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ABSTRACT

Graph Grammars are based on the application of rules that are able to modify graphs,

as such, they provide a suitable formalism to model complex systems in an intuitive and

precise manner, providing both a graphical language and a solid formal background for

systems analysis. Therefore, they have been used in a wide range of applications within

Computer Science, specially in the field of Model-Driven Development. Particularly, the

study of the Semantics of Graph Grammars, i.e. which graphs belong to the language of a

grammar and which derivations are possible within the context of a grammar, provides a

powerful framework for reasoning about the execution behaviour of systems modelled as

Graph Grammars. There are several different ways of specifying the Semantics of Graph

Grammars. One notable possibility is the use of Occurrence Graph Grammars, which

encodes the Semantics in a structure that is also a Graph Grammar itself. Occurrence

Graph Grammars differ from other semantic models such as Unfolding and Canonical

Derivations mainly by providing a more compact, easier to analyse structure. They were

introduced in the nineties and used ever since, however the original definitions lack the

inclusion of Negative Application Conditions, additional structures imposed over the

rules of a grammar to better tune their possible applications according to the execution

context. Given the important role Negative Application Conditions play in the modelling

and analysis of complex systems as Graph Grammars nowadays, this thesis presents an

extension of the framework of Occurrence Graph Grammars to include them. It also

presents its implementation in Verigraph, a system specification and verification tool

based on graph rewriting.

Keywords: Graph Grammars. Occurrence Graph Grammars. Negative Aplication Con-

ditions. Semantics.





Gramáticas de Grafos de Ocorrência com Condições Negativas de Aplicação

RESUMO

Gramáticas deGrafos baseiam-se na aplicação de regras quemodificam grafos, fornecendo

assim um formalismo adequado para a modelagem de sistemas complexos de forma

intuitiva e precisa, além de fornecer uma notação gráfica descomplicada e uma base

formal sólida para a análise de sistemas. Dados tais atributos, essas gramáticas possuem

uma ampla gama de aplicações dentro daCiência daComputação, especialmente no campo

do Desenvolvimento Orientado a Modelos. Particularmente, o estudo da semântica de

Gramáticas de Grafos (isto é, quais grafos pertencem à linguagem da gramática e quais

derivações são permitidas no contexto da gramática) provê uma poderosa ferramenta para

compreender e analisar o comportamento de sistemas modelados como Gramáticas de

Grafos. Existem diversas formas de especificar a semântica de Gramáticas de Grafos,

uma delas é o uso de Gramáticas de Grafos de Ocorrência que codificam tal semântica em

estruturas que também são, por sua vez, Gramáticas de Grafos. O uso de Gramáticas de

Grafos deOcorrência ao invés de outrosmodelos semânticos, como por exemploUnfolding

eDerivaçõesCanônicas, possui a vantagemde fornecer uma estruturamais compacta e fácil

de analisar. Gramáticas de Ocorrência foram introduzidas nos anos noventa e utilizadas

desde então, porém as definições originais não incluem o uso de Condições Negativas

de Aplicação, estruturas adicionais anexadas às regras de uma gramática para refinar as

possíveis aplicações das regras em determinados contextos. Dada a atual importância das

Condições Negativas de Aplicação namodelagem de sistemas complexos, essa dissertação

propõe uma extensão da teoria das Gramáticas de Grafos de Ocorrência de forma a incluí-

las, além de apresentar a implementação desta teoria no Verigraph, uma ferramenta de

especificação e verificação de sistemas baseada em reescrita de grafos.

Palavras-chave: Gramáticas de Grafos. Gramáticas de Grafos de Ocorrência. Condições

Negativas de Aplicação. Semântica.
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1 INTRODUCTION

Graph grammars are a suitable formalism to model complex systems in an intuitive

and precise manner, providing both a graphical language and a solid formal background for

systems analysis. In this framework, system states aremodelled as graphs, while transitions

between different states are modelled as graph transformation rules (EHRIG et al., 2006).

A graph transformation rule generically has the form L
p
=⇒ R, where there is at least one left

side graph L containing a pattern to be found (a match) in order for the rule to be applied

over an instance graph and a right side graph R corresponding to the effect of applying

such a rule. Moreover, additional structures may be used to provide rules a better tune of

which kinds of matches are acceptable to perform a transformation. For example: Graph

Constraints, Negative Application Conditions (NACs) and Nested Application Conditions,

to cite some of the most commonly used (HABEL; PENNEMANN, 2005).

There exist several approaches that might not only change the exact format of a

rule, but also define different ways a rule can be applied over a given match. Only consid-

ering the domain of Category Theory, there is already a handful of different approaches

for graph grammars: the Single Pushout (SPO) (EHRIG et al., 1997), Double Pushout

(DPO) (CORRADINI et al., 1996), Sesqui-Pushout (SqPO) (CORRADINI et al., 2006),

AGREE (CORRADINI et al., 2015), among others. Each approach has its own advan-

tages/disadvantages regarding the kinds of “operations” they allow or forbid in the system

under modelling. In spite of the approach used, there is a way to describe the behaviour

of the system together with means to analyse several properties about this behaviour, such

as termination, concurrency and reachable states. Among the several analysis techniques

provided by graph grammars, we have:

• Critical Pair Analysis and Critical Sequence Analysis: critical pair analysis enables

the verification of which rules conflict with (i.e. prohibit) the application of others

and why; critical sequence analysis, which rules depend on the execution of others

to be applied and why (LAMBERS; EHRIG; TAENTZER, 2008); such analyses

provide insights about the possible execution flows of the system.

• Calculation of Concurrent Rules: a concurrent rule summarizes in one rule the

combined results of applying several different rules. In other words, it represents

the combination of several different rules which can be then applied as a “one step”

transformation rule (LAMBERS et al., 2008; BEZERRA; RIBEIRO, 2016).
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• State Space Exploration and Model Checking: permits to verify, in an exhaustive

fashion, whether the (graph grammar) model of a system satisfies a given specifica-

tion and to prove the satisfaction of its properties (RENSINK, 2004).

• Unfolding, Graph Processes, Occurrence Graph Grammars and Canonical Deriva-

tions: they are all different means to provide the semantics of Graph Grammars,

allowing us to check which graphs belong to the language of a grammar and/or

which concrete derivations are possible within that grammar (CORRADINI; MON-

TANARI; ROSSI, 1996; RIBEIRO, 1996).

Graph grammars have had a wide range of applications within Computer Science,

specially in the field of model-driven software development, where the transformation

of visual models is a vital part of the process, therefore a natural application of graph

grammars (ROZENBERG, 1997). As evidence of such suitability, several non-trivial

systems have been modelled and studied under the optics of graph grammars, such as

telephone communications (RIBEIRO, 1996), elevator control (LAMBERS, 2010), rail-

road control (PENNEMANN, 2009) and integration of service-oriented systems (GIESE;

VOGEL; WATZOLDT, 2015). Furthermore, there are a number of software tools to

support the use of graph grammars, such as AGG, a tool environment for algebraic graph

transformation (TAENTZER, 2000); Groove, a tool for state space generation (RENSINK,

2004) and Verigraph, a software specification and verification tool based on graph rewrit-

ing (BEZERRA et al., 2017).

