Neutrino oscillations and instabilities in degenerate relativistic astrophysical plasmas

Fernando Haas*

Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brasil

*fernando.haas@ufrgs.br

(Received 7 May 2019; revised manuscript received 13 June 2019; published 27 June 2019)

We set up a proposal to extend significantly recent works on neutrino-plasma interaction, allowing the possibility of deep degenerate and relativistic electrons, which are often present in compact stars such as high-density white dwarfs. The methodology involves the covariant hydrodynamic formulation of ultradense plasmas. We propose the generalization of previous studies, on the interaction between ion-acoustic waves and resonant neutrino flavor oscillations in a mixed neutrino beam, admitting degenerate and relativistic electron populations. Destabilization of the ion acoustic wave has higher growth rates, thanks to the very high densities present in plasmas under these extreme conditions. We take into account applications to white dwarf stars in the process of collapsing, producing type II supernovas.

DOI: 10.1103/PhysRevE.99.063209

I. INTRODUCTION

Neutrinos play a decisive role in a variety of fields, such as cosmology, particle physics, and astrophysics. The 2015 Nobel Prize [1], in particular, was awarded to T. Kajita and A. B. McDonald for the experimental confirmation of neutrino flavor oscillations, showing the existence of a neutrino mass and pointing out the incompleteness of the standard model.

In the process of gravitational collapse, the extreme densities obtained in the core enhance the inverse beta decay rates, resulting in strong neutrino winds propagating out from the protoneutron star. Neutrino beams are believed to be responsible for plasma heating in the stalled shock in type II supernova explosions [2–4]. In this context, for the supernova SN1987A, a burst of $10^{58}$ neutrinos of all flavors radiating in a few seconds was observed [5]. Sources of anisotropic neutrino beams have also been investigated [6]. Moreover, neutrinos play a central role in the lepton era of the early universe [7].

Recently, a model for the neutrino-plasma interaction taking into account neutrino oscillations was proposed [8], assuming for simplicity nondegenerate and nonrelativistic electrons. However, in compact stars these restrictions are violated easily, with strongly degenerate and relativistic electrons due to Fermi velocities near the speed of light. The purpose of the present work [9] is to improve significantly the previous treatment, in terms of the hydrodynamic model arising from the perfect relativistic fluid equations [10] modified by the neutrino force. Our aim is to consider the destabilization of ion-acoustic waves driven by neutrino beams, evaluating the associate instability growth rates in extreme scenarios. Previously, neutrino oscillations in nonrelativistic plasmas have also been analyzed in [11] and [12], taking into account the collisional damping of ion-acoustic waves. In addition, neutrino-magnetohydrodynamic modes [13,14] and neutrino-modified wave propagation in strongly magnetized plasma [15] have been considered, without the inclusion of flavor oscillations, degeneracy, or relativistic effects.

The article is organized as follows. In Sec. II, the basic fluid model for degenerate relativistic electrons and cold nonrelativistic ions is written, coupled to a two-flavor neutrino beam taking into account neutrino oscillations. In Sec. III, the linear dispersion relation for ion-acoustic waves is derived. Assuming a double-resonance condition between the ion-acoustic wave, the neutrino beam, and the neutrino oscillations, the appropriate instability growth rate is obtained. In Sec. IV, the growth rate is evaluated for parameters compatible with type II supernovas. The time scale of the instability and the unstable wavelengths are calculated, allowing us to estimate the impact of neutrino oscillations. Section V is reserved for the conclusions.

II. BASIC MODEL

For simplicity, we consider a two-flavor neutrino model. The model is given by a hydrodynamical model for electrons, ions, electron-neutrinos, and muon-neutrinos. Denoting $n_{e,i}$ and $\mathbf{u}_{e,i}$ as, respectively, the electron (e) and ion (i) proper fluid densities and velocity fields, one has the relativistic electron continuity and force equations,

$$\frac{\partial (\gamma n_e)}{\partial t} + \nabla \cdot (\gamma n_e \mathbf{u}_e) = 0, \quad \gamma = (1 - |\mathbf{u}_e|^2/c^2)^{-1/2}, \quad (1)$$

