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Geometric and chemical nonuniformity may induce the stability of more
than one wetting state in the same hydrophobic surface
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It is well established that roughness and chemistry play a crucial role in the wetting properties of a substrate.
Yet, few studies have analyzed systematically the effect of the nonuniformity in the distribution of texture and
surface tension of substrates on its wetting properties. In this work we investigate this issue theoretically and
numerically. We propose a continuous model that takes into account the total energy required to create interfaces
of a droplet in two possible wetting states: Cassie-Baxter (CB) with air pockets trapped underneath the droplet;
and the other characterized by the homogeneous wetting of the surface, called the Wenzel (W) state. To introduce
geometrical nonregularity we suppose that pillar heights and pillar distances are Gaussian distributed instead of
having a constant value. Similarly, we suppose a heterogeneous distribution of Young’s angle on the surface to
take into account the chemical nonuniformity. This allows to vary the “amount” of disorder by changing the
variance of the distribution. We first solve this model analytically and then we also propose a numerical version
of it, which can be applied to study any type of disorder. In both versions, we employ the same physical idea:
The energies of both states are minimized to predict the thermodynamic wetting state of the droplet for a given
volume and surface texture. We find that the main effect of disorder is to induce the stability of both wetting
states on the same substrate. In terms of the influence of the disorder on the contact angle of the droplet, we find
that it is negligible for the chemical disorder and for pillar-distance disorder. However, in the case of pillar-height
disorder, it is observed that the average contact angle of the droplet increases with the amount of disorder. We
end the paper investigating how the region of stability of both wetting states behaves when the droplet volume
changes.
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I. INTRODUCTION

Roughness and chemistry of a substrate are key parameters
to understand its wetting properties [1]. Young understood
that when a droplet is placed on an ideal solid, with no
texture and a homogeneous chemistry, its contact angle θY is
univocally determined by minimizing the necessary energies
to generate the interfaces of the three involved phases [2].
It was later verified that the apparent contact angle of a
droplet θC can be dramatically affected when the substrate is
textured or if its chemistry is modified [3–5]. Much advance
in controlling the wetting properties of surfaces was possible
due to the quantification of the influence of the roughness [6,7]
and its chemistry [8].

Most of the theoretical, numerical [9–13], and experimen-
tal [7,14–17] studies approach this problem by varying the
roughness via different geometrical parameters and assuming
a regularity in the distribution of the textures and of the
chemistry. However, real structures have some degree of dis-
order in its parameter [18–20] and, in fact, some simulations
and experiments have used wetting dynamics to probe these
irregularities [21,22]. Experimental studies have shown that
strong spatial disorder has influence on the transition from
the CB to W state [23], and it has been suggested that the
phenomena is related to the negative curvature of the textures
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[24]. The role of disorder has also been studied theoretically,
for example, under the assumption of random distribution of
roughness [25–28] or irregularities in some types of textures
[22,29]. The results vary depending on the type of disorder:
some type of nonregularities do not influence the wetting
properties of the surface, while other types may reduce the
droplet contact angle [30]. The nonuniformity of the substrate
may become relevant when the droplet is small [31] as in
experiments where the droplet evaporates and reaches smaller
sizes [14,32,33] or to understand the wetting in the case of
droplet condensation [34–36].

In this work we introduce a method that can be used
to analyze any type of disordered substrate. We apply this
method to study the thermodynamic wetting properties of a
pillared surface with three particular types of nonregularities:
a disorder in the distance between pillars, in the height of
pillars, and in the distribution of θY on the solid. When placed
on such substrate, the droplet is supposed to be in one of
the two wetting states: a Cassie-Baxter (CB) [4], where the
droplet resides on the top of the groves, or the Wenzel state
(W) [3] case, where the droplet penetrates the surface. To
describe the wetting properties of these surfaces, we propose
two approaches. (i) For each type of substrate, we build a
continuous model that takes into account the global energy
necessary to create interfaces between the liquid, air, and solid
phases when a droplet is placed on a substrate [37–40] and
solve it analytically. (ii) We introduce a numerical approach,
which basically consists in dividing the solid in small areas
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and numerically look for areas of interfaces between different
phases and then calculate the energy to create them. The
advantage of the approach (ii) is its generality: it can be
applied for any type of surface, while approach (i) can only
be developed for some particular cases of substrates. For both
approaches, we minimize the energy of both wetting states
and the most stable state is the one with smaller energy.
Among other results, when the substrate presents a disorder
of any type considered here, both wetting states, W or CB,
may be stable for the same substrate for a certain range of
geometrical parameters. Concerning the contact angle of the
droplet, we find that it can increase when the pillar heights
disorder is introduced and it does not change considerably for
the other types of disorders.

The paper is organized as follows. Section II explains
the continuous model and the process to minimize its equa-
tions numerically. We introduce the numerical approach and
explain how to obtain the minimum energies of both wet-
ting states in Sec. II C. We present our results for both
the analytic and numeric methods in Sec. IV, which are
in very good agreement. We compare the approaches and
highlight some of our findings for the particular types of
nonregularities considered in this work. We end Sec. IV
by investigating how the effects of the disorder evolve
when the droplet volume changes. In Sec. V we draw our
conclusions.