Besides its powerful applications, the use of graph grammars as a framework for

modelling systems provides us with a great advantage over other formalisms: it makes it

possible for non-specialists in the field to generate graph grammar models of a system and

then benefit from the rigorous analyses it offerswithout the need for a deep understanding of

its underlying theory. For example, (JUNIOR et al., 2015; BEZERRA et al., 2016; COTA

et al., 2017) explain how to generate graph grammars from a set of textual requirement

documents such as use cases, functional specifications and other kinds of guidelines by

means of a systematic methodology. They also present guidance towards using different

graph grammars analysis techniques in order to improve and verify these documents and,

consequently, the systems they describe.

The field of Graph Grammars is a very active one, and researches continuously

develop new ideas, such as new graph transformation approaches (e.g. Sesqui-Pushout,

AGREE), analysis techniques (e.g. Essential Critical Pairs), tools (e.g. Verigraph) and

ways to apply them. Additionally, we may also benefit from the combination of already
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existing techniques, which is what we do in this thesis. In our work, we combine two

concepts of the Graph Grammar Theory: Occurrence Graph Grammars, defined for the

SPO and DPO approaches by (RIBEIRO, 1996; CORRADINI; MONTANARI; ROSSI,

1996), with Negative Application Conditions, defined generically by (HABEL; HECKEL;

TAENTZER, 1996), which has not been done so far.

Occurrence Graph Grammars (OGGs) provide a semantics for Graph Grammars

encoded in structures that are also Graph Grammars themselves. This semantics, which

tells us which graphs are part of the grammar language and which graph transformations

are possible within the context of the original grammar, may be used for the analysis of

system execution in a summarized fashion and also in practical applications, such as test

case generation, without the need of usage of a supplementary structure or formalism.

Negative Application Conditions (NACs) are extensions of a side of a rule encoding

patterns that, if found in the match (or sometimes the comatch) of a rule, forbids the

corresponding transformation. In theory, they do not increase graph grammars expressive

power in relation to rules without them (HABEL; HECKEL; TAENTZER, 1996). In

practice, they allow the modelling of systems in a much more concise and compact

manner. Therefore they became really necessary when modelling complex, real-like

systems (CORRADINI et al., 2013; CORRADINI; HECKEL, 2014).

Our work consists of the development of an extension for the framework of Oc-

currence Graph Grammars in the Double Pushout (DPO) approach in order to incorporate

Negative Application Conditions, alongside with the implementation of this extension in

the Verigraph system, a generic graph rewriting system based on Category Theory and

written in Haskell. This implementation choice makes it possible for the source code of the

tool to be close to the theory domain as well as allowing other researches to implement new

approaches or different models of graphs while benefiting from the already implemented

techniques (as long as they conform to the categorial constructions).

Thus, the main contributions of this thesis can be summarized as (1) the creation

of an extension of the framework of Occurrence Graph Grammars (in the DPO approach)

in order to include Negative Application Conditions and (2) the implementation of this

extension in Verigraph, a software specification and verification system based on graph

transformations, which is now also the first tool in the field to implement the construction

of Occurrence Graph Grammars for general Graph Grammars, even when considering

OGGs without NACs.
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Structure of the Thesis:

Chapter 2: In this chapter we review the basic notions of graph transformation systems,

specifically under the Double-Pushout (DPO) approach. We also introduce Negative

Application Conditions (NACs) and the basic notions of parallel and sequential

independence of rules, which are needed for the construction of Occurrence Graph

Grammars with NACs.

Chapter 3: In this chapter we first present an overview of doubly-typed graph grammars

and other concepts necessary to accomplish the construction of Occurrence Graph

Grammars, as well as how these Occurrence Grammars can be used to represent the

semantics of their original grammar. After reviewing these concepts, we present our

extension to previous works in Occurrence Graph Grammars to include the notion

of Negative Application Conditions, which is part of our thesis contribution.

Chapter 4: This chapter presents an overview of the Verigraph system, which was used

to implement the techniques presented in this thesis. Verigraph in itself represents

a novelty in the field of graph transformations, being the first tool in the area

implemented in a functional language, which favoured its source code to be very

close to the problem domain itself.

Chapter 5: This chapter explains in depth the step-by-step construction of an Occurrence

Graph Grammar with the help of some running examples. Additionally, it demon-

strates how this was implemented in Verigraph, while also providing some insight

about how it can be used for test cases generation.

Chapter 6: This chapter discuss related work to the one presented in this thesis. Specifi-

cally focusing on the literature about the Semantics of Graph Grammars and how to

use it for test cases generation. It also lists some software tools related to Verigraph.

Chapter 7: This chapter summarizes our results and presents our conclusions. Moreover,

it shows remaining open problems and future work.

Appendix A: This appendix contains a brief review of category theory and the categorial

constructions used in this thesis.
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2 GRAPH GRAMMARS

The theory of graph grammars and graph transformation systems is based on the

application of rules that are able to modify graphs. Using this framework, it is possible to

model complex systems as graph transformation systems, where graphs represent system

states, while rules model transitions between states.

Graph grammars have a wide range of application in computer science, not only

because graphs are a natural and intuitive way of modelling complex situations, but also

because it is possible to reason about several properties of the modelled systems using this

formalism (EHRIG et al., 2006; ROZENBERG, 1997).

We now review the basic concepts and some analysis techniques for graph trans-

formations that are used in this work. We use the algebraic approach, which is based on

Category Theory. For the proofs of theorems and facts, the reader is referred to (COR-

RADINI et al., 1996), however a brief review of the main categorial concepts used in this

thesis is presented in appendix A.

Definition 2.1 (Graph). A graph is a tuple G = (V,E, s, t) where: V is a set of nodes, E

is a set of edges and s, t : E → V are two total functions that map each edge in E to its

source and target in V .

�

Example 2.2 (Graph). Figure 2.1 shows a simple graph G withV = {1,2,3,4}, E = {1,2},

s = {(1,1), (2,3)} and t = {(1,2), (2,3)}. �

Figure 2.1: A graph example

Definition 2.3 (Graph Morphism). Given two graphs G1,G2 with Gi = (Vi,Ei, si, ti) for i

in [1,2], a graph morphism f : G1 → G2 between them is a pair f = ( fV, fE ) where

fV : V1 → V2 and fE : E1 → E2 are total functions that preserve the source and target

functions, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE . �

Example 2.4 (Graph Morphisms). Figure 2.2a shows three morphisms f : G0 → G1,

g : G0 → G2 and h : G0 → G3, which are a monomorphism, an epimorphism and a

isomorphism, respectively.
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Morphism f maps node #1 to #a, node #2 to #b and edge x1 to xq; g maps

both nodes #1 and #2 to #c and edgex1 toxr ; and h maps node #1 to #d , node #2 to

#e and edgex1 toxs.

Figure 2.2b shows the morphism f in an expanded (explicit) notation. Both

notations are used through this work.

Figure 2.2: Graph morphism examples

(a) Compact graph morphisms (b) Expanded graph morphism

�

Definition 2.5 (TypedGraph and TypedGraphMorphism). A type graph is a distinguished

graph TG = (VTG,ETG, sTG, tTG) where VTG and ETG are called the node and edge type

alphabets, respectively.

