos de repouso. Outros testes de função pulmonar eram realizados adicionalmente em alguns casos. A grande maioria dos pacientes não tinha experiência prévia com os testes realizados, sendo a finalidade e as manobras executoras dos mesmos explicados claramente antes de sua realização. Durante a feitura das provas permaneciam somente o paciente e o examinador na sala de exame, assegurando-se a ambos as máximas condições de tranquilidade psíquica, acústica e visual. Todos os pacientes usavam grampo nasal para a execução dos testes, que eram repetidos pelo menos duas vezes, até satisfazerem a certeza de obter-se valores reproduzíveis numa faixa inferior a dez por cento de discrepância.

Espirometria. Era realizada num espirometro Collins de 13,5 litros de capacidade, de inscrição direta, deslocando-se o cilindro com a velocidade de 600 milímetros por minuto. O traçado espirométrico era registrado conforme especificações de Bo ren, Kory e Syner (15, 110) e adotadas por nós (87) e constava de determinações da capacidade vital, da capacidade vital forçada e da ventilación voluntária máxima, sendo as duas primeiras obtidas em decúbito supino e a última na posição sentada. A frequência respiratória e o volume de ar corrente eram medidos num gasômetro de Tissot de 120 litros de capacidade, respirando o paciente ar ambiente.

Determinação do volume residual. O volume residual pulmonar (158) era obtido descontando-se o volume de reserva expiratória, determinado pela espirometria, da capacidade residual funcional, medi-
da pela técnica de diluição do nitrogênio em circuí

to aberto de Darling e Cournand (49). Um analisador
"Med-Science" media a concentração desse gás nas di

versas etapas do processo.

Medida da distribuição da ventilação. A me
dida da distribuição intrapulmonar da ventilação e-
ra efetivada concomitantemente à determinação da ca
pacidade residual funcional, através do teste poli-
cíclico de sete minutos, determinando-se a concen-
tração do nitrogênio expirado forçadamente ao fim
desse tempo (44).

**Oximetria, gasometria arterial e pH e ou-
tros testes.** Oximetria, gasometria arterial e pH e-
ram realizados através de punção da artéria braquial
com agulha de Cournand ou agulha comum de injeção,
conforme técnica previamente decrita por nós (87, 90),
sendo a oximetria realizada num oxímetro "Keep-
Zonen" e a gasometria e medida do pH num aparelho
"Radiometer". Determinação do consumo de oxigênio,
da capacidade de difusão pulmonar, ergometria e ple-
tismografia eram realizados quando julgados necessa-
rios (87).

Cálculo dos resultados. Para calcular os
resultados espirométricos utilizou-se o maior dos
dois melhores desempenhos ou dos dois únicos, quan-
do considerados satisfatórios tecnicamente. Para cal-
cular-se a frequência respiratória, o volume de ar
corrente, o volume minuto e os demais parâmetros me-
didos utilizou-se a média dos dois desempenhos mais
basais ou dos dois únicos quando considerados satis-
fatórios tecnicamente. Os resultados eram calculados
de acordo com a especificação do fabricante para o
modelo do aparelho usado, sendo todos os valores vo-
lumétricos corrigidos para a temperatura de 37°C e ú-
ma atmosfera, com saturação de vapor água integral
para a temperatura (TCPS). Os valores finais obti-
dos eram expressos em termos absolutos nas unidades
convencionalmente adotadas e em termos percentuais
aos valores previstos pelas tabelas de Baldwin e
cols. (5), Kory e cols. (110) e Boren e cols. (15).

Seleção dos casos para análise. Dentre cer
ca de meio milhar de avaliações funcionais pulmonares pessoalmente realizadas por nós, conforme essas especificações, num total de cerca de mil e seiscentas no Serviço Central de Cardiologia da Santa Casa, foram selecionados sequencial e aleatoriamente (65, 169) casos que se enquadrassem rigidamente nos conceitos (5, 6, 44, 46, 60, 70, 87, 110, 155, 184) de insuficiência ventilatória obstrutiva (IVO), insuficiência ventilatória restritiva (IVR) e de normalidade (NIS), segundo as seguintes diretrizes:

1) IVO - Este grupo foi composto por cento e oitenta pacientes, sendo trinta com dispnéia aos grandes esforços (DGE), sessenta com dispnéia aos médios esforços (DME), cinquenta com dispnéia aos pequenos esforços (DPE) e quarenta com dispnéia em repouso (DRE), todos com achados funcionais característicos dessa situação (IVO). Três apresentavam silicose pulmonar, com obstrução branquica predominante, vinte e cinco asma branquica, e cento e quincenta e dois doença pulmonar obstrutiva crônica, distribuída entre os tipos A, B e X de Burrows e cols. (23) e PP e BB de Filley e cols. (62, 156).

2) IVR - Este grupo foi composto por setenta pacientes, sendo vinte com dispnéia aos grandes esforços (DGE), vinte com dispnéia aos médios esforços (DME), vinte com dispnéia aos pequenos esforços (DPE) e dez com dispnéia em repouso (DRE), todos com achados funcionais característicos dessa situação (IVR). Um apresentava blastomicose, dois apresentavam cifoescolioses, dois obesidade, dois eram pneumectomizados, dois tinham abcesso pulmonar, dois derrame pleural, dois hemotórax organizado, três sarcoidose, três insuficiência ventricular esquerda, cinco pneumoconioses diversas, oito paquípleuriz, doze estenose mitral pura, doze fibrose pulmonar intersticial e quatorze fibrose pulmonar consequente a tuberculose.

3) NIS - Este grupo foi composto por vinte indivíduos, entre estudantes de medicina, médicos-residentes e funcionários do hospital, não fumantes, com ausência de história de doença pulmonar crônica ou aguda durante o ano precedente ao teste, e inexistência de doença cardíopulmonar no exame físico, radiológico e eletrocardiográfico.
Análise dos resultados. Dos respectivos registros obtidos foram tabulados para análise os seguintes parâmetros especificados de acordo com a nomenclatura internacional (Quadro II): a) Volumes pulmonares (VAC, CV, VR/CPT); b) Parâmetros ventilatórios não-forçados (FR, VM, DV); c) Parâmetros ventilatórios forçados (VEF₁, FM-EF e VVM); d) Grau de disabilidade pulmonar (GDP), Reserva ventilatória (RV) e Reserva ventilatória "indireta" (RVi). Este último termo foi assim chamado por ser obtido usando o produto do VEF₁ do paciente respectivo pela média do cociente VVM encontrado em todos os casos analisados, determinando-se dessa forma indiretamente a VVM, como tem sido sugerido na literatura (10, 19, 27, 78, 99).

Todos os valores expostos no Quadro II foram analisados quanto às suas diferenças estatísticas, por análise de variância, (65, 169) estabelecendo-se correlações entre alguns, com a finalidade de responder às proposições do presente estudo, já especificadas na parte final do capítulo introdutório.

QUADRO II

PARÂMETROS ESTUDADOS

<table>
<thead>
<tr>
<th>SÍMBOLO</th>
<th>TERMO</th>
<th>DEFINIÇÃO OU FÓRMULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAC</td>
<td>Volume de ar corrente</td>
<td>Volume gasoso ins ou expirado durante cada ciclo respiratório.</td>
</tr>
<tr>
<td>CV</td>
<td>Capacidade vital</td>
<td>Máximo volume gasoso expirado a partir de uma inspiração máxima.</td>
</tr>
<tr>
<td>VR</td>
<td>Volume residual</td>
<td>Volume gasoso remanescente nos pulmões ao fim de uma expiração máxima/volume gasoso contido nos pulmões ao fim de uma inspiração máxima.</td>
</tr>
<tr>
<td>CPT</td>
<td>Capacidade pulmonar total</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>Freqüência respiratória</td>
<td>Número de ciclos respiratórios completos efetivados na unidade de de tempo.</td>
</tr>
</tbody>
</table>
VM Volume minuto respiratório
DV Distribuição da ventilação
VEF₁ Volume expiratório forçado em um segundo
FM-EF Fluxo médio-expiratório forçado
VVM Ventilação voluntária máxima
GDP Grau de disabilidade pulmonar (186)
RV Reserva ventilatória
RVi Reserva ventilatória "indireta"

Volume gasoso ins ou expirado durante um minuto.
Medida da desuniformidade da ventilação intrapulmonar.
Volume gasoso expirado em um segundo, durante a execução de uma CV forçada (CVF).
Velocidade do fluxo durante os dois quartos médias do volume da CVF.
Volume gasoso respirado através de máximo esforço voluntário na unidade de tempo.