$$m_e H (\frac{\partial}{\partial t} + \mathbf{u}_e \cdot \nabla) (\gamma \mathbf{u}_e) = -\nabla \cdot \mathbf{P} + e\nabla \phi + \sqrt{2}G_F (\mathbf{E}_e + \mathbf{u}_e \times \mathbf{B}_e). \quad (2)$$

together with the corresponding nonrelativistic equations for cold ions,

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{u}_i) = 0, \quad m_i \left( \frac{\partial}{\partial t} + \mathbf{u}_i \cdot \nabla \right) \mathbf{u}_i = -Ze\nabla \phi. \quad (3)$$
In Eqs. (1)–(3), $m_{e,i}$ are the electron (charge $-e$) and ion (charge $Ze$) masses, $c$ is the speed of light, $G_F$ is the Fermi coupling constant, and $\phi$ is the electrostatic potential. In addition, $\mathbf{E}_e$ and $\mathbf{B}_e$ are the effective neutrino electric and magnetic fields defined by

\[ \mathbf{E}_e = -\nabla N_e - \frac{1}{c^2} \frac{\partial}{\partial t} (N_e \mathbf{v}_e), \quad \mathbf{B}_e = \frac{1}{c^2} \nabla \times (N_e \mathbf{v}_e), \]  

(4)
in terms of the electron-neutrino fluid density and velocity field $N_e$ and $\mathbf{v}_e$. We also have Poisson’s equation,

\[ \nabla^2 \phi = \frac{e}{\epsilon_0} (\gamma n_e - Z n_i), \]  

(5)
where $\epsilon_0$ is the vacuum permittivity constant. The Fermi weak force couples electrons (leptons) to electron-neutrinos. Finally, to determine the pressure $P = P(n_e)$ for a fully degenerate electron gas we use Chandrasekhar’s [16] barotropic equation of state,

\[ \frac{P}{n_0 m_e c^2} = \frac{1}{8 \epsilon_0} \left[ (2 \zeta^2 - 3) \sqrt{1 + \zeta^2} + 3 \sinh^{-1} \zeta \right], \]  

(6)
where $n_0$ is the equilibrium electron number density, $\hbar$ is the reduced Planck constant, and $p_F = \hbar (3 \pi^2 n_0)^{1/3}$ is the electron Fermi momentum, yielding the specific enthalpy $H = \int dP/(m_e c^2 n_e) = \sqrt{1 + \zeta^2}$, responsible for the relativistic electron mass increase due to a high Fermi velocity. It is important to note that the Chandrasekhar equation of state gives a linear dispersion for ion-acoustic waves in the absence of neutrinos, which agrees with the result from the relativistic Vlasov equation, in the long-wavelength limit [17]. In addition, magnetized plasmas can be treated by simply including the magnetic force on electrons and ions [18]. In the case of electromagnetic waves, also the full set of Maxwell equations would be necessary [13,14].

To close the system, one needs the equations for the two-flavor oscillations. One has [8,12]

\[ \frac{\partial N_e}{\partial t} + \nabla \cdot (N_e \mathbf{v}_e) = \frac{1}{2} N \Omega_0 P_2, \]  

\[ \frac{\partial N_\mu}{\partial t} + \nabla \cdot (N_\mu \mathbf{v}_\mu) = -\frac{1}{2} N \Omega_0 P_2, \]  

(8)
where $N_{e,i}$ and $\mathbf{v}_{e,i}$ are the muon-neutrino fluid density and velocity field, $N = N_e + N_\mu$ is the total neutrino fluid density, and $P_2$ represents the quantum coherence in the flavor polarization vector $\mathbf{P} = (P_1, P_2, P_3)$. In addition, $\Omega_0 = \omega_0 \sin 2 \theta_0$, where $\omega_0 = \Delta m^2 c^2 / (2 \hbar \xi_0)$ with a squared neutrino mass difference $\Delta m^2$. Finally, $\xi_0$ is the neutrino spinor’s energy in the fundamental state and $\theta_0$ is the neutrino oscillation mixing angle. Note the conservation law

\[ \frac{d}{dt} \int (N_e + N_\mu) d^3 r = 0, \]  

(9)
following, for instance, from decaying or periodic boundary conditions.