A typed graph is a pair GT = (G, type) consisting of a graph G and a graph

morphism type : G→ TG.

Given two typed graphs GT
1 = (G1, type1) and GT

2 = (G2, type2), a typed graph

morphism f : GT
1 → GT

2 is a graph morphism f : G1 → G2 such that type2 ◦ f = type1:

G1
f //

type1 !!

G2

type2}}
=

TG
�

Example 2.6 (Typed Graph and Typed Graph Morphism Example). Figure 2.3 shows a

type graph T , and four graphs G0,G1,G2,G3 where only G0 and G1 are valid T-typed

graphs. In this graphical representation, the shapes of the nodes represent different types.

Thus, a square node can only be mapped to the square node in T , and so on.
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Notice that G2 can not be a T-typed graph because the type graph does not have a

node of type ♦, neither an edge type with source and target in the 2 type. Similarly, G3

is not a valid T-typed graph because, although there is an edge type between a 4 and a 2

types, the source of this type of edge must be a 2 and the target a 4.

Figure 2.4 shows a typed graph morphism f : GT
0 → GT

1 , where f maps node #a

to #1, 2b to 21 and edgexe tox2.

Figure 2.3: T-typed valid and invalid graphs

Figure 2.4: A typed graph morphism

�

Remark (Categories of Graphs and Typed Graphs). We call Graph the category whose

objects are graphs and arrows are graph morphisms. Similarly, we have that TGraphT

is the category whose objects are T−typed graphs and whose arrows are T−typed graph

morphisms. �
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Definition 2.7 (Graph Rule). A (typed) graph rule1 p =
(
L

l
←− K

r
−→ R

)
is a span of (typed)

graph monomorphisms l : K → L and r : K → R where the (typed) graphs L, K and R

are called the left-hand side, gluing graph and right-hand side, respectively. The elements

(nodes and edges) that appear in K are said to be preserved by the rule, while the elements

in L, but not in K are deleted by it. Similarly, elements in R that do not appear in K are

created by the rule.

Given a (typed) graph rule p, its inverse rule is defined by p−1 =
(
R

r
←− K

l
−→ L

)
. �

Example 2.8 (Graph Rule Example and Notation). Figure 2.5 shows an example of a

graph rule which reads a node of the type #, deletes a node of the type 4 and then creates

a node of the type 2 with an edge between the # and the 2.

Figure 2.5a presents the rule in the standard DPO notation, while Figure 2.5b

depicts the same rule in a compact notation, where the gluing graph is omitted. Sometimes

we use the compact notation to make the figures smaller. Notice that the compact notation

does not cause any semantic loss as the gluing graph can be obtained as the “intersection”

between the left and right graphs, and the morphisms l and r as the inclusions of K in L

and R, respectively.

Figure 2.5: DPO graph rule

(a) Standard DPO rule notation

(b) Compact DPO rule notation

�

Definition 2.9 (Graph Transformation). Given a (typed) graph rule p =
(
L

l
←− K

r
−→ R

)
and a (typed) graph G with a (typed) graph morphism m : L → G, called match, a direct

(typed) graph transformation G
p,m
==⇒ H from G to a (typed) graph H is a double-pushout

(DPO) diagram such as:

L
m
��

Kloo r //

k
��

R

m′
��

G

(1)

D
f

oo
g

// H

(2)

1Also called graph transformation rule or graph production.
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For TGraphT there are two conditions, called gluing or application conditions,

that must be satisfied so that the pushouts (1) and (2) exist and the graph rule can be

applied:

• the dangling condition requires that no node can be deleted if it has incident edges

that are not also deleted (otherwise the result of this deletion would not be a graph).

• the identification condition requires the match to not identify a deleted element with

a preserved or (another) deleted one.

�

Example 2.10 (Graph Transformation Examples). Figure 2.6a shows a transformation

where the rule depicted in Figure 2.5 is successfully applied over a graph instance G0.

Figure 2.6b shows the same rule being applied over a graph instance G1 which

does not satisfy the gluing conditions, more specifically it does not satisfy the dangling

condition.

�

The gluing condition expresses in a positive manner whether it is possible to

perform a transformation. Given a rule and a match to an instance graph, the pattern found

by the match must satisfy the dangling and the identification conditions in order to be

considered valid. However, sometimes it is also convenient to specify forbidden contexts,

in which the transformation can not be applied even if it satisfies the gluing conditions. An

elegant form of achieving this is by means of Negative Application Conditions (NACs),

defined in (HABEL; HECKEL; TAENTZER, 1996).

A NAC extends one side of a rule by describing a pattern that should not be found

around the match or comatch, otherwise the application is forbidden. Although NACs

do not provide more expressive power, they make the modelling and understanding of

graph grammars much easier. They are nowadays essential to the modelling of complex

systems (CORRADINI; HECKEL, 2014).

Definition 2.11 (Negative Application Condition). A left negative application condition

over a graph rule p =
(
L

l
←− K

r
−→ R

)
is of the form N AC (n), where n : L → N is an

arbitrary (typed) graph morphism. A match m : L → G of a rule p satisfies2 N AC (n) on

L, written m |= N AC (n), iff � q : N → G with q being a monomorphism and q ◦ n = m.

2When a NAC is satisfied it is also said that the NAC is not triggered and vice versa.
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Figure 2.6: Graph transformation

(a) Successfully applied graph transformation

(b) Failing graph transformation due to the
dangling condition

N

|q ��

L
m
��

noo

G
A match m : L → G satisfies a set N ACL = {N AC (ni) |i ∈ I} of left N ACs, iff

m |= N AC (ni) ∀i ∈ I.

Analogously, a right negative application condition over a graph rule

p =
(
L

l
←− K

r
−→ R

)
is of the form N AC (n), where n : R→ N is an arbitrary (typed)

graph morphism. A comatch m′ : R→ H of a rule p satisfies N AC (n) on R (written

m′ |= N AC (n)) iff � q : N → H with q being a monomorphism and q ◦ n = m′.

R

m′
��

n // N

| q~~
H

Also, a comatch m′ : R→ H satisfies a set N ACR = {N AC (ni) |i ∈ I} of right

N ACs, iff m′ |= N AC (ni) ∀i ∈ I.
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�

Example 2.12 (NAC and NAC satisfiability). Figure 2.7a shows a NAC that is satisfied

(i.e. not triggered) over a match m, as there is no possible way of mapping the edge

between #1 and 21 in N to an edge in G0 such that the resulting triangle commutes.

Therefore, if the match over G0 also satisfies the gluing conditions for the corresponding

rule the transformation can be applied.

On the other hand, Figure 2.7b shows a NAC that is triggered (i.e. not satisfied)

over thematchm: all the elements in N can bemapped toG0 such that the resulting triangle

commutes. Therefore, even if the match satisfies the gluing conditions, the transformation

can not be applied, as the pattern forbidden by the NAC was found on the instance graph.