II. THE CONTINUOUS MODEL: ANALYTIC APPROACH

In this section we develop a model that takes into account
all the energies related to the presence of interfaces when a
droplet is placed on a textured surface. The three-dimensional
droplet considered in this work has geometric parameters de-
fined in Fig. 1. Throughout this work, we make the following
approximations: (a) we only consider two wetting states, CB
and W, as defined above; mixed states between these two
limits are not taken into account. (b) We assume a droplet with
a spherical cap. (c) We disregard pinning of the droplet at the
defects of the substrate.

We first show the equations for a droplet placed on a
pillared surface [39], outlined in Fig. 2(a). This surface is
uniform both in terms of geometry—pillars are distributed
regularly—and in terms of chemistry. We then extend the
model for a droplet placed on the pillared surfaces with three

FIG. 1. Geometric parameters of the three-dimensional droplet.
We consider that the droplet has a spherical cap with radius R, base
radius B, height H, and contact angle θC .

possible types of nonuniformities: (i) the distance between
pillars not constant [Fig. 2(b)]; (ii) the height of the pillars
not constant [Fig. 2(c)]; and (iii) the chemistry of the surface
not homogeneous [Fig. 2(d)].

A. The continuous model in uniform surfaces

The total energy of each wetting state (W/CB) is given
by the sum of all energies involved in creating interfaces
between the droplet and the surface on which it is placed.
The difference in energy of the system with and without the
droplet on the surface can be written as �Es

Tot = �Es + Es
g ,

where the superscript s represents the state (s = W or s = CB),
Eg is the gravitational energy and �Es is the difference in
the interfacial energy between every pair formed from liquid,
solid and gas after the droplet is placed on the surface in state
s and the energy of the surface without the droplet. When
the droplet is on the surface, Eg is negligible compared to
�Es [39] and for this reason we only take into account the
expression for the �Es, which for a uniform surface can be
written as

�ECB
0 = γGL

[
NCB((d2 − w2)︸ ︷︷ ︸

A

−w2 cos θY ) + SCB
]
, (1)

�EW
0 = γGL[SW − NW(d2 + 4wh) cos θY], (2)

where cos θY = (γSG − γSL )/γGL is the Young’s equation that
describes the wetting behavior of a flat and homogeneous
surface. γSG, γSL, γGL are the solid-gas, solid-liquid, and gas-
liquid interfacial tension, respectively. A is the contact area
between the liquid and the air trapped under the droplet,
d = w + a and all other geometric parameters are defined
in Fig. 2(a). The total number of pillars underneath the
droplet is Ns = π (Bs)2/d2, where Bs = Rs sin(θ s

C ) is the base
radius. The surface area of the droplet cap in contact with
air is considered spherical and is given by Ss = 2πRs2[1 −
cos(θ s

C )]. When the radius of the droplet is comparable
to the roughness of the surface or the roughness geome-
try is anisotropic some deformation in its spherical shape
is expected [41,42], but we will not treat this effect in
this work.

Note that the surface tension of the liquid γGL multi-
plies both equations above. It means that this quantity does
not influence the thermodynamic stable state of the droplet
and therefore we set γGL = 1. The only information about
the chemistry of the substrate in the model is contained
in θY. These considerations will be valid throughout this
work.

B. The continuous model in nonuniform surfaces

We now extend the model for surfaces with nonuniformi-
ties (also referred as surfaces with disorder). The disorder
is introduced by considering that some parameters of the
surface, referred as a variable ξ , has a Gaussian distribution
instead of having a constant value. The normalized standard
deviation, which is defined as the standard deviation divided
by the mean of the distribution (σ ∗ = σ/〈ξ 〉), allows us to
quantify the disorder for distributions with different means.
We consider σ ∗ ∈ [0, 0.3], where for σ ∗ = 0.0 one recovers
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FIG. 2. Definition of the parameters for pillared substrates. (a) The uniform surface is defined by four parameters: the interpillar distance
a, pillar width w, pillar height h, and an Young’s contact angle θY. (b) Surface with a Gaussian distribution of the pillar distances characterized
by an average distance 〈a〉 and a normalized standard deviation σ ∗

a . All other geometric parameters are the same as in (a). For this example,
〈a〉 = 8 μm and σ ∗

a = 0.3. We also show a projection of a droplet with basis BS and a ring of thickness 〈a〉σ ∗
a , which is used to rationalize

how the disorder modifies the energy of the droplet (see text). (c) Surface with a Gaussian distribution of pillar heights characterized by
an average height 〈h〉, a normalized standard deviation σ ∗

h and all other geometrical parameters as for the ordered case. In this example,
w = 5 μm, a = 5 μm, 〈h〉 = 7 μm, σ ∗

h = 0.3. It is shown together a droplet deposited on the surface and assuming a CB state to highlight
the approximation used in this work: The interface between the liquid and the gas below the droplet is supposed to be linear. (d) Example of a
surface with chemical nonuniformity, given by a Gaussian distribution with an average 〈cos θY〉 = cos(114◦) ≈ −0.41 and σ ∗

θ = 0.3.

the case where the surface is uniform (or without disorder)
and σ ∗ = 0.3 means that ξ ∈ [0, 2〈ξ 〉] [43].

