
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

PEDRO HENRIQUE EXENBERGER BECKER

Function Reuse on a Multi-Core VLIW
Soft-Core Processor

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Antonio Carlos Schneider
Beck
Coadvisor: Anderson Luiz Sartor

Porto Alegre
January 2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Renato Ventura Henriques
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Navegar é preciso,

viver não é preciso.”

— FERNANDO PESSOA

ACKNOWLEDGMENTS

If I had to do this work without any help, I would probably need a couple more

years and much patience to handle a very lonely and stressful life. Fortunately, I could

count on great and supportive people to develop this work, whom I now want to acknowl-

edge.

First of all, I would like to thank my parents, Raquel and Denis, for educating and

supporting me ever since I recall. Also, for my advisor Antonio and his valuable guid-

ance, and my colleagues from the Embedded Systems Laboratory of UFRGS, especially

Anderson (my co-advisor) and Marcelo, whom I consulted incessantly. Furthermore, I

would like to thank my classmates, whom I found to be a free and precious source of

help. Finally, I would like to thank my lovely girlfriend Marina, for her every-day support

and kindness.

ABSTRACT

Modern processors contain several specific hardware modules and multiple cores to en-

sure performance on a wide range of applications. When a project needs a processor

regarding time to market and architecture customization, FPGAs are often used as the

implementation platform. However, for FPGA-based processors, those modules may not

fit in the target device, because of FPGA’s resource constraints, so their functionalities

must be mapped into the much slower software domain. In the same way, we exploit the

fact that logic-driven designs usually underuse available BRAMs, memory blocks embed-

ded in FPGAs. As an alternative, we propose a low-cost hardware-based function reuse

mechanism, which can optimize software execution. This is accomplished by saving the

inputs and outputs of the most recurring functions in a BRAM-based reuse table, so they

can be reused in the next function calls, skipping actual execution, and improving per-

formance. The technique was implemented in HDL and was coupled to a 4-issue VLIW

processor. As a case study, we optimized six applications that use a soft-float library to

emulate a floating-point unit in software, achieving 1.23x of geomean speedup. The anal-

ysis was extended to a multi-core environment, which was done with a simulator built

for this work, where we observed the benefits of sharing the reuse table among similar

applications running with different inputs. Sharing the reuse table proven promising, for

example, leading one application to 1.9x speedup instead of 1.25x if the reuse table was

not shared. Also, we present how the mechanism can be easily enhanced, so function

reuse embraces the concept of approximate computing, increasing the scenarios where its

use is beneficial and achieving 1.52x speedup in single-core image filter application at the

cost of output quality.

Keywords: FPGAs. Soft-core processors. Function reuse. Multi-core systems.

Reuso de Funções em Processadores Soft-Cores VLIW Multi-Núcleo

RESUMO

Processadores modernos contém vários módulos específicos e multiplos núcleos para ga-

rantir desempenho em uma variedade de aplicações. Quando um projeto de processador

depende de time-to-market e customização de arquitetura, FPGAS são frequentemente

utilizados como a plataforma para a implementação. Entretando, para processadores ba-

seados em FPGAs, esses módulos podem exceder a capacidade do dispositivo alvo, dadas

as limitações de recursos dos FPGAs, de maneira que algumas funcionalidades precisam

ser mapeadas para o domínio de software, mais lento. Da mesma forma, exploramos o

fato de que projetos lógicos geralmente sub-utilizam a quantidade disponível de BRAMs,

blocos de memória embarcados nos FPGAs. Como alternativa, propomos um mecanismo

de reúso em hardware de baixo custo que pode otimizar a execução de programas. Isso é

obtido ao salvarmos os parâmetros de entrada e valores de retorno de funções recorrentes,

em uma tabela de reúso implementada em BRAM de maneira que as funções possam ser

reutilizadas em chamadas futuras, evitando a sua reexecução, e acelerando a aplicação. A

técnica foi implementada em linguagem de descrição de hardware e adicionada à um pro-

cessador VLIW 4-issue. Como estudo de caso, otimizamos seis aplicações que usam uma

biblioteca soft-float para simular uma unidade de ponto-flutuante em software, atingindo

1.23x de aceleração geométrica média. A análise foi estendida para um ambiente multi-

núcleo, o que foi feito com um simulador construído para este trabalho, onde observou-se

os benefícios de compartilhar a tabela de reúso entre aplicações similares executando so-

bre dados diferentes. Compartilhar a tabela se mostrou promissor, por exemplo, levando

uma das aplicações à ganhos de 1.9x em contra partida de 1.25x se a tabela não tivesse

sido compartilhada. Além disso, apresentamos como o mecanismo pode ser facilmente

melhorado, de maneira que o reúso de funções faça uso da computação aproximativa, au-

mentando o número de cenários onde o reúso de funções é benéfico e atingindo 1.52x de

aceleração em uma aplicação de filtro de imagem, ao custo de qualidade.

Palavras-chave: FPGAs. Processadores soft-core. Reúso de funções. Sistemas multi-

núcleo.

LIST OF ABBREVIATIONS AND ACRONYMS

ALU Arithmetic and Logic Unit.

ASIC Application Specific Integrated Circuit.

BRAM Block Random Access Memories.

CLB Configurable Logic Block.

CPU Central Processing Unit.

DSP Digital Signal Processing.

FORMOSA FunctiOn Reuse MulticOre SimulAtor.

FP Floating-Point.

FPGA Field-Programmable Gate Array.

FPU Floating-Point Unit.

FU Functional Unit.

GPP General Purpose Processor.

GPU Graphics Processing Unit.

HDL Hardware Description Language.

HLS High-Level Synthesis.

ILP Instruction-Level Parallelism.

IO Input/Output.

IOB Input/Output Block.

IP Intellectual Property.

ISA Instruction-Set Architecture.

LSB Least Significant Bit.

LUT Look-Up Table.

MPSoC Multiprocessor System on Chip.

RT Reuse Table.

RU Reuse Unit.

SMT Simultaneous Multithreading.

VLIW Very Long Instruction Word.

LIST OF FIGURES

Figure 2.1 A typical FPGA Architecture. ...14
Figure 2.2 ILP Exploitation by VLIW and Superscalar Architectures.17
Figure 2.3 A four-core Intel i7 4770K processor. ...18
Figure 2.4 Example of a Reusable Code Snippet..19
Figure 2.5 Example of a Reusable Function Result..20
Figure 2.6 Example of a Reusable Function with Approximate Result..........................21

Figure 4.1 A Reuse Table entry...27
Figure 4.2 The Functioning of the Function Reuse Unit. ...28
Figure 4.3 Organization of a 4-issue ρ-VEX with a Reuse Unit.....................................28
Figure 4.4 A Multi-Core Environment with a Shared Reuse Unit..................................31
Figure 4.5 Example of a Reuse Trace from the Reuse Unit..32
Figure 4.6 A Reuse Table entry that supports precise and approximate modes.36

Figure 5.1 Reusability of case study functions ...39
Figure 5.2 Speedup for different Reuse Table sizes compared to the baseline.39
Figure 5.3 Speedup Scalability as the Reuse Table grows. ...40
Figure 5.4 Measuring Impacts of Sharing the Reuse Table from a Multi-core Scenario.42
Figure 5.5 Speedup for the fir benchmark...44
Figure 5.6 Speedup for the lms benchmark. ...45
Figure 5.7 Speedup for the ludcmp benchmark. ...46
Figure 5.8 Speedup for the minver benchmark. ..47
Figure 5.9 Speedup for the qurt benchmark..48
Figure 5.10 Speedup for the st benchmark. ..48
Figure 5.11 Speedup for approximate sobel image filter. ...50
Figure 5.12 The approximate sobel filter dropping 4 Least Significant Bits.51

LIST OF TABLES

Table 1.1 Resource Utilization of Three Soft-Core Designs...12

Table 5.1 Investigated Simulation Scenarios for a Benchmark B41
Table 5.2 Usage of Resources For Different Designs and Targets..................................52

CONTENTS

1 INTRODUCTION...11
2 BACKGROUND..14
2.1 Field-Programmable Gate Array ..14
2.1.1 Block Random Access Memories..15
2.1.2 Soft-Core Processors..15
2.2 Modern Architectures...16
2.2.1 Very Long Instruction Word Processors ..16
2.2.2 Multi-Core Processors ...18
2.2.3 Multiprocessor System on Chip...18
2.3 Reuse ..19
2.3.1 General Reuse ..19
2.3.2 Function Reuse...20
2.3.3 Approximate Function Reuse ..20
3 RELATED WORK ...22
3.1 Reuse in Single-Core Environments..22
3.2 Reuse in Multi-Core Environments...23
3.3 Approximate Reuse...24
3.4 Work Contribuitions...24
4 IMPLEMENTATION AND METHODOLOGY ...26
4.1 Baseline Processor...26
4.2 Implementing the Function Reuse Unit in a Single-Core....................................27
4.2.1 Reuse Mechanism ..28
4.3 Function Reuse in Multi-Core Environments ..30
4.3.1 Multi-Core Function Reuse Simulator...32
4.4 Enhancing Function Reuse Possibilities with Approximate Computing34
4.4.1 Modifications to Support Approximate Reuse...35
4.4.2 Modifying Software to Analyze Approximate Function Reuse36
5 RESULTS...37
5.1 Function Reuse in Single-Core Environments ...37
5.1.1 Experimental Methodology ...37
5.1.2 Case Study - Floating-Point ...37
5.1.3 Reusability ...38
5.1.4 Performance ...38
5.2 Function Reuse in Multi-Core Environments ..40
5.2.1 Experimental Methodology ...40
5.2.2 Inputs Definition ..43
5.2.3 Performance ...43
5.3 Using Approximate Computing to Function Reuse ...49
5.3.1 Experimental Methodology ...49
5.3.2 Performance ...50
5.4 Resource Usage..51
6 CONCLUSIONS AND FUTURE WORK..54
6.1 Conclusions..54
6.2 Work Limitations ..54
6.3 Future Work ..55
REFERENCES...56
APPENDIX A — PROJECT DESCRIPTION (TG1) ..61

11

1 INTRODUCTION

The implementation of processors in Field-Programmable Gate Arrays (FPGAs),

also known as soft-core processors, provides known benefits when designing a computa-

tional system. For example, the reprogrammability of FPGAs guarantees good time-to-

market, fast architecture customization and integration of hardware accelerators (either by

writing new modules or using off-the-shelf components), as well as obsolescence mitiga-

tion since the hardware description can be easily ported to the latest FPGAs (FLETCHER,

2005). These processors have gained space in solutions to specific purpose problems: by

using modules that can be configured at synthesis time, they combine performance gains

in dedicated tasks with the ease of high-level programming for end users.

At the same time, nowadays systems require high performance for a wide range of

applications, which increases the demand for logic resources. The use of multi-core pro-

cessors, e.g., ARM Cortex-A53 (BOPPANA et al., 2015), together with dedicated hard-

ware like Floating-Point Units (FPUs), security and cryptography modules, and coders /

decoders for multimedia, are commonly adopted in any modern design, such as in Multi-

processor Systems on Chip (MPSoCs) (WOLF; JERRAYA; MARTIN, 2008). However,

FPGA designs require more area and energy compared to Application Specific Integrated

Circuits (ASICs) (KUON; ROSE, 2007). Therefore, in many cases, the resources avail-

able in an FPGA will be the limiting factor. In case specialized hardware can’t fit inside

the FPGA, some of its features must be mapped into the software domain, which is sig-

nificantly slower.

In addition, Block Random Access Memories (BRAMs) are often underutilized

when implementing such complex logic driven designs in FPGAs. Table 1.1 shows the

utilization of Look-Up Tables (LUTs), Registers and BRAMs of three soft-core proces-

sors (arranged in order of complexity) implemented in a Virtex-5 xc5vlx110t. As one

can observe, for complex soft-core processors, such as the OpenSparc T1 (a single-issue,

six-stage pipeline supporting up to four concurrent threads), BRAMs are not utilized in

the same proportion as registers and LUTs. This comes from the observation that BRAMs

usually present a limited number of ports (in most cases, 2 for reading and 1 for writing),

which forbids many possible uses for them, such as the register file in multiple-issue pro-

cessors, which need multiple read ports to properly feed all the available functional units

(XILINX; INC, 2016). Hence, BRAMs are usually used only to implement moderate size

caches, common in the scope of soft-cores running in embedded environments.

12

Table 1.1: Resource Utilization of Three Soft-Core Designs
Design % Slice LUT % Slice Register % BRAM

OpenRisc1200 5% 2% 7%
Leon 3 27% 16% 15%
OpenSparc T1 88% 56% 40%

Considering this scenario, this work proposes a function reuse-based technique

that leverages those idle BRAMs, resulting in a low-cost and generic hardware solution

to speed up specific software parts without the need for implementing dedicated hard-

ware components. Each time a function executes, its results are dynamically stored in a

BRAM Reuse Table (RT) and, when the same function with the same input arguments

is called again, the output of this function can be directly fetched from the RT, avoiding

re-calculation and improving performance.

Additionally, considering the consolidation of multi-core environments, we extend

our reuse concept within a soft-core multi-processor design, where it is possible to share

the RT among cores. Thus, programs that are simultaneously running on the soft-core can

all update the RT as they calculate function results, and fetch results calculated by other

processes from the RT. Since multi-thread programs (or multiples instances of a program)

run over the same code, we expect that they benefit from such arrangement, increasing

the reuse possibilities. At the same time, the introduction of a shared RT is cheaper than

if we would introduce a dedicated RT for each core, as we have a single and centralized

(instead of replicated) control logic. By using this approach, we can accelerate multiple

cores while proportionally reducing the impact of an RT in the FPGA design.

Going one step further, we also show that, by tuning how the BRAM RT is ac-

cessed, it is possible to gracefully switch, by using the same hardware structure, from

precise to approximate reuse, which can significantly increase reuse rates and perfor-

mance at the expense of output quality in some specific classes of applications. This

reuse mechanism that uses BRAMs and is configurable for both precise and approximate

modes can be easily used to optimize the execution of any given software library, avoid-

ing its hardware implementation counterpart and resulting in significant savings in design

time, LUTs and registers.

We evaluate the technique by implementing it in a complex 4-issue Very Long

Instruction Word (VLIW) soft-core at Hardware Description Language (HDL). We inves-

tigate six applications that process a significant amount of Floating-Point (FP) operations

in different scenarios, including one where implementing a hardware FPU prevents the

13

addition of any new dedicated hardware because of the limited amount of resources avail-

able. In this case, we apply our idea to optimize a soft-float library that uses integer units

to emulate double precision FP operations that would otherwise have to be implemented

in hardware. Then, with software-based simulations, we consider the execution of multi-

ple instances of each of these benchmarks, running with different inputs, sharing the RT to

optimize the same soft-float library. Over this, we can analyze the space exploration ben-

efits in performance and area when using the reuse mechanism in a thread-collaborative

way. In addition, we evaluate an image processing filter software that tolerates a cer-

tain error level, so we can switch to the approximate mode to increase reuse rates and,

therefore, improve performance at the cost of quality.

For the single-core scenario, we show that an average speedup of 1.23x in the

precise case and 1.52x in the approximate one is achieved when considering an RT that

fits in five different test targets. For targets with larger BRAMs, this number can be as high

as 1.38x and 2.97x, respectively. Meanwhile, the usage of slice registers and slice LUTs

by our reuse mechanism increases by 17% and 3% respectively, compared to 140% and

48% for an FPU or 11% and 13% for a dedicated sobel filter. It is important to note that

our mechanism is generic, so its cost in registers and LUTs is fixed regardless the number

of different applications that it can optimize. When considering a multi-core system with

a shared RT, we present cases where improvement goes from 1.25x to 1.9x, keeping the

total amount of BRAM used. When BRAM is also a scarce FPGA resource, we show that

our multi-core reuse approach can equate the performance of the single-core using less

BRAM.

The upcoming sections are organized as follows. We present background in Chap-

ter 2. Related work about different reuse approaches is covered in Chapter 3. Chapter 4

discusses the Implementation and Methodology of the work. Results are presented and

discussed in Section 5. Section 6 states Conclusions and Future Work.

14

2 BACKGROUND

In the upcoming sections, we introduce some important concepts that support our

study. They will be briefly defined together with its role in this work.