Figure 2.7: NACs and NAC satisfiability

(a) A satisfied NAC (b) A triggered NAC

(c) A trivially-triggered NAC

�

Definition 2.13 (Trivially-Triggered NACs). Given a N AC(n), where n : L → L̂ is an

isomorphism, and a match m : L → G which is a monomorphism, we call N AC(n) a

trivially-triggered NAC as, for every monomorphic m, there will always exist a q : L̂ → G

injective such that q ◦ n = m.
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A trivially-triggered NAC n : L → L̂ is also denoted N AC(L). If a rule p has a

trivially-triggered NAC then p can never be applied, as the NAC will never be satisfied.

An example of a trivially-triggered NAC is shown on Figure 2.7c. �

Definition 2.14 (Graph Transformation System and Graph Grammar). A typed graph

transformation system is a pair GTS = (TG,P) where TG is the type graph of the system

and P is a set of typed graph rules with NACs.

A typed graph grammar is a pair GG = (GTS, I) where GTS is a typed graph

transformation system and I is a typed start graph. It can also be notated as GG =(
TG, ITG,P

)
.

�

Example 2.15 (Mail Server Graph Transformation System). Figure 2.8 depicts a graph

transformation system that models a client-server scenario for a very simple e-mail ap-

plication. The type graph (a) defines four kinds of nodes: g for users, R for messages,

q for data and � for mail servers, while the edges specify where each kind of node can

be located at a given time. Finally, this system has four actions modelled as graph rules,

which can be summarized as:

(b) Send message: a client writes a message which they send to a server, however there

is a NAC forbidding the message of being sent if it has a piece of data attached to it.

(c) Get data: a piece of data is obtained from a server and attached to a message.

(d) Receive message: a server sends a message with attached data to a client.

(e) Delete message: a client obtains a piece of data from a received message and this

message is destroyed.

�

2.1 Parallel and Sequential Independence

One of the characteristics that make Graph Transformation Systems and Graph

Grammars suitable formalisms for modelling and reasoning about parallel and/or con-

current systems is the possibility of checking whether the transformations given by two

graph rules over the same instance graph can be applied (1) at the same time or (2) in
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Figure 2.8: Mail application graph transformation system

(a) Type Graph

(b) Send message (c) Get data

(d) Receive message (e) Delete message

any interchangeable order. In the first case we say that the transformations are parallel

independent; in the later we say that they are sequential independent.

In this section, we review both what it (formally) means for two graph transforma-

tions to be independent and how to check it. Notice that when we are reasoning about

graph transformations (rules application) the (in)dependence is concrete, while for the

case of graph rules the (in)dependence is potential, as it depends on the particular way the

rules are applied.

Definition 2.16 (Causal Dependency). Given two graph rules p1 = (L1 ← K1 → R1),

p2 = (L2 ← K2 → R2) with NACs n1 : L1 → N1 and n2 : L2 → N2, we say that trans-

formations t1 : H1
p1,m1
===⇒ E and t2 : E

p2,m2
===⇒ H2 as is the diagram below are causally

dependent iff at least one of the following situations occurs:

1. �h12 : R1 → D2 such that d2 ◦ h12 = m′1

2. ∃!h12 : R1 → D2 such that d2 ◦ h12 = m′1 but e2 ◦ h12 6 |= N ACp−1
1

3. �h21 : L2 → D1 such that e1 ◦ h21 = m2

4. ∃!h21 : L2 → D1 such that e1 ◦ h21 = m2 but d1 ◦ h21 6 |= N ACp2
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N1 N2

L1

m1
��

n1

OO

K1

��

oo // R1

m′1 ��

|
h12

##

L2

m2��

n2

OO

|
h21

{{

K2

��

oo // R2

��
H1 D1d1
oo

e1
// E D2d2
oo

e2
// H2

We say that rules p1 and p2 are (potentially) causally dependent iff a diagram like

the one above fulfilling at least one of the mentioned situations exists. �

Intuitively, each case of dependency can be regarded as follows:

1. a deliver-delete dependency: p2 deletes (from graph E) at least one element that

was created or preserved by p1.

2. a forbid-produce dependency: p2 creates on H2 at least one element that would

trigger the NAC N−1
1 .

3. a produce-use dependency: p1 creates (on graph E) at least one element needed for

p2 to be applied which did not exist on H1.

4. a delete-forbid dependency: p1 deletes (from graph H1) at least one element that

would trigger the NAC N2, thus allowing the application of p2 on E .

In this work we mostly consider dependencies (and conflicts) between rules. Thus,

when we say that two rules are causally dependent it means that there may be a situation

in which the application of one rule actually depends on the application of the other, but

there might also be situations in which both these rules are applied independently.

Example 2.17 (Dependency situation in the mail server grammar). Figure 2.9 shows a

dependency situation between the rules getData and receiveMessage. In this case, the

dependency is of a produce-use kind: there may be a situation in which the edge between

the piece of data and the message at the instance graph created by getData are necessary

for receiveMessage to be applied.

In the diagram, it is not possible to find a morphism from the left-hand-side of

receiveMessage to the gluing graph of getData such that the transformation is still valid.

Thus, receiveMessage is causally dependent on getData. �
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Figure 2.9: A dependency in the server grammar

Definition 2.18 (Conflict). Given two graph rules p1 = (L1 ← K1 → R1) and

p2 = (L2 ← K2 → R2) with NACs n1 : L1 → N1 and n2 : L2 → N2, we say that trans-

formations t1 : E
p1,m1
===⇒ H1 and t2 : E

p2,m2
===⇒ H2 as in the diagram bellow are in conflict iff

at least one of the following situations occurs:

1. �h12 : L1 → D2 such that d2 ◦ h12 = m1

2. ∃!h12 : R1 → D2 such that d2 ◦ h12 = m1 but e2 ◦ h12 6 |= N ACp1

3. �h21 : L2 → D1 such that d1 ◦ h21 = m2

4. ∃!h21 : L2 → D1 such that d1 ◦ h21 = m2 but e1 ◦ h21 6 |= N ACp2

N1 N2

R1

��

K1

��

oo // L1

n1

OO

m1

��

|
h12

##

L2
m2

��

n2

OO

|
h21

{{

K2

��

oo // R2

��
H1 D1e1
oo

d1
// E D2d2
oo

e2
// H2

We say that rules p1 and p2 are (potentially) conflicting iff a diagram like the one

above fulfilling at least one of the mentioned situations exists. �

Intuitively, each conflict case can be regarded as:

1. a delete-use conflict: p2 deletes (from graph E) at least one element needed for p1

to be applied.

2. a produce-forbid conflict: p2 produces (on graph H2) at least one element that

triggers the NAC N1.

3. a delete-use conflict: p1 deletes at least one element needed for p2 to be applied
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4. a produce-forbid conflict: p1 creates at least one element that triggers the NAC N2.

Example 2.19 (Conflict situation in themail server grammar). Figure 2.10 shows a conflict
situation involving the rules getData and receiveMessage. This is a delete-use conflict:

receiveMessage deletes from the overlapping graph an edge between the message and the

server which may be necessary for getData to be applied. Considering the matches in

Figuere 2.10, both transformations are valid. However, once receiveMessage is applied,

it is no longer possible to apply getData. This is represented in the diagram by the fact

that it is not possible to find a morphism from the left-hand-side of getData to the gluing

graph of receiveMessage such that the transformation from there is still valid.