295, 58 + 2, 65 VVM + 54, 96 VEF₁ - 29, 28 CVF - 1,09 idade - 2,51 VR/CPT - 0,45 FM-EF

\[
\frac{\text{VVM} - \text{VM}}{\text{VVM}} \times 100
\]

\[
\frac{(\text{VEF}_1 \times n) - \text{VM}}{\text{VEF}_1 \times n} \times 100, \text{ onde}
\]

\[n = \frac{\text{VVM}}{\text{VEF}_1} \cdot \text{VVM} = \text{VEF}_1 \times n\]
III - RESULTADOS

1 - VALORES OBTIDOS

Os valores obtidos a partir dos parâmetros funcionais pulmonares nos pacientes com IVO e IVR e com diversos graus de dispnéia - aos grandes (DGE), aos médios (DME), aos pequenos esforços (DPE) e em repouso (DRE) - e nos indivíduos normais estão expostos nas tabelas IIa, IIb e IIc e nas figuras 1, 2 e 3 (respectivamente valores dos volumes pulmonares dos indivíduos com IVO, IVR e NIS), nas tabelas IIIa, IIIb e IIIc e nas figuras 4, 5 e 6 (respectivamente valores dos parâmetros ventilatórios não forçados dos indivíduos com IVO, IVR e NIS), nas tabelas IVa, IVb e IVc e nas figuras 7, 8 e 9 (respectivamente valores dos parâmetros ventilatórios forçados dos indivíduos com IVO, IVR e NIS), na tabela V (respectivamente cociente VVM/VEF₁ dos indivíduos com IVO, IVR e NIS) e nas tabelas VIa, VIb e VIc e nas figuras 10, 11 e 12 (respectivamente valores do GDP, da RV e da RVi dos indivíduos com IVO, IVR e NIS).

O valor usado para calcular a VVM "indireta" a partir do VEF₁, a fim de obter a RVi, foi 44, considerando-se, assim o número inteiro mais próximo da média geral obtida (Tabela V).

As tabelas foram organizadas de molde a mostrar a amplitude de variação, a média aritmética, o desvio padrão e o coeficiente de variação dos valores obtidos, e as figuras de molde a representar graficamente a distribuição desses valores nos pacientes com os dois tipos de insuficiência ventilatória (IVO e IVR) e com diversos graus de dispnéia (DGE, DME, DPE e DRE).

A coluna mais alta nas figuras representa uma faixa de dispersão correspondente a quarenta por cento dos valores obtidos, as duas colunas laterais
representam faixas de dispersão correspondentes a vinte por cento dos valores obtidos, cada, e as duas colunas externas representam faixas de dispersão correspondentes a dez por cento dos valores obtidos, cada. As faixas pontilhadas representam a magnitude de dois desvios padrões para cada lado da média aritmetica dos valores obtidos nos individuos normais.
<table>
<thead>
<tr>
<th>Dispneia (grau)</th>
<th>VAC (ml)</th>
<th>CV (ml)</th>
<th>%CV (B)</th>
<th>%CV (K)</th>
<th>VR/CPT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGE</td>
<td>360,0 ± 1200,0</td>
<td>2500,0 ± 5050,0</td>
<td>72,0 ± 143,0</td>
<td>66,0 ± 128,0</td>
<td>15,0 ± 60,0</td>
</tr>
<tr>
<td></td>
<td>602,0 ± 209,0</td>
<td>3693,0 ± 558,0</td>
<td>101,7 ± 14,8</td>
<td>93,8 ± 14,8</td>
<td>33,7 ± 11,4</td>
</tr>
<tr>
<td></td>
<td>(34,7)</td>
<td>(15,1)</td>
<td></td>
<td></td>
<td>(33,8)</td>
</tr>
<tr>
<td>DME</td>
<td>300,0 ± 1100,0</td>
<td>1420,0 ± 4700,0</td>
<td>37,0 ± 131,0</td>
<td>36,0 ± 118,0</td>
<td>23,0 ± 71,0</td>
</tr>
<tr>
<td></td>
<td>563,0 ± 163,0</td>
<td>3107,0 ± 797,0</td>
<td>84,5 ± 20,1</td>
<td>80,0 ± 18,1</td>
<td>48,9 ± 10,7</td>
</tr>
<tr>
<td></td>
<td>(28,9)</td>
<td>(25,6)</td>
<td></td>
<td></td>
<td>(21,8)</td>
</tr>
<tr>
<td>DPE</td>
<td>250,0 ± 1400,0</td>
<td>1470,0 ± 3830,0</td>
<td>44,0 ± 103,0</td>
<td>41,0 ± 94,0</td>
<td>35,0 ± 78,0</td>
</tr>
<tr>
<td></td>
<td>509,0 ± 200,0</td>
<td>2291,0 ± 590,0</td>
<td>67,3 ± 14,2</td>
<td>62,3 ± 13,8</td>
<td>57,7 ± 8,8</td>
</tr>
<tr>
<td></td>
<td>(39,2)</td>
<td>(25,7)</td>
<td></td>
<td></td>
<td>(15,2)</td>
</tr>
<tr>
<td>DRE</td>
<td>265,0 ± 790,0</td>
<td>1045,0 ± 3740,0</td>
<td>33,0 ± 106,0</td>
<td>30,0 ± 90,0</td>
<td>43,0 ± 84,0</td>
</tr>
<tr>
<td></td>
<td>508,0 ± 144,0</td>
<td>2097,0 ± 655,0</td>
<td>61,4 ± 16,7</td>
<td>55,1 ± 14,8</td>
<td>63,1 ± 9,8</td>
</tr>
<tr>
<td></td>
<td>(28,3)</td>
<td>(31,2)</td>
<td></td>
<td></td>
<td>(15,5)</td>
</tr>
</tbody>
</table>

AV ≡ Amplitude de Variação
M±DP ≡ Média ± Desvio Padrão
%(B) ≡ % de Relação ao Valor Previsto por Baldwin e Cois (5)
%(K) ≡ % de Relação ao Valor Previsto por Kory e Cois (15, 110)
c.v. ≡ Coeficiente de Variação (%)
<table>
<thead>
<tr>
<th>VOLUMES PULMONARES DOS INDIVÍDUOS COM IVR E DIVERSOS GRAUS DE DISPNÉIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPNÉIA</td>
</tr>
<tr>
<td>(grau)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DGE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DME</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DPE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DRE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO

M±DP = MÉDIA ± DESVIO PADRÃO

%(B) = % EM RELAÇÃO AO VALOR PREVISTO POR BALDWIN E COLS (5)

%(K) = % EM RELAÇÃO AO VALOR PREVISTO POR KORY E COLS (15,110)

c.v. = COEFICIENTE DE VARIAÇÃO (%)
TABELA IIc

VOLUMES PULMONARES DOS INDIVÍDUOS NORMAIS

<table>
<thead>
<tr>
<th></th>
<th>VAC (ml)</th>
<th>CV (ml)</th>
<th>ZCV (B)</th>
<th>ZCV (K)</th>
<th>VR/CPT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M±DP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c.v.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250,0 a 1260,0</td>
<td>2900,0 a 6100,0</td>
<td>96,0 a 153,0</td>
<td>85,0 a 139,0</td>
<td>18,0 a 30,0</td>
</tr>
<tr>
<td></td>
<td>610,0 ± 197,6</td>
<td>4506,0 ± 836,9</td>
<td>116,5 ± 14,9</td>
<td>103,2 ± 12,8</td>
<td>23,6 ± 3,4</td>
</tr>
<tr>
<td></td>
<td>(32,3)</td>
<td>(18,5)</td>
<td>(12,7)</td>
<td>(12,4)</td>
<td>(14,4)</td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M±DP = MÉDIA ± DESVIO PADRÃO
Z(B) = % EM RELAÇÃO AO VALOR PREVISTO POR BALDWIN E COLS (5)
Z(K) = % EM RELAÇÃO AO VALOR PREVISTO POR KORY E COLS (15, 110)
c.v. = COEFICIENTE DE VARIAÇÃO (%)

Fig. 1 - VAC na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IIa, IIb e IIc.
Fig. 2 - CV na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IIa, IIb e IIc.