1. Geometrical disorder I: Gaussian distribution
of pillar distances (a)

We consider pillared surfaces whose distances “a” between
the pillars are given by a Gaussian distribution with mean
〈a〉 and a normalized standard deviation σ ∗

a . Pillars are not
allowed to interpenetrate. An example of this type of substrate
is shown in Fig. 2(b), where its geometrical parameters are
defined.

In this same figure we also show a ring of area Aring =
2πBs〈a〉σ ∗

a and the droplet basis, that is used to model the
effect of this type of disorder in the energy of the droplet. The
ring is placed on the edge of the droplet and has thickness
of 〈a〉σ ∗

a , which defines the maximum displacement of the
pillars. Note that the pillars inside of the inner disk shown in
Fig. 2(b) do not change the energy of the droplet because they
cannot leave the droplet basis. However, the pillars that are in
the outer disk can leave or enter the droplet basis, then altering
its energy. We estimate that the number of pillars underneath
the droplet can fluctuate as: Ns

a = Ns ± πBs〈a〉σ ∗
a

d2 . When this
result is placed on the energy equations for the ordered surface

[Eqs. (1) and (2)], the following equations for the disordered
surface are obtained:

�ECB
a = �ECB

0

±γGL[(d2 − w2) − w2 cos θY]
πBCB〈a〉σ ∗

a

d2︸ ︷︷ ︸
δECB

a

, (3)

�EW
a = �EW

0 ∓ γGL(d2 + 4wh) cos θY

πBW〈a〉σ ∗
a

d2︸ ︷︷ ︸
δEW

a

, (4)

where geometric parameters of the surface are defined in
Fig. 2(b). We note that the energies can be written as the
energies for the ordered surfaces—�ECB

0 and �EW
0 —plus

dispersion terms around this value which are referred to as
δECB

a and δEW
a . Clearly, σa = 0 recovers the ordered case.

2. Geometrical disorder II: Gaussian distribution
of pillar heights (h)

We now consider pillared substrates such that the value of
each pillar height is taken from a Gaussian distribution with
mean 〈h〉 and a normalized standard deviation σ ∗

h . An example
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of this type of surface is shown in Fig. 2(c), where we also
define the geometric parameters of the surface.

To compute how the distribution of pillar heights affects
the energy difference in the case of the W state, we replace
the constant value h by h = 〈h〉 ± σh in the Eq. (2):

�EW
h = �EW

0 ∓ γGLNW〈h〉σ ∗
h 4w cos θY︸ ︷︷ ︸

δEW
h

. (5)

To compute the energy cost for creating interfaces when
the droplet is placed on this type of surface and it is in the
CB wetting state, we need to compute how the distribution
of pillar heights affects the contact area between the gas and
the liquid under the droplet, referred in the Eq. (1) by the
term A. We assume that the interface between the droplet and
the gas does not have a meniscus, but instead the interfaces
are straight lines as shown in the Fig. 2(c) (actually planes
in 3D). This approximation allow us to compute the contact
area A between the liquid and the air trapped under the
droplet (see Appendix A for details of this computation):
A = 2w

√
2σ 2

h + a2 +
√

3σ 4
h + 4a2σ 2

h + a4. We then replace
A in Eq. (1) to obtain the energy of the state CB in presence
of disorder in h:

�ECB
h = γGL

[
NCB(2w

√
2σ 2

h + a2

+
√

3σ 4
h + 4a2σ 2

h + a4 + w2 cos θY ) + SCB
]
. (6)

In contrast to what happens for the W state, the energy of the
CB state cannot be separated in a part that is the same as in
the ordered case plus a dispersion energy term. In this case,
the energy only increases when disorder increases and this is
a consequence of the fact that A is an increasing function of
σh, Eq. (A1).

3. Chemical nonuniformity: Gaussian distribution
of cos θY parameter

As mentioned previously, in our model the dependence
of the wetting properties on the chemistry of the surface is
contained in the parameter θY. Although Young’s equation
cos θY = (γSG − γSL )/γGL relates the interaction between the
liquid, the solid and the gas phases, here we assume that the
liquid and the gas are always the same and then changing θY is
an effective way of changing the chemistry of the surface. We
will consider a chemically nonhomogeneous surface in such a
way that the cos θY is Gaussian distributed with a mean value
〈cos θY〉 and a standard deviation σθ .

Replacing the parameter cos θY by the Gaussian distributed
one, cos θY = 〈cos θY〉 ± σθ , in the Eqs. (1) and (2), the fol-
lowing energy equations are obtained:

�ECB
θ = �ECB

0 ∓ γGLNCBw2〈cos θY〉σ ∗
θ︸ ︷︷ ︸

δECB
θ

, (7)

�EW
θ = �EW

0 ∓ γGLNW(d2 + 4wh)〈cos θY〉σ ∗
θ︸ ︷︷ ︸

δEW
θ

. (8)

The geometrical parameters of the surface are defined in
the Fig. 1(d).