Figure 2.10: A conflict in the server grammar

�
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3 OCCURRENCE GRAPH GRAMMARS WITH NACS

Occurrence Graph Grammars (OGGs) were defined for the Single-Pushout (SPO)

approach by (RIBEIRO, 1996), and for the Double-Pushout (DPO) approach by (CORRA-

DINI; MONTANARI; ROSSI, 1996). In both cases they consist of a way of representing

the concurrent semantics of a graph grammar as a graph grammar itself. It also presents

the advantage of having a more compact structure than other semantic models for graph

grammars. For example, with Unfolding (RIBEIRO, 1996) the semantics of a graph

grammar is given by the set of all possible derivations of that grammar, which may be an

infinite structure, whereas with OGGs we have a grammar which already encodes such

derivations in a finite way.

The aim of an OGG is to describe all possible states and changes of states of

the graph grammar from which it was constructed. This is possible because occurrence

grammars can be regarded as an execution history of the underlying grammar. This history

is encoded under the forms of (1) a core graph containing all elements ever used in the

execution of the grammar, (2) a set of actions, which are rule applications typed over this

core graph and (3) a set of relations between these actions and the elements of the core

graph.

These relations express dependencies among core graph elements, such as which

of them must occur together, at the same state, which ones must be created/deleted one

after the other, which elements must never occur together, and so on. They also encode

restrictions over the application of rules, such as which rules are sequentially dependent

on others or whether it is possible to successfully apply all the rules of a grammar, etc.

However, Negative Application Conditions are not addressed by the original defini-

tions of occurrence grammars. Still, NACs are nowadays essential for modelling complex

systems as graph grammars, given they provide more compact mechanisms to control the

application of rules (HABEL; HECKEL; TAENTZER, 1996; LAMBERS et al., 2008;

CORRADINI; HECKEL, 2014). In this chapter, after reviewing the works of (RIBEIRO,

1996) and (CORRADINI; MONTANARI; ROSSI, 1996) in OGGs, an extension of the

occurrence grammars framework towards contemplating negative application conditions

is presented, which is part of our thesis contribution.
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3.1 Overview of Occurrence Graph Grammars without NACs

Definition 3.1 (Doubly-Typed Graph). Given a type graph T , a doubly-typed graph GTGT

overT is a tuple GTGT
=

(
GT,TGT, tGT : GT → TGT

)
where GT andTGT are typed graphs

over T and tGT : GT → TGT is a typed graph morphism in TGraphT. We call TGT the

double-type graph and tGT the double-typing morphism. �

Remark (Typing Morphism). As we are interested in occurrence graph grammars, we

consider only doubly-typed graphs whose typing morphism typeTG : TG → T is an

epimorphism. This has the effect that every element present in T is the image of at least

one element from TG. �

Example 3.2 (Doubly-Typed Graph Example). Figure 3.1 shows a doubly-typed graph

GTGT . �

Figure 3.1: Doubly-typed graph

Definition 3.3 (Doubly-Typed Graph Morphism). Given two doubly-typed graphs GTGT

and HTGT and a graph morphism gT : GT → HT , we say that gT is a TGT -doubly-typed

graph morphism if the following diagram commutes:

G
g //

tG !!

H

tH}}
TG

typeTG
��

T
�

Notice that the (single) type morphisms typeG : G → T and typeH : H → T can

be obtained respectively as typeTG ◦ tG and typeTG ◦ tH .
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Example 3.4 (Doubly-Typed Graph Morphism Example). Figure 3.2 shows a doubly-

typed graph morphism f : GTGT
→ HTGT . �

Figure 3.2: Doubly-typed graph morphism

Remark. (RIBEIRO, 1996) defined different kinds of doubly-typed graph morphisms

based on whether the double-type graphs and the type graphs are or are not the same. In

this work we are only interested in the case where all doubly-typed graphs share exactly

the same double-type and type graphs. Therefore, through the rest of this work, we refer

to TGT -doubly-typed graph morphisms simply by doubly-typed graph morphisms. �

Definition 3.5 (Doubly-Typed Graph Rule). A doubly-typed graph rule

pTGT
=

(
LTGT

← KTGT
→ RTGT

)
is a span of injective doubly-typed graph mor-

phisms l : K → L and r : K → R.

L

!!

Koo //

��

R

}}
TG

��
T

Given a doubly-typed graph rule pTGT
=

(
LTGT

← KTGT
→ RTGT

)
, its inverse

rule is defined by
(
pTGT

)−1
=

(
RTGT

← KTGT
→ LTGT

)
.

Let the double-typing morphisms from LTGT , KTGT and RTGT be tLT , tKT and tRT ,

respectively. For a rule a = pTGT we call:

• La = LT , Ka = KR and Ra = RT , the left, gluing and right graphs of a.

• prea = tLT : LT → TGT , the pre-condition of a.
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• posta = tRT : RT → TGT , the post-condition of a.

�

Example 3.6 (Doubly-Typed Graph Rule Example). Figure 3.3 shows a doubly-typed

graph rule which deletes an edge x1 and a node #1, preserves a 22 and creates a node

#3 and an edgex2. �

Figure 3.3: Doubly-typed graph rule

Definition 3.7 (Negative Application Conditions on Doubly-Typed Graph Rules). A left

negative application condition over a doubly-typed graph rule pTGT is of the form N AC(nT ),

where nT : LT → NT is an arbitrary (single-)typed graph morphism.

A (doubly-typed) match morphism mTGT : LTGT
→ GTGT of a rule pTGT satisfies

N AC(nT ) on LTGT , written mT |= N AC(nT ), iff � qT : NT → GT where qT injective and

qT ◦ nT = mT .

T TGoo

N

OO

|q
!!

L

OO

m
��

noo

G

aa

A match mTGT : LTGT
→ GTGT satisfies a set N ACL = {N AC

(
nT

i

)
|i ∈ I} of left

N ACs, iff mT |= N AC
(
nT

i

)
∀i ∈ I.

Right negative application conditions are defined analogously for the right hand

side of a rule and its comatch. �

Remark. We could have defined NACs whose morphisms are doubly-typed graph mor-

phisms, which would then act specifically over doubly-typed graphs. However, the use of
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this kind of NAC would imply mapping all possible ways a NAC typed over T could be

translated into a NAC typed over TG, which would lead to a doubly-typed grammar with

a set of NACs much bigger than the original one. Thus we do not use this kind of NACs

given our interest in a compact and more abstract characterization for the semantics of

graph grammars. Therefore, we use single-typed NACs as the only NAC type in all of our

doubly-typed graph grammars, and N AC(n) as a synonym of N AC(nT ). �

In a grammar without NACs, if there is a sequence of graph transformations t0 . . . tn

where each pair (ti, ti+1) of consecutive transformations is sequentially independent, then

it is possible to switch the order of application for any pair in that sequence an arbitrary

number of times and still achieve the same final graph as a result (up to isomorphism).

This property is called switch equivalence (CORRADINI et al., 2013).