2.1 Field-Programmable Gate Array

FPGAs emerged as an intermediary solution between processors and ASICs, pro-

viding better control over the hardware implementation compared to processors, and more

flexibility, testability, and time-to-market over ASIC. With its differentials, the FPGA

market has reached about USD 6.36 billion by the year of 2015 with continuous growth

expectation (Research Grand View, 2016). Thereby, this research is based on a technol-

ogy that is already established and has a solid market.

FPGAs gained market share with its uniqueness: the idea of a reconfigurable cir-

cuit. Figure 2.1 depicts a traditional FPGA architecture. It is an array of Configurable

Logic Blocks (CLBs), routing channels, BRAMs and Digital Signal Processing (DSP)

units. The reconfigurability is a result of the programmability of the CLBs and routing

channels, as we present below.

A CLB is the fundamental component on the FPGA architecture. Inside each

Figure 2.1: A typical FPGA Architecture.

Source: (BUELL et al., 2007)

15

CLB, there are a set of small tables (LUTs). With these tables, the FPGA can implement

logical functions over the CLB inputs (using the LUTs as a truth-table). Thus, combining

many CLBs through the routing channels can lead to implementations of very complex

logical functions. Moreover, the LUTs can be used as memory elements for small data

amount. Since both CLB and routing channels are programmable, the circuit that an

FPGA implements can be changed by reprogramming those components.

Aside CLBs and routing channels, FPGA also has Input/Output Blocks (IOBs), to

connect the FPGA with the outside world, and embedded blocks. Traditional architectures

contain both embedded DSPs units, to speed up costly operations that are implemented

by cascades of truth-tables (e.g., multiplications), and BRAMs, which will be detailed in

the following subsection. More details can be found in (SKLYAROV et al., 2014).

2.1.1 Block Random Access Memories

BRAMs are embedded memory blocks used for storing large sets of data more

efficiently than by LUTs, and are widely available in modern FPGAs. For example, the

Xilinx 7 series FPGAs contain from 5 to 1880 dual-port BRAMs, depending on the model,

each storing 36Kb of data. These blocks can be divided into two independent 18Kb

BRAMs. In both cases, dual-port is assured, and each port is completely independent of

another, sharing only the stored data (Xilinx Inc.; XILINX; INC, 2017).

These embedded blocks can also be configured in different associations (e.g., 32K

1-bit lines, 16K 2-bit lines, . . . , 1K 32-bit lines, 512 64-bit lines), and can be intercon-

nected to create wider and deeper memory structures (SKLYAROV et al., 2014). Finally,

both read and write operations are synchronous, requiring an active clock edge.

As already mentioned since logic-driven designs, as soft-core processors, gen-

erally underuse available BRAMs (see Table 1.1), we propose to better occupy those

components by implementing the RT for enhancing applications’ performance.

2.1.2 Soft-Core Processors

A soft-core processor is a hardware description language model of a processor that

can be customized and synthesized for an ASIC or FPGA target (TONG; ANDERSON;

KHALID, 2006). In this study, however, we consider only FPGA-based soft-cores.

16

FPGA-based soft-cores became popular as they bring advantages such as (i) ar-

chitecture customization, since FPGA allows non-standard implementation, according to

the design requirements; (ii) obsolescence mitigation, as the hardware description perpet-

uates while hardware technologies advance; (iii) cost reduction, considering that multiple

components can be replaced with a single FPGA; and (iv) hardware acceleration, since

specific algorithms can be easily implemented in hardware, for example, to achieve better

performance (FLETCHER, 2005).

There is a variety of commercial and academic soft-core processors as a demon-

stration of its representativeness. Examples from the industry comprehend Xilinx Mi-

croBlaze soft processor, an Intellectual Property (IP) for Xilinx FPGAs (KALE, 2016),

the Altera Nios II (NIOS, 2009), and the open sourced hardware description of Sun’s

UltraSparc T1 and T2, which were released by the OpenSparc Project (PARULKAR et

al., 2008). From academia, we highlight the ρ-VEX VLIW processor (WONG; Van As;

BROWN, 2008) from Delft University of Technology.

2.2 Modern Architectures

The required performance of computing devices has increased as technology ad-

vances. The transistor’s scaling improved processors frequency, while the exploitation of

Instruction-Level Parallelism (ILP) increased processors throughput. However, increased

clock rates dissipate more power, which became a barrier. At the same time, the ILP

exploitation in superscalar processors - where multiple independent instructions can be

simultaneously executed every cycle - by deep pipelining and out-of-order execution,

seems to have reached a plateau (DAS et al., 2008).

To overcome the above challenges and to guarantee computers ascendant perfor-

mance, various solutions were proposed. We detail three solutions in the upcoming sub-

sections, which are strongly related to this work: Very Long Instruction Word Processors,

Multi-Core Processors, and Multiprocessor System on Chip.

2.2.1 Very Long Instruction Word Processors

The extraction of ILP at execution time by superscalar processors enabled perfor-

mance gains but introduced more hardware (and complexity) given the logic required to

17

find parallel instructions (OLUKOTUN; HAMMOND, 2005) dynamically. As alternative

to on-the-fly ILP exploitation, the VLIW processors were proposed (FISHER, 1983).

A VLIW processor contains multiple execution pipelines, the issue-slots, so that it

can execute more than one instruction at a time (just like a superscalar). The advantage of

using these processors is that the instruction parallelism is extracted by the compiler (see

Figure 2.2). Thus, a VLIW processor can benefit from ILP while maintaining a simple

microarchitecture. The parallel instructions are disposed inside a very long instruction

word, in a set of independent instructions that can be executed concurrently without any

concern by the processor. The arrangement of the instruction even maps each instruction

with the issue-slot on which it will be executed.

Because of its simple organization alongside its ILP exploitation, the VLIW pro-

cessors are powerful yet less resource-consuming in comparison to a complex superscalar.

These factors make the VLIW a good architecture option for resource-constrained FPGA-

based soft-core processors.

Figure 2.2: ILP Exploitation by VLIW and Superscalar Architectures.

(a) A VLIW architecture. ILP is extracted by
the compiler.

(b) A superscalar architecture. ILP is extracted
by the hardware.

Source: (STOKES, 2000)

18

2.2.2 Multi-Core Processors

Optimizing a single core processor with pipeline, ILP exploitation and out-of-

order execution became insufficient. Multi-core processors were proposed, observing that

complex systems usually execute multiple tasks. Thus, in a multi-core environment, vari-

ous tasks could be distributed among multiple processors, increasing the overall through-

put of the system. Figure 2.3 presents a quad-core Intel i7 overview as example. Each

core can execute independently of others and communicates by using the shared cache

memory.

The first commercial multi-core processor was the IBM Power4 (TENDLER et al.,

2002) released in 2001. After, other companies such as Intel, AMD, and Sun also turned

to multi-core production (GEER, 2005). Ever since, multi-core designs became almost

a standard for General Purpose Processors (GPPs), from Intel Pentium D up to the latest

Intel i7 Series. Not enough, multi-core processors are highly used in nowadays embedded

systems as smartphones (Van Berkel, 2009).

2.2.3 Multiprocessor System on Chip

Some computer tasks, like real-time video encoding, for example, execute a com-

plex algorithm with very high throughput demand. In other cases, the constraints can

be latency or power. When that occurs, using a GPP may not be the best option, ei-

ther for performance or energy consumption, since a specialized hardware can meet the

constraints more easily.

Let us consider the case of smartphones and tablets as an example. They are

required to execute a broad range of concurrent tasks with minimum battery consump-

Figure 2.3: A four-core Intel i7 4770K processor.

Source: (LUDLOW, 2014)

19

tion. For this reason, these devices have specific hardware modules in their main chip die

working together with multiple processors to run the applications efficiently (JÓŹWIAK,

2017). This chip arrangement is known as MPSoCs. For example, the Snapdragon 835,

used in newest smartphones, contains a quad-core Central Processing Unit (CPU) with

dedicated hardware for processing audio, graphics, camera image, security, location, and

several other specialized modules (QUALCOMM, 2017).

2.3 Reuse

Here we introduce the concept of reuse in the computing scope. A more detailed

overview of techniques and approaches will be covered in the Chapter 3 (Related Work).

2.3.1 General Reuse

Reuse of computation is based on the observation that deterministic execution -

where a set of inputs always leads to the same result - often repeats within programs.

Reuse exploits this by saving input and result (output) values of those executions in a RT.

The RT is searched when reentering a given snippet of execution, checking whether the

current and the saved input values are the same. In case of a hit, the result (output value)

from the RT is fetched faster than recomputing it.

For example, consider the hypothetical three-address code bellow:

Figure 2.4: Example of a Reusable Code Snippet

r.1 = r.6

r.2 = 1 + r.1

r.3 = 1 + r.2

Source: The Author

The inputs are the values which are read before are written; in the example, the

register r.6 is the only input. The outputs are the written values, which will be read

further, in the case r.1, r.2, r.3. Consider r.6 = 1 in a given execution. Therefore, after the

code executes, r.1 = 1, r.2 = 2, r.3 = 3. Note that any eventual execution in which r.6

= 1 will imply in the same result in the outputs r.1, r.2, r.3. In this scenario, saving the

input and output values for consulting in a new occurrence could skip execution of three

20

instructions.

2.3.2 Function Reuse

A particular case for reuse is when the evaluation of reuse occurs in the grain of

functions. In this case, the function parameters are the inputs, and the values returned by

functions are the outputs.

The following example illustrates a simple scenario where function reuse could be

used:

Figure 2.5: Example of a Reusable Function Result.

a = sin(π)

...
b = sin(π)

Source: The Author

In this case, the second execution of sin could be skipped, given a repetition of the

inputs (π in this case). Naturally, in this simple case, the explicit re-operation of sin(π)

could be avoided by better programming or even compiler optimization. Note, however,

that in a more realistic situation the input parameters can, and often will, be variables,

whose values are unknown at compile time and unpredictable by the programmer.

2.3.3 Approximate Function Reuse

When applications tolerate some error level, approximate function reuse can take

place. For example, observe the scenario in Figure 2.6. In this case, we have three calls to

the function sin. If we consider the former function reuse, none of the calls could benefit

from previous calculations to skip the functions executions since the inputs always differ.

When we perform approximate reuse, we can consider that close values are good enough

for the final computation, increasing reuse possibilities, at the cost of quality.

Therefore, we must decide how much error we can accept: in the example, we

can be conservative considering π very close to 3.14, but not close enough to 3. Thus

we could reuse in one case, with a small loss in quality in the value of b. Being more

21

Figure 2.6: Example of a Reusable Function with Approximate Result.

a = sin(3.14)

...
b = sin(π)

...
c = sin(3)

Source: The Author

aggressive, we could consider π and 3.14 also very close to 3, hence, leading to one more

reuse case (when calculating the value of c) but paying a higher cost in quality. In chapter

3, we present how different related works have implemented approximation to achieve a

behavior like the one we discussed above.

22

3 RELATED WORK

This chapter presents previous works that are somewhat aligned with the problem

we try to solve. We divide the works in three groups: Reuse in Single-Core Environ-

ments, Reuse in Multi-Core Environments, and Approximate Reuse in order to facilitate

the understanding of our contributions in each of these research subfields.

3.1 Reuse in Single-Core Environments

A variety of works has discussed reuse of computation (SASTRY; BODIK; SMITH,

2000). Implementations vary from software (where reuse is also known as memoiza-

tion (HALL; MCNAMEE, 1997)) to hardware-based solutions and cover different gran-

ularities of code. Sodani and Sohi (1997) presented dynamic instruction reuse is with

execution-driven simulation. The goal is to avoid re-execution of instructions in an out-

of-order processor. Instructions’ source registers are the inputs, and its result is the output.

The scheme is enhanced with control of dependency links among instructions, providing

reuse of a set of dependent instructions. Citron, Feitelson and Rudolph (1998) proposed

the reuse of FP instructions only, focusing on multimedia applications. For each function

unit that takes more than a cycle to execute (like an FP divider or multiplier), a MEMO-

TABLE is used to store the results. Average speed up between 8% and 22% is achieved.

Despite a hardware scheme being discussed, the results are taken from an instruction-level

simulator.

Reuse of a set of instructions within a basic block is considered by Huang and

Lilja (1999) and simulated using SimpleScalar (AUSTIN; LARSON; ERNST, 2002). The

source operands (registers or memory) of each instruction inside a basic block are con-

sidered as part of the input. The values written to any register or memory location are

considered as part of the output. Their work shows performance improvements of up to

14%. A similar system is proposed over trace level (a set of sequential basic blocks) by

González, Tubella and Molina (1999). In this case, less reusability is found compared to

instruction reuse, but more speedup is obtained since larger chunks of code are involved.

Kavi and Chen (2003) introduced the concept of dynamic function result reuse. In

this case, only pure functions (global variables free, no I/O requirement, nor any change

in the global state of the program) can be reused, so that the return value depends only on

the function’s input parameters. The authors verify the impact of (i) reuse buffer size; (ii)

23

reuse buffer associativity; and (iii) amount of input parameters of functions. The study

presented from 10% to 67% of reusability on a variety of applications, supporting the use

of the function reuse concept. Finally, Suresh et al. (2015) implemented function reuse

in the interface between programs and operating system. Their mechanism intercept calls

to the dynamically linked math library by preloading a memoized version of it. This

modified library verifies reusability and returns the respective output value by reuse when

available (otherwise, the original math library is called to solve the function).

3.2 Reuse in Multi-Core Environments

Historically, when data value reuse was first proposed, research focused in (simu-

lated) single-core environments for skipping snippets of execution. Very few works have

extrapolated the analysis to multi-core/multi-thread scenarios.

Molina, Gonzdalez and Tubella (2002) propose the execution of a program with

two virtual threads - similar to Simultaneous Multithreading (SMT) - where one specu-

lates execution while the other uses a Verification Engine to quickly verify misspecula-

tions to reduce the penalty of skipping execution by prediction.

Some works have put effort into avoiding reexecution of computation by thread

synchronization. Long et al. (2010) propose to synchronize threads of an application in

a form that execution of threads occurs by aligning identical instructions, synchronizing

with a fetch priority mechanism. This is possible thanks to the code similarities among

program’s threads. By this, it is often possible to use a single fetch unit (since instructions

are equal), and when instructions operand are also equal, execute multiple instructions

together in a single thread, and applying the results to all threads. Speedup is expected,

as highlighted by the authors, because the instruction window is easier to keep full, fewer

instructions need to be executed, and fewer cache accesses must occur. Indeed, 1.15x

speedup is achieved comparing to a two-thread traditional SMT processor, and 1.25x

comparing with a four-thread SMT. The work by Mckeown, Balkind and Wentzlaff (2014)

uses a similar approach. However, their solution also works with multi-threads from

different programs, even though they show that this scenario is not the sweet spot for the

technique usage.

24

3.3 Approximate Reuse

A few works have explored the concept of approximate function reuse under dis-

tinct names. Alvarez, Corbal and Valero (2005), present fuzzy memoization of FP in-

structions. Similarly to the work developed by Citron, Feitelson and Rudolph (1998),

where only multiplication and division operations are saved in the table due to their high

latency, and multimedia applications are used for evaluation. Approximation is achieved

by dropping some Least Significant Bits (LSBs) from the input FP value’s mantissa, caus-

ing close enough values to be grouped into the same table entry. The authors claim that

4x more energy can be saved by using fuzzy memoization compared to the precise reuse

approach.

Work by Keramidas, Kokkala and Stamoulis (2015) presents the clumsy value

cache, an instruction/block-level reuse technique targeting Graphics Processing Units

(GPUs) fragment shaders. The authors investigate the potential of dropping input bits

to increase instruction reuse rates and show that by doing so is the only viable way to

implement block reuse. No speedup results are presented in the work, but the technique

reduces the number of instructions executed, on average, by 13.5%. Sinha and Zhang

(2016) use memoization to accelerate application-specific circuits synthesized for FPGA

using High-Level Synthesis (HLS), and show that it can achieve 20% energy savings with

less than 5% of area overhead.

3.4 Work Contribuitions

Our work is the first to consider reuse specifically targeted to FPGAs and soft-

cores, taking into account their unique components, design constraints and intrinsic char-

acteristics, such as the fact that BRAMs are usually underused. It can provide a generic

solution for both precise and approximate computation either in single or multi-core en-

vironments, delivering a low-cost and flexible technique so the design requirements can

be achieved with the FPGA at hand.