Representing the (ultra)relativistic electron- and muon-neutrino momenta by $\mathbf{p}_e = \xi_e \mathbf{v}_e / c^2$ and $\mathbf{p}_\mu = \xi_\mu \mathbf{v}_\mu / c^2$, where $\xi_e$ and $\xi_\mu$ are the corresponding neutrino beam energies, the neutrino force equations read

\[ \frac{\partial \mathbf{p}_e}{\partial t} + \mathbf{v}_e \cdot \nabla \mathbf{p}_e = \sqrt{2} G_F \left( -\nabla (\gamma n_e) - \frac{1}{c^2} \frac{\partial}{\partial t} (\gamma n_e \mathbf{u}_e) \right) + \frac{\mathbf{v}_e}{c^2} \times \left( \nabla \times (\gamma n_e \mathbf{u}_e) \right), \]  

(10)

\[ \frac{\partial \mathbf{p}_\mu}{\partial t} + \mathbf{v}_\mu \cdot \nabla \mathbf{p}_\mu = 0. \]  

(11)
The neutrino-plasma interaction model was derived from an action principle [18,19], in the absence of flavor oscillations and for nonrelativistic electrons; see also [20] for the treatment of neutrino-modified Langmuir waves.

To conclude, the flavor polarization vector $\mathbf{P} = (P_1, P_2, P_3)$ evolves in a material medium according to

\[ \frac{\partial P_1}{\partial t} = -\Omega(n_e) P_2, \quad \frac{\partial P_2}{\partial t} = \Omega(n_e) P_1 - \Omega_0 P_3, \]  

\[ \frac{\partial P_3}{\partial t} = \Omega_0 P_2, \]  

(12)
where $\Omega(n_e) = \omega_0 [\cos 2 \theta_0 - \sqrt{2} G_F n_e / (\hbar \omega_0)]$. Equation (12) was derived [21,22] for neutrinos traveling in a fixed, static background, so that $\Omega(n_e)$ involves the proper electron density $n_e$.

Overall, there are 20 equations defined by Eqs. (1)–(3), (5), (8), and (10)–(12), for 20 variables, namely, the quantities $n_{e,i}$, $\mathbf{u}_{e,i}$, $\phi$, $N_{e,\mu}$, $\mathbf{v}_{e,\mu}$, and $P_{1,2,3}$. We observe that the electron- and muon-neutrino energies $\xi_{e,\mu}$ are functions of the corresponding momenta by means of the usual relativistic energy-momentum relation $\xi_i = (p_i c^2 + m_i^2 c^4)^{1/2}$, $i = e, \mu$. A neutrino mass $m_i$ is assumed just for the sake of the calculation (at the end it disappears). Specifically, the procedure is detailed in Appendix A of Ref. [8].

### III. LINEAR WAVES

The system (1)–(3), (5), (8), and (10)–(12) admits the equilibrium

\[ n_e = n_0, \quad n_i = n_0 / Z, \quad \mathbf{u}_e = \mathbf{u}_i = 0, \quad \phi = 0, \]  

\[ N_e = N_{e0}, \quad N_\mu = N_{\mu0}, \quad \mathbf{v}_e = \mathbf{v}_\mu = \mathbf{v}_0, \]  

(13)
where

\[ P_1 = \frac{\Omega_0}{\Omega_e}, \quad P_2 = 0, \quad P_3 = \frac{\Omega(n_e)}{\Omega_0} = \frac{N_e - N_{e0}}{N_0}, \]  

\[ \Omega = \sqrt{\Omega_e^2 (n_{e0} + n_e)}, \]  

where $\Omega_e = \omega_0 / \Omega_0$ is the neutrino-flavor oscillation frequency. Linearizing, taking plane-wave perturbations $\exp[i (\mathbf{k} \cdot \mathbf{r} - \omega t)]$, and following the same procedure detailed in [8], the result is

\[ \omega^2 = c_s^2 k^2 + \frac{\Delta_e c^2 k^2 \Lambda(\theta) (c_s^2 k^2 - \omega^2)}{(\omega - \mathbf{k} \cdot \mathbf{v}_0)^2} + \frac{\Delta_\Omega_0 \omega E_0 (c_s^2 k^2 - \omega \mathbf{k} \cdot \mathbf{v}_0)}{2 \hbar \Omega_e (\omega - \mathbf{k} \cdot \mathbf{v}_0) (\omega^2 - \Omega_e^2)}, \]  