Fig. 3 - VR/CPT na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IIa, IIb e IIc.
<table>
<thead>
<tr>
<th>DISPNEIA (grau)</th>
<th>FR (c.p.m.)</th>
<th>VM (1/min)</th>
<th>VM/m² (1/min/m²)</th>
<th>DV (%N₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGE</td>
<td>8,0 a 24,0</td>
<td>4,9 a 15,4</td>
<td>3,0 a 8,8</td>
<td>1,0 a 10,0</td>
</tr>
<tr>
<td></td>
<td>15,5 ± 4,1</td>
<td>8,7 ± 1,9</td>
<td>5,1 ± 1,2</td>
<td>3,3 ± 2,6</td>
</tr>
<tr>
<td></td>
<td>(26,4)</td>
<td>(21,8)</td>
<td>(23,5)</td>
<td>(78,7)</td>
</tr>
<tr>
<td>DME</td>
<td>8,0 a 28,0</td>
<td>6,3 a 14,2</td>
<td>3,6 a 8,8</td>
<td>0,9 a 20,0</td>
</tr>
<tr>
<td></td>
<td>17,5 ± 4,8</td>
<td>9,2 ± 1,9</td>
<td>5,6 ± 1,1</td>
<td>6,9 ± 3,9</td>
</tr>
<tr>
<td></td>
<td>(27,4)</td>
<td>(20,6)</td>
<td>(19,6)</td>
<td>(56,5)</td>
</tr>
<tr>
<td>DPE</td>
<td>10,0 a 29,0</td>
<td>6,2 a 14,0</td>
<td>3,9 a 8,5</td>
<td>1,3 a 30,0</td>
</tr>
<tr>
<td></td>
<td>18,2 ± 4,8</td>
<td>8,6 ± 1,6</td>
<td>5,4 ± 1,1</td>
<td>9,7 ± 5,4</td>
</tr>
<tr>
<td></td>
<td>(26,3)</td>
<td>(18,6)</td>
<td>(20,3)</td>
<td>(55,6)</td>
</tr>
<tr>
<td>DRE</td>
<td>10,0 a 35,0</td>
<td>6,3 a 15,2</td>
<td>3,6 a 9,2</td>
<td>2,1 a 25,0</td>
</tr>
<tr>
<td></td>
<td>21,0 ± 6,8</td>
<td>10,0 ± 2,4</td>
<td>6,3 ± 1,4</td>
<td>10,0 ± 5,4</td>
</tr>
<tr>
<td></td>
<td>(32,3)</td>
<td>(24,0)</td>
<td>(22,2)</td>
<td>(54,0)</td>
</tr>
</tbody>
</table>

AMPLITUDE DE VARIAÇÃO
MÉDIA ± DESVIO PADRÃO
% N₂ EXPIRADO AO FIM DE SETE MINUTOS
COEFICIENTE DE VARIAÇÃO (%)
PARÂMETROS VENTILATÓRIOS NÃO FORÇADOS DOS INDIVÍDUOS COM IVR E DIVERSOS GRAUS DE DISPNEÍA

<table>
<thead>
<tr>
<th>DISPNEÍA (grau)</th>
<th>FR (c.p.m.)</th>
<th>VM (/min)</th>
<th>VM / m² (/min/m²)</th>
<th>DV (% N₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AV</td>
<td>M±DP</td>
<td>AV</td>
<td>M±DP</td>
</tr>
<tr>
<td></td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
</tr>
<tr>
<td>DGE</td>
<td>18,3 ± 4,5</td>
<td>9,2 ± 2,0</td>
<td>5,7 ± 1,2</td>
<td>0,3 ± 1,3</td>
</tr>
<tr>
<td></td>
<td>(24,5)</td>
<td>(21,7)</td>
<td>(21,0)</td>
<td>(72,2)</td>
</tr>
<tr>
<td>DME</td>
<td>17,6 ± 3,8</td>
<td>9,0 ± 2,2</td>
<td>5,5 ± 1,2</td>
<td>1,8 ± 1,0</td>
</tr>
<tr>
<td></td>
<td>(21,5)</td>
<td>(24,4)</td>
<td>(21,8)</td>
<td>(55,5)</td>
</tr>
<tr>
<td>DPE</td>
<td>14,0 ± 5,6</td>
<td>6,0 ± 1,3</td>
<td>3,4 ± 0,9</td>
<td>0,6 ± 1,2</td>
</tr>
<tr>
<td></td>
<td>(26,1)</td>
<td>(26,5)</td>
<td>(26,6)</td>
<td>(60,0)</td>
</tr>
<tr>
<td>DRE</td>
<td>11,0 ± 7,1</td>
<td>6,7 ± 1,4</td>
<td>5,3 ± 0,7</td>
<td>0,6 ± 1,3</td>
</tr>
<tr>
<td></td>
<td>(29,4)</td>
<td>(22,3)</td>
<td>(15,0)</td>
<td>(45,0)</td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M±DP = MÉDIA ± DESVIO PADRÃO
% N₂ = % N₂ EXPIRADO AO FIM DE SETE MINUTOS
c.v. = COEFICIENTE DE VARIAÇÃO (%)
TABELA IIIc

PARÂMETROS VENTILATÓRIOS NÃO FORÇADOS DOS INDIVÍDUOS NORMAIS

<table>
<thead>
<tr>
<th>FR (c.p.m.)</th>
<th>VM (l/min)</th>
<th>VM/m² (l/min/m²)</th>
<th>DV (%N₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
</tr>
<tr>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
</tr>
<tr>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7,0</td>
<td>6,2</td>
<td>3,5</td>
<td>0,5</td>
</tr>
<tr>
<td>a 25,0</td>
<td>a 10,2</td>
<td>a 6,1</td>
<td>a 1,6</td>
</tr>
<tr>
<td>14,3</td>
<td>8,1</td>
<td>4,7</td>
<td>0,9</td>
</tr>
<tr>
<td>± 4,1</td>
<td>± 1,0</td>
<td>± 0,7</td>
<td>± 0,4</td>
</tr>
<tr>
<td>(28,6)</td>
<td>(12,3)</td>
<td>(14,8)</td>
<td>(44,4)</td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M±DP = MÉDIA ± DESVIO PADRÃO
% N₂ = % N₂ EXPIRADO AO FIM DE SETE MINUTOS
c.v. = COEFICIENTE DE VARIAÇÃO (%)

Fig. 4 - FR na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IIIa, IIIb e IIIc.
Fig. 5 - VM/m² na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IIIa, IIIb e IIIc.

Fig. 6 - DV na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IIIa, IIIb e IIIc.
<table>
<thead>
<tr>
<th>DISPNÉIA</th>
<th>VEF(_t) (1)</th>
<th>ZVEF(_t) (K)</th>
<th>FM-EF (l/min)</th>
<th>ZFM-EF (L)</th>
<th>VVM (l/min)</th>
<th>ZVVM (B)</th>
<th>ZVVM (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(grau)</td>
<td>AV M±DP</td>
</tr>
<tr>
<td>(c.v.)</td>
<td></td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
</tr>
<tr>
<td>DGE</td>
<td>1,00 a 3,92</td>
<td>29,0 a 132,0</td>
<td>17,0 a 280,0</td>
<td>8,0 a 106,0</td>
<td>38,0 a 140,0</td>
<td>40,0 a 135,0</td>
<td>30,0 a 110,0</td>
</tr>
<tr>
<td></td>
<td>2,23 ± 0,65</td>
<td>70,4 ± 21,0</td>
<td>99,8 ± 66,6</td>
<td>40,8 ± 26,0</td>
<td>86,8 ± 26,2</td>
<td>83,0 ± 24,1</td>
<td>63,3 ± 19,6</td>
</tr>
<tr>
<td></td>
<td>(29,1) (29,8)</td>
<td>(66,7) (63,7)</td>
<td></td>
<td></td>
<td>(30,1)</td>
<td>(29,0)</td>
<td>(30,9)</td>
</tr>
<tr>
<td>DME</td>
<td>0,62 a 2,94</td>
<td>18,0 a 85,0</td>
<td>13,0 a 139,0</td>
<td>5,0 a 53,0</td>
<td>27,0 a 131,0</td>
<td>25,0 a 100,0</td>
<td>17,0 a 81,0</td>
</tr>
<tr>
<td></td>
<td>1,45 ± 0,53</td>
<td>46,2 ± 16,1</td>
<td>42,8 ± 28,4</td>
<td>17,6 ± 10,7</td>
<td>60,0 ± 20,2</td>
<td>59,6 ± 18,1</td>
<td>44,1 ± 14,6</td>
</tr>
<tr>
<td></td>
<td>(36,5) (34,8)</td>
<td>(66,3) (60,7)</td>
<td></td>
<td></td>
<td>(33,6)</td>
<td>(30,3)</td>
<td>(33,1)</td>
</tr>
<tr>
<td>DPE</td>
<td>0,41 a 2,05</td>
<td>15,0 a 55,0</td>
<td>6,0 a 90,0</td>
<td>3,0 a 40,0</td>
<td>18,0 a 72,0</td>
<td>21,0 a 70,0</td>
<td>14,0 a 51,0</td>
</tr>
<tr>
<td></td>
<td>0,87 ± 0,31</td>
<td>30,1 ± 10,6</td>
<td>22,8 ± 15,7</td>
<td>10,2 ± 6,8</td>
<td>37,1 ± 11,6</td>
<td>41,0 ± 10,9</td>
<td>29,8 ± 8,0</td>
</tr>
<tr>
<td></td>
<td>(35,6) (35,2)</td>
<td>(68,8) (66,6)</td>
<td></td>
<td></td>
<td>(31,2)</td>
<td>(26,5)</td>
<td>(26,8)</td>
</tr>
<tr>
<td>DRE</td>
<td>0,34 a 1,63</td>
<td>8,0 a 53,0</td>
<td>9,0 a 47,0</td>
<td>3,0 a 25,0</td>
<td>11,0 a 49,0</td>
<td>12,0 a 52,0</td>
<td>9,0 a 38,0</td>
</tr>
<tr>
<td></td>
<td>0,71 ± 0,28</td>
<td>24,2 ± 10,2</td>
<td>18,5 ± 8,0</td>
<td>8,8 ± 4,1</td>
<td>29,3 ± 9,4</td>
<td>32,6 ± 10,6</td>
<td>23,2 ± 7,6</td>
</tr>
<tr>
<td></td>
<td>(39,4) (42,1)</td>
<td>(43,2) (46,5)</td>
<td></td>
<td></td>
<td>(32,0)</td>
<td>(32,5)</td>
<td>(32,7)</td>
</tr>
</tbody>
</table>