C. Energy minimization for the continuous model

If a droplet with a fixed volume V0 = 4πR3
0/3 is placed on

a substrate with a given geometry, then the thermodynamic
wetting state s of the droplet is the one that minimizes its
energy �Es. In this section we describe the procedure we
employ to compute the minimum energy state, first for the
case of an uniform surface [39] and then we extend it for the
nonuniform ones.

1. Uniform surfaces

To obtain the minimum energy for the s = CB and s =
W we vary the contact angle between the droplet and the
surface θC in the interval (0, π ]. An important observation
is that the volume of the droplet is a function of its radius
Rs and contact angle θC, V0 = V (Rs, θC). Since we consider a
droplet with a fixed volume V0, for each θC it is possible to
compute the radius Rs of the droplet. It is then straightforward
to obtain the base radius Bs, the cap Ss and the number of
pillars under the droplet Ns, which in turn defines the energy
of the state s, �Es

0. In the case of uniform surfaces, we solve
Eq. (1) for s = CB and Eq. (2) for s = W. When we solve
these equations numerically for a specified surface and fixed
V0, we observe that the curve �Es

0 versus θC presents only one
minimum state, called �Es

0,minC. If �EW
0,minC < �ECB

0,minC, then
W is the thermodynamic stable state. Otherwise, CB is the
most stable state. We use the subscript “minC” to refer to the
stable states which are solutions of the continuous model. This
is to make a distinction from the solutions of the numerical
approach introduced in the next section.

2. Nonuniform surfaces

Once the minimum wetting states are defined for the
uniform case, all geometric parameters of the droplet at the
minimum state (contact angle θC, radius Rs, base radius Bs,
and spherical cap Ss) are determined. These data are then used
to obtain the dispersion terms for the case of nonuniform sur-
faces, using Eqs. (3) and (4) for the disorder in pillar distances,
Eqs. (5) and (6) for the disorder in pillar heights, Eqs. (7)
and (8) for chemical disorder. The states with minimum
energy and the dispersion terms found using the numerical
minimization of the equations of the continuous model are
denoted as �E s

a,minC ± δE s
a,minC, �Es

h,minC ± δEs
h,minC, and

�Es
θ,minC ± δEs

θ,minC for the disorder in pillar distances, pillar
heights, and chemical disorder, respectively.

III. NUMERICAL APPROACH

In this section we aim to answer to the following question:
If a droplet of fixed volume is placed on a nonuniform surface,
then which is its thermodynamic wetting state? In the previous
sections we answered to this question in the case of an
ordered substrate and for three particular types of disordered
substrates. To do so, we propose a numerical approach for
the continuous model introduced in the previous section, but
which can be extended to any type of disordered surface. As
previously, the idea is to take into account the energies in
creating the interfaces between different phases (air, liquid
and solid) in two possible wetting states, s = W/CB, and then
minimize the energies to find the global minimum. However,
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FIG. 3. Summary of the numerical approach. (a) Top view of a numerically generated surface with disorder in the pillar heights. w = 5 μm,
a = 5 μm, 〈h〉 = 7 μm, σ ∗

h = 0.3, and θY = 114◦. It is also shown the projection of the droplets correspondent to a minimum energy state of a
CB state (blue) W state (red) at a particular position in the surface. (b) Numerical solution of �Es vs. θC [Eqs. (5) and (6)] for a droplet placed
on a position indicated by the circles in (a). Each equation presents only one minimum, �EW

min and �ECB
min. The cross sections correspondent to

each wetting state are also shown in the figure. (c) Distribution of the �EW
min and �ECB

min, obtained with the procedure of deposing the droplet
on the substrate in several positions. Vertical lines represent the mean value of this distributions, 〈�Es

min〉, and horizontal lines the standard
deviation, δEs

min.

in the case where the substrate has nonregularities of any type,
how can we model the interfacial areas to compute the energy
cost in these two wetting states? To treat this general case, we
introduce a numerical approach, as we now explain.

The difference of energy in creating interfaces in the gen-
eral case where the surface can have any type of disorder can
be formally written as

�EW
gen = γGL

[
SW − AW

SL cos θY

]
, (9)

�ECB
gen = γGL

[
SCB + ACB

GL − ACB
SL cos θY

]
, (10)

where AW
SL and ACB

SL are the interface areas between the liquid
and solid phases when the droplet is in the W and CB
states, respectively, and (SCB + ACB

GL ) are the interfacial areas
between the liquid and gas for a droplet in the CB state. To
compute the interfacial areas, we cut the substrate in small
squares, which we call pixels. Each pixel i has a lateral size
l and an area given by l2. With this procedure, the interfaces
are discrete and can be written as

AW
SL =

nW
SL∑
i

l2 = l2nW
SL, (11)

where nW
SL is the total number of pixels and which are in the

interface between a solid and a liquid phase for a droplet
in the W state. Analogously, ACB

SL = l2nCB
SL and ACB

GL = l2nCB
GL,

where nCB
SL (nCB

GL) is the total number of pixels which are in the
interface between a solid and a liquid (gas and a liquid) phase
for a droplet in the CB state. For the computation of the energy
of the CB wetting state in presence of disorder in the pillar
heights, one should take into account the slope of the plane
formed by the interface between the gas and the liquid below
the droplet. To take into account the chemical disorder, one
can consider that each pixel i has a different value of cos θY,
referred as cos θ i

Y. To obtain physical energies, we assume

l = 1 μm. We varied this value, but as soon as l is smaller
than the typical sizes of the roughness of the substrate, the
results remain unchanged.