To the best of our knowledge, this is the first hardware implementation of such

technique targeted towards soft-core processors. Through this, this work provides an

in-depth analysis of the area/resources consumption of the mechanism and a level of ac-

curacy that only actual implementations can provide. Our hardware implementation is

free of any abstraction layers, leading to a solution independent of user space or operating

25

systems, which are unavailable in bare metal designs. Additionally, we propose to cover

reuse with a shared RT in a multi-core environment, which (to the best of our knowledge)

was never proposed before not only for FPGA-based processors but also in GPPs.

By presenting function reuse in FPGA for soft-core processors, we open new pos-

sibilities for design space exploration and new tradeoffs for HW/SW co-design in such

devices. For instance, low-price FPGAs may regain space in project decision, since our

approach provides performance gains with low overhead in LUTs, occupying, instead,

BRAMs that would otherwise be idle. Moreover, the multi-core analysis can update the

knowledge of reusability in modern designs, and also explain the behavior of reuse when

the RT is populated simultaneously from different applications.

26

4 IMPLEMENTATION AND METHODOLOGY

This chapter presents the addition of a function Reuse Unit (RU) to a single-

core VLIW processor, by VHDL implementation, to skip redundant function execution

in single-thread programs; this is accomplished by using available BRAMs for storing

the reuse information of functions. After, it details a multi-core reuse proposal to share

a single centralized RU (and RT) among multiple cores, to improve reuse by leverag-

ing inter-core likeness of code, and the simulator built to extract the results. Finally, we

demonstrate the minor changes in the former hardware so we can enhance the RU with

approximate reuse.

For the sake of clarity, we will explain each of this incremental steps in the sections

below.

4.1 Baseline Processor

The techniques we propose are for the ρ-VEX VLIW soft-core processor (WONG;

Van As; BROWN, 2008) compatible with the VEX Instruction-Set Architecture (ISA)

(Hewlett-Packard Laboratories, 2009) and described in VHDL, even though there are no

restrictions that would prevent its implementation to any other soft-core processor. It

has a Load/Store Harvard architecture with a five-stage pipeline: Fetch, Decode, Execute

1, Execute 2, and Write-back. The issue-width (e.g., 2, 4, or 8), type and organization

of functional units, and register file size can be configured during design time. Each

pipelane may contain different Functional Units (FUs) from the following set: Arithmetic

and Logic Unit (ALU) (always present), multiplier, memory, and branch units.

In this work, a ρ-VEX core is set as the default 4-issue version consisting of 4

ALUs, 2 multipliers, 1 memory unit, and 1 branch unit (as shown in Figure 4.3) and

8+8KB instruction and data caches. The VEX ISA defines that argument and return

values for function calls are passed through registers R3 to R10. If more than eight input

or output registers are required, the memory is used. We consider only the first case (up

to eight parameters) since we have found that the functions that do not fit in this case are

not good for reuse: they are unlikely to be reused (many inputs to match) and lead to high

latency to check/compare memory values.

27

Figure 4.1: A Reuse Table entry.

Input Registers

Values

Output Registers

Values
V

Function

Address

Input Registers

Values

Output Registers

Values
V

Function

Address

Source: The Author

4.2 Implementing the Function Reuse Unit in a Single-Core

The proposed mechanism was implemented by modifying the ρ-VEX hardware

description. An RU was attached to the processor and is composed of the following:

• RT: a direct mapped table implemented in BRAM that stores dynamic information

of reusable functions (frequently executed, likely-to-be-reused pure functions de-

fined at design time). Each entry (Figure 4.1) contains the function’s address as

well as the input and output contexts. Its size is defined at design time.

• Functions Table: a small (one entry per reusable function) and fully associative

table with static information on the reusable functions. Each entry contains the

function’s address and the number of parameters of the function. This table is filled

at design time by the designer.

• Reuse mechanism: implements the process of accessing the reuse table, which in-

volves the index calculation (using a hash); checking whether the entry in the RT is

valid or not; and reusing it, if it is the case.

Figure 4.2 summarizes, through a finite state machine, the functioning of the RU

along with a program execution. With the Functions Table filled (by the system’s designer,

as we explain soon), on every CALL instruction targeting such reusable functions, the

mechanism verifies for a previous execution of it in the RT (and thus, for the result of

such previous execution), updating the processor context if it finds it. When the current

function result is not available in the RT, the scheme must wait for the function to end,

so the outputs are available, and then store them in the RT for further lookups. Thereby,

the RT is dynamically filled at run-time. As occurs in related works (see Chapter 3) the

function reuse is a technique to be applied on pure functions, and therefore it must be

explicit to the RU whenever a function is pure or not (so it can be reused). Actually, our

implementation considers that the RU should work with a subset of the program’s pure

functions, named reusable functions, marked (stored at the Functions Table) to be reused

by the system’s designer in design time. Therefore, it is up to the designer to find pure

functions and decide if they should or should not be reused.

28

Figure 4.2: The Functioning of the Function Reuse Unit.

Search in RT

Update Output

Registers and

Program

Counter

Collect

Function

Reuse Info.

Save

Function

Info. on RT

Instruction Fetch

Program

Execution

Program

Execution

RT Updated Function RETURN

Function Execution

Skipped

Search in RT

Update Output

Registers and

Program

Counter

Collect

Function

Reuse Info.

Save

Function

Info. on RT

Instruction Fetch

Program

Execution

RT Updated Function RETURN

Function Execution

Skipped

Source: The Author

Next, detailed explanation of micro-architectural aspects is presented.

4.2.1 Reuse Mechanism

Figure 4.3 details the ρ-VEX organization integrated with the RU. Three phases

are highlighted, and correspond to (1, yellow) how the RU collects reuse information, (2,

blue) verifies and stores reuse information, (3, green) and applies reuse (if possible). Each

phase works as follows:

Figure 4.3: Organization of a 4-issue ρ-VEX with a Reuse Unit.

F

E

T

C

H

Reuse Unit

RT

Reuse Unit

RT

MEMORY

ALU

MEMORY

ALU

MUL

ALU

MUL

ALU

MUL

ALU

MUL

ALU

BRANCH

ALU

BRANCH

ALU

Program Counter
Next PC

Return Address

Reuse Match

FRU Control InformationFRU Control Information

MUL

MEMORY

MUL

DECODE

DECODE

DECODE

DECODE

WRITE

BACK

WRITE

BACK

WRITE

BACK

WRITE

BACK

WRITE

BACK

WRITE

BACK

WRITE

BACK

WRITE

BACK

1
2

3

CALL RETURN
Return

Address

 Function

 Address

Register FIle

Read Registers Write Registers

Source: The Author

29

Phase 1: When the pipeline decodes a call, the function and return addresses

proceed through the pipeline until reaching the RU, which checks in the Functions Table if

the function was defined as reusable, and also the number of parameters of that function,

preparing for phase (2). If the function is not reusable, the processor continues their

regular operation.

Phase 2: In this phase, the current function’s input parameters are collected by

accessing the register file. With it, the RU generates a hash key by XORing every 16-

bit of data in the current input context and function address, similarly to the approach in

(SURESH et al., 2015). The resulting key’s LSBs are used as the RT index to fetch a table

entry, which contains the fields shown in Figure 4.1, accordingly with the RT size. In case

the fetched entry is valid, the entry’s function address and input parameters are compared

with those of the current call. If the comparisons match, there is an RT hit and phase (3)

starts.

Otherwise, a reuse miss happens if the valid bit of the current entry is not set or if

the function address and inputs do not match. In these cases, the RU waits for the function

to execute regularly (until the return instruction signaling). Then, with the input context

and outputs captured from the register file, stores a new entry (if the valid bit was not set)

or replace an entry in the RT (in case of data mismatch). Therefore, the RT is dynamically

filled as the program executes.

Phase 3: A match was detected in the previous phase, so the result of the whole

function is available in the fetched RT entry. Therefore, the RU writes it to the register

file, skipping the actual execution, and notifies the reuse detection to the processor. Then,

the instructions in the pipeline are flushed, and the return address (captured by the RU in

phase (1)) is written to the program counter. Since reusability can be checked before the

pipeline commits any instruction, no rollback mechanism is required.

In order to allow the RU to collect the inputs or the outputs of a function (available

in registers R3 to R10) while the processor is fetching instructions (and its operands),

we added extra reading ports in the register file. Thereby, the RU and the processor can

operate in parallel, and reuse misses cause no performance penalties. The number of

additional ports can be tuned according to the target functions: the more parameters, the

more ports are needed to ensure no pipeline stalls (in our implementation, four reading

ports were added). As the register file and its ports are synthesized with FPGA’s registers

and LUTs, adding ports increase their usage, but only marginally as our results will show.

As mentioned in phase (3), when the reuse is applied, the pipeline is flushed, and the result

30

of the function is written to the register file. The RU exploits the fact that these write ports

would be idle due to the pipeline flush and uses them to perform this operation, which

results in no additional write ports. In this arrangement, the RU takes only four cycles to

apply the reuse: one cycle to collect the inputs, two cycles to access the RT and check

for reusability, and one cycle to write back the function results. For more aggressive

performance enhancement, a forwarding mechanism could anticipate data to compare

input context. However, four cycles are already much less than the dozens/hundreds of

cycles taken by functions commonly reused in related work, and avoiding the forwarding

mechanism saves logic resources. Therefore, we did not implemented a forwarding-aware

RU.

4.3 Function Reuse in Multi-Core Environments

On a system with multiple cores, the straightforward approach for applying func-

tion reuse would be to attach a dedicated RU (and RT) for each core. However, as each

application would have a dedicated RT running independently from the other cores, this

would be like if we have multiple single-core reuse environments, which brings no novelty

from the scientific analysis perspective. We, otherwise, propose to share the RT among

cores, in order to possibly increase performance by benefiting from inter-core reuse, while

amortizing resource usage since a single centralized RU would manage reuse instead of

multiple, one-per-core, RUs. An overview of the idea is shown in Figure 4.4.

Our multi-core function reuse mechanism considers the following:

• Each core in the system is able to pass reuse-related information (as the functions

and returns addresses) trough their pipelines (as occurs in the single-core case, see

Figure 4.3), sending them to the centralized RU.

• The functioning of the RU is same as in single-core: it receives a function with

its input context information, and fetch from (or update) the RT. Differences occur

only in the interface with the system since now the RU needs to communicate with

every system core. Therefore, all Inputs/Outputs (IOs) of the RU in Figure 4.3

should be multiplexed: information from pipeline as call, return, function address,

return address; interface with register files; interface with fetch units. Thereby, no

additional IOs ports in the RU are needed. The decoding of a CALL instruction in

the pipelines can be used to control the access in the RU, multiplexing its IO to the

31

correspondent core in advance of the arrival of reuse information.

• Inter-core reuse is only possible if the functions to be reused have the same ad-

dresses in all programs instances. This is easily achieved by appropriate ordering

the functions while writing programs, or when including libraries to compile a pro-

gram. A specialized mechanism (such as a translate table) could be used to guaran-

tee that same functions in different programs (with different addresses) are seen as

the same by the RU, but we do not cover these mechanisms.

• Finally, when a core requests a reuse verification to the shared RU, the unit is locked

for the 4 cycles it operates (for reusable functions), dropping any other requests

during this time. If multiple requests occur in the same cycle, access grant is given

to the smallest processor id that holds a reusable function. Cores that had dropped

requests continue its regular execution. Note that each conflicting request could

lead to a miss or hit in the RT, which means that dropping a request that would lead

to a miss does not change the execution of the application. As future work, a queue

will be implemented to handle all reuse requests.

Figure 4.4: A Multi-Core Environment with a Shared Reuse Unit.

CORE 0 CORE 1

CORE 2 CORE 3

.

.

.

REUSE TABLE

 . . .

REUSE TABLE

 . . .

REUSE UNIT

C
O

N
T

R
O

L

Source: The Author

32

4.3.1 Multi-Core Function Reuse Simulator

To analyze the idea, we implement a simulator to handle function reuse in a multi-

core environment, based on function traces. For such, we added a log generator to the

RU. Thereby, we can execute programs in ρ-VEX to generate a trace (we will call it reuse

trace) of the reusable functions called. A brief example of a reuse trace is depicted in

Figure 4.5, where each line contains the timestamp (execution cycle) of the call, the target

function, the inputs, and the time (cycles) the function took to execute. As one can see,

the trace is sorted in ascending order according to the timestamp. Although the reuse

traces are generated by separated single-core executions, providing them to our simulator

is all the necessary to analyze performance in the multi-core environment. Thus, we can

use software analysis (instead of slower hardware simulation), to compute precisely the

performance gains of sharing the RT. This is important because, as we shall present in the

Results Chapter, the number of scenarios to be combined in multi-core testing increases

quickly.

Here we introduce FunctiOn Reuse MulticOre SimulAtor (FORMOSA): the simu-

lator we implemented to manage multiple reuse traces to act as a centralized RU, handling

function reuse requests from multiple programs, and updating the centralized RT accord-

ingly. For this, the simulator considers reuse trace as a faithful abstraction of a program

execution. Although we have generated traces from our modified ρ-VEX, FORMOSA

could be used to analyze function reuse in any generic environment, as long as the log

files follow the pattern showed in Figure 4.5.

The high-level operation of the FORMOSA is presented in Algorithm 1, and is ex-

plained briefly next. To use the simulator, the log files (logs) and the table size (tbl_size)

must be given. FORMOSA executes until it consumes all lines from all logs. At each

iteration, it consumes one line from each log and chooses the earliest request line (l. 2)

by looking at the tmstmp field, saving it in the chosen_line variable (l. 3). After, it

checks whenever a reuse request will find the RU locked. It is done by simply check-

Figure 4.5: Example of a Reuse Trace from the Reuse Unit.
<tmstmp> <Func_ID> <Input1> <Input2> <Input3> <Input4> <Cycles>

420 00011D30 40000000 00000000 40240000 00000000 345
554 000104E0 3FC99999 9999999A 3FC99999 9999999A 123
636 0000EF80 3FC99999 9999999A 3FC99999 9999999A 78
773 000103C0 40000000 00000000 3FA47AE1 47AE147C 129

Source: The Author

33

Algorithm 1 The FORMOSA’s Algorithm.
Require: log files (logs), table size (tbl_size).

RU_CY CLES ← 4
1: while there are lines to be analyzed in logs do
2: chosen_log ← findSmallestTimestamp(logs)
3: chosen_line← readLineFromLog(chosen_log)
4: foreach log in logs where log 6= chosen_log do
5: log_line← readLineFromLog(log)
6: if log_line.tmstmp < chosen_line.tmstmp+RU_CY CLES then
7: FoundRTLocked[log_idx] += 1
8: else
9: rollbackLogFile(log)

10: end if
11: end for
12: tbl_pos← hash (tbl_size, chosen_line.Func_ID, chosen_line.Inputs)
13: RT_entry ← RT(tbl_pos)
14: if chosen_line.Func_ID = RT_entry.Func_ID

and chosen_line.Inputs = RT_entry.Inputs then
15: SavedCycles[chosen_log_idx] += chosen_line.Cycles−RU_CY CLES
16: updateLogTimestamps(chosen_log,SavedCycles)
17: else
18: updateRT(tbl_pos, chosen_line.Func_ID, chosen_line.Inputs)
19: end if
20: end while

ing if the remaining lines of the current iteration contain a timestamp that is in the range

from chosen_line.tmstmp up to 4 more cycles (l. 6), which are the cycles that the RU is

locked. For all log lines that found the RT locked, the reuse verification (which could or

could not lead to reuse) is missed and counted so that one can analyze accessing conflicts

later (l. 7). Logs where timestamps were ahead of chosen_line.tmstmp + 4 have their

handlers rolled-back (l. 9), since they can be the next earliest timestamp and must be

reevaluated in the following iteration.

Finally, the RU can use the chosen_line to attempt reuse in the same way it occurs

in the single-thread scenario. It generates the hash key to get the position (tbl_pos) to

lookup in the RT (l. 12). Then, the RT is consulted, returning a RT_entry (l. 13).

Function addresses (FUNC_IDs in the algorithm) and inputs are compared to check for

a reuse match. When reuse is successful (l. 15), FORMOSA accumulates the number

of cycles that were skipped (given by the number of cycles spent when the function was

computed, less the four cycles to apply reuse). This is used later to observe performance

gains over baselines. Also, the saved cycles are diminished from upcoming timestamps of

the current chosen_log (l. 16), since in a reuse hit would cause upcoming calls to occur

34

earlier. If reuse fails, the RT is updated with chosen_line data in the tbl_pos (l. 18).