AV ≡ AMPLITUDE DE VARIAÇÃO
M ± DP ≡ MÉDIA ± DESVIO PADRÃO
Z(B) ≡ Z EM RELAÇÃO AO VALOR PREVISTO POR BALDWIN E COLS (5)
Z(K) ≡ Z EM RELAÇÃO AO VALOR PREVISTO POR KORY E COLS (15, 110)
Z(L) ≡ Z EM RELAÇÃO AO VALOR PREVISTO POR LEUALLÉN E FOWLER (113)
c.v. ≡ COEFICIENTE DE VARIAÇÃO(Z)
TABELA IVb

PARÂMETRO VENTILATÓRIO FORÇADOS DOS INDIVÍDUOS COM IVR E DIVERSOS GRAUS DE DISPNEIA

<table>
<thead>
<tr>
<th>DISPNEIA (grau)</th>
<th>VEF₁(1)</th>
<th>ZVEF₁(K)</th>
<th>FM-EF(1/min)</th>
<th>FM-EF(L)</th>
<th>VVM(1/min)</th>
<th>ZVVM(B)</th>
<th>ZVVM(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M ± DP</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
</tr>
<tr>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
</tr>
<tr>
<td>DGE</td>
<td>1,25 ± 3,37</td>
<td>41,0 a 84,0</td>
<td>73,0 a 327,0</td>
<td>28,0 a 150,0</td>
<td>58,0 a 123,0</td>
<td>59,0 a 138,0</td>
<td>38,0 a 103,0</td>
</tr>
<tr>
<td>(25,4)</td>
<td>(22,3)</td>
<td>(49,8)</td>
<td>(52,9)</td>
<td>(19,1)</td>
<td>(22,5)</td>
<td>(22,7)</td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>0,81 ± 3,28</td>
<td>29,0 a 84,0</td>
<td>37,0 a 256,0</td>
<td>16,0 a 118,0</td>
<td>39,0 a 150,0</td>
<td>38,0 a 134,0</td>
<td>30,0 a 95,0</td>
</tr>
<tr>
<td>(30,0)</td>
<td>(23,9)</td>
<td>(45,9)</td>
<td>(46,4)</td>
<td>(32,8)</td>
<td>(28,1)</td>
<td>(25,4)</td>
<td></td>
</tr>
<tr>
<td>DPE</td>
<td>0,63 ± 2,95</td>
<td>21,0 a 90,0</td>
<td>18,0 a 240,0</td>
<td>8,0 a 119,0</td>
<td>25,0 a 123,0</td>
<td>31,0 a 117,0</td>
<td>22,0 a 93,0</td>
</tr>
<tr>
<td>(38,5)</td>
<td>(35,1)</td>
<td>(54,5)</td>
<td>(53,9)</td>
<td>(33,9)</td>
<td>(29,9)</td>
<td>(29,3)</td>
<td></td>
</tr>
<tr>
<td>DRE</td>
<td>0,58 ± 1,93</td>
<td>20,0 a 63,0</td>
<td>41,0 a 133,0</td>
<td>19,0 a 60,0</td>
<td>35,0 a 82,0</td>
<td>34,0 a 96,0</td>
<td>20,0 a 60,0</td>
</tr>
<tr>
<td>(39,3)</td>
<td>(36,7)</td>
<td>(42,7)</td>
<td>(43,6)</td>
<td>(30,0)</td>
<td>(25,7)</td>
<td>(26,0)</td>
<td></td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M ± DP = MÉDIA ± DESVIO PADRÃO
Z(B) = % EM RELAÇÃO AO VALOR PREVISTO POR BALDWIN E COLS (5)
Z(K) = % EM RELAÇÃO AO VALOR PREVISTO POR KORY E COLS (15, 110)
Z(L) = % EM RELAÇÃO AO VALOR PREVISTO POR LEVALLEN E FOWLER (113)
C.V. = COEFICIENTE DE VARIAÇÃO (%)
<table>
<thead>
<tr>
<th>VEF<sub>1</sub> (1)</th>
<th>ZVEF<sub>1</sub> (K)</th>
<th>FM-EF (1/min)</th>
<th>ZFM-EF (L)</th>
<th>VVM (1/min)</th>
<th>ZVVM (B)</th>
<th>ZVVM (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
</tr>
<tr>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
<td>M±DP</td>
</tr>
<tr>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
</tr>
</tbody>
</table>

2,67 a 5,08 79,0 a 122,0 181,0 a 385,0 77,0 a 139,0 84,0 a 204,0 84,0 a 169,0 64,0 a 116,0

3,66 ± 0,60 100,0 ± 10,1 264,7 ± 61,2 101,7 ± 18,5 161,5 ± 34,0 138,4 ± 19,5 102,6 ± 12,4

(16,3) (10,1) (23,1) (18,1) (21,0) (14,0) (12,0)

AV = AMPLITUDE DE VARIAÇÃO
M ± DP = MÉDIA ± DESVIO PADRÃO
Z(B) = % EM RELAÇÃO AO VALOR PREVISTO POR BALDWIN E COLS (5)
Z(K) = % EM RELAÇÃO AO VALOR PREVISTO POR KORY E COLS (15, 110)
Z(L) = % EM RELAÇÃO AO VALOR PREVISTO POR LEUALLEN E FOWLER (113)
c.v. = COEFICIENTE DE VARIAÇÃO (%)
Fig. 7-VEF₁ na IVO e IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IVa, IVb e IVc.

Fig. 8-FM-EF na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas IVa, IVb e IVc.
**Fig. 9 - **VVM na IVO e na IVR em diversos graus de dispneia. Para detalhes vide texto e tabelas IVa, IVb e IVc.

TABELA V

COCIENTE VVM/VEF1 DOS INDIVÍDUOS NORMAIS (NIS) E DOS COM IVO E IVR E DIVERSOS GRAUS DE DISPNEIA

<table>
<thead>
<tr>
<th>DISPNÉIA (grau)</th>
<th>IVO</th>
<th>IVR</th>
<th>NIS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
</tr>
<tr>
<td></td>
<td>M ± DP</td>
<td>M ± DP</td>
<td>M ± DP</td>
<td>M ± DP</td>
</tr>
<tr>
<td></td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
<td>(c.v.)</td>
</tr>
<tr>
<td>DGE</td>
<td>22,0 a 62,0</td>
<td>28,0 a 57,0</td>
<td>39,7 ± 8,8</td>
<td>45,2 ± 9,8</td>
</tr>
<tr>
<td></td>
<td>(22,1)</td>
<td>(21,6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>26,0 a 64,0</td>
<td>27,0 a 60,0</td>
<td>42,4 ± 7,9</td>
<td>45,2 ± 7,8</td>
</tr>
<tr>
<td></td>
<td>(18,6)</td>
<td>(17,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPE</td>
<td>15,0 a 68,0</td>
<td>30,0 a 83,0</td>
<td>44,3 ± 10,0</td>
<td>45,7 ± 12,0</td>
</tr>
<tr>
<td></td>
<td>(22,5)</td>
<td>(26,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRE</td>
<td>20,0 a 80,0</td>
<td>36,0 a 71,0</td>
<td>43,9 ± 14,4</td>
<td>48,6 ± 11,1</td>
</tr>
<tr>
<td></td>
<td>(32,8)</td>
<td>(22,8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AV ≡ AMPLITUDE DE VARIAÇÃO
M ± DP ≡ MÉDIA ± DESVIO PADRÃO
c.v. ≡ COEFICIENTE DE VARIAÇÃO(%)
TABELA VIa