(14)
where
\[ \Delta = \frac{2 G_F^2 N_\nu n_0}{m_1 c_s^2 \mathcal{E}_0}, \quad \Lambda = \frac{2 G_F^2 N_\nu n_0}{m_1 c_s^2 \mathcal{E}_0}, \]
\[ \Lambda(\theta) = \left( 1 - \frac{\theta^2}{c_s^2} \right) \cos^2 \theta + \sin^2 \theta, \tag{15} \]
with \( k \cdot v_0 = k v_0 \cos \theta \) and where the ion-acoustic speed \( c_s \) in fully degenerate relativistic plasmas [17] is given by
\[ c_s^2 = \frac{Z\rho_0^2}{3 m_c m_i \sqrt{1 + \varepsilon_0}}, \tag{16} \]
assuming completely ionized plasma with ionic atomic number \( Z \). In comparison with [8], the only difference is the improved ion-acoustic speed, now adapted to fully degenerate and relativistic plasma and, additionally, allowing for \( Z \neq 1 \). It was assumed that \( \omega \ll \omega_{\nu 0} = \sqrt{Z n_0 e^2 / (m_i \varepsilon_0)} \) and \( \mathcal{E}_0 = \mathcal{E}_{\nu 0} \approx \mathcal{E}_{\nu 0} \). By inspection, it is not surprising that the dispersion relation, (14), is formally identical to the result in [8] (with a new expression for the ion-acoustic speed), since in the linearization procedure one has \( \gamma \approx 1 \) due to the absence of relativistic streaming electrons.

Besides the traditional ion-acoustic mode, Eq. (14) shows two contributions, one proportional to \( \Delta \), which is due to the energy seed by the streaming neutrinos, while the term proportional to \( \Lambda \) is due to coupling with the neutrino oscillations. In the absence of a squared neutrino mass difference (\( \Delta m^2 = 0 \)) one has \( \mathcal{E}_0 = 0 \) so that the last term in Eq. (14) disappears. If we formally set \( \Delta = 0 \), one regains the result in [23], with a modified ion-acoustic speed, taking into account that \( c_s \ll c \) except for huge densities typical of neutron stars, outside the scope of the model.

IV. INSTABILITY OF THE ION-ACOUSTIC WAVE

In view of the small value \( G_F = 4.62 \times 10^{-62} \) J · m³ of the Fermi constant, the neutrino contribution in Eq. (14) will typically be a small perturbation. The neutrino effect on ion-acoustic waves without neutrino oscillations has been essentially examined in [23]. Therefore, it is more convenient to focus on the case where neutrino oscillations can have a significant influence. Hence we assume the double-resonance condition
\[ \omega \approx c_s k = \Omega_\nu = k \cdot v_0, \tag{17} \]
enhancing the last term on the right-hand side of the dispersion relation, (14). Physically, Eq. (17) shows the (almost) resonance of the ion-acoustic wave with the streaming neutrinos and with the flavor oscillations, which carry an energy which can be exchanged with the wave.