A. Energy minimization for the numerical approach

Figure 3(a) shows a top view of the surface used to
illustrate the method. To find the stable wetting state of
the droplet when placed on the substrate, we use a similar
procedure as previously explained to solve the equations in the
previous section. However, since the substrate is nonuniform,
its wetting properties can vary in different positions of the
surface. To capture this change, we place the droplet in several
positions of the substrate and compute numerically its wetting
state with minimum energy. For each position, we adapt the
method used previously as we now explain.

Once a droplet of fixed volume V0 is placed in a particular
position of the substrate, we vary θC in the interval (0, π ].
Since V0 = V (Rs, θC), for each θC we compute the radius Rs

of the droplet, the base radius Bs, the cap Ss, ns
SL, ns

SG, and
ns

GL. We then apply the Eq. (9) to compute the state s = W
and Eq. (10) and compute the energy of the state s = CB.
An example of a numerical solution of these equations as a
function of θC is shown in Fig. 3(b), where we observe that the
curve �Es versus θC presents only one minimum state, which
we call �Es

min. In this figure we also show a cross section of
these minimum wetting states.

We apply the same procedure for different positions of
the surface and this generates one minimal W state and one
minimal CB state for each position of the substrate. After
going through the whole surface, we build the distributions
of these minima, shown in the Fig. 3(c). We then compute
the mean energy and the standard deviation for the state W,
〈�EW

min〉 and δEW
min, and the same for the state CB, 〈�ECB

min〉
and δECB

min. The mean energies are represented by the vertical
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lines in the Fig. 3(c) and the standard deviations are shown by
the horizontal lines in the same figure.

The interpretation of the results shown in Fig. 3(c) is that,
for this particular substrate, all the minimum energies of the
W state are less energetic than the CB minima. Physically, it
means that the stable wetting state of the droplet would be W
in the whole substrate.

To differ from the minimal states of the continuous model
solved with the analytic approach, we denote the states with
minimum energy and the dispersion terms found using the
numerical minimization for discrete model as �E s

a,min ±
δE s

a,min, �Es
h,min ± δEs

h,min, and �Es
θ,min ± δEs

θ,min for the
disorder in pillar distances, pillar heights, and chemical disor-
der, respectively.

IV. RESULTS AND DISCUSSION

In this section we present and discuss our results. The
main effect of the disorder is the fact that, depending on
the position where the droplet is deposited on the surface,
a different wetting state, CB and W, can be the stable one.
This phenomenon is observed for the three types of disorder
studied in this work. However, the effect of the disorder in
the apparent contact angle of the droplet is only relevant for
the case of the disorder in pillar heights. To quantify these
effects in substrates with different roughness and disorder,
we define what we call overlap diagram as we explain in
the next subsection. Since we expect the effect of disorder

to be more pronounced in droplets of small size, as the ones
reached by the droplet in evaporation experiments [14,15,17]
or droplet condensation [34–36], we take this limit and apply
the overlap diagram to study the effect of the disorder in the
three particular types of disorder for which we have equations
of the continuous model and can solve them analytically. We
compare the theoretical results with the ones obtained using
the numerical approach. It allows us to (i) benchmark the
the numerical method introduced in the previous section and
(ii) discuss the effects of the disorder in the wetting properties
in these particular types of nonregularities. We end this section
by testing the effect of the geometrical and chemical disorder
when the droplet volume increases.

A. Stability of both wetting states on the same surface

To exemplify how to build an overlap diagram, we consider
a substrate with disorder in the pillar heights. Figure 4(a)
presents the diagram of wetting state as a function of the
geometric parameters of the surface for fixed values of pillar
width and initial droplet radius (w = 5 μm and R0 = 100 μm,
respectively) and varying 〈h〉 ∈ [1, 16] μm and a ∈ [2, 8] μm.
Symbols are results of the numerical method and we now em-
phasize how they are obtained. As explained in the previous
section, the droplet is deposited in different positions of the
surfaces and, for each position, the energy of the minimum
wetting state s = W and s = CB are computed. Once the
whole surface is swept, the mean energy of the minima states

FIG. 4. (a) Wetting diagram. Wetting behavior for pillared substrate with disorder in pillar heights and geometric parameters varying
from a ∈ [2, 8] μm and 〈h〉 ∈ [1, 16] μm. Dotted line shows the predicted thermodynamic transition between the CB and W states for the
case σ ∗

h = 0 (without disorder) and continuous line for σ ∗
h = 0.2. Symbols represent the results of the discrete method. Above the transition

line 〈�ECB
h,min〉 < 〈�EW

h,min〉, meaning that the average wetting state of the droplet is CB, while below the transition line the average state is W.
(b) Distribution of the minimum energy states, ρ(�Es

h,min ) for three typical points of the diagram. Blue curve is the distribution of the minimum
CB states and red for W states. The point α (γ ), below (above) the transition line, shows presents two distributions well separated. Point β