GRAU DE DISABILIDADE PULMONAR, RESERVA VENTILATÓRIA E RESERVA VENTILATÓRIA "INDIRETA" DOS INDIVÍDUOS COM DISPNÉIA E DIVERSES GRAUS DE DISPNÉIA

<table>
<thead>
<tr>
<th>DISPNEIA (grau)</th>
<th>GDP</th>
<th>RV(%)</th>
<th>RVi(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AV</td>
<td>M ± DP</td>
<td>M ± DP</td>
</tr>
<tr>
<td>DGE</td>
<td>184,0 a 520,0</td>
<td>83,0 a 95,0</td>
<td>82,0 a 96,0</td>
</tr>
<tr>
<td></td>
<td>(24,8)</td>
<td>(3,4)</td>
<td>(3,6)</td>
</tr>
<tr>
<td>DME</td>
<td>97,0 a 476,0</td>
<td>74,0 a 92,0</td>
<td>72,0 a 92,0</td>
</tr>
<tr>
<td></td>
<td>(29,4)</td>
<td>(5,5)</td>
<td>(6,1)</td>
</tr>
<tr>
<td>DPE</td>
<td>77,0 a 320,0</td>
<td>61,0 a 89,0</td>
<td>59,0 a 91,0</td>
</tr>
<tr>
<td></td>
<td>(32,9)</td>
<td>(8,2)</td>
<td>(8,9)</td>
</tr>
<tr>
<td>DRE</td>
<td>73,0 a 239,0</td>
<td>27,0 a 81,0</td>
<td>42,0 a 84,0</td>
</tr>
<tr>
<td></td>
<td>(33,5)</td>
<td>(17,2)</td>
<td>(16,7)</td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M ± DP = MÉDIA ± DESVIO PADRÃO
c.v. = COEFICIENTE DE VARIAÇÃO(%)
TABELA VIb

GRAU DE DISABILIDADE PULMONAR, RESERVA VENTILATÓRIA E RESERVA VENTILATÓRIA "INDIRETA" DOS INDIVÍDUOS COM IVR E DIVERSOS GRAUS DE DISPNEIA

<table>
<thead>
<tr>
<th>DISPNEIA (grau)</th>
<th>GDP AV M ± DP (c.v.)</th>
<th>RV(%) AV M ± DP (c.v.)</th>
<th>RVi(%) AV M ± DP (c.v.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGE</td>
<td>256,0 a 508,0 389,3 ± 59,5 (15,2)</td>
<td>87,0 a 93,0 89,7 ± 2,0 (2,2)</td>
<td>83,0 a 94,0 89,4 ± 2,8 (3,1)</td>
</tr>
<tr>
<td>DME</td>
<td>276,0 a 583,0 415,4 ± 87,8 (21,1)</td>
<td>83,0 a 94,0 89,8 ± 3,2 (3,5)</td>
<td>83,0 a 94,0 89,5 ± 3,2 (3,5)</td>
</tr>
<tr>
<td>DPE</td>
<td>209,0 a 442,0 329,6 ± 70,9 (21,5)</td>
<td>74,0 a 93,0 85,7 ± 4,7 (5,4)</td>
<td>74,0 a 92,0 85,1 ± 5,2 (6,1)</td>
</tr>
<tr>
<td>DRE</td>
<td>212,0 a 356,0 269,9 ± 53,9 (19,9)</td>
<td>73,0 a 88,0 79,5 ± 5,0 (6,2)</td>
<td>64,0 a 85,0 77,1 ± 6,3 (8,1)</td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO

M ± DP = MÉDIA ± DESVIO PADRÃO

C.v. = COEFICIENTE DE VARIAÇÃO(%)

TABELA VIc

GRAU DE DISABILIDADE PULMONAR, RESERVA VENTILATÓRIA E RESERVA VENTILATÓRIA "INDIRETA" DOS INDIVÍDUOS NOR-MAIS

<table>
<thead>
<tr>
<th></th>
<th>GDP</th>
<th>RV(%)</th>
<th>RVi(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AV</td>
<td>AV</td>
<td>AV</td>
</tr>
<tr>
<td></td>
<td>M ± DP</td>
<td>M ± DP</td>
<td>M ± DP</td>
</tr>
<tr>
<td></td>
<td>371,0 a 684,0</td>
<td>89,0 a 97,0</td>
<td>91,0 a 97,0</td>
</tr>
<tr>
<td></td>
<td>566,7 ± 88,6</td>
<td>94,7 ± 1,8</td>
<td>94,7 ± 1,4</td>
</tr>
<tr>
<td></td>
<td>(15,6)</td>
<td>(1,9)</td>
<td>(1,4)</td>
</tr>
</tbody>
</table>

AV = AMPLITUDE DE VARIAÇÃO
M ± DP = MÉDIA ± DESVIO PADRÃO
c.v. = COEFICIENTE DE VARIAÇÃO(%)

Fig. 10 - GDP na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas VIa, VIb e VIc.
Fig. 11-RV na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas VIa, VIb e VIC.

Fig. 12-RVi na IVO e na IVR em diversos graus de dispnéia. Para detalhes vide texto e tabelas VIa, VIb e VIC.
2 - SIGNIFICÂNCIAS ESTATÍSTICAS

As tabelas VII, VIII e IX expõem as significâncias estatísticas entre as diferenças dos parâmetros funcionais analisados em: 1) Normais e indivíduos com IVO e DGE e entre normais e indivíduos com IVR e DGE (Tabela VII); 2) pacientes com diversos graus clínicos de dispnéia, seja por IVO ou por IVR (Tabela VIII); 3) entre pacientes com o mesmo grau clínico de dispnéia seja por IVO ou por IVR (Tabela IX). Para essas comparações, a CV, o VEF1 e a VVM foram referidos em termos percentuais em relação aos valores previstos por Kory e cols. (110) e Boren e cols. (15) e o FM-EF, em relação aos valores previstos por Leuallen e Fowler (113).

1) Diferenças entre parâmetros funcionais de normais e pacientes com IVO ou IVR e DGE - a) o VAC não se mostrou significantemente diferente (p > 0,05) entre normais e pacientes com qualquer um dos tipos de insuficiência ventilatória; b) a CV foi significativamente mais reduzida em relação aos normais na IVR (p < 0,001) que na IVO (p < 0,05); c) a relação VR/CPT foi significativamente maior em relação aos normais na IVO (p < 0,001) que na IVR (p < 0,05); d) a FR e o VM/m² dos indivíduos com IVO não se mostraram significativamente diferentes (p > 0,05) em relação aos respectivos valores nos normais mas as dos indivíduos com IVR se mostraram maiores (p < 0,01); e) a desuniformidade da DV em relação aos normais foi maior nos com IVO (p < 0,001) que nos com IVR (p < 0,01); f) os parâmetros ventilatórios forçados (VEF1, FM-EF e VVM), o GDP, a RV e a RVi dos dois grupos de insuficiência ventilatória diferiram significativamente para menos (p < 0,001) em relação aos respectivos valores encontrados nos indivíduos normais.

2) Diferenças entre parâmetros funcionais de pacientes com IVO e IVR e diversos graus de dispnéia - 2a) Nos pacientes com IVO: a) a maioria dos parâmetros funcionais estudados nos pacientes com IVO e diversos graus de dispnéia se mostraram estatístic
TABELA VII

SIGNIFICÂNCIAS ESTATÍSTICAS (p) DAS DIFERENÇAS ENTRE RESPECTIVOS VOLUMES PULMONARES (VAC, CV, VR/CPT), PARÂMETROS VENTILATÓRIOS NÃO FORÇADOS (FR, VM/m², DV), PARÂMETROS VENTILATÓRIOS FORÇADOS (VEF₁, FM-EF, VVM), GRAU DE DISABILIDADE PULMONAR (GDP), RESERVA VENTILATÓRIA (RV) E RESERVA VENTILATÓRIA "INDIRETA" (RVi) NOS INDIVÍDUOS NORMAIS (NIS) E NOS COM IVO E IVR E DISPNÉIA AOS GRANDES ESFORÇOS (DGE).