Assuming Eq. (17) we set
\[ \omega = \Omega_\nu + \delta \omega, \quad \delta \omega \ll \Omega_\nu \tag{18} \]
in Eq. (14). Taking into account ultrarelativistic neutrinos (\( v_0 \approx c \)), one gets \( \cos \theta = c_s / c \ll 1 \) (a filamentationlike instability), \( \omega \ll c k \), so that \( \Lambda(\theta) \approx 1 \) and
\[ (\delta \omega)^3 = \frac{\Delta \Omega_\nu^2 \mathcal{E}_0}{2 \left( \frac{c}{c_s} \right)^4 \Omega_\nu^2} + \frac{\Delta \Omega_\nu^2 \mathcal{E}_0}{8h} \left( \frac{c}{c_s} \right)^2, \tag{19} \]
where \( k = \Omega_\nu / c_s \) has been used. The unstable mode corresponds to a growth rate \( \Gamma = \text{Im}(\delta \omega) > 0 \) given by
\[ \Gamma = \left( \Gamma_\nu^2 + \Gamma_{\nu osc}^2 \right)^{1/3}, \tag{20} \]
where
\[ \Gamma_\nu = \frac{\sqrt{3}}{2} \left( \frac{\Delta \Omega_\nu^2}{c_s} \left( \frac{c}{c_s} \right)^4 \right)^{1/3} |k \cdot v_0|, \]
\[ \Gamma_{\nu osc} = \frac{\sqrt{3}}{2} \left( \frac{\Delta \Omega_\nu^2 \mathcal{E}_0}{8h} \left( \frac{c}{c_s} \right)^2 \right)^{1/3}. \tag{21} \]
The quantity \( \Gamma_\nu \) is associated with the coupling with the streaming neutrinos (with \( \Omega_\nu = c_s k \)). Flavor oscillations are responsible for \( \Gamma_{\nu osc} \), which can have some impact only in the case where Eq. (17) is satisfied.

The relative influence of neutrino oscillations is given by
\[ \left( \frac{\Gamma_{\nu osc}}{\Gamma_\nu} \right)^3 = \frac{1}{64} \frac{(\Delta \Omega_\nu^2 e^4)^2}{(G_F n_0)^3} \frac{\mathcal{E}_0 N_0}{c \mathcal{E}_\nu N_\nu}. \tag{22} \]
For an initially muonic neutrino beam (\( N_\nu = 0 \) and \( N_{\mu} = N_0 \)), the flavor oscillations dominate, since in this case at the beginning there are no electron-neutrinos to interact with the plasma. Lower electron densities and lower streaming neutrino energies enhance the flavor oscillation correction. Figure 1 shows the growth rates for \( n_0 = 5 \times 10^{29} \) cm⁻³, \( N_0 = 10^{36} \) cm⁻³, \( \mathcal{E}_0 = 1 \text{ MeV} \), and varying initial electron-neutrino populations, to be compared with the time scale of supernova explosions, around 1 s [4]. It is verified that in denser stars the neutrino oscillations play a less significant role.

The result, (22), was derived using the inverted neutrino mass hierarchy assumption
\[ \Omega(n_0) \approx -\Omega_\nu \approx -\sqrt{2} G_F n_0 / h, \tag{23} \]
which is always satisfied for the dense plasma under consideration. Indeed, taking \( \Delta m^2 e^4 = 3 \times 10^{-3} \) (eV)² and sin(2\( \theta_0 \)) = 10⁻¹ (suitable parameters solving the solar
As is apparent from Table I, the electron ideality condition $\xi_0 = p_F/(m_e c)$ becomes large for very dense systems. The ion-acoustic speed is always seen to be much lower than the light speed. It can also be verified that $\Omega_e \gg \omega_p$ as required. In addition, one can define an electron coupling parameter $g = E_p/E_F$, where $E_p = E^2/(4\pi\epsilon_0 r_c)$ is a measure of the electron interaction energy in terms of the Wigner-Seitz ratio $r_c = (3/4\pi n_0)^{1/3}$. As is apparent from Table I, the electron ideality condition $g \ll 1$ is satisfied to a good approximation. Finally, besides the wave frequency $\omega \approx \Omega_e$, we also consider the wavelength $\lambda = 2\pi c_s/\Omega_e$, to be compared with the typical [28] iron core size ($\sim$30 km). Using approximation (23), we derive

$$\lambda = \frac{2\pi \hbar c_s}{\sqrt{2G_F n_0}},$$

which always decreases with the density.

Another issue is the possible influence of Landau damping. Evaluating the imaginary part of the longitudinal dielectric function for ion-acoustic waves in ultradegenerate relativistic plasma, it can be proven [29] that Landau damping is not present with the extreme degenerate case (Fig. 2). However, the nondegeneracy condition requires high temperatures, shown in Fig. 4.