Note that FORMOSA does not require the output values in the reuse traces, since

it does not execute any program (and therefore does not update any processor context).

Thus, we save simulation memory by ignoring output values. The FORMOSA final re-

sults are the total saved cycles of each application (in its own core). Therefore, one has

to know the number of cycles of the baseline, which is trivial, to infer metrics such as

speedup. Finally, if the reusable functions are guaranteed to be pure, function reuse is

also guaranteed to be safe and correct.

To validate the simulator, we have tested it with small sized traces, checking results

manually. Especially, conflicts in border values of time (for locking the RU) were verified.

Also, the simulator has the same results as the VHDL implementation (from the previous

chapter) for the cases where a single trace is provided.

4.4 Enhancing Function Reuse Possibilities with Approximate Computing

Although previous work (and ours, as we discuss later) shows that reuse can

achieve speedup, some classes of applications hardly benefit from function reuse. This

occurs because the input space can be very extensive, reducing chances to match previous

calculations. At the same time, many of them can tolerate some error in their outputs,

being convenient for approximate computing. Classical examples are image filters, video

encoders, and neural networks (HAN; ORSHANSKY, 2013; ESMAEILZADEH et al.,

2012).

In this section, we present how our function reuse mechanism could embrace the

approximate concept, with approximate reuse, leveraging reusability in the aforemen-

tioned scenarios. Also, we show how it could be used alongside with the precise reuse,

with marginal changes in the former hardware. This is achieved by dropping some LSBs

from the inputs, so similar/close values are hashed to the same positions in the hash func-

tion. Thus, we enhance reuse possibilities, increasing the number of scenarios where

it can be useful. Although we discuss the minor changes to implement it in hardware,

we did not implement it on VHDL, but instead, investigated approximate function reuse

in a single-core scenario by simulating and estimating the behavior of applications, as

discussed in the Results chapter.

Next, we highlight the necessary additions to the reuse mechanism. Since modi-

fications for approximate reuse do not change the overall multi-core reuse arrangement,

35

we simplify the explanation considering a single-core environment.

4.4.1 Modifications to Support Approximate Reuse

Below we detail the modifications required so a hardware RU supports approxi-

mate reuse:

• The Functions Table (which formerly stored the reusable function’s addresses and

quantity of inputs) must indicate, for each function, if it is to be approximately

or precisely reused. If approximately, it must indicate how many LSBs should

be dropped from the inputs for generating the hash key and tuning the perfor-

mance/output quality trade-off. This is, as in the former case, up to the designer

to set up at design time.

• When reusing approximately, the RU has to drop the inputs’ LSBs before generat-

ing the hash key, to group close values. This is easily done in hardware by ignoring

wires. The LSBs of the hash key itself still index the RT, while the full hash key is

used as a tag in approximate mode.

• The RT entries can now contain data in two different structures (see Figure 4.6),

accordingly with the reuse mode (precise or approximate). In precise mode, all

inputs are stored. In approximate mode, only the tag is stored. The tag is stored in

a sub-part of the former entries, and thus, no change in the RT entries width have to

be made.

• When attempting precise reuse, input values are compared. Otherwise, when at-

tempting approximate reuse, the tag is used. Therefore, comparing a tag uses a

subset of the hardware that compares precise inputs.

• A few multiplexers must be included to control, based on the current reuse mode,

when to compare the inputs or the tag; when to ignore LSBs of the inputs to calcu-

late the hash key; and when to store the inputs or the tag in an RT entry.

As we described, it is possible to enhance function reuse with approximate reuse

with marginal addition in control logic and Functions Table. Thereby, it is possible to

have a generic RU that can switch between precise and approximate reuse easily.

36

Figure 4.6: A Reuse Table entry that supports precise and approximate modes.
Input Registers

Values
Output Registers

ValuesV Function
Address

Tag Output Registers
ValuesV Function

Address

Compared Fields to Reuse

Approximate
Reuse

Precise
Reuse

Source: The Author

4.4.2 Modifying Software to Analyze Approximate Function Reuse

To measure the potential of approximate function reuse to improve performance,

we have changed the original program/application we want to analyze for one which

counts functions calls, how many times it repeats, and the number of table hits. This is

done considering the same replacement policy and hash function that we propose to exist

in hardware (including the dropping of LSBs). In time, the benchmark modification is

based on the work of Brandalero et al. (2017). This modified version is executed on a

regular Linux machine. This was needed because approximate benchmarks (as the one

we use in Chapter 5) commonly consider image or video processing, requiring system

calls to access files, and specific libraries not supported by the ρ-VEX platform. At the

same time, we have implemented a pure C code of the respective kernel under analysis,

hard-coding the inputs (like an image) in the source so we have a version that can run in

ρ-VEX.

With the pure C version of the program, we have an estimation of the number of

cycles that the benchmark and the function we want to approximately reuse demand on

ρ-VEX. Likewise, with the modified benchmark application running on a regular Linux

machine, we collect the number of reuse hits according to with the number of LSBs we

chose to drop. With the number of cycles of the benchmark, the function we want to

reuse, and the reuse hits, we can analyze performance improvement.

37

5 RESULTS

In this chapter, we explain the evaluation methods and present the results of each

aforementioned function reuse technique. For performance results, which we introduce

first, we follow the same order of previous chapters: first, we debate (precise) function

reuse in single-core environments, then in multi-core environments and finally the po-

tential of using approximate function reuse. After, we summarize area/resources usage

analysis over the covered techniques.

5.1 Function Reuse in Single-Core Environments

5.1.1 Experimental Methodology

We performed cycle-accurate simulations of the processor execution using Men-

tor Graphics Modelsim 10. We evaluated the speedup of six benchmarks, five from the

WCET benchmark suite (GUSTAFSSON et al., 2010): lms, ludcmp, minver, qurt, st; and

one from the Powerstone suite (SCOTT et al., 1998): fir. To measure performance, we

compared the execution cycles of the benchmarks on ρ-VEX with and without the RU, ex-

perimenting with RT sizes varying from one to 32K lines. We could use cycles as reliable

performance metric since we do not change the critical path, and thus maintained the clock

frequency. The final state (registers and memory values) of the enhanced processor was

compared to the final state of the baseline, to ensure programs still executed correctly af-

ter our modifications. The benchmarks were compiled with LLVM (LATTNER; ADVE,

2004) with the back end modified to support the VEX ISA (JOST; NAZAR; CARRO,

2016), and -O3 flag.

5.1.2 Case Study - Floating-Point

As a case study, we optimized the standard soft-float library (HAUSER, 2002) -

which emulates FP operations using integer hardware - applying reuse over some of its

functions. The soft-float is a library traditionally used to support FP operations in systems

where no FP ALUs are available, or when FP is not supported by the ISA (the case for

VEX ISA of ρ-VEX). It conforms to the IEEE Standard for Floating-Point Arithmetic,

38

and is available, for example, in the LLVM (used here) and in the gcc compiler. We

considered the four basic operations (add, sub, mult, div) in double FP precision of the

soft-float library as the reusable functions. The consideration is based on the profiling of

applications, which showed that those functions are commonly called. As the soft-float

library was statically linked at compile time, we could consult the assembly of the code

to get the addresses of the functions, and the amount of input and output registers used,

assigning it to the Functions Table on our VHDL description.

5.1.3 Reusability

Figure 5.1 presents the reusability of the case study functions, which will influ-

ence the performance gains. Grouped by benchmarks, each column depicts the stacked

RT hit rate for add, sub, mul, and div functions, according to the number of RT lines

(x-axis). Naturally, reusability increases with the RT size, since more reuse information

is available, so a match attempt succeeds. A Best Case scenario was also included, pre-

senting results for a hypothetical RT that behaves like an infinite and perfect collection

that stores all entries without replacements. This best case indicates how good are the

table sizes and the chosen hash function. Cases with significant reusability of div (e.g.,

fir) and mul (e.g., lms and minver) have more potential for improving performance, since

these operations generally take longer than add or sub. Although reusability does not

guarantee performance gains (for instance, if a function is called only a few times or if it

is extremely fast), it gives the intuition of the space exploration for when we further look

upon performance speedups.

For these benchmarks, reusability can vary from almost none (st with 32 lines) to

more than 80% (fir in the best case), while in overall, the functions reusability can sum

up to more than 20% in all benchmarks, when using a sufficiently large table. In addition,

mul was the most reused function, while div was the least one.

5.1.4 Performance

Fig. 5.2 depicts the speedup for different RT sizes, also grouped by benchmark.

For the largest RT tested (32K lines) significant speedups are achieved: in ludcmp (1.21x),

lms (1.28x) and fir (1.86x); and even in the worst cases (minver, 1.12x and st, 1.13x).

39

Figure 5.1: Reusability of case study functions

0%

20%

40%

60%

80%

32 25
6

4K 16
K

32
K

B
es

t C
as

e 32 25
6

4K 16
K

32
K

B
es

t C
as

e 32 25
6

4K 16
K

32
K

B
es

t C
as

e 32 25
6

4K 16
K

32
K

B
es

t C
as

e 32 25
6

4K 16
K

32
K

B
es

t C
as

e 32 25
6

4K 16
K

32
K

B
es

t C
as

e

lms ludcmp fir st qurt minver

Function
Reusability

add sub mul div

Source: The Author

When the RT is reduced to only 32 lines, five out of six benchmarks still improve by more

than 1.1x (the only exception is st, given its small reuse rates). Also, for most benchmarks,

note how a 16K or even a 4K-line RT already places the improvements in performance

near to the theoretical maximum (the best case) of the technique. Comparing to a 4K-

line RT, for example, the best case brings no improvement in ludcmp, and increases qurt

and lms performance only marginally, by 2% and 7%, respectively. This fact highlights

function arguments very often repeat during execution and present limited variability. The

exception is fir, in which the reuse rates increase significantly with larger table sizes. In

the best case, its performance improves by 2.44x compared to the baseline (and 67% more

than the 4K-line RT).

Finally, we can observe the speedup scalability as the RT grows. Figure 5.3

Figure 5.2: Speedup for different Reuse Table sizes compared to the baseline.

0.00

0.50

1.00

1.50

2.00

2.50

lms ludcmp fir st qurt minver

S
pe

ed
up

RT Lines 32 256 4K 16K 32K Best Case
Source: The Author

40

Figure 5.3: Speedup Scalability as the Reuse Table grows.

1.0

1.2

1.4

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8
4

3
2

7
6
8

G
eo

m
ea

n
 S

p
ee

d
u

p

RT Size

Source: The Author

presents a comparison among the RT depth (in log2 horizontal axis) and the correspondent

geometric mean speedup achieved (in the vertical axis). It elucidates that, in some cases,

we can achieve considerable gains in performance with low resource overhead, as will be

shown later. For example, a 32-line RT can provide a speedup of 1.12x over the baseline,

while it can reach 1.18x of improvements with 256 lines. A 4K-line RT, which fits in all

five tested FPGAs (which will be discussed later) can reach 1.23x speedup. Therefore,

even resource-limited FPGAs can benefit from applying the proposed mechanism. When

it comes to high-end FPGAs, the available BRAMs can be used to increase even more the

RT size and consequently get closer to the maximum speedup possible for applications

with high reusability rates (e.g., fir).

5.2 Function Reuse in Multi-Core Environments

5.2.1 Experimental Methodology

The ρ-VEX processor, in which our work is strongly based on, has several lim-

itations for running real-life benchmarks: e.g., it runs with no operating systems and

therefore cannot call any traditional system function like for file and memory handling.

More importantly, it cannot run parallel programs, which would be appreciable to this

work. Although we could generate reuse traces by modifying other simulators that sup-

port parallel applications (as long as it respects the reuse trace format presented in Figure

4.5), we would be changing the simulation platform, and thereby affecting the results

analysis, which is specially inadequate to compare the multi-core results with single-core

41

results, presented previously. Moreover, we want to keep the ρ-VEX as the platform since

it provides reliable results in area.

We have constrained our multi-core test setup to multiple programs running the

same kernel, but with different inputs - as it is not possible to run pure parallel applications

in ρ-VEX- maintaining our benchmarks set (fir, lms, ludcmp, minver, qurt, st) and the

reusable functions (add, sub, mul, div, in double FP). The baseline continues to be the

system without function reuse. For each benchmarkB, four versions, with different inputs

i were created: B_i1, B_i2, B_i3, B_i4. We generated the reuse trace for each of these

versions, which were combined among each other to feed FORMOSA with all possible

versions combinations of benchmarks (see Table 5.1), and get speedup results.

To examine the benefits of using a shared RT we always compare scenarios where

the total BRAM per configuration is maintained, in other words, we preserve the RT size

Table 5.1: Investigated Simulation Scenarios for a Benchmark B
Scenario Description RT Size as Seen by the Applications

B_i1
B_i1 running with
a dedicated RT B_i1 sees an RT with size S.

B_i2
B_i2 running with
a dedicated RT B_i2 sees an RT with size S.

B_i3
B_i3 running with
a dedicated RT B_i3 sees an RT with size S.

B_i4
B_i4 running with
a dedicated RT B_i4 sees an RT with size S.

B_i1, B_i2
B_i1 and B_i2
sharing the RT

B_i1 and B_i2 see a shared RT
with size 2 ∗ S.

B_i1, B_i3
B_i1 and B_i3
sharing the RT

B_i1 and B_i3 see a shared RT
with size 2 ∗ S.

B_i1, B_i4
B_i1 and B_i4
sharing the RT

B_i1 and B_i4 see a shared RT
with size 2 ∗ S.

B_i2, B_i3
B_i2 and B_i3
sharing the RT

B_i2 and B_i3 see a shared RT
with size 2 ∗ S.

B_i2, B_i4
B_i2 and B_i4
sharing the RT

B_i2 and B_i4 see a shared RT
with size 2 ∗ S.

B_i3, B_i4
B_i3 and B_i4
sharing the RT

B_i3 and B_i4 see a shared RT
with size 2 ∗ S.

B_i1, B_i2, B_i3, B_i4
B_i1, B_i2,
B_i3 and B_i4
sharing the RT

B_i1, B_i2, B_i3 and B_i4 see a
shared RT with size 4 ∗ S.

42

per core, as we show in Figure 5.4. When we share the RT, an application will see a larger

table, which does not mean that we have used more BRAM. Instead, the application can

simply access a table from another core which formerly was not possible. If we share the

RT in a dual-core, applications will see an RT two times larger. If we share the RT in a

quad-core, applications will see an RT four times larger. As we can have single, dual, or

quad-core sharing scenarios, results are always presented in relation to the table size per

core, which is maintained regardless the number of total cores.

Figure 5.4: Measuring Impacts of Sharing the Reuse Table from a Multi-core Scenario.

Core 1

Application

B

RT

32

Core 0

Application

A

RT

32

Running A
Running A, sharing with B

(a) Maintaining the size per core, 32 lines in this case, explicits the benefits of sharing the RT. This is
the approach we use in our performance analysis.

Core 1

Application

B

RT

32

Core 0

Application

A

RT

32

Running A Running A, sharing with B

Core 0

Application

A

RT

64

VS.

(b) Maintaining the total size, 64 lines in this case, is not a fair comparison since it compares two
different configurations: sing-core and dual-core. We do not want to pay the cost of more cores, but
instead, demonstrate how we could benefit from sharing the RT in a former multi-core scenario.

Source: The Author

43

5.2.2 Inputs Definition

We have redefined the inputs for all six benchmarks, creating four versions for

each of them. For kernels where inputs are large arrays (fir, lms, ludcmp, st), we gener-

ated random values, using them as the inputs. Therefore, results are pessimistic, since

in real-life data is more likely to be reusable (similar values, smaller input space). For

benchmarks with few inputs (minver, qurt), they were defined based on examples from

literature. For the minver, which calculates an inverse matrix, we have used matrices ex-

amples from (LAY, 1999). For the qurt, which calculates quadratic equations, we have

used examples from a precalculus book (STITZ; ZEAGER, 2013).

It is not a trivial task to define significant benchmarks inputs. In fact, much re-

search is strictly targeted to build meaningful benchmarks and input sets. Our attempt

here was to avoid running multiple applications with the same inputs, to do not introduce

distortions to our results. Nevertheless, as we said before, we expect that our inputs defini-

tion is pessimistic. Naturally, as inputs were redefined, even single-core results upcoming,

will differ from the previous section Function Reuse in Single-Core Environments.