<table>
<thead>
<tr>
<th>INDIVÍDUOS</th>
<th>VAC</th>
<th>%CV</th>
<th>VR/CPT</th>
<th>FR</th>
<th>VM/m²</th>
<th>DV</th>
<th>%VEF₁</th>
<th>%FM-EF</th>
<th>%VVM</th>
<th>GDP</th>
<th>RV</th>
<th>RVi</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIS vs IVO(DGE)</td>
<td>NS</td>
<td>0,05</td>
<td>0,001</td>
<td>NS</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>NIS vs IVR(DGE)</td>
<td>NS</td>
<td>0,001</td>
<td>0,05</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
</tbody>
</table>

NS ≡ NÃO SIGNIFICANTE (p > 0,05)
0,05 ≡ SIGNIFICANTE (p < 0,05)
0,01 ≡ SIGNIFICANTE (p < 0,01)
0,001 ≡ SIGNIFICANTE (p < 0,001)
TABELA VIII
SIGNIFICÂNCIAS ESTATÍSTICAS (p) DAS DIFERENÇAS ENTRE RESPECTIVOS VOLUMES PULMONARES (VAC, CV, VR/CPT), PARÂMETROS VENTILATÓRIOS NÃO FORÇADOS (FR, VM/m², DV), PARÂMETROS VENTILATÓRIOS FORÇADOS (VEF₁, FM-EF, VVM), GRAU DE DISABILIDADE PULMONAR (GDP), RESERVA VENTILATÓRIA (RV) E RESERVA VENTILATÓRIA "INDIRETA" (RVI) NOS INDIVÍDUOS COM IVO E IVR E DIVERSOS GRAUS DE DISPNEIA.

<table>
<thead>
<tr>
<th>DISPNEIA (grau)</th>
<th>VAC</th>
<th>%CV</th>
<th>VR/CPT</th>
<th>FR</th>
<th>VM/m²</th>
<th>DV</th>
<th>%VEF₁</th>
<th>%FM-EF</th>
<th>%VVM</th>
<th>GDP</th>
<th>RV</th>
<th>RVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGE vs DME</td>
<td></td>
</tr>
<tr>
<td>IVO</td>
<td>NS</td>
<td>0,001</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0,001</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>IVR</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>DGE vs DPE</td>
<td></td>
</tr>
<tr>
<td>IVO</td>
<td>0,05</td>
<td>0,001</td>
<td>0,001</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>IVR</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>DGE vs DRE</td>
<td></td>
</tr>
<tr>
<td>IVO</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,05</td>
<td>0,01</td>
<td>NS</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>IVR</td>
<td>NS</td>
<td>NS</td>
<td>0,05</td>
<td>0,05</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>DME vs DRE</td>
<td></td>
</tr>
<tr>
<td>IVO</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,05</td>
<td>0,01</td>
<td>NS</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>IVR</td>
<td>NS</td>
<td>0,05</td>
<td>0,01</td>
<td>0,05</td>
<td>NS</td>
<td>NS</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>DME vs DRE</td>
<td></td>
</tr>
<tr>
<td>IVO</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,05</td>
<td>0,01</td>
<td>NS</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>IVR</td>
<td>NS</td>
<td>0,01</td>
<td>0,001</td>
<td>0,05</td>
<td>NS</td>
<td>0,05</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>TODOS</td>
<td></td>
</tr>
<tr>
<td>IVO</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,05</td>
<td>0,01</td>
<td>NS</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>IVR</td>
<td>NS</td>
<td>0,01</td>
<td>0,001</td>
<td>0,05</td>
<td>NS</td>
<td>0,05</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

NS = NÃO SIGNIFICANTE (p > 0,05)
0,05 = SIGNIFICANTE (p < 0,05)
0,01 = SIGNIFICANTE (p < 0,001)
ticamente diferentes (p < 0,001) entre si, quando comparados respectivamente uns com os outros; b) o VAC só diferiu (p < 0,05) entre DGE e DRE, a FR não se mostrou diferente (p > 0,05) entre DGE e DRE, entre DME e DRE (p < 0,01) e entre DPE e DRE (p < 0,01), e a DV não discrepou entre DPE e DRE (p > 0,05). 2b) Nos pacientes com IVR: a) nenhum dos parâmetros se mostrou diferente (p > 0,05) entre DME e DGE, e DPE só foi diferenciada (p < 0,01) da DGE pelo GDP, RV e RVi; b) além disso, o VAC não foi capaz de se mostrar diferente (p > 0,05) em qualquer grau de dispnéia, a CV não diferenciou (p > 0,05) DGE de DPE nem DME de DPE, a FR não diferenciou (p > 0,05) DPE de DRE, a DV nenhum grau de dispnéia, o VEF₁, o FM-EF e a VVM não diferenciaram DME de DPE; c) nas demais comparações houve significância das diferenças (p < 0,05 a p < 0,001).

3) Diferenças entre parâmetros funcionais dos indivíduos com IVO e IVR e mesmos graus de dispnéia - a) nos pacientes com DGE, foram estatisticamente significantes em suas diferenças entre os dois grupos de insuficiência ventilatória a CV, menor (p < 0,001) na IVR, a FR, menor (p < 0,05) na IVO, a desuniformidade da DV, menor (p < 0,05) na IVR, o FM-EF, menor (p < 0,05) na IVO, os demais não diferiram (p > 0,05); b) nos pacientes com DME não diferiram significantemente (p > 0,05) entre os dois grupos a FR e o VM/m², sendo menores na IVR que na IVO o VAC (p < 0,05), o CV (p < 0,01), o VR/CPT e a desuniformidade da DV (p < 0,001), enquanto que foram menores (p < 0,001) na IVO que na IVR: VEF₁, FM-EF, VVM, GDP, RV e RVi; c) nos pacientes com DPE não diferiram (p > 0,05) o VAC, a CV e o VM/m², sendo menor (p < 0,001) na IVR o VR/CPT e a desuniformidade da DV, e maior (p < 0,05) a FR; os parâmetros ventilatórios forçados (VEF₁, FM-EF, VVM), o GDP, a RV e a RVi foram menores (p < 0,001) na IVR em relação a IVR; d) nos pacientes com DRE, não diferiram (p > 0,05) o VAC e a FR mas se mostraram inferiores na IVR a CV (p < 0,05), o VR/CPT (p < 0,001), a desuniformidade da DV (p < 0,001), e superior o VM/m² (p < 0,05); o VEF₁, o FM-EF, a VVM, o GDP, a RV e a RVi, todos foram menores (p < 0,001) na IVO que na IVR.
TABELA IX

Significâncias estatísticas (p) das diferenças entre respectivos volumes pulmonares (VAC, CV, VR/CPT), parâmetros ventilatórios não forçados (FR, VM/m², DV), parâmetros ventilatórios forçados (VEF₁, FM-EF, VVM), grau de desabilidade pulmonar (GDP), reserva ventilatória (RV) e reserva ventilatória "indireta" (RVᵢ) nos indivíduos com IVO e IVR e mesmos graus de dispnéia.

<table>
<thead>
<tr>
<th>DISPNÉIA</th>
<th>VAC</th>
<th>%CV</th>
<th>VR/CPT</th>
<th>FR</th>
<th>VM/m²</th>
<th>DV</th>
<th>%VEF₁</th>
<th>%FM-EF</th>
<th>%VVM</th>
<th>GDP</th>
<th>RV</th>
<th>RVᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DGE)</td>
<td></td>
</tr>
<tr>
<td>IVO vs IVR</td>
<td>NS</td>
<td>0,001</td>
<td>NS</td>
<td>0,05</td>
<td>NS</td>
<td>0,05</td>
<td>NS</td>
<td>0,05</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DME)</td>
<td></td>
</tr>
<tr>
<td>IVO vs IVR</td>
<td>0,05</td>
<td>0,01</td>
<td>0,001</td>
<td>NS</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DPE)</td>
<td></td>
</tr>
<tr>
<td>IVO vs IVR</td>
<td>NS</td>
<td>NS</td>
<td>0,001</td>
<td>0,05</td>
<td>NS</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DRE)</td>
<td></td>
</tr>
<tr>
<td>IVO vs IVR</td>
<td>NS</td>
<td>0,05</td>
<td>0,001</td>
<td>NS</td>
<td>0,05</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS = NÃO SIGNIFICANTE (p > 0,05)
0,05 = SIGNIFICANTE (p < 0,05)
0,01 = SIGNIFICANTE (p < 0,01)
0,001 = SIGNIFICANTE (p < 0,001)
3 - CORRELAÇÕES

A tabela X mostra as correlações encontradas e suas significâncias estatísticas entre a RV, obtida de maneira clássica, e a RVi, obtida a partir da fórmula: \(\frac{(VEF_1 \times 44) - VM}{VEF_1 \times 44} \times 100 \), nos normais e nos pacientes com IVO e com IVR, em todos os graus de dispneia.

IV - COMENTÁRIOS

Alguns aspectos da condução e dos resultados obtidos neste trabalho merecem comentários.

Seleção dos casos. A seleção dos indivíduos estudados fez-se da maneira mais aleatória possível, classificando-se os mesmos tão somente pelo tipo de insuficiência ventilatória e pelo grau clínico de dispneia, não havendo preocupação em emparelhar as comparações quanto a idade, sexo, superfície corporal e hábitos de vida. Os normais, pelas características e pelos desempenhos obtidos nos testes, podem ser considerados como um grupo "ideal". Permitem demonstrar o quanto precisa regredir a capacidade funcional pulmonar, para a dispneia ter oportunidade de manifestar-se.