Table I lists the diverse physical quantities for type II core-collapse supernova electron number densities [5,6,24,27]. For the sake of illustration, we assume an iron core so that henceforth $Z = 26$, $m_i = 56$ a.m.u. For convenience, the Fermi temperature $T_F$ obtained from $\kappa_B T_F = (p_F^2 c^2 + m_e^2 c^4)^{1/2} - m_e c^2$ is exhibited (noting the ultradegeneracy condition $T \ll T_F$). We observe that the relativistic parameter $\xi_0 = p_F/(m_e c)$ becomes large for very dense systems. The ion-acoustic speed is always seen to be much lower than the light speed. It can also be verified that $\Omega_e \gg \omega_p$ as required. In addition, one can define an electron coupling parameter $g = E_p/E_F$, where $E_p = E^2/(4\pi\epsilon_0 r_c)$ is a measure of the electron interaction energy in terms of the Wigner-Seitz ratio $r_c = (3/4\pi n_0)^{1/3}$. As is apparent from Table I, the electron ideality condition $g \ll 1$ is satisfied to a good approximation. Finally, besides the wave frequency $\omega \approx \Omega_e$, we also consider the wavelength $\lambda = 2\pi c_s/\Omega_e$, to be compared with the typical [28] iron core size ($\sim$30 km). Using approximation (23), we derive

$$\lambda = \frac{2\pi \hbar c_s}{\sqrt{2G_F n_0}},$$

which always decreases with the density.

Another issue is the possible influence of Landau damping. Evaluating the imaginary part of the longitudinal dielectric function for ion-acoustic waves in ultradegenerate relativistic plasma, it can be proven [29] that Landau damping is not present with the extreme degenerate case (Fig. 2). However, the nondegeneracy condition requires high temperatures, shown in Fig. 4.

Table I lists the diverse physical quantities for type II core-collapse supernova electron number densities [5,6,24,27]. For the sake of illustration, we assume an iron core so that henceforth $Z = 26$, $m_i = 56$ a.m.u. For convenience, the Fermi temperature $T_F$ obtained from $\kappa_B T_F = (p_F^2 c^2 + m_e^2 c^4)^{1/2} - m_e c^2$ is exhibited (noting the ultradegeneracy condition $T \ll T_F$). We observe that the relativistic parameter $\xi_0 = p_F/(m_e c)$ becomes large for very dense systems. The ion-acoustic speed is always seen to be much lower than the light speed. It can also be verified that $\Omega_e \gg \omega_p$ as required. In addition, one can define an electron coupling parameter $g = E_p/E_F$, where $E_p = E^2/(4\pi\epsilon_0 r_c)$ is a measure of the electron interaction energy in terms of the Wigner-Seitz ratio $r_c = (3/4\pi n_0)^{1/3}$. As is apparent from Table I, the electron ideality condition $g \ll 1$ is satisfied to a good approximation. Finally, besides the wave frequency $\omega \approx \Omega_e$, we also consider the wavelength $\lambda = 2\pi c_s/\Omega_e$, to be compared with the typical [28] iron core size ($\sim$30 km). Using approximation (23), we derive

$$\lambda = \frac{2\pi \hbar c_s}{\sqrt{2G_F n_0}},$$

which always decreases with the density.

Another issue is the possible influence of Landau damping. Evaluating the imaginary part of the longitudinal dielectric function for ion-acoustic waves in ultradegenerate relativistic plasma, it can be proven [29] that Landau damping is not present with the extreme degenerate case (Fig. 2). However, the nondegeneracy condition requires high temperatures, shown in Fig. 4.
In comparison with the free energy source from the streaming
interactions with neutrino oscillations are found, destabilizing ion-
teronstic plasmas. Unstable wavelengths and resonance condi-
tions are met. Likewise, exchange-correlation potentials \[30,31\] have
not yet been considered since, to our knowledge, currently
there are no known relativistic quantum hydrodynamical
equations with exchange correlation taken into account. Fu-
ture developments could involve finite electron temperatures,
finite neutrino beam temperatures, and collisional effects. Fi-
nally, we expect that the instabilities should enhance the cou-
pling of the neutrino beam with the plasma, especially taking
into account the high-amplitude waves developing from the
unstable linear waves. It would be very interesting to compare
the resulting coupling with those currently considered in core-
collapse supernova models.

ACKNOWLEDGMENTS

The author acknowledges financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tec-
nológico, Brazil).

(2016).