5.2.3 Performance

We evaluate performance of a shared RT for each benchmark, pointing out strengths

and weaknesses of the technique. Figure 5.5 presents results for the fir benchmark. Four

plots present the speedup from the point of view of each benchmark version (i.e., the

benchmark running with a given input). For example, in the upper-left plot, we show

the behavior of the fir application with the input 1 (named fir_i1) and how its speedup

depends on the applications it shares the RT with. Still in the upper-left plot, for every

table size, we plot the speedup of fir_i1 running alone with its dedicated RT (the black

line); the speedup of fir_i1 sharing the table with one other benchmark (e.g., fir_i1,fir_i2

in royal blue is the speedup of fir_i1 while sharing the RT with fir_i2); and the speedup of

fir_i1 when it runs sharing the RT with all other versions (fir_i1,fir_i2,fir_i3,fir_i4 in dark

magenta). Similarly, the upper-right plot shows results from the point of view of fir_i2,

the lower-left of fir_i3, and lower-right of fir_i4.

As one can see, for the fir benchmark, using a shared RT is very beneficial. For

every version of it, the shared RT scenarios perform better than having a dedicated RT,

which is achieved maintaining the total BRAM within each configuration (recall Figure

44

Figure 5.5: Speedup for the fir benchmark.

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

Sp
ee

du
p

fir_i1
fir_i1,fir_i2
fir_i1,fir_i3
fir_i1,fir_i4
fir_i1,fir_i2,fir_i3,fir_i4

fir_i2
fir_i2,fir_i1
fir_i2,fir_i3
fir_i2,fir_i4
fir_i2,fir_i1,fir_i3,fir_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

Sp
ee

du
p

fir_i3
fir_i3,fir_i1
fir_i3,fir_i2
fir_i3,fir_i4
fir_i3,fir_i1,fir_i2,fir_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

fir_i4
fir_i4,fir_i1
fir_i4,fir_i2
fir_i4,fir_i3
fir_i4,fir_i1,fir_i2,fir_i3

Source: The Author

5.4, item a). For small tables sizes, this can be explained since the applications see a

larger table, which can lead to better data disposition. Furthermore, fir provides good

inter-core reuse since it is based upon a filter, which is common in all versions, and thus,

many redundant executions can be reused. For fir_i3 (lower-left plot) with 32 lines per

core, for example, the scenarios where the RT is shared reach about 1.9x of speedup,

while a dedicated RT would reach a lower value of 1.25x. Finally, note how sharing the

RT between two applications instead of four is better for larger tables. This phenomenon

occurs as reuse rates of dual and quad-core simulations plateau. This means that even

though we increase the RT, the hash mapping does not benefit from it to spread data in

the RT. Otherwise, the same positions are being accessed and more applications accessing

the table leads to more unwanted replacements, which mitigate performance gains.

Figure 5.6 depicts speedup for the lms benchmark. Again, sharing the RT is bene-

ficial. This time, we highlight how using a common RT can be used to achieve equivalent

performance of a dedicated RT while reducing total BRAM used. For lms_i2 (upper-right

plot), for example, sharing the RT with all other lms versions speeds up the application

by 1.22x with 64 lines per core (256 lines total, in the quad-core configuration). With a

45

Figure 5.6: Speedup for the lms benchmark.

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Sp

ee
du

p

lms_i1
lms_i1,lms_i2
lms_i1,lms_i3
lms_i1,lms_i4
lms_i1,lms_i2,lms_i3,lms_i4

lms_i2
lms_i2,lms_i1
lms_i2,lms_i3
lms_i2,lms_i4
lms_i2,lms_i1,lms_i3,lms_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Sp
ee

du
p

lms_i3
lms_i3,lms_i1
lms_i3,lms_i2
lms_i3,lms_i4
lms_i3,lms_i1,lms_i2,lms_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

lms_i4
lms_i4,lms_i1
lms_i4,lms_i2
lms_i4,lms_i3
lms_i4,lms_i1,lms_i2,lms_i3

Source: The Author

dedicated RT (black line in the plot), lms_i2 would exceed this mark only with 8K lines.

For small tables sizes (from 2 to 32 lines per core), speedup in the quad-core setup

looks unstable in three out of four versions perspectives (lms_i2, lms_i3, and lms_i4).

Such instability can occur due to the hash function, whose mapping depends on the RT

size, which can be affected in the aforementioned range. This is amortized when larger

tables are considered since better occupation (and thus, scatter-mapping) of the RT is

possible. Nevertheless, like in fir (see Figure 5.5), multiple applications competing for

the table reduces inter-core reuse benefits as reusability (and speedup) plateau for larger

tables.

For the ludcmp benchmark, shown in Figure 5.7, speedup is very limited, reach-

ing about 4% in the best case (speedup of ludcmp_i1, when sharing the RT in the four

core environment). This is a consequence of the inputs, which have low locality. For

this benchmark, inter-core reuse occurs in around 1% of the RU reuse attempts, which

improves poorly the already deficient scenarios. Despite the charts looking very different

from each other, the overall speedup is so small that lines are almost noise, a consequence

of small differences in the absolute reuse hits. Actually, all charts look similar, with

46

Figure 5.7: Speedup for the ludcmp benchmark.

1.000
1.005
1.010
1.015
1.020
1.025
1.030
1.035
1.040
1.045

Sp
ee

du
p

ludcmp_i1
lucmp_i1,ludcmp_i2
lucmp_i1,ludcmp_i3
lucmp_i1,ludcmp_i4
lucmp_i1,ludcmp_i2,ludcmp_i3,ludcmp_i4

ludcmp_i2
ludcmp_i2,ludcmp_i1
ludcmp_i2,ludcmp_i3
ludcmp_i2,ludcmp_i4
ludcmp_i2,lucmp_i1,ludcmp_i3,ludcmp_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

1.000
1.005
1.010
1.015
1.020
1.025
1.030
1.035
1.040
1.045

Sp
ee

du
p

ludcmp_i3
ludcmp_i3,ludcmp_i1
ludcmp_i3,ludcmp_i2
ludcmp_i3,ludcmp_i4
ludcmp_i3,lucmp_i1,ludcmp_i2,ludcmp_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

ludcmp_i4
ludcmp_i4,ludcmp_i1
ludcmp_i4,ludcmp_i2
ludcmp_i4,ludcmp_i3
ludcmp_i4,lucmp_i1,ludcmp_i2,ludcmp_i3

Source: The Author

speedups near to 0%.

In Figure 5.8, speedup for the minver benchmark is presented. For the versions

fir_i1 (upper-left), fir_i2 (upper-right), and fir_i3 (lower-left), running with a shared RT

in the dual-core setup present a small improvement over the dedicated single-core cases,

while quad-core setups present a small worsening in the performance.

Again, improvement comes from inter-core reuse rates of about 7% over all tables

sizes, while inter-core conflicts (i.e., when one application tries to use the RU, but it is

already occupied by another application running in a core with lower id) reaches only

about of 1%, again for all tables sizes. This constant behavior occurs since minver is the

shortest benchmark, with a small number of functions called, and where increasing the

table size has minimal impact on the results. The minver_i4 version is a bit different: reuse

rates (and speedup) are higher because of the inputs, which have better reuse locality. In

this case, as in previous analysis, when reuse rates are trending up (table size per core

from 2 to 32 lines), sharing the RT is effective, improving performance over a dedicated

one (the black line in the plots). When reuse inter-core saturates (table size per core above

64 lines) a dedicated RT regain importance.

47

Figure 5.8: Speedup for the minver benchmark.

1.0

1.1

1.2

1.3

1.4

1.5

1.6
Sp

ee
du

p

minver_i1
minver_i1,minver_i2
minver_i1,minver_i3
minver_i1,minver_i4
minver_i1,minver_i2,minver_i3,minver_i4

minver_i2
minver_i2,minver_i1
minver_i2,minver_i3
minver_i2,minver_i4
minver_i2,minver_i1,minver_i3,minver_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Sp
ee

du
p

minver_i3
minver_i3,minver_i1
minver_i3,minver_i2
minver_i3,minver_i4
minver_i3,minver_i1,minver_i2,minver_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

minver_i4
minver_i4,minver_i1
minver_i4,minver_i2
minver_i4,minver_i3
minver_i4,minver_i1,minver_i2,minver_i3

Source: The Author

For the qurt benchmark, presented in Figure 5.9, inter-core reuse is nonexistent.

This is reflected in the charts, where dual or quad-core RT-sharing performs worse than

the dedicated RT for almost all table sizes and benchmark versions. Therefore, even

though the total RT size seen by applications is larger, programs are updating the RT in

a non-collaborative way, which is a weakness of our technique. By this behavior, for 2K

lines per core, speedup can drop from 1.15x (in the qurt_i1 version, in a dedicated RT

scenario) to 1.07x (roughly half) when sharing the table among all other versions (dark

magenta).

Finally, for the st benchmark, we can observe a mutual and strong collaboration

between st_i1 and st_i4 versions, as depicted in Figure 5.10. Note how the technique

leverages inter-core reuse in both versions, mutually. By the point of view of st_i1 in the

upper-left chart, the dark-grey line (st_i1,st_i4) prosper way earlier than the dedicated-RT

case. The same occurs from the point of view of st_i4, in the blue line (st_i4, st_i1) of

its respective chart (lower-right). For st_i2 and st_i3, inter-core reuse is negligible and

provides little changes in the performance.

48

Figure 5.9: Speedup for the qurt benchmark.

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16

Sp
ee

du
p

qurt_i1
qurt_i1,qurt_i2
qurt_i1,qurt_i3
qurt_i1,qurt_i4
qurt_i1,qurt_i2,qurt_i3,qurt_i4

qurt_i2
qurt_i2,qurt_i1
qurt_i2,qurt_i3
qurt_i2,qurt_i4
qurt_i2,qurt_i1,qurt_i3,qurt_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16

Sp
ee

du
p

qurt_i3
qurt_i3,qurt_i1
qurt_i3,qurt_i2
qurt_i3,qurt_i4
qurt_i3,qurt_i1,qurt_i2,qurt_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

qurt_i4
qurt_i4,qurt_i1
qurt_i4,qurt_i2
qurt_i4,qurt_i3
qurt_i4,qurt_i1,qurt_i2,qurt_i3

Source: The Author

Figure 5.10: Speedup for the st benchmark.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
p

st_i1
st_i1,st_i2
st_i1,st_i3
st_i1,st_i4
st_i1,st_i2,st_i3,st_i4

st_i2
st_i2,st_i1
st_i2,st_i3
st_i2,st_i4
st_i2,st_i1,st_i3,st_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
p

st_i3
st_i3,st_i1
st_i3,st_i2
st_i3,st_i4
st_i3,st_i1,st_i2,st_i4

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8

Table Size per Core

st_i4
st_i4,st_i1
st_i4,st_i2
st_i4,st_i3
st_i4,st_i1,st_i2,st_i3

Source: The Author

49

In short, we showed that sharing the RU provides speedup for three out of six

multiple-core benchmarks (fir, lms, and st). For small tables, speedup comes from ap-

parent larger RT. When more RT lines are available, speedup comes from both inter-core

reuse, and better data disposition. Moreover, we showed that as reuse possibilities reach

its limit for large tables, sharing is no longer effective and achieves similar results that

using a dedicated RT per core.

For one case (ludcmp), speedup occurs but is negligible, and for the two remaining

(minver and qurt) performance overhead occurs. The latter is a consequence of programs

executing in a non-collaborative way.

5.3 Using Approximate Computing to Function Reuse

5.3.1 Experimental Methodology

The sobel image-processing filter (case-study for approximate function reuse) from

the AxBench suite (YAZDANBAKHSH et al., 2016) was used to evaluate approximate

function-reuse using 30 distinct images, in an approximation scenario where 4 LSBs are

dropped from the input. Modifying this value leads to distinct performance-error trade-

offs, so we constrained ourselves to only one representative spot in the vast design space

available, chosen after comprehensive experimentation. The function which operates the

convolutional kernel was the one considered as reusable.

As discussed in the section 4.4.2 Modifying Software to Analyze Approximate

Function Reuse, we create two versions for the benchmark we want to test under approx-

imate reuse. With them, we can collect how many cycles the benchmark and each call for

the convolutional sobel function spent, and the number of reuse hits. With this, we know

how many functions we can skip and how much time they take to execute. Multiplying

those values gives us the number of cycles saved, and thus, the speedup achieved. We

proceed with this approach over the 30 images from the AxBench suite since reuse hits

vary from image to image.

The reasons for using the sobel benchmark, instead of, for example, applying ap-

proximation in FP operations, was first to show that the technique can be applied to other

applications, and second because there are well-established quality metrics for image pro-

cessing. In our study, the error metric used to assess the sobel benchmark’s output quality

was the root-mean-squared (RMS) pixel difference between the original and approxi-

50

mated computations, normalized to the range 0-100%, already defined in the AxBench

suite (YAZDANBAKHSH et al., 2016), which made the quality measurement easier and

more trustworthy.

5.3.2 Performance

Fig. 5.11 shows geomean speedup and error rate considering 30 distinct images

in the sobel benchmark. The great benefit from approximate reuse is that speedup is

achieved more easily than with precise reuse. Note that a 2-line RT, in this case, improves

performance by 1.33x, with only 3% error. Error remains under 10% (common error

threshold for approximate sobel benchmark (YAZDANBAKHSH et al., 2016)) for every

table size up to 4K lines, where 8% error meets 1.52x speedup. Since higher speedups

mean that more reuse was possible, it also means that more errors will appear (since exact

values will be exchanged for approximated ones). If higher error rates can be tolerated,

the speedup can reach 2.25x with 14% of error (for a 16K line RT), or even 2.97x with

17% of error (32K line RT).

An example of possible outputs for an image is presented in Figure 5.12. It shows,

for different table sizes, the decay in quality as the RT grows. As the kernel sweeps the

image by fixing a line and moving on its columns from left to right, one can see traces

of approximation in the same direction all over the picture. Again, larger tables increase

Figure 5.11: Speedup for approximate sobel image filter.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

G
eo

m
ea

n
Im

ag
e

E
rr

or

G
eo

m
ea

n
S

pe
ed

up

RT Lines

Speedup Error

Source: The Author

51

Figure 5.12: The approximate sobel filter dropping 4 Least Significant Bits.

(a) Original output. (b) 256 table lines.

(c) 4K table lines. (d) 32K table lines.

Source: The Authors

reuse and error rates. This can be mitigated by changing the amount of LSBs dropped

from input pixels when generating the tag, creating a better approximation at the cost of

performance.

5.4 Resource Usage

We collected FPGA resource usage and timing information after synthesizing and

mapping the VHDL of the processor to five FPGA targets from Virtex 4 (xc4vlx40;

xc4vsx55), 5 (xc5vsx50t; xc5vsx95t), and 7 (xc7vx690t) Series, optimizing for area and

using Xilinx ISE 14.7. This collected information illustrates precise reuse in the single-

52

core environment, the only technique actually implemented in VHDL. Approximate reuse,

as we stated in Chapter 4.4, brings minimal area overheads over the results here presented,

since most of it uses the same hardware infrastructure of precise reuse. Therefore, the sys-

tem with approximate reuse is very similar in terms of area occupation when compared to

the one with precise reuse only. We discuss resource impacts of the single-core first, and

after we state benefits that the multi-core reuse can provide.

We collected the usage of BRAM, Slice Registers, and Slice LUTs in four scenar-

ios: baseline (ρ-VEX), ρ-VEX with RU, ρ-VEX with a double precision FPU (LUNG-

DREN, 2014), and ρ-VEX with a hardware sobel filter. They all were synthesized fol-

lowing the methodology explained above, except the hardware implementation of sobel,

which data was taken from (CHAPLE; DARUWALA, 2014), covering Virtex 5 FPGAs

only. Cases as ρ-VEX with a double precision FPU and ρ-VEX with a hardware sobel

filter were estimated by the simple sum of separate synthesis, since they are case studies

to demonstrate how using a single and, as far as possible, generic reuse hardware can be

cheaper than dedicated accelerators, especially for LUTs and registers. To an even more

accurate measurement, these accelerators should be actually coupled to the processor it-

self.