Comparação entre os diversos valores. Para tornar mais válidas as conclusões, compararam-se a CV, a VVM, o VEF1 e o FM-EF, entre os diversos grupos, não pelos valores absolutos mas através dos valores obtidos em relação aos previstos por Kory e cols. (110), Boren e cols. (15) e Leuallen e Fowler (113), que são os mais usados (131). Quando usada a tabela de Baldwin e cols. (5), os valores da CV e da VVM nos normais estiveram acima dos estimados, enquadrandose porém, bem como os do VEF1 e do FM-EF perfeitamente nos antecipados pelas outras tabelas (15, 110, 113). Também nos pacientes, os valores ob
TABELA X
CORRELAÇÕES ENTRE RV E RVi NOS PACIENTES COM IVO E IVR E DIVERSOS GRAUS DE DISPNEIA E NOS NORMAIS (NIS)

<table>
<thead>
<tr>
<th>DISPNEIA (GRAU)</th>
<th>IVO</th>
<th>IVR</th>
<th>NIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGE</td>
<td>0,7216</td>
<td>0,3603**</td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>0,8223</td>
<td>0,7900</td>
<td>0,8823</td>
</tr>
<tr>
<td>DPE</td>
<td>0,5712</td>
<td>0,7375</td>
<td></td>
</tr>
<tr>
<td>DRE</td>
<td>0,3955*</td>
<td>0,6112</td>
<td></td>
</tr>
<tr>
<td>TODOS</td>
<td>0,4746</td>
<td>0,8203</td>
<td></td>
</tr>
</tbody>
</table>

* p < 0,01
** p = 0,05

Fig. 13 - Correlação entre RV e RVi nos indivíduos com IVO.
Fig. 14 - Correlação entre RV e RVi nos indivíduos com IVR.

Fig. 15 - Correlação entre RV e RVi nos indivíduos normais.
tidos em relação aos previstos por Kory e cols. (110) estiveram em níveis sistematicamente mais baixos que em relação aos obtidos por Baldwin e cols. (5). Essas diferenças são maiores nos normais e mais para a VVM que para a CV. Entretanto, correlacionando os dados obtidos pelas duas tabelas encontramos um "r" de respectivamente 0,9769 e 0,9784 para a CV e para a VVM, o que indica ambas expressarem as mesmas tendências, apenas em níveis diferentes.

Volumes pulmonares e parâmetros ventilatórios não forçados (Tabelas IIa, b, c e IIIa, b, c e Fig. 1 a 6). Neste grupo de testes, a CV e o VR/CPT foram os que, globalmente, melhor permitiram apontar diferenças entre os diversos graus de dispnéia, principalmente nos com IVO, o que confirma a correlação existente entre tais medidas e o grau de comprometimento anatomo-funcional; porém a ampla variabilidade limita a aplicação desses achados no indivíduo isolado (91, 95, 144, 175, 182). Na IVR, a diferença correspondente quanto a CV só aparece para a DRE quando comparada com outros grupos. A diversificação do VAC em normais e pacientes não permitiu diferenciar nenhum grupo. Geralmente esse volume (126) só cai nos pacientes com hipoventilação alveolar ou naqueles cujo grau de dispnéia os impede de realizar os testes (86, 143, 150). Apesar de também variar amplamente em normais (12, 150) e em graus menos avançados de comprometimento ventilatório, é nos pacientes com DPE e, ainda mais, DRE, que se eleva a FR, menos na IVO que na IVR, neste caso por estímulos reflexos (118, 142, 157, 165, 166, 186). Devido ao maior custo energético para aumentar o VAC no pulmão grandemente comprometido, é a elevação da FR que condiciona a elevação do VM (36, 66, 118, 129, 179, 185). De qualquer modo, o aumento do VM tem por finalidade superar as diferenças regionais da DV, seja por mecanismos restritivos, seja por mecanismos obstrutivos (11, 66, 83, 87, 137, 140, 179), só sobrevindo hipoventilação alveolar nas fases finais, geralmente com desaparecimento da dispnéia (66, 143, 144). A relação VM/CV (vide Tabelas IIa, b, c e IIIa, b, c) aumentou, em média, de um mínimo de 1,8 nos normais para um máximo de 6,8 nos com IVR e DRE, pas
sando por estágios intermediários nos demais grupos. Tal aumento do espaço morto fisiológico, abstraindo outros fatores, expressa até certo ponto, a magnitude do comprometimento anátomo-funcional dos pulmões. Como conseqüência da obstrução brônquica e também do enrijeimento do parênquima, aumenta a desuniformidade da DV, cuja magnitude se considera indicador do comprometimento anátomo-funcional dos pulmões, porém, como para a CV, a grande variação dos valores encontrados, muitas vezes, não permite conclusões em nível individual (17, 18, 70, 134, 136, 137, 140, 159). A grandeza desse índice na IVO foi a mesma tanto nos casos com DRE quanto com DPE, e muito além do que poderia ser esperado pela mais avançada idade desses pacientes (57). A DV, expressada pelo teste policíclico de sete minutos, não diferenciou os grupos com IVR entre si, provavelmente pelo menor volume pulmonar e hiperventilação que evidenciam esses indivíduos (87, 118) diferenciando-os, apesar disso, em relação aos normais. Uma vantagem deste teste é ser quase totalmente independente da vontade. Parâmetros ventilatórios forçados (Tabelas IVa, b, c e Fig. 7 a 9). VEF$_1$, FM-EF e VVM foram capazes de distinguir os normais dos com IVO e estes entre si quanto ao grau de dispnêia, mostrando-se na maioria das vezes os mais sensíveis procedimentos isolados em estabelecer diferenças. Na IVR só diferenciaram os indivíduos com DRE, o que sugere nesses casos desenvolvimento de maior alteração na complacência e ou redução do fluxo aéreo em baixos volumes pulmonares (52, 119, 174). Além de mostrarem o mesmo poder discriminatório, VEF$_1$ e VVM apresentaram em todos os grupos praticamente os mesmos coeficientes de variação o que os torna intercambiáveis para efeitos práticos (10, 19, 27, 78, 99). Menos discriminatório, com coeficiente de variação cerca de duas vezes maior que os outros dois, mostrou-se o FM-EF, não distinguindo no grupo com IVO os com DPE dos com DRE, porém, em compensação, sendo o único capaz de distinguir os com IVO dos com IVR no grupo com DGE. Isso concorda com o fato de que o FM-EF reflete melhor que o VEF$_1$ alterações nas pequenas vias aéreas (55, 76, 77, 153, 180), o que serve para detectar IVO nas fases mais iniciais. O
VEF₁, em contrapartida, não perde a habilidade de distinguir fases mais avançadas, por refletir outras alterações, sendo considerado como melhor discriminador global da capacidade funcional, mostrando menor variabilidade (22-27, 61, 67, 80, 110, 113, 130, 131). Cayton e Howard (33), apontam três fases no VEF₁ durante o curso da doença bronco pulmonar obstrutiva: a) uma fase inicial, em que a obstrução periférica se desenvolve com pequena ou nula alteração do VEF₁; b) uma segunda fase, em que decresce dos valores normais para menos que um litro, e em que é considerado fiel indicador da resistência aérea periférica; e) uma terceira fase, em que se mantém baixo, diminuindo muito pouco, enquanto continua a subir a resistência das vias aéreas. A grande reproduzibilidade de seus valores (72, 116) e a facilidade com que pode ser determinado (125) elegeram-no parâmetro de escolha em um grande número de situações (2, 13, 61, 72, 111). As avaliações espirométricas a partir da CV forçada constituem provavelmente os testes de função pulmonar mais usados e valorizados isoladamente (111), sendo o VEF₁ e o FM-EF expressão não só da permeabilidade das vias aéreas maiores e menores como também das condições mecânicas dos pulmões (52, 53, 74, 103). Graças principalmente aos trabalhos de Hyatt, Fry e Dayman (52, 53, 74, 103) sabe-se que a curva expiratória forçada tem uma primeira fase de curta duração, dependente do esforço, uma segunda fase, cuja velocidade não se altera ao ser ultrapassado o limiar pressórico para produzi-la, em que a relação entre fluxo expiratório e volume pulmonar, por isso, não depende do esforço, e uma terceira fase, final, mais variável e refletindo alteração da resistência nas menores vias aéreas (1, 20, 33, 37). A VVM é o teste espirométrico de capacidade ventilatória há mais tempo em uso (98). Tal como para a curva expiratória forçada, seu maior valor depende principalmente da área de secção transversal das vias aéreas mais calibrosas, da retração elástica do parênquima pulmonar e da resistência friccional das pequenas vias aéreas em baixos volumes pulmonares (119, 152, 171, 172, 174). Porém, por ser policíclico e não monocíclico, como a curva expiratória forçada, sofre influência da frequência respiratória e, maior que a curva expirató-
ria, do alçapamento de ar, das variações do CO₂ no sistema de medição, da complacência pulmonar e torácica, da disposição do paciente e do cansaço neuromuscular (7, 14, 73, 87, 115, 135, 164, 167, 189).