However, the switch equivalence does not always hold when the grammar has

NACs. This happens because there may be situations where the NAC of a rule can be

triggered by the cumulative effect of applying two (or more) other rules, while the same

rules would not trigger that NAC in isolation. This may lead to a situation where conflicts

and dependencies are not stable under switch, which means that conflicts or dependencies

that do not occur in a given sequence of transformations may arise if one or more pairs of

transformations are switched. An example is shown in Figure 3.8.

Example 3.8 (Switch Equivalence). The rules depicted in Figure 3.4 show a situation

where the independence between rules is not stable under switch equivalence.

In this example, all rules are independent and also do not conflict with each other

in the sense of Definitions 2.16 and 2.18. Thus, in theory, it should be possible to apply

these rules in any order or in parallel. Particularly, it may be possible to apply all rules in

the order they appear in the figure: [p1, p2, p3]. It may also be possible to apply them in

the orders [p1, p3, p2], [p2, p1, p3] and [p3, p1, p2]. However, it is not possible to perform a

derivation using the rules in the orders [p2, p3, p1] or [p3, p2, p1]. This problem arises from

the fact that p2 and p3 independently create a piece of the pattern forbidden by the NAC

of p1 in a way that, although the effect of each rule by itself does not trigger the NAC of

p1, their combined effects do. �

In order to avoid this problem while we construct a canonical representation of

several possible derivations for a set of rules, we restrict the use of NACs to a special type

of NACs called incremental NACs. Incremental NACs were originally defined in (COR-

RADINI et al., 2013) and (CORRADINI; HECKEL, 2014). They have the property of
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Figure 3.4: Instability of conflicts under shift

extending the forbidden context of a match by a single edge or a single node. Thus, each

NAC forbids only one element at a time and therefore there is no possible way to trigger a

NAC by the cumulative effects of more than one rule.

Definition 3.9 (Incremental NACs). Given a monomorphism n : L → N , N AC(n) is said

to be incremental if for any possible pair of decompositions g1 : L → Og; g2 : Og → N and

f1 : L → O f ; f2 : O f → N as in the diagram below, where all morphisms are monos and

f1; f2 = n = g1; g2, there exists a mediating morphism o1 : Og → O f or o2 : O f → Og,

such that the resulting triangles commute.

Og
g2

  
o1

��

L

g1
>>

f1   

n // N

O f

f2

>>o2

SS

�

Example 3.10 (Incremental NACs). Figure 3.5 shows all possible (canonical) formats that

any valid incremental NAC may assume.

Figure 3.5: Canonical Incremental NACs

�

At first, it may seem that we are losing expressive power by restricting the NACs

used in our grammars to incremental NACs only. However (CORRADINI et al., 2013)



39

have shown two important results regarding them. First, they showed that incremental

NACs are sufficient tomodel most of real applications usingGTSs. Second, they presented

an algorithm to compile rules with general NACs to rules with incremental NACs only,

generating a new GTS that is able to simulate the original one.

Notation (Set Operations over Graphs). Given a graph G, we sometimes view them as

being composed of a setV(G) of nodes and a set E(G) of edges, denotedG = V(G) ∪ E(G),

in order to allow the use of set operations over this graph. For example, we say that an

element (a node or an edge) x is a member of G, denoted x ∈ G, iff x ∈ V(G) ∪ E(G).

Moreover, any operations involving multiple graphs are applied setwise. For example,

given two graphs G1 and G2, the difference D = G1 −G2 between them is the union of the

differences between their sets of nodes and their sets of edges. Therefore D = V(D)∪E(D)

where V(D) = V(G1) − V(G2) and E(D) = E(G1) − E(G2).

Any other set operations applied over graphs are regarded likewise.

�

Definition 3.11 (Triggering element). Given a rule p =
(
L

l
←− K

r
−→ R

)
with an incremen-

tal, non-trivially triggered NAC n : L → N , and amonomorphic match m : L → G, where

there is an injective q : N → G, therefore m 6 |= N AC(n). There is exactly one element that

completes the match towards triggering the NAC. This element is present in the difference

between the images of q and m.

Let G |N be the image of q, G |L the image of m, and D = G |N − G |L . The triggering

element of this NAC is:

• x ∈ E(D), if E(D) , �;

• x ∈ V(D) otherwise.

�

Example 3.12 (Triggering Element). Given that incremental NACs extend the match by

forbidding only one element at a time, this element can be easily identified at the instance

graph: it corresponds to the solely element mapped by the morphism q : N → G which

is not also mapped by m : L → G. Figure 3.6 shows an example. The elements in the

instance graph mapped by either q or m are represented by dashed lines. Notice that the

only element which is not in the image of both morphisms is x2, therefore x2 is the

triggering element of the NAC for this match. �
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Figure 3.6: Triggering Element

Definition 3.13 (Doubly-Typed Graph Grammars). A doubly-typed graph grammar is a

tuple GG =
(
TGT, ITGT

,P
)
where TGT is the double-type graph of the grammar, ITGT is

a doubly-typed graph called the initial graph and P is a set of doubly-typed graph rules.

We call inGG = IT → TGT , the morphism that maps the initial graph into the double-type

graph.

�

Definition 3.14 (Core Graph). Given a doubly-typed graph grammar GG =
(
CT, ICT

,P
)
,

CT is a core graph iff the following two conditions hold:

(uniqueness of origin) ∀x ∈ CT : ∃!y ∈ (IT ] (]i∈P(Ri − Ki)):

x =


inGG (y) , if y ∈ IT

posti(y), if y ∈ Ri − Ki

(uniqueness of deletion) ∀x ∈ CT : ∃≤1y ∈ ]i∈P(Li − Ki):

x =
{

prei(y), if y ∈ Li − Ki

�

The first condition assures that every element in the core graph was either already

present in the initial graph or was created by one and only one rule. The second condition

assures that for every element that is deleted, it is deleted only once by only one rule. The

idea is that each element within a core graph has a unique origin. At the same time, the

core graph contains all elements created, deleted or preserved by all rules in its underlying

grammar.

In (RIBEIRO, 1996) the second condition was not used, because of a peculiarity of

the SPO approach where more than one rule can delete the same element at the same time,
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while this would raise a conflict, and therefore be forbidden, in the DPO approach. As a

consequence, the occurrence grammars defined by (RIBEIRO, 1996) are inherently non-

deterministic, whereas ours are deterministic. In practice, this means that the semantics of

a graph grammar in the SPO approach can be achieved with only one occurrence grammar,

while in the DPO approach we need a set of them.

Example 3.15 (Doubly-Typed Graph Grammar and Core Graph Example). Figure 3.7a
shows a doubly-typed graph grammar, whose double-type is not a core graph. That

happens because 22 is created by both rules p1 and p2, as well as #1 is deleted by both p2

and p3.

On the other hand, Figure 3.7b shows a doubly-typed graph grammarwhose double-

type is also a core graph: 22 andx1 are created by p1,x3 by p2, #3 andx2 by p3 and

#1 is present on the initial graph. Also, the deleted elements are deleted only once: #1

andx1 by p3.

It is important to notice that, even though the TG graphs in both grammars are

isomorphic, only the one in Figure 3.7b is a core graph. This can be explained by looking

at their underlying grammars (initial graphs and rules), where one of them satisfies the

conditions presented in Definition 3.14, whereas the other does not.