Table 5.2 presents the comparison in the four scenarios with distinct targets using

the largest RT that fits in each design. For example, the Virtex 5 - xc5vsx50t supports a

maximum of 16K lines. Smaller tables, yet measured, were omitted. Although each table

line for approximate reuse needs less information (a tag instead of all the input values) the

results consider the size needed for the implementation of both modes (i.e., it considers

the size for precise reuse), so it is possible to switch between them.

Table 5.2: Usage of Resources For Different Designs and Targetstemp para manipular a tabela

Series Model Design
Used Slice
Registers

% Used Slice
Registers

Used Slice
LUTs

% Used Slice
LUTs

Used
BRAM

% Used
BRAM

ρ-Vex 3,015 0% 14,675 3% 16 1%
ρ-Vex + RU (32K lines) 3,494 0% 15,176 4% 242 16%
ρ-Vex + FPU 7,275 1% 19,926 5% 16 1%V

ir
te

x
7

xc
7v

x6
90

t

ρ-Vex 3,012 5% 15,200 26% 16 7%
ρ-Vex + RU (32K lines) 3,516 6% 15,717 27% 242 99%
ρ-Vex + FPU 7,061 12% 23,349 40% 16 7%
ρ-Vex + Sobel 3,351 6% 17,127 29% 16 7%

V
ir

te
x

5 xc
5v

sx
95

t

ρ-Vex 3,012 9% 15,200 47% 16 12%
ρ-Vex + RU (16K lines) 3,516 11% 15,717 48% 129 98%
ρ-Vex + FPU 7,061 22% 23,349 72% 16 12%
ρ-Vex + Sobel 3,351 10% 17,127 52% 16 12%

V
ir

te
x

5

xc
5v

sx
50

t

ρ-Vex 3,008 6% 23,986 49% 32 10%
ρ-Vex + RU (16K lines) 3,511 7% 24,820 50% 258 81%
ρ-Vex + FPU 7,403 15% 35,888 73% 32 10%

V
ir

te
x

4

xc
4v

sx
55

ρ-Vex 3,008 8% 23,986 65% 32 33%
ρ-Vex + RU (4K lines) 3,511 10% 24,820 67% 89 93%
ρ-Vex + FPU 7,403 20% 35,888 97% 32 33%

V
ir

te
x

4

xc
4v

lx4
0

Page 1

53

All targets can support an RT with at least 4K lines. In the Virtex 4 FPGA (the

smallest available device), using the 4-issue ρ-VEX processor with an FPU would occupy

nearly all FPGA resources (97% of the available Slice LUTs) and restrict the addition

of other hardware accelerators or even the modification of the issue-width (e.g., increase

to the 8-issue version). As the original ρ-VEX uses a minimal amount of the available

BRAMs, the RT can occupy the remaining ones as much as possible, leveraging these

idle components which neither the FPU nor the Sobel hardware could exploit. In some

cases, even an RT larger than 32K lines could be used (e.g., it only occupies 15% of the

Virtex 7’s BRAMs).

As for the logic resources that are usually scarce (slice registers and LUTs), we

introduce a small overhead of 17% and 3%, respectively. In contrast, adding an FPU

to ρ-VEX more than doubles the number of registers (140% overhead) and significantly

increases LUTs usage (48%). The sobel hardware, likewise, increases by 11% the slice

registers and 13% the slice LUTs. However, while these units are application-specific

and are incremental regarding resources (i.e., more LUTs and registers are necessary for

each new application-specific hardware that is integrated), the overhead in LUTs and

registers of our generic design is fixed, being only the RT variable (and thus BRAM

usage). Therefore, costs can be amortized as the mechanism encompasses more system

features, enabling performance gains when any new robust hardware module does not fit.

Therefore, our approach can benefit both low and high-end FPGAs: in the former,

the reuse mechanism allows performance improvements with minimum hardware over-

head. In the latter, not only more hardware accelerators but also extra processors could

be integrated into the system. For instance, three cores of the ρ-VEX processor could be

instantiated alongside the RU in the Virtex 5 - xc5vsx95t. This would not be possible if

an FPU were implemented in hardware.

For these multi-core scenarios, we have shown (Section 5.2.3) that sharing the RT

can increase speedup of applications, even if using proportionally less total BRAM. Ad-

ditionally, we would be avoiding the replication of hardware to control the RU for every

core in the system, since a single centralized unit would be only one needed. This, how-

ever, would not change the fact that each core must modify its pipeline to comport reuse

information (as described in Chapter 4). To get accurate results on area, we aim to imple-

ment the shared RU in VHDL as future work, since after our performance simulations,

the technique has proven worthy.

54

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This work presented function reuse towards VLIW soft-core processors, present-

ing an alternative to costly hardware accelerators, by using possibly idle BRAMs. We

showed how the technique can be implemented in the real-life ρ-VEX processor. We

demonstrate that reusing functions can increase performance in processors while being

cheap in terms of resources. More importantly, we extended the idea to a multi-core en-

vironment, analyzing impacts in performance and filling an important gap of research on

computational reuse as a whole. This investigation indicated that it is possible to increase

performance with RTs even smaller than in the former case. Moreover, we detailed and

examined how the idea of approximate computing can be combined with function reuse,

showing that, by the cost of quality, it is possible to increase reusability rates together

with performance, which is promising to error-tolerant applications. Finally, we under-

stand that our work has presented a vast set of results over the function reuse technique,

and can be a good source of knowledge for future research on the topic.

6.2 Work Limitations

Our work covers three different techniques in the function reuse spectrum. How-

ever, we do it without exhaustive exploration of all possible trade-offs. First, we have

considered a direct-mapped RT accessed by a hash function with an update-always pol-

icy. Also, the hash function itself was set as in a similar work but can be tuned to try to

increase reuse rates. In our multi-core approach, while the RU is locked all other reuse

requests are dropped. Otherwise, we could analyze performance and implementation im-

pacts if we added a queue to attend to all requests. Also, we only considered multiple

programs running together, and did not investigate multi-threaded programs. Finally, we

present results for a few case studies, which could be extended to provide a stronger ar-

gumentation.

55

6.3 Future Work

As future work, we aim to overcome some of our research limitations. One of them

being the RT policy. We understand that including a better replacement policy in the RT

(as replacing the least recently used entry, for example) would be promising for our tech-

nique. This could be accompanied with associativity in the RT. Also, as FORMOSA is a

software-level simulator, it is feasible to change it to observe impacts of a reuse request

queue. If results improve considerably, we can then think of implications in hardware.

In any case (with or without a reuse request queue) we intend to implement a multi-core

with a shared RU in VHDL to get accurate resource usage results. Finally, an essential

step to the future work is to embrace more applications, evidencing the possibilities for

applying a function reuse scheme like ours.

56

REFERENCES

ALVAREZ, C.; CORBAL, J.; VALERO, M. Fuzzy Memoization for Floating-Point
Multimedia Applications. IEEE Transactions on Computers, IEEE Computer Society,
v. 54, n. 7, p. 922–927, jul 2005. ISSN 0018-9340.

AUSTIN, T.; LARSON, E.; ERNST, D. SimpleScalar: An infrastructure for computer
system modeling. Computer, IEEE, v. 35, n. 2, p. 59–67, 2002.

BOPPANA, V. et al. UltraScale+ MPSoC and FPGA families. In: IEEE. Hot Chips 27
Symposium (HCS), 2015 IEEE. [S.l.], 2015. p. 1–37.

BRANDALERO, M. et al. Accelerating error-tolerant applications with approximate
function reuse. Science of Computer Programming, 2017. ISSN 0167-6423. Available
from Internet: <http://www.sciencedirect.com/science/article/pii/S0167642317300965>.

BUELL, D. et al. Guest Editors’ Introduction: High-Performance Reconfigurable
Computing. Computer, IEEE Computer Society, v. 40, n. 3, p. 23–27, mar 2007. ISSN
0018-9162. Available from Internet: <http://ieeexplore.ieee.org/document/4133992/>.

CHAPLE, G.; DARUWALA, R. D. Design of Sobel operator based image edge detection
algorithm on FPGA. In: IEEE. Communications and Signal Processing (ICCSP),
2014 International Conference on. [S.l.], 2014. p. 788–792.

CITRON, D.; FEITELSON, D.; RUDOLPH, L. Accelerating multi-media processing by
implementing memoing in multiplication and division units. In: ACM. ACM SIGPLAN
Notices. [S.l.], 1998. v. 33, n. 11, p. 252–261.

DAS, R. et al. Performance and power optimization through data compression in
Network-on-Chip architectures. In: 2008 IEEE 14th International Symposium
on High Performance Computer Architecture. IEEE, 2008. p. 215–225.
ISBN 978-1-4244-2070-4. ISSN 1530-0897. Available from Internet: <http:
//ieeexplore.ieee.org/document/4658641/>.

ESMAEILZADEH, H. et al. Neural Acceleration for General-Purpose Approximate
Programs. In: Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2012. (MICRO-45), p. 449–460. ISBN 978-0-7695-4924-8. Available from Internet:
<http://dx.doi.org/10.1109/MICRO.2012.48>.

FISHER, J. A. Very long instruction word architectures and the ELI-512. [S.l.]:
ACM, 1983.

FLETCHER, B. H. FPGA embedded processors. In: Embedded Systems Conference.
[S.l.: s.n.], 2005. p. 18.

GEER, D. Chip makers turn to multicore processors. Computer, v. 38, n. 5, p. 11–13,
2005. ISSN 0018-9162. Available from Internet: <http://ieeexplore.ieee.org/document/
1430623/>.

GONZÁLEZ, A.; TUBELLA, J.; MOLINA, C. Trace-level reuse. In: IEEE. Parallel
Processing, 1999. Proceedings. 1999 International Conference on. [S.l.], 1999. p.
30–37.

http://www.sciencedirect.com/science/article/pii/S0167642317300965
http://ieeexplore.ieee.org/document/4133992/
http://ieeexplore.ieee.org/document/4658641/
http://ieeexplore.ieee.org/document/4658641/
http://dx.doi.org/10.1109/MICRO.2012.48
http://ieeexplore.ieee.org/document/1430623/
http://ieeexplore.ieee.org/document/1430623/

57

GUSTAFSSON, J. et al. The Mälardalen WCET Benchmarks: Past, Present And Future.
In: LISPER, B. (Ed.). 10th International Workshop on Worst-Case Execution Time
Analysis (WCET 2010). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2010. (OpenAccess Series in Informatics (OASIcs), v. 15), p. 136–146.
ISBN 978-3-939897-21-7. ISSN 2190-6807. The printed version of the WCET’10
proceedings are published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7. Available
from Internet: <http://drops.dagstuhl.de/opus/volltexte/2010/2833>.

HALL, M.; MCNAMEE, J. P. Improving software performance with automatic
memoization. Johns Hopkins APL Technical Digest, JOHN HOPKINS UNIV
APPLIED PHYSICS LABORATORY, v. 18, n. 2, p. 255, 1997.

HAN, J.; ORSHANSKY, M. Approximate computing: An emerging paradigm for
energy-efficient design. In: 2013 18th IEEE European Test Symposium (ETS). [S.l.:
s.n.], 2013. p. 1–6. ISSN 1530-1877.

HAUSER, J. SoftFloat. 2002. Available from Internet: <http://www.jhauser.us/
arithmetic/SoftFloat.html>.

Hewlett-Packard Laboratories. VEX Toolchain. 2009. Available from Internet:
<http://www.hpl.hp.com/downloads/vex/>.

HUANG, J.; LILJA, D. J. Exploiting basic block value locality with block reuse.
In: IEEE. High-Performance Computer Architecture, 1999. Proceedings. Fifth
International Symposium On. [S.l.], 1999. p. 106–114.

JOST, T. T.; NAZAR, G. L.; CARRO, L. Scalable memory architecture for soft-core
processors. In: 2016 IEEE 34th International Conference on Computer Design
(ICCD). [S.l.: s.n.], 2016. p. 396–399.

JÓŹWIAK, L. Advanced mobile and wearable systems. Microprocessors and
Microsystems, Elsevier, v. 50, p. 202–221, 2017.

KALE, V. Using the MicroBlaze Processor Core to Accelerate Embedded System
Development Using the MicroBlaze Processor to Accelerate Cost-Sensitive Embedded
System Development. WP469, n. 1, 2016. Available from Internet: <www.xilinx.com>.

KAVI, K. M.; CHEN, P. Dynamic function result reuse. In: Proceedings of the 11th
International Conference on Advanced Computing (ADCOM-2003). [S.l.: s.n.],
2003. p. 17–20.

KERAMIDAS, G.; KOKKALA, C.; STAMOULIS, I. Clumsy Value Cache: An
Approximate Memoization Technique for Mobile GPU Fragment Shaders. In: 1st
Workshop On Approximate Computing (WAPCO 2015). Amsterdam: [s.n.], 2015.
p. 6.

KUON, I.; ROSE, J. Measuring the gap between FPGAs and ASICs. IEEE transactions
on computer-aided design of integrated circuits and systems, IEEE, v. 26, n. 2, p.
203–215, 2007.

LATTNER, C.; ADVE, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In: IEEE COMPUTER SOCIETY. Proceedings of the

http://drops.dagstuhl.de/opus/volltexte/2010/2833
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.hpl.hp.com/downloads/vex/
www.xilinx.com

58

international symposium on Code generation and optimization: feedback-directed
and runtime optimization. [S.l.], 2004. p. 75.

LAY, D. C. Linear algebra and its applications. [S.l.]: Addison Wesley, Boston, 1999.

LONG, G. et al. Minimal multi-threading: Finding and removing redundant instructions
in multi-threaded processors. In: IEEE COMPUTER SOCIETY. Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture.
[S.l.], 2010. p. 337–348.

LUDLOW, D. What’s the difference between Core i3, i5 and i7 processors?
2014. Available from Internet: <http://www.expertreviews.co.uk/pcs/cpus/1400962/
whats-the-difference-between-core-i3-i5-and-i7-processors>.

LUNGDREN, D. FPU Double VHDL. 2014. Available from Internet: <http:
//opencores.org/project,fpu{_}dou>.

MCKEOWN, M.; BALKIND, J.; WENTZLAFF, D. Execution Drafting: Energy
Efficiency Through Computation Deduplication. In: Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 2014. (MICRO-47), p. 432–444. ISBN 978-1-4799-6998-2.
Available from Internet: <http://dx.doi.org/10.1109/MICRO.2014.43>.

MOLINA, C.; GONZDALEZ, A.; TUBELLA, J. Trace-level speculative multithreaded
architecture. In: Proceedings. IEEE International Conference on Computer Design:
VLSI in Computers and Processors. [S.l.: s.n.], 2002. p. 402–407. ISSN 1063-6404.

NIOS, I. I. Processor Reference Handbook. [S.l.]: Altera, 2009.

OLUKOTUN, K.; HAMMOND, L. The future of microprocessors. Queue, ACM, v. 3,
n. 7, p. 26–29, 2005.

PARULKAR, I. et al. OpenSPARC: An open platform for hardware reliability
experimentation. In: Fourth Workshop on Silicon Errors in Logic-System Effects
(SELSE). [S.l.: s.n.], 2008.

QUALCOMM. Snapdragon 835 Mobile Platform. 2017. Available from Internet:
<https://www.qualcomm.com/products/snapdragon/processors/835>.

Research Grand View. FPGA (Field-Programmable Gate Array) Market Analysis
By Application (Automotive, Consumer Electronics, Data Processing, Industrial,
Military And Aerospace, Telecom) And Segment Forecasts, 2014-2024. [S.l.]: Grand
View Research, 2016. 130 p. ISBN 9781680381337.

SASTRY, S.; BODIK, R.; SMITH, J. Characterizing coarse-grained reuse of computation.
In: 3rd ACM Workshop on Feedback Directed and Dynamic Optimization. [S.l.:
s.n.], 2000. v. 273, p. 274.

SCOTT, J. et al. Designing the Low-Power M• CORE TM Architecture. In: Power
driven microarchitecture workshop. [S.l.: s.n.], 1998. p. 145–150.