represents a substrate with a set of geometrical parameters close to the transition line. In this case, the distributions of energy of the two wetting
states have an overlap, indicating that both states could be stable on this substrate. (c) Overlap diagram. The overlap exemplified in the point
β shown in (b) are used to build the Overlap diagram. Squares represents surfaces for which there is overlap in the solutions of the numeric
approach and circles for which there is not. Shaded region is the overlap region identified with the analytical solution of the continuous model.
Colors represent the value of the averaged contact angle of the stable wetting state.
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FIG. 5. Influence of the Gaussian disorder on the wetting properties. Overlap diagrams for all three types of disorder (three raws) and for
three degrees of disorder (three columns). Shaded regions indicate the overlap region. Transition lines between the states CB (above the line)
and W are also shown for the case without disorder (dotted line) and for the disorder case with σ ∗ with a value written on the top of each
column (continuous line). Both lines and the shaded region are results of the analytic solutions of the continuous model. Symbols correspond
to results of the numerical approach. Squares represent points where there is overlap in the distribution of the wetting states and circles where
there is not. Colors indicate the average contact angle of the thermodynamic wetting state and its color bar are shown on the right for each type
of disorder.

are calculated and denoted as 〈�EW
min〉 and 〈�ECB

min〉. To build
the diagram of the wetting states, we use these averages to
employ the following criterion: If 〈�ECB

min〉 < 〈�EW
min〉, then

CB is the stable state represented by the blue circles. Other-
wise, W is the stable wetting state shown in red squares in this
diagram. Lines are results of the continuous model [Eqs. (5)
and (6)] taking the equality of the mean energy for both
wetting states (〈�ECB

h,minC〉 = 〈�EW
h,minC〉). Continuous line is

obtained using σ ∗
h = 0.2 and the dashed line corresponds to

the ordered case σ ∗
h = 0.

Figure 4(b) shows the distribution of the minimum energies
�Es

h,min obtained for three points of the diagram of Fig. 4(a),
indicated by α, β, γ . These distributions correspond to the
case with σ ∗

h = 0.20. Vertical lines indicate the mean energies
〈�Es

h,min〉 for each wetting state. For the α point we observe

that 〈�EW
h,min〉 < 〈�ECB

h,min〉, indicating that the average stable
state of the substrate is W. Moreover, all the minimum ener-
gies of the W state, �EW

h,min, are smaller than the minimum
energies of the CB case, �ECB

h,min. The physical interpretation
of this is that, for any position of the substrate where the
droplet is deposited, the stable state is W. For the γ point the
result is the opposite: All the points have �ECB

h,min < �EW
h,min,

which implies that 〈�ECB
h,min〉 < 〈�EW

h,min〉 and that the most
stable wetting state of the droplet placed in any position of
this surface would be CB. The most interesting case is the
point β, which lies close to the transition line of the wetting
diagram. In this case, there is an overlap of the distributions
of the different wetting states: Some of the minimum energy
CB states (�ECB

h,min) are smaller than some of the minimum
energy W states (�EW

h,min). We have measured the energy
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difference between both states at each point of the surface,
� = |�EW

h,min − �ECB
h,min|, and have identified that � varies

typically between 10−17J to 10−13J in the overlap region.
Comparing it with the thermal energy at room temperature,
this variation is typically of the other of 100 kBT to 104 kBT ,
where kB is the Boltzmann constant. This implies that, de-
pending on the position where the droplet is deposited on the
surface, its stable state can be CB or W which means that both
wetting states can stable. We compute this overlap for each
point of the wetting diagram to build the overlap diagram
shown in Fig. 4(c). Squares represent points of the diagram
where the distributions of the minimum energies of the wet-
ting states have an overlap. Note that the points, which define
what we call overlap region, lie close to the transition line and
its distribution of minima have typically the same behavior
as the point β in Fig. 4(b). Far from the transition lines, the
distributions do not present overlap and are represented by
circles. The colors of the symbols indicate the mean contact
angle of the stable wetting state, called 〈θC〉St. Shaded region
is defined by the analytical solutions of the continuous model,
which has a good agreement with the numerical solutions.
In Appendix B we explain mathematically how the overlap
region is defined.

B. Effect of the disorder for fixed droplet volume

In this section we use the overlap diagrams to explore the
effects of different types of disorder on the wetting properties
of the substrates. We consider a droplet volume of small
size, typically the volume reached when the droplet evapo-
rates [14,15,17] or in experiments of droplet condensation
[34,35]. Figure 5 shows the overlap diagrams as function of
the geometric parameters of the surface and fixed values of
pillar width and initial droplet radius (w = 5 μm and R0 =
100 μm, respectively). They are built for three different values
of normalized standard deviation, which quantifies the amount
of disorder. Based on this figure, we observe:

Transition lines and the overlap regions: Transition lines
are not modified by the disorder in pillar distances and in the
case of chemical disorder. This could be anticipated by the
equations of energy in these two particular types of disorder
because they can be written as the energy of the ordered case
and a dispersion term. The disorder in pillar heights, however,
have a small effect in the transition line: It shifts the line,
reducing the CB region. Reminding that the transition line is
defined as �EW

minC = �ECB
minC, we observe that disorder does

not influence or have a small influence in the averaged quan-
tities, but the relevant effect of the disorder may be observed
in the dispersion around the average, which is responsible, for
example, for the overlap regions. In these regions, depending
on the place where the droplet is deposited on the substrate,
both CB and W can be the stable states. There regions increase
when the disorder increases for the tree types of disorder. In
Refs. [23,24] they study experimentally the dynamics of the
droplet on a surface with randomly distributed pillars (some of
them are bent) and show that the spatial disorder can retard the
transition from the CB to W state and the wetting dynamics
is much more heterogeneous if compared to the ordered case
[37]. Given that the wetting dynamics is heterogeneous, it
would be interesting to investigate if the final state of a

FIG. 6. Overlap region for different droplet volume. Overlap
regions for four droplet volumes (indicated by the initial radii R0 in
the legend) for the case where there is a disorder in pillar distance
(a), disorder in pillar height (b), and chemical disorder (c).

droplet would depend on the place where it is placed on the
surface.

Average apparent contact angle, 〈θC〉St: It changes very
little with the disorder in the pillar distance and with the
chemical disorder. We looked at the dispersion of θC around
〈θC〉St and we find that, for points close to the transition lines
it has some small deviation, which is at most of 5◦ for the
highest value of disorder that we consider here. For the case
where the disorder is in the pillar heights, it appears and an
interesting effect on the contact angle: When σ ∗

h increases,
the average contact angle 〈θC〉St also increases. The influence
of the geometric disorder on the apparent contact angle have
been studied in Refs. [28,30] and it is found that its effect de-
pends on the type of the geometry of the disorder. In Ref. [28]
it is considered a randomly rough surfaces and it is shown
that the non anisotropy in this type of disorder is not relevant
for the contact angle. In Ref. [30] they study nonregularities
of the substrate with shapes like square protrusions, disks or
convex 2D particles and it is found that some of these types of
disorder lower the contact angle but for some cases the contact
angle is kept it unchanged.

Comparison between the results of the analytical and
numerical approaches: There is a good agreement between
the results of the numerical (squares) and analytical solutions
(shaded region) especially above the transition line. Below
the transition line, we observe that the analytical approach
overestimate the overlap region. Moreover, there is a good
agreement for the transition line in both methods. The agree-
ment is important because the analytical approach cannot be
applied for any type of disorder, while the numerical method
is completely general.

C. Effect of disorder as a function of the droplet volume

In this section we test the effect of the disorder when the
droplet volume increases. We solve analytically the equations
of the continuous model for droplet with varying volumes and
measure the overlap region for the case with σ ∗ = 0.3.

Figure 6(a) shows the overlap region for the case of the
disorder in pillar distance. It evidences the small size of
overlap region for any value of droplet volume. Due to the
fact that for this type of disorder the energies of the droplet is
affected only through the pillars that are on the border of the
basis of the droplet, it is expected a very small influence in
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the wetting properties of the substrate and it tends to be less
important when the droplets gets bigger. However, the disor-
der in chemical properties or in pillar heights have influence
on the whole basis of the droplet. Then, the effect of these
types of disorder in terms of coexistence region is observed for
bigger droplet sizes as shown in Figs. 6(b) and 6(c). We note,
however, that the areas corresponded to the overlap region are
kept roughly constant when the droplet increases. We then
expect that this effect will be less pronounced in relative terms
when the volume gets bigger.

V. CONCLUSION

In this work we investigate the thermodynamic wetting
properties of disordered substrates. We first extended a con-
tinuous model and a minimization method used for ordered
surfaces [38–40] to analyze three particular cases of disor-
dered surfaces: a pillared substrate with Gaussian distribution
between the distance of the pillars, height of pillars, and of θY

(instead of being constant as in the regular case). This choice
of disorder allows us to tune the “amount” of disorder by
increasing the variance of the distribution. We then introduced
a numerical approach for the same problem. The physical idea
behind both methods is the same: to compute the interfacial
energies of a droplet placed on a surface in two possible
wetting states and then minimize these energies to find the
most stable state. The advantage of the numerical method is
that it can be used to study the wetting properties of any type
of surface, including more realistic type of nonregularities
ranging from fractal substrates [44], or experimental substrate
with textures described by KPZ equation [45] or disordered
plant surfaces [19].

We find that all types of nonregularities considered in this
work have little or no influence on the average quantities as,
for example, average energy of the wetting states. However,
disorder does create dispersion which leads to a possibility
that both wetting states being stable in the same surface:
Due to the distribution of geometrical parameters or θY, the
energies of the wetting states also present a variation and
it creates a possibility of finding more than one minimum
state in the same substrate. One of the interesting aspects
of this finding is the association of it with the metastability
encountered in many experimental studies [1,16]. It has been
reported that, depending, for example, on the way that the
droplet is deposited on the same surface, its final state can
be W or CB. This is usually interpreted as if one of these two
states where the stable one and the other were metastable be-
cause the droplet would get trapped in a local minimum. Our
work offers an alternative interpretation of this, suggesting the
possibility of having both states as stable due to the impurities
of the substrate.