�

Notation (Restriction to Image). Given an arbitrary morphism f : A→ X , we denote as

f ′ : A→ X|A the morphism derived from f where X|A is the image of f .

For two arbitrary morphisms f : A→ X and g : B → X , we denote as f ′ : A→

X|AB and g′ : B → X|AB the morphisms derived from f and g where X|AB is the joint

image of both f and g. �

Definition 3.16 (Strongly Safe (Doubly-Typed) Graph Grammars). Given

GG =
(
CT, ICT

,P
)
a doubly-typed graph grammar, GG is said to be strongly safe

if its double-type graph is also a core graph.

Each rule in a strongly safe graph grammar is also called an action. We say that an

action a creates an element e iff e ∈ R(a)−K(a). Similarly, a deletes e iff e ∈ L(a) − K(a).

Finally, if e is present in K(a), we say that a preserves e. �

In the context of strongly safe graph grammars, we use a slightly different inter-

pretation of a graph transformation:

• Isolated actions are always applied over a subgraph of the core graph: the match of
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Figure 3.7: Doubly-typed graph grammars

(a) A grammar with a double-type graph that is
not a core graph.

(b) A grammar with a double-type graph that is
also a core graph.

an action is equal to its pre-condition prea : L → CT
La
, as well as the comatch is

equal to its post-condition posta : R→ CT
Ra
.

• When searching for conflicts (resp. dependencies) between two actions, the over-

lapping between them is the restricted image of their matches E = CT
|L1L2

(resp.

comatch and match E = CT
|R1L2

). The derived graphs are calculated accordingly

when the DPO transformations exist, i.e. E
a1
=⇒ H1 (resp. E

a−1
1
==⇒ H1), E

a2
=⇒ H2.

Notice that, as the transformations are always concrete regarding the core graph, we

have H1 ↪−→ CT,H2 ↪−→ CT .

• When searching for conflicts (resp. dependencies) between two actions a1,a2 with

NACs, we check the NAC satisfiability only in the overlapping and the derived

graphs rather than the entire core graph.

By restricting the overlapping of actions to the images of their matches (resp.
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comatch and match) we consider only the local effects of these actions. Thus resulting

in two properties of our interest: (1) We avoid dangling conditions with edges in the

core graph that do not directly participate in the interaction of these actions, similarly, (2)

the NACs of these actions are not triggered by elements that, despite of being present in

the core graph, do not directly participate in the interaction of these two actions. These

restrictions, together with the use of incremental NACs, allow us to locally compute the

conflicts and dependencies for each pair of actions, without the necessity of dealing with

global effects other actions might have.

Remark (Strongly Safe Grammars). Throughout the remaining of this work, we use only

strongly safe grammars whose set P of actions is finite and each action in P is distinct

from the others.

�

Example 3.17 (Strongly Safe Graph Grammar). Figure 3.7b also depicts a strongly safe

graph grammar as the double-type graph of the grammar is, in fact, a core graph. �

3.2 Relations within Strongly Safe Graph Grammars without NACs

Given a strongly safe graph grammar, its core graph contains all elements used

(created, read or deleted) during one possible execution of the grammar. Moreover, as

each element has a unique origin, the core graph can be considered to contain the entire

“execution history” of its underlying grammar.

We are here interested in some of the properties that can be found by looking at

this history. Particularly, we want to define the kind of relations that exist among actions

and elements, whether it is possible to find sequences in which all actions are applied and

which graphs can be considered valid (reachable) by this grammar.

In (RIBEIRO, 1996), causal, conflict and occurrence relations for strongly safe

graph grammars were defined. There, the graph transformation approach used was the

Single Pushout (SPO) without NACs. (CORRADINI; MONTANARI; ROSSI, 1996) also

defined a different notion of causal relation, equivalent to the occurrence relation in the

previous mentioned work, with respect to the DPO approach without NACs. Both authors

use these relations to find out whether all the actions of a strongly safe graph grammar are

applicable and prove the above mentioned properties about them. However, these relations

alone are not sufficient to prove such properties when the actions have NACs. Here we
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recall the work of (CORRADINI; MONTANARI; ROSSI, 1996), since it already uses the

DPO approach, then extend it to create an equivalent notion of occurrence relation that

works for grammars in the DPO approach with NACs.

Definition 3.18 (Causal Relation). (This is the same causal relation defined in (COR-

RADINI; MONTANARI; ROSSI, 1996) for the DPO approach without NACs.) Given

GG =
(
CT, ICT

,P
)
a strongly safe graph grammar, actions a1,a2 ∈ P,a1 , a2 and an ele-

ment e ∈ N(CT ) ∪ E(CT ), then:

1. If a1 deletes e, then e <c a1.

2. If a1 creates e, then a1 <c e.

3. If a1 creates e and a2 preserves e, then a1 <c a2.

4. If a1 preserves e and a2 deletes e, then a1 <c a2.

5. The causal relation ≤c of P ∪ N(CT ) ∪ E(CT ) is the reflexive and transitive closure

of <c.

�

This relation represents conditions over creation, use (preservation) and deletion

of elements by the actions used to characterize executions of the underlying rules. In any

of the derivations represented by this strongly safe graph grammar, an action a must occur

after all actions that create the elements it preserves or deletes. Analogously, a must occur

before all actions that delete the elements created or preserved by it.

In (CORRADINI; MONTANARI; ROSSI, 1996) it is shown that if this relation

is a partial order, then any total order with respect to it is a sequencing in which all

productions of the underlying grammar are applicable.

Example 3.19 (Causal Relation in Grammars without NACs). Given the strongly safe

grammar corresponding to the core and initial graphs in Figure 3.8a and the set of rules in

Figure 3.8b, we have that:

• a1 <c 42

• a2 <c 21 and a2 <c x1

• a3 <c x2
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• a2 <c a1 by creation/preservation of 21

The causal relation for this grammar is (without the pairs due to reflexivity):

a1 ≤c 42, a2 ≤c 21, a2 ≤c x1, a3 ≤c x2, a2 ≤c a1, a2 ≤c 42. Notice that the only pair in

this relation where both elements are actions is a2 ≤c a1, therefore, we have that all actions

in this grammar can be applied as long as a2 is applied before a1 (a2 crates the element 21

which is necessary for a1 to be applied). In particular, the following sequences of actions

are valid and lead to the same resulting graph: [a2,a1,a3], [a2,a3,a1], [a3,a2,a1].

Figure 3.8: Strongly safe grammar GG1

(a) Core and initial graphs

(b) A strongly safe grammar without NACs

(c) A strongly safe grammar with NACs

�

The same definition can be attempted in a strongly safe grammar where actions

are equipped with NACs. However, as shown in examples 3.20 and 3.21, it lacks the same

properties as in the case without NACs.

Example 3.20 (Causal Relation in Grammars with NACs). Consider the strongly safe

grammar corresponding to the core and initial graphs in Figure 3.8a and the set of rules in

Figure 3.8c.