SINHA, S.; ZHANG, W. Low-Power FPGA Design Using Memoization-Based
Approximate Computing. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, v. 24, n. 8, p. 2665–2678, aug 2016. ISSN 1063-8210.

http://www.expertreviews.co.uk/pcs/cpus/1400962/whats-the-difference-between-core-i3-i5-and-i7-processors
http://www.expertreviews.co.uk/pcs/cpus/1400962/whats-the-difference-between-core-i3-i5-and-i7-processors
http://opencores.org/project,fpu{_}dou
http://opencores.org/project,fpu{_}dou
http://dx.doi.org/10.1109/MICRO.2014.43
https://www.qualcomm.com/products/snapdragon/processors/835

59

SKLYAROV, V. et al. Synthesis and Optimization of FPGA-Based Systems.
Cham: Springer International Publishing, 2014. 432 p. (Lecture Notes in Electrical
Engineering, v. 294). ISBN 978-3-319-04707-2. Available from Internet: <http:
//link.springer.com/10.1007/978-3-319-04708-9>.

SODANI, A.; SOHI, G. S. Dynamic instruction reuse. [S.l.]: ACM, 1997. 194–205 p.
ISSN 0163-5964. ISBN 0897919017.

STITZ, C.; ZEAGER, J. Precalculus. [S.l.]: Stitz Zeager Open Source Mathematics,
2013.

STOKES, J. Crusoe explored | Ars Technica. 2000. Available from Internet:
<https://arstechnica.com/features/2000/01/crusoe/3/>.

SURESH, A. et al. Intercepting functions for memoization: a case study using
transcendental functions. ACM Transactions on Architecture and Code Optimization
(TACO), ACM, v. 12, n. 2, p. 18, 2015.

TENDLER, J. M. et al. Power4 system microarchitecture. IBM Journal of Research
and Development, IBM, v. 46, n. 1, p. 5–25, 2002.

TONG, J. G.; ANDERSON, I. D. L.; KHALID, M. A. S. Soft-Core Processors
for Embedded Systems. In: 2006 International Conference on Microelectronics.
IEEE, 2006. p. 170–173. ISBN 1-4244-0764-8. Available from Internet: <http:
//ieeexplore.ieee.org/document/4243676/>.

Van Berkel, C. H. Multi-core for mobile phones. In: EUROPEAN DESIGN AND
AUTOMATION ASSOCIATION. Proceedings of the Conference on Design,
Automation and Test in Europe. [S.l.], 2009. p. 1260–1265.

WOLF, W.; JERRAYA, A. A.; MARTIN, G. Multiprocessor system-on-chip (MPSoC)
technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, IEEE, v. 27, n. 10, p. 1701–1713, 2008.

WONG, S.; Van As, T.; BROWN, G. ρ-VEX: A reconfigurable and extensible softcore
VLIW processor. In: IEEE. ICECE Technology, 2008. FPT 2008. International
Conference on. [S.l.], 2008. p. 369–372.

XILINX; INC. 7 Series FPGAs Memory Resources User Guide (UG473). 2016.
Available from Internet: <https://www.xilinx.com/support/documentation/user{_
}guides/ug473{_}7Series{_}Memory{_}R>.

Xilinx Inc.; XILINX; INC. 7 Series FPGAs Data Sheet: Overview (DS180). 2017.
Available from Internet: <https://www.xilinx.com/support/documentation/data{_
}sheets/ds180{_}7Series{_}Ove>.

YAZDANBAKHSH, A. et al. AxBench: A Benchmark Suite for Approximate
Computing. IEEE Design and Test, n. special issue on Computing in the Dark Silicon
Era 2016, 2016.

http://link.springer.com/10.1007/978-3-319-04708-9
http://link.springer.com/10.1007/978-3-319-04708-9
https://arstechnica.com/features/2000/01/crusoe/3/
http://ieeexplore.ieee.org/document/4243676/
http://ieeexplore.ieee.org/document/4243676/
https://www.xilinx.com/support/documentation/user{_}guides/ug473{_}7Series{_}Memory{_}R
https://www.xilinx.com/support/documentation/user{_}guides/ug473{_}7Series{_}Memory{_}R
https://www.xilinx.com/support/documentation/data{_}sheets/ds180{_}7Series{_}Ove
https://www.xilinx.com/support/documentation/data{_}sheets/ds180{_}7Series{_}Ove

60

**

61

APPENDIX A — PROJECT DESCRIPTION (TG1)

Function Reuse on a Multi-Core VLIW Soft-Core Processor
Pedro Henrique Exenberger Becker1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

Abstract. Modern processors contain several specific hardware modules and
multiple cores to ensure performance on a wide range of applications. However,
for FPGA-based processors, those modules may not fit in the device. To alle-
viate this performance overhead, we exploit the fact that logic-driven designs
usually underuse available FPGA BRAMs. We propose a low-cost hardware-
based function reuse mechanism, which can optimize software execution, in a
multi-core design. This is accomplished by saving the inputs and outputs of the
most recurring functions in a BRAM-based reuse table, so they can be reused in
the next function calls, skipping actual execution, and improving performance.

1. Introduction
The implementation of processors in Field-Programmable Gate Arrays (FPGAs), known
as soft-core processors, has known benefits such as architecture customization, hardware
acceleration, and obsolescence mitigation [Fletcher 2005]. These processors have gained
space in solutions to specific purpose problems: by using modules that can be configured
at synthesis time, they combine the ease of high-level programming for end users with
performance gains in dedicated tasks.

At the same time, nowadays systems require high performance for a wide range
of applications, which increases the demand for resources. The use of multi-core proces-
sors (e.g., ARM Cortex-A53 [Boppana et al. 2015]) together with dedicated hardware like
Floating-Point Units (FPUs), security and cryptography modules, and coders/decoders
for multimedia, are commonly adopted in any modern design, such as in Multiproces-
sor Systems on Chip (MPSoCs) [Wolf et al. 2008]. However, FPGA designs require
more area and energy compared to Application Specific Integrated Circuits (ASICs)
[Kuon and Rose 2007]. Therefore, in many cases, a number of resources available in
an FPGA is a limiting factor. In case specialized hardware can’t fit inside the FPGA when
implementing a system with soft-processors benefits, some of its functionalities must be
mapped into the software domain, which is significantly slower.

To alleviate this constraint and increase the design space, this work proposes a
low-cost and generic hardware solution to speed up specific software parts, within a
multi-core design without the need for implementing dedicated hardware components.
Our study leverages the fact that, most of the time, Block Random Access Memories
(BRAMs) are not used in the same proportion as Look-Up Tables (LUTs) and Registers
in FPGA logic-driven designs (e.g., soft-cores), to adopt a function reuse scheme. The
main idea presented here is to automatically store the input and output arguments of a
set of functions that belong to a given library in a BRAM Reuse Table (RT). When the
same function call repeats and the values of the arguments match, the output value can
be directly fetched from the RT, avoiding re-calculation, and improving software per-
formance. Since there is a software library instead of an ASIC to perform a particular

function, a significant number of LUT and registers are saved; and, by using our tech-
nique, the performance of such software library can be improved using BRAMs, which
would otherwise be idle.

Additionally, given a soft-core multi-processor design, it is possible to share the
RT among cores. Thus, programs that are simultaneously running on the soft-core can
both update the RT as they calculate function results, and fetch results calculated by other
processes from the RT. At the same, the introduction of a shared RT is much cheaper than
if we would introduce a dedicated RT for each core. By using this approach, we expect to
accelerate multiple cores while reducing the proportional impact of an RT introduction in
the FPGA design.

The remaining of this work is organized as follows: Section 2 presents a
Background over topics related to the research. Section 3 discusses Related Work. Next,
section 4 states the Work Proposal, detailing the reuse scheme and the goals of the work.
Section 5 presents the proposed Methodology. Section 6 argue about the Schedule for the
upcoming steps. Finally, Section 7 debates Conclusions.

2. Background
In the upcoming sub-sections, we introduce some important concepts that support our
study. They will be briefly defined together with its role in this work.

2.1. FPGA
At the beginning of the computation era, general-purpose processors used to be the only
option that a systems designer had to accomplish complex design specifications rapidly.
Thus, the designers’ decision over the system hardware was limited to choosing the most
appropriate processor and the grain on which the designer had to define functionalities
was in the level of programs. After, in the year of 1980, the first ASICs were developed,
giving the possibility for the designer to determine specific hardware implementation of
the project. FPGAs emerged in this scenario as an intermediary solution between proces-
sors and ASICs, providing better control over the hardware implementation compared to
processors, and more flexibility, testability, and time-to-market over ASIC. With its dif-
ferentials, the FPGA market had reached the estimation of USD 6.36 billion by the year
of 2015 with continuous growth expectation [Research Grand View 2016]. Thereby, this
research is based on a technology that is already established and has a solid market.

FPGA gained market share with its uniqueness: it rests on the idea of a reconfig-
urable circuit. Figure 1 depicts a traditional FPGA architecture. It is an array of Con-
figurable Logic Blocks (CLBs), routing channels, BRAMs and Digital Signal Processing
(DSP) units. The reconfigurability is a result of the programmability of the CLBs and
routing channels, as we present below.

A CLB is the fundamental component on the FPGA architecture. Inside each
CLB, there are a set of small tables (LUTs). With these tables, the FPGA can implement
logical functions over the CLB inputs (using the LUTs as a truth-table). Thus, combining
many CLBs through the routing channels can lead to implementations of very complex
logical functions. Moreover, the LUTs can be used as memory elements for small data
amount. Since both CLB and routing channels are programmable, the circuit that an
FPGA implements can be changed by reprogramming those components.

Figure 1. A typical FPGA Architecture [Buell et al. 2007]

Aside CLBs and routing channels, FPGA also has Input/Output Blocks (IOBs), to
connect the FPGA with the outside world, and embedded blocks. Traditional architectures
contain both embedded DSPs units, to speed up costly operations that are implemented
by cascades of truth-tables (e.g., multiplications), and BRAMs, which will be detailed in
the following subsection.

2.1.1. Block Random Access Memories (BRAM)

BRAMs are embedded memory blocks used for storing large sets of data more efficiently
than by LUTs, and are widely available in modern FPGAs. For example, the Xilinx 7
series FPGAs contains from 5 to 1880 dual-port BRAMs, depending on the model, each
storing 36Kb of data. These blocks can be divided into two independent 18Kb BRAMs.
In both cases, dual-port is assured, and each port is completely independent of another,
sharing only the stored data [Xilinx Inc. 2017].

These embedded blocks can also be configured in different associations (e.g., 32K
1-bit lines, 16K 2-bit lines, . . . , 1K 32-bit lines, 512 64-bit lines), and can be intercon-
nected to create wider and deeper memory structures [Sklyarov et al. 2014]. Finally, both
read and write operations are synchronous, requiring an active clock edge.

Since logic-driven designs, as soft-core processors, generally underuse available
BRAMs, we propose to better occupy those components by implementing the RT for
enhancing applications’ performance.

2.2. Soft-Core Processors

A soft-core processor is a hardware description language model of a specific processor
that can be customized and synthesized for an ASIC or FPGA target [Tong et al. 2006].
In this study, however, we consider only FPGA-based soft-cores.

FPGA-based soft-cores became popular as they bring advantages such as (i) ar-

chitecture customization, since FPGA allows non-standard implementation, according to
the design requirements; (ii) obsolescence mitigation, as the hardware description perpet-
uates while hardware technologies advance; (iii) cost reduction, considering that multiple
components can be replaced with a single FPGA; and (iv) hardware acceleration, since
specific algorithms can be implemented in hardware, for example, to achieve better per-
formance [Fletcher 2005].

There is a variety of commercial and academic soft-core processors as a demon-
stration of its representativeness. Examples from the industry comprehend Xilinx Mi-
croBlaze soft processor, an Intellectual Property (IP) for Xilinx FPGAs [Kale 2016], the
Altera Nios II [Nios 2009], and the open sourced hardware description of Sun’s Ultra-
Sparc T1 and T2, which were released by the OpenSparc Project [Parulkar et al. 2008].
From academia, we highlight the ρ-VEX Very Long Instruction Word (VLIW) processor
[Wong et al. 2008] from TU Delft.

2.3. Modern Architectures

The required performance of computing devices has increased as technology ad-
vances. The transistor’s scaling improved processors frequency, while the exploitation of
Instruction-Level Parallelism (ILP) increased processors throughput. However, increased
clock rates dissipate more power, which became a barrier. At the same time, the ILP ex-
ploitation by deep pipelining and out-of-order processors seems to have reached a plateau
[Das et al. 2008].

To overcome the above challenges and to guarantee computers ascendant per-
formance, various solutions were proposed. We detail three solutions in the upcoming
sub-sections, which are strongly related to this work: Multi-Core Processors, VLIW
Processors, and MPSoCs.

2.3.1. Multi-Core Processors

Optimizing a single core processor with pipeline, ILP exploitation and out-of-order exe-
cution became insufficient. Multi-core processors were proposed, observing that complex
systems usually execute multiple tasks. Thus, in a multi-core environment, various tasks
could be distributed among multiple processors, increasing the overall throughput of the
system. Figure 2 presents a quad-core Intel i7 overview as example. Each core can exe-
cute independently of others and communicates by using the shared cache memory.

Figure 2. A four-core Intel i7 4770K [Ludlow 2014]

The first commercial multi-core processor was the IBM Power4
[Tendler et al. 2001] released in 2001. After, other companies such as Intel, AMD,
and Sun also turned to multi-core production [Geer 2005]. Ever since, multi-core designs
became almost a standard for General Purpose Processors (GPPs), from Intel Pentium
D up to the latest Intel i7 Series. Not enough, multi-core processors are highly used in
nowadays embedded systems as smartphones [Van Berkel 2009].

2.3.2. VLIW Processors

The extraction of ILP at execution time enabled processors performance gains but in-
troduced more hardware (and complexity) given the logic required to find parallel in-
structions [Olukotun and Hammond 2005] dynamically. As alternative to on-the-fly ILP
exploitation, the VLIW processors were proposed [Fisher 1983].

A VLIW processor contains multiple execution pipelines, the issue-slots, so that it
can execute more than one instruction at a time. The advantage of using these processors
is that the instruction parallelism is extracted by the compiler. Thus, a VLIW processor
can benefit from ILP while maintaining a simple microarchitecture. The parallel instruc-
tions are disposed inside a very long instruction word, in a set of independent instructions
that can be executed concurrently without any concern by the processor. The arrange-
ment of the instruction even maps each instruction with the issue-slot on which it will be
executed.

Because of its simple organization alongside its ILP exploitation, the VLIW pro-
cessors are powerful yet less resource-consuming in comparison to a complex superscalar.
These factors make the VLIW a good architecture option for resource constrained FPGA-
based soft-core processors.

2.3.3. MPSoCs

Some computer tasks, like real-time video encoding, for example, execute a complex
algorithm with very high throughput demand. When that occurs, using a GPP may not
be the best option, either for performance or energy consumption, since a specialized
hardware can achieve better performance with more efficiency.

Let us consider the case of smartphones and tablets as an example. They are re-
quired to execute a broad range of tasks with minimum battery consumption. For this
reason, these devices have specific hardware modules in their main chip die to run high-
performance applications efficiently [Jóźwiak 2017] and work together with the GPP pro-
cessors. This chip arrangement is known as MPSoCs. Figure 3 depicts an overview of the
Intel Atom Z3770, used in some tablet models, which contains dedicated hardware for
processing audio, graphics, camera image, security, and several other specialized mod-
ules.

Figure 3. Intel Atom Z3770 [Jóźwiak 2017]

2.3.4. Reuse

Here we introduce the concept of reuse in the computing scope. A more detailed overview
among techniques and approaches will be covered in the Section 3 (Related Work).

Reuse of computation is based on the observation that deterministic execution -
where a set of inputs always leads to the same result - often repeats within programs.
Reuse exploits this by saving input and result (output) values of those executions in a RT.
The RT is searched when reentering a given snippet of execution, checking whether the
current and the saved input values are the same. In case of a hit, the result (output value)
from the RT is fetched faster than recomputing it.

For example, consider the hypothetical code bellow:

r.1 = r.6

r.2 = 1 + r.1

r.3 = 1 + r.2

Figure 4. Example of a Reusable Code Snippet

The inputs are the values which are read before been written; in the example,
the register r.6 is the only input. The outputs are the written values, which will be read
further, in the case r.1, r.2, r.3. Consider r.6 = 1 in a given execution. Therefore, after the
code executes, r.1 = 1, r.2 = 2, r.3 = 3. Note that any eventual execution in which r.6
= 1 will imply in the same result in the outputs r.1, r.2, r.3. In this scenario, saving the
input and output values for consulting in a new occurrence could skip execution of three
instructions.