An important point would be to understand the limit of the
effects introduced by the disorder of the substrate in terms
of the droplet volume. This depends on the type of disorder
and on the type of phenomena accessed by the experiment. If
one is interested in understanding wetting using evaporation
as in some works [14,17,46], then after a certain time the
droplet size reaches small volume and the nonregularities
may play a role. Another example is the recent studies about
the droplet condensation [34–36]. Very recent experimental

advances allows to visualize the initial formation and growing
processes of condensed droplets [34]. At the initial stages, the
individual droplets have typically a base radius of size 1 μm,
which can be smaller than the typical textures of the surfaces.
At these scales, it is expected impurities of the substrates to
play a significant role and as a consequence to influence the
dynamics of aggregation of these small droplets to determine
its wetting state.

The type of disorder can also play a relevant role if
one fabricates a substrate with a distribution of impurities
with particular properties. For concreteness, let us suppose a
substrate where the distribution of heights follows a power-
law distribution like ρ(h) ∼ hκ , with κ < 2. For this type of
distribution, the average of h is not defined. Using the same
idea as in the model developed in this work for a Gaussian
distribution of heights, this would imply that the dispersion of
energy of the W state would not have a finite value, leading
to an indeterminacy in the energy of this wetting state and
perhaps implying the coexistence of more than one wetting
state even for droplets of relatively big size.
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APPENDIX A: COMPUTATION OF THE AREA
UNDER THE DROPLET FOR CB STATES
WITH DISORDER IN PILLAR HEIGHTS

In this Appendix we show how we compute the interface
between the gas and the liquid states for the case where the
droplet is placed on a surface with disorder in pillar heights
and in the CB state. An example of this situation is shown in
the Fig. 2(c).

In our model we approximate this interface as a plane and
since pillar have different heights, the plane is inclined in
respect to the substrate. In Fig. 7 it is shown a schema of
one “unitary cell” of this plane. It is shown four dark gray
pillars with width “,” and distance “a.” The total area A of
the unitary cell is the sum of the areas A = A1 + A2 + A3. A1

and A3 are formed by the plans connecting pillars 4-1 and 4-3,

FIG. 7. Upper view of an “unitary cell” of the plane which is the
interface between liquid and gas for the CB state. In the case where
pillars have different sizes, this plane is inclined in respect to the
substrate and we divided it into triangles to compute the area.
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respectively, and are calculated using the difference between
pillar heights as �hi j = h j − hi, where j, i are neighbor pil-
lars. Area A2 is delimited by four points with different heights
and can be computed as the average of the four triangles
as indicated in the figure, A = (α1 + α2 + α3 + α4)/2. Since
pillar heights are Gaussian distributed, the difference between
the heights of neighboring pillars is independent of the pillar
index and is defined as �h. Then the average value of the area
A becomes A = 2〈A1〉 + 〈A2〉 = 2〈A1〉 + 2α because 〈A1〉 =
〈A3〉 and α = 〈αk〉 for any k ∈ {1, 2, 3, 4}.

Considering the geometries of the surface, it is possible to
define the areas 〈A1〉 and α depending only on the �h:

A = 2w
√

(�h)2 + a2 +
√

3

4
(�h)4 + 2a2(�h)2 + a4. (A1)

Note that for �h = 0, A = a2 + 2aw, recovering the case
without disorder in pillar height.

Now, considering the heights as normally distributed ran-
dom variables, the difference of this values are given by a
theorem [47], which predicts that the distribution �h have
the mean 〈�h〉 = 〈hi〉 − 〈h j〉 = 0 and the variance σ 2

�h =
σ 2

hi
+ σ 2

h j
= 2σ 2

h , where i and j now represents the position
of two neighboring pillars. Taking the difference in the pillar
heights in Eq. (A1) given by �h = 〈�h〉 ± σ�h = 0 ± √

2σh

we obtain the equation for A for the continuous model for
disorder in the pillar heights shown in the main text above
Eq. (6).

APPENDIX B: MATHEMATICAL DEFINITION
OF THE OVERLAP REGION

To define the overlap in the case of the analytical solutions
of the continuous model, shown by the shaded region in the
Fig. 4(c) we first solve the equations of the energy of the
droplet in the two wetting state (the specific equation depends
on the type of substrate we are considering) �ECB

t,minC and
�EW

t,minC, where t represents the type of disorder (t = a, h
or θ ) and also the dispersion terms δECB

t,minC and δEW
t,minC.

To define the inferior border of the overlap region, we use
the following criteria:

(1) �EW
t,minC < �EW

t,minC,
(2) �EW

t,minC + δEW
t,minC = �ECB

t,minC − δECB
t,minC.

For the superior border of the overlap region, the criteria
are

(1) �ECB
t,minC < �EW

t,minC,
(2) �ECB

t,minC + δECB
t,minC = �EW

t,minC − δEW
t,minC.

For the case where t = h, we cannot take any analytical
dispersion in the CB state. Then to calculate the inferior and
superior border of the overlap region, we make the same
calculation above but we considerer δECB

h,minC = 0.
For the numerical approach the situation is very similar,

but instead of computing the dispersion terms δES
t,minC using

an equation as in the case of the continuous model, we look di-
rectly to the minimum energy distribution of each wettability
state and analyze the overlapping of these distributions.
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