GDP, RV e RVi (Tabelas V, VIa, b, c e Fig. 10 a 15). Estas três medidas representaram os melhores parâmetros discriminatórios dos grupos com dispneia: só não diferenciaram IVO de IVR com DGE, e IVR com DGE de IVR com DME, o que nenhum teste fez. Entretanto, apesar da maior simplicidade de cálculo da RV e da RVi em relação ao do GDP, informaram o mesmo quanto ao comportamento da dispneia, com a vantagem de apresentarem um coeficiente de variação cerca de duas vezes menor. A fim de tornar mais prática a determinação da RVi usou-se um valor único de conversão para o VEF1, baseado na média de todos os casos, e é interessante notar que essa média coincidiu com a obtida no grupo normal. Ficou a meio caminho da obtida nos pacientes com IVO e nos pacientes com IVR; estes, como é sabido, apresentando maiores cocientes VVM/VEF1(19). O coeficiente de variação desse valor foi aproximadamente o mesmo em todos os grupos. A média encontrada de quarenta e quatro é cerca de dez por cento mais alta que a maioria dos valores correspondentes referidos (10, 19, 27, 78, 99). O porquê desse fato é algo que necessita maior esclarecimento mas talvez se deva a ter sido feita a extrapolação para os valores finais da VVM a partir das determinações de doze segundos, como recomendam Kory e cols. (11), ao invés de quinze (38), vinte (92) ou trinta segundos (98). É pouco provável que essa discrepância se deva aos menores volumes pulmonares dos nossos pacientes em relação aos de outros grupos referidos na literatura, uma vez que nos normais também a média foi mais alta que as citadas. O mais provável é que se deva a peculiaridades técnicas próprias a cada laboratório e que cada serviço precise estabelecer sua própria média de conversão a qual, de qualquer modo, oscila muito pouco em torno de quarenta (19, 27, 78, 99), com uma exceção, mais baixa (10). Considere-se que, quanto mais alto o valor do VEF1 obtido, tanto menos o valor do fator de conversão afetará a magnitude da RVi daí de rivada. Apesar da variabilidade maior entre os dois
índices que incidiu nos valores calculados a partir dos menores VEF₁, a correlação entre ambos ainda assim foi altamente significante, e os valores obtidos discriminaram os diversos graus de dispneia com a mesma eficiência. Não parece haver razão para considerar que as pequenas e não significativas discrepâncias observadas indiquem estar sendo a reserva funcional "melhor" avaliada pela RV que pela RVi, já que mesmas considerações poderiam ser feitas em sentido contrário.

Determinação da RV em repouso não mede treinamento físico nem capacidade aeróbica (43, 104, 167, 189) mas tão só alterações da mecânica pulmonar que geralmente correlacionam com o grau de dispneia referido no momento do teste, e de maneira mais eficaz que parâmetros clínicos ou de obtenção mais sofisticada (105, 161, 170, 186, 188). As considerações de Shepard (167), no sentido de que pode ser errático extrapolar resultados da RV medida em repouso para prever tolerância ao exercício, só foram verdadeiras, nos nossos casos, para os grupos com IVR e DGE e DME. Talvez por estarem esses pacientes situados em faixas de comprometimento mecânico pulmonar tão superponíveis que as diferenças ressaltadas sejam puramente de ordem emocional.

Interessante notar a verificação recente de Gilbert e Auchincloss (79) de que em indivíduos normais a resistência ao fluxo aéreo aumenta discretamente mais no exercício que na hiperventilação voluntária e que a dispneia correlaciona melhor com a modificação pressórica total durante o ciclo respiratório (P máx) que com o TR medido, aparecendo a sensação de desconforto ao se situar a RV entre trinta e três e setenta e cinco por cento, valores que são perfeitamente superponíveis aos encontrados para a maioria dos pacientes com dispneia em repouso, neste estudo, e aos referidos na literatura.

V - CONCLUSÕES

O estudo de duzentos e cinquenta pacientes
com IVO e IVR e diversos graus clínicos de dispnéia (DGE, DME, DPE, DRE), comparados entre si e com vinte indivíduos normais (NIS) permite concluir:

1) Há correlação entre grau clínico de dispnéia e alteração de volumes pulmonares (VAC, CV, VR/CPT), parâmetros ventilatórios não forçados (FR, VM, DV), parâmetros ventilatórios forçados (VEF₁, FM-EF, VVM), grau de disfunção pulmonar (GDP), reserva ventilatória (RV) e reserva ventilatória "indireta" (RVi).

2) O poder dos parâmetros estudados em discriminar normais de indivíduos com IVO e IVR e DGE; diversos graus de dispnéia nos dois tipos de insuficiência ventilatória; mesmos graus clínicos de dispnéia entre IVO e IVR é, globalmente: a) menor para os volumes pulmonares e parâmetros ventilatórios não forçados, maior para os parâmetros ventilatórios forçados, e maior ainda para o GDP, a RV e a RVi.

3) Considerando os parâmetros ventilatórios forçados, o VEF₁ e a VVM se comportam da mesma e melhor maneira em estabelecer diferenças entre os diversos grupos que o FM-EF, com uma exceção: este é hábil em diferenciar o grau inicial de dispnéia entre a IVO e a IVR.

4) É a maior variabilidade dos valores obtidos do FM-EF que limita globalmente seu poder discriminatório em relação ao VEF₁ e a VVM no diagnóstico diferencial da dispnéia.

5) As medidas compostas de dois ou mais parâmetros (GDP, RV e RVi) conseguem estabelecer as maiores diferenças entre os grupos com IVO e IVR e diversos graus de dispnéia; nenhum, entretanto, separa DGE de DME na IVR.

6) A RV e a RVi se comportam de maneira idêntica em todos os casos e mostram que a consideração do requerimento ventilatório (VM) relacionado à capacidade ventilatória (VVM ou VEF₁) representa a melhor associação numérica com a dispnéia experimentada pela maioria dos pacientes:

a) nos normais a RV e a RVi medeiam 95%, excepcionalmente caindo abaixo de 90%;

b) entre cerca de 90% e 70% de RV e RVi
situam-se os indivíduos com DGE, DME e DPE;

c) RV e RVi correlacionam com os diversos graus de dispneia de esforço;

d) RV e RVi abaixo de 70% geralmente coincidem com DRE;

e) nos casos de IVO e IVR, RV e RVi comportam-se relativamente à dispneia de maneira até certo ponto semelhante, situando-se porém o nível de ambos os índices na IVR acima dos correspondentes para a IVO num mesmo grau clínico da dispneia.

f) as conclusões acima são estatisticamente significantes (p < 0,001).

7) A possibilidade de expressar a RV "indiretamente" através da análise da curva expiratória forçada, dispensando-se medidas mais demoradas e cansativas, deve ser considerada.

VI - AGRADECIMENTOS

Ao Prof. Rubens Maciel, Mestre Insigne, por apoio e estímulo em tantos anos, em cujo Serviço ingressei na área da investigaçao funcional cardiopulmonar.

À Dra. Rosemary Petrik Pereira por valiosas sugestões no decorrer da execução deste trabalho.

À Sra. Anna Saj Kowal pela disposição e presteza com que se propôs a datilografar estas páginas.

À Sra. Deijanira Eli Almeida pela primorosa feitura das figuras.
BIBLIOGRAFIA CONSULTADA*

8 - Bartlett, R. G. e Specht, H. Maximum breathing capacity

with various expiratory and inspiratory resistances (single and combined) at various breathing rates. J. Appl. Physiol., 11:79, 1957.

19 - Buehler, J.H. e Gracey, D.R. Diferenciacion de la disnea cardiaca y pulmonar por el laboratorio. Mod. Conc.

30 - Campbell, E.J.M., Freedman, S., Clark, T.J.H., Robson, J.

63 - Finesinger, J.E. e Mazick, S.G. The respiratory response of psychoneurotic patients to ideational and to sensory

89 - Gottschall, C.A.M. Observações não publicadas.

100 - Heyman, A., Birchfield, R.I. e Sieker, H.O. Effects of

147 - Peabody, F. W., Wentworth, J. A. e Barker, B. L. Clinical studies on the respiration. V. The basal metabolism and the minute-volume of the respiration of patients