2.3.4.1. Function Reuse
A particular case for reuse is when the evaluation of reuse occurs in the grain of functions.
In this case, the function parameters are the inputs, and the values returned by functions
are the outputs.

The following example illustrates a simple scenario where function reuse could
be used:

a = sin(π)

...
b = sin(π)

Figure 5. Example of a Reusable Function Result

In this case, the second execution of sin could be skipped, given a repetition of the
inputs (π in this case). Naturally, in this simple case, the explicit re-operation of sin(π)
could be avoided by better programming or even compiler optimization. Note, however,
that in a more realistic situation the input parameters can, and often will, be variables,
whose values are unknown at compile time and unpredictable by the programmer.

3. Related Work

A variety of works has discussed reuse of computation [Sastry et al. 2000]. Im-
plementations vary from software (where reuse is also known as memoization
[Hall and McNamee 1997]) to hardware-based solutions and cover different granulari-
ties of code. In [Sodani and Sohi 1997], dynamic instruction reuse is presented with
execution-driven simulation. The goal is to avoid re-execution of instructions in an
out-of-order processor. Source registers of the instructions are the inputs, and the in-
struction result is the output. The scheme is enhanced with control of dependency links
among instructions, providing reuse of a set of dependent instructions. The authors in
[Citron et al. 1998] proposed the reuse of Floating-Point (FP) instructions, only. They
focused on multimedia applications, where they claim that reusability is more promising.
On each function unit that takes more than a cycle to execute (like an FP divider or mul-
tiplier), a MEMO-TABLE is used to store the results. Average speed up between 8% and
22% is achieved. Despite a hardware scheme is discussed, the results are taken from an
instruction level simulator.

Reuse of a set of instructions within a basic block is considered in
[Huang and Lilja 1999] and simulated using SimpleScalar [Austin et al. 2002]. Any
source operand (from registers or memory) that has not been previously written inside
a basic block is considered part of the input. The last value written in any register or
memory destination is considered as part of the output. Their work shows performance
improvements of up to 14%. A similar system is proposed over trace level (a set of se-
quential basic blocks) in [González et al. 1999]. In this case, less reusability is found
compared to instruction reuse, but more speedup is obtained.

The authors in [Kavi and Chen 2003] introduced the concept of dynamic function
result reuse. In this case, only pure functions (global variables free, no I/O requirement,
nor any change in the global state of the program) can be reused, in a form that the return
value is only a consequence of the input parameters of the function. The authors verify
the impact of (i) reuse buffer size; (ii) reuse buffer associativity; and (iii) amount of input
parameters of functions. The study presented from 10% to 67% of reusability on a variety
of applications, supporting the use of the function reuse concept. Finally, the authors in
[Suresh et al. 2015] implemented function reuse in the interface between programs and
operating system. Their mechanism intercept calls to the dynamically linked math library
by preloading a memoized version of it. This modified library verifies reusability and
returns the respective output value by reuse when available (otherwise, the original math
library is called to solve the function).

Our work is the first to consider reuse specifically targeted to FPGAs, exploiting
its unique components and intrinsic characteristics, like the existence of BRAMs and its
specific design constraints. By presenting function reuse in FPGA for soft-core designs,
we can open new possibilities for design space exploration and new trade-offs for HW/SW
co-design in such devices. For instance, low-price FPGA may regain space in project
decision, since our approach allows for performance gains with a low overhead in LUTs
at the price of BRAM occupation, which are many times underutilized.

Additionally, we propose to cover reuse with a shared RT in a multi-core envi-
ronment, which was never proposed before. Such analysis can update the knowledge of
reusability in modern designs, and also explain the behavior of reuse when the RT is pop-
ulated simultaneously from different applications. From the resource consumption view,
a shared RT demands proportionally fewer resources from the overall design than when it
is dedicated to a single core.

We also present, to the best of our knowledge, the first hardware implementation
of such technique. Through this, we have an in-depth analysis of the area/resources con-
sumption of the mechanism, and a level of accuracy that only actual implementations can
provide. Our hardware implementation is free of any abstract layers, leading to a solution
independent of user space or operating systems, which also covers bare metal embedded
systems, wherein many times operating systems are not available.

4. Work Proposal
This work proposes to implement a Function Reuse Unit (RU) compatible with the ρ-VEX
VLIW soft-core processor. The reuse scheme will be inserted in a multi-core environment
where multiple ρ-VEX soft-core processor share the reuse module. The intent is to speed
up software solutions (e.g., software libraries for specific tasks) in cases when adding
specific hardware to the FPGA target is not possible due to area constraints, compromising
the design scalability. We propose to implement the RU by managing an RT that exploits
idle BRAMs in the FPGA design, allocating FPGA resources smartly.

The RT will be populated during the execution of the applications. Modifications
in the processor description will be made to detect function calls, to gather the input
parameters of functions, to gather output values of functions, and to skip execution when
reuse is possible. Information collected from the processor will be passed to the RU,
which will update the RT data. The RU will perform over a set of marked functions.

Search in RT

Update Output

Registers and

Program

Counter

Collect

Function

Reuse Info.

Save

Function

Info. on RT

Instruction Fetch

Program

Execution

Program

Execution

RT Updated Function RETURN

Function Execution

Skipped

Search in RT

Update Output

Registers and

Program

Counter

Collect

Function

Reuse Info.

Save

Function

Info. on RT

Instruction Fetch

Program

Execution

RT Updated Function RETURN

Function Execution

Skipped

Figure 6. The functioning of the Reuse Unit

Therefore, it will be possible for the designer to choose the functions on which reuse will
be applied, including functions that are used in more than one application (e.g., reuse the
results of the function sin() in multiple mathematical applications).

To exemplify, Figure 6 depicts a diagram of the functioning of the proposed RU for
a single application. It represents that program executes normally until a is call instruction
to a reusable function (i.e., the functions marked to be reused by design) is found. For
the first call occurrence of a function and its inputs, no information will be available in
the RT; thus an RT miss occurs. To include the function execution information in the RT,
the RU waits for the function to end, so the outputs are available. With all information,
a reuse entry (see Figure 7) is saved in the RT for further consultation. In the following
function calls, the function identification and the input parameters are used to search in the
RT. When an RT hit occurs, the matched entry contains the output values. These output
values are used to update the processor context, skipping actual execution of the function.
Note, as the scheme depicts, that the RU only consider functions marked as reusable.
Also, since the table is finite, there will be replacement of entries as the applications
execute.

Although the example has presented the RU functioning with a single application,
this work intents to share the RU (and thus, the RT) among multiple cores. Figure 8
depicts this scenario. In this case, multiple applications will consult and populate the
RT concurrently. This enables applications to benefit from both internal redundancies

Input Parameters

Values

Output Parameters

Values
V

Function

Identification

Input Parameters

Values

Output Parameters

Values
V

Function

Identification

Input Values Output Values

Figure 7. A Reuse Table Entry

CORE 0 CORE 1

CORE 2 CORE 3

.

.

.

REUSE TABLE

 . . .

REUSE TABLE

 . . .

REUSE UNIT

C
O

N
T

R
O

L

Figure 8. A Multicore Environment with a Shared Reuse Unit

(repetitions inside the same application) and external redundancy (computation that would
be repeated in multiple applications but can be executed by one and reused by the others).

Finally, it is expected from this work to present results regarding performance
speedup, as well as the FPGA components’ usage. The results should be discussed, pon-
dering pros and cons of our technique, and comparing it with related works.

5. Methodology
In the following sub-sections, we detail the methodology for each step of the research.

5.1. Function Reuse Module Implementation
As our work proposes a RU to be attached to a real processor hardware description, a
RU will be implemented in VHDL, and Mentor Graphics Modelsim 10 will be used for
simulations and tests. At first, the functioning of the unit will be tested in a single-core
processor and only later in a multi-core environment.

5.2. Extraction of Results
Once implemented, the results of the reuse scheme must be extracted so one can analyze
its potential. The results of performance will be evaluated by comparing the number
of cycles to execute a set of applications with and without the RU. Also, since the RT
is shared, its current data may vary depending on the applications running, varying the
reusability as well. Therefore, different applications will potentially lead to different

Table 1. Schedule
Jul. Aug. Sep. Oct. Nov. Dec.

Reuse Unit Implementation in Single-core
Reuse Unit Implementation in Multi-core
Benchmarks Definition
Extraction of Performance Results
Extraction of FPGA Components’ Usage
Writing of the Final Term Paper

performance speedups. The impact of the applications will be considered in the results
discussion.

Moreover, the impact of attaching a RU to the design will be verified. Since the
majority of the mechanism consists of a BRAM table, it is expected that our scheme
uses less LUTs and registers than specific hardware accelerators would. To confirm this
expectation, we will synthesize the system in Xilinx ISE/Vivado.

6. Schedule

Table 1 presents the schedule for the next steps of this work.

7. Conclusions

This work discussed the function reuse in the scope of soft-core processors implemented
in FPGAs. It introduced background explanation and contextualized the work among re-
lated ones. A work proposal was stated to define the next steps of the research: to attach a
RU in a multi-core environment of the ρ-VEX soft-core processor in an attempt to increase
applications performance when specific hardware accelerators can’t fit in the FPGA tar-
get. Especially, in multi-core environments, the addition of multiple cores may be a more
generic solution for overall throughput than specific hardware, turning a RU into a generic
and resource-rational approach since it uses idle BRAM for its construction. Addition-
ally, a brief methodology was proposed, and also the schedule for the continuation of the
work.

References

Austin, T., Larson, E., and Ernst, D. (2002). SimpleScalar: An infrastructure for computer
system modeling. Computer, 35(2):59–67.

Boppana, V., Ahmad, S., Ganusov, I., Kathail, V., Rajagopalan, V., and Wittig, R. (2015).
UltraScale+ MPSoC and FPGA families. In Hot Chips 27 Symposium (HCS), 2015
IEEE, pages 1–37. IEEE.

Buell, D., El-Ghazawi, T., Gaj, K., and Kindratenko, V. (2007). Guest Editors’ Introduc-
tion: High-Performance Reconfigurable Computing. Computer, 40(3):23–27.

Citron, D., Feitelson, D., and Rudolph, L. (1998). Accelerating multi-media processing
by implementing memoing in multiplication and division units. In ACM SIGPLAN
Notices, volume 33, pages 252–261. ACM.

Das, R., Mishra, A. K., Nicopoulos, C., Park, D., Narayanan, V., Iyer, R., Yousif, M. S.,
and Das, C. R. (2008). Performance and power optimization through data compression
in Network-on-Chip architectures. In 2008 IEEE 14th International Symposium on
High Performance Computer Architecture, pages 215–225. IEEE.

Fisher, J. A. (1983). Very long instruction word architectures and the ELI-512, volume 11.
ACM.

Fletcher, B. H. (2005). FPGA embedded processors. In Embedded Systems Conference,
page 18.

Geer, D. (2005). Chip makers turn to multicore processors. Computer, 38(5):11–13.

González, A., Tubella, J., and Molina, C. (1999). Trace-level reuse. In Parallel Process-
ing, 1999. Proceedings. 1999 International Conference on, pages 30–37. IEEE.

Hall, M. and McNamee, J. P. (1997). Improving software performance with automatic
memoization. Johns Hopkins APL Technical Digest, 18(2):255.

Huang, J. and Lilja, D. J. (1999). Exploiting basic block value locality with block reuse.
In High-Performance Computer Architecture, 1999. Proceedings. Fifth International
Symposium On, pages 106–114. IEEE.

Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Mi-
crosystems, 50:202–221.

Kale, V. (2016). Using the MicroBlaze Processor Core to Accelerate Embedded System
Development Using the MicroBlaze Processor to Accelerate Cost-Sensitive Embedded
System Development. WP469, (1).

Kavi, K. M. and Chen, P. (2003). Dynamic function result reuse. In Proceedings of the
11th International Conference on Advanced Computing (ADCOM-2003), pages 17–20.

Kuon, I. and Rose, J. (2007). Measuring the gap between FPGAs and ASICs. IEEE
transactions on computer-aided design of integrated circuits and systems, 26(2):203–
215.

Ludlow, D. (2014). What’s the difference between Core i3, i5 and i7 processors?

Nios, I. I. (2009). Processor Reference Handbook.

Olukotun, K. and Hammond, L. (2005). The future of microprocessors. Queue, 3(7):26–
29.

Parulkar, I., Wood, A., Hoe, J. C., Falsafi, B., Adve, S. V., Torrellas, J., and Mitra, S.
(2008). OpenSPARC: An open platform for hardware reliability experimentation. In
Fourth Workshop on Silicon Errors in Logic-System Effects (SELSE).

Research Grand View (2016). FPGA (Field-Programmable Gate Array) Market Analy-
sis By Application (Automotive, Consumer Electronics, Data Processing, Industrial,
Military And Aerospace, Telecom) And Segment Forecasts, 2014-2024. Grand View
Research.

Sastry, S., Bodik, R., and Smith, J. (2000). Characterizing coarse-grained reuse of com-
putation. In 3rd ACM Workshop on Feedback Directed and Dynamic Optimization,
volume 273, page 274.

Sklyarov, V., Skliarova, I., Barkalov, A., and Titarenko, L. (2014). Synthesis and Op-
timization of FPGA-Based Systems, volume 294 of Lecture Notes in Electrical Engi-
neering. Springer International Publishing, Cham.

Sodani, A. and Sohi, G. S. (1997). Dynamic instruction reuse, volume 25. ACM.

Suresh, A., Swamy, B. N., Rohou, E., and Seznec, A. (2015). Intercepting functions
for memoization: a case study using transcendental functions. ACM Transactions on
Architecture and Code Optimization (TACO), 12(2):18.

Tendler, J. M., Dodson, S., Fields, S., Le, H., and Sinharoy, B. (2001). POWER4 System
Microarchitecture.

Tong, J. G., Anderson, I. D. L., and Khalid, M. A. S. (2006). Soft-Core Processors for
Embedded Systems. In 2006 International Conference on Microelectronics, pages
170–173. IEEE.

Van Berkel, C. H. (2009). Multi-core for mobile phones. In Proceedings of the Conference
on Design, Automation and Test in Europe, pages 1260–1265. European Design and
Automation Association.

Wolf, W., Jerraya, A. A., and Martin, G. (2008). Multiprocessor system-on-chip (MPSoC)
technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(10):1701–1713.

Wong, S., Van As, T., and Brown, G. (2008). ρ-VEX: A reconfigurable and extensi-
ble softcore VLIW processor. In ICECE Technology, 2008. FPT 2008. International
Conference on, pages 369–372. IEEE.

Xilinx Inc. (2017). 7 Series FPGAs Data Sheet: Overview (DS180).

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 Field-Programmable Gate Array
	2.1.1 Block Random Access Memories
	2.1.2 Soft-Core Processors

	2.2 Modern Architectures
	2.2.1 Very Long Instruction Word Processors
	2.2.2 Multi-Core Processors
	2.2.3 Multiprocessor System on Chip

	2.3 Reuse
	2.3.1 General Reuse
	2.3.2 Function Reuse
	2.3.3 Approximate Function Reuse

	3 Related Work
	3.1 Reuse in Single-Core Environments
	3.2 Reuse in Multi-Core Environments
	3.3 Approximate Reuse
	3.4 Work Contribuitions

	4 Implementation and Methodology
	4.1 Baseline Processor
	4.2 Implementing the Function Reuse Unit in a Single-Core
	4.2.1 Reuse Mechanism

	4.3 Function Reuse in Multi-Core Environments
	4.3.1 Multi-Core Function Reuse Simulator

	4.4 Enhancing Function Reuse Possibilities with Approximate Computing
	4.4.1 Modifications to Support Approximate Reuse
	4.4.2 Modifying Software to Analyze Approximate Function Reuse

	5 Results
	5.1 Function Reuse in Single-Core Environments
	5.1.1 Experimental Methodology
	5.1.2 Case Study - Floating-Point
	5.1.3 Reusability
	5.1.4 Performance

	5.2 Function Reuse in Multi-Core Environments
	5.2.1 Experimental Methodology
	5.2.2 Inputs Definition
	5.2.3 Performance

	5.3 Using Approximate Computing to Function Reuse
	5.3.1 Experimental Methodology
	5.3.2 Performance

	5.4 Resource Usage

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Work Limitations
	6.3 Future Work

	References
	Appendix A — Project Description (TG1)