46

We have the same causal relation as the one presented in Example 3.19, since the

structure of the actions is the same in both examples, except for the NAC in the action a1

on Figure 3.8c. In this example, we still have that a2 must be applied first in order for

a1 to be applied. However, besides creating the 21 needed for a1, a2 also creates a x1

from 21 to #1 which is a pattern forbidden by the NAC of a1. Therefore, we have that a2

also causes a produce-forbid conflict with a1. Moreover, a3 is the only other action in this

grammar and it does not delete any element that could undo the forbidden pattern. Thus,

there is no possible way of applying all actions of this grammar, even though the causal

relation is a partial order. �

Example 3.21 (Causal Relation in Grammars with NACs). Consider the strongly safe

grammar depicted on Figure 3.9, for which we have a1 ≤c a3, a2 ≤c a3, a2 ≤c a4,a2 ≤c a1

as causal relation: in order to know if all the actions of a strongly safe grammar without

NACs can be applied, it would be sufficient to check whether the causal relation is a partial

order.

Figure 3.9: Strongly safe grammar GG2

(a) Core and initial graphs

(b) Action a1 (c) Action a2 (d) Action a3 (e) Action a4

In particular, if we do not consider NACs for the grammar in Figure 3.9, any total

order of actions compatible with the partial order of the causal relation would be a valid

sequencing of this grammar. As an example, [a2,a1,a3,a4] and [a2,a4,a1,a3] are valid

sequences (without NACs) for this grammar.

However, not all previous sequences are valid when NACs come into play. Specifi-

cally, [a2,a4,a1,a3] is not valid, because if a4 is applied before a3 it createsx2, triggering

the NAC of a3, which can no longer be applied. �
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3.3 Relations within Strongly Safe Graph Grammars with NACs

It is important to notice that the causal relation presented in the previous section

is always concrete. This means that if an action is dependent on (resp. conflicting with)

another one, it happens because one of them creates (resp. deletes) at least one of the

concrete elements necessary for the other to be applied (resp. prevented of being applied).

Moreover, the causal relation must always be respected whenever we try to find a

total order in which all the actions of a strongly safe grammar are applicable. Nonetheless,

for grammars equippedwith NACs it is necessary to include the conflicts and dependencies

created by NACs in this relation.

This inclusion of conflicts and dependencies induced by NACs gives rise to a new

problem: we can not just add those conflicts and dependencies directly into the causal

relation because they are potential instead of concrete. They may or may not happen

depending on which specific total ordering of application (among all possibilities) was

performed. Therefore, we need a way to identify under which conditions these potential

conflicts (resp. dependencies) appear, in order to know which among the possible total

orderings also respect the restrictions imposed by NACs.

Example 3.22 (Interaction between causal relation and NACs). Let a1,a2,a3 be three

actions of the same strongly safe grammar. Suppose that a1 creates elements used by

a2 and a2 creates elements used by a3, therefore by the causal relation we know that

a1 ≤c a2 ≤c a3. Now suppose that when a2 is applied, it creates an element that

would be forbidden by a NAC of a1 and also that a3 deletes this element. Following the

classical notions of dependency and conflict of graph grammars with NACs, as shown in

definitions 2.16 and 2.18, a2 would cause a (potential) produce-forbid conflict on a1, thus

a1 should be applied before a2 (a1 <p f a2). Likewise, a1 would be (potentially) dependent

by delete-forbid on a3, consequently a3 should be applied before a1 (a3 <df a1). By adding

these produce-forbid and delete-forbid directly into the causal relation we would have the

situation depicted in Figure 3.10. It is easy to see that the resulting relation is not a partial

order, therefore there can not be a total ordering for this set of actions.

Notwithstanding, by analysing the causal relation we can affirm that this configu-

ration ensures that neither the conflict nor the dependency exist in any concrete execution

of this grammar. For the conflict, this happens because a2 can only happen after a1, thus

the element forbidden by the NAC of a1 can only exist after a1 itself was already applied.

Likewise, the dependency that is identified because a3 deletes the element that would
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Figure 3.10: Graph of relations

be forbidden by the NAC of a1 does not exist either, because a1 was executed before its

triggering element even existed. �

Definition 3.23 (Conflict and Dependency Characterization). Given a strongly safe graph
grammarGG =

(
CT, ICT

,P
)
, every conflict (resp. dependency) induced byNACs between

two distinct actions ai,a j ∈ P is said to be potential (as we initially do not know whether

this particular situation occurs during an execution of the underlying grammar).

Given a potential conflict (resp. dependency) situation in a strongly safe grammar,

we say that it is:

• concrete, if it always occur in any execution of the grammar;

• abstract, if it occurs only in some of the executions;

• non-existent, if it is never possible for it to occur in any execution of the grammar.

�

Definition 3.24 (Abstract Conflicts and Dependencies). Given a strongly safe graph gram-

mar GG =
(
CT, ICT

,P
)
, an abstract conflict/dependency is a tuple of distinct actions

t = (ai,a j,ak). In any total ordering <t of actions in P, t restricts the application of ai

such that either ai <t a j or ak <t ai.

�

The definition of abstract conflicts and dependencies translates to “the action ai

can only be applied either before a j or after ak , but never in between their applications”.

This situation models the following configuration of actions: a j creates an element x,

which triggers a NAC of ai, while ak deletes this same element. Therefore, ai can not be

applied while x exists.

We already know that at least the causal relation must be a partial order in order

to be possible to apply all the actions of a grammar. Nevertheless, the following problem

remains to be solved:
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Given a strongly safe grammar GG =
(
CT, ICT

,P
)
with at least two actions

a1,a2 ∈ P in a potential delete-forbid or produce-forbid situation, under which

circumstances this dependency or conflict exists and must be considered in the

actions application ordering?

In the following, we categorize these conflicts and dependencies using their trigger-

ing elements and pertinence of these elements into the causal relation in order to address

this problem.

Definition 3.25 (Delete-Forbid Relation in Strongly Safe Graph Grammars). Let

GG =
(
CT, ICT

,P
)
be a strongly-safe graph grammar, where P is a set of actions with

incremental, non-trivially triggered NACs only.

a1 N−1
1 N2q

{{

a2

L1

��

K1

��

oo // R1

n1

OO

post1 ""

L2

n2

OO

h21

yy
pre2}}

K2oo //

��

R2

H1 D1 d1
//

e1
oo CT

|R1L2
D2oo

Let a1,a2 ∈ P be in a potential delete-forbid dependency according to the diagram

above, where a1 deletes from graph H1 an element x ∈ N(CT ) ∪ E(CT ) which is the

triggering element of a NAC N2 of a2 for the extended match e1 ◦ h21. This delete-forbid

dependency is:

• concrete: iff (x ≤c a2) ∨ (x ∈ ICT
).

• abstract: iff (∃a3 ∈ P | x ∈ R3 − K3) ∧ (x �c a2) ∧ (a2 �c x).

• non existent: otherwise.

If the above dependency is characterized as concrete, we have that a1 <df a2. If

it is abstract, tdf = (a2,a3,a1) is is the set of abstract conflicts and dependencies of the

grammar GG. If it is non existent, the dependency is simply discarded in further analysis,

since the orderings of execution are not affected by it.

�

According to our classification, we have that if a delete-forbid dependency is

concrete, i.e. ai <df a j , then we can only consider total orderings of ≤c where ai < a j .

For the abstract case, we can only consider total orderings of ≤c where ai < a j or ak < a j .
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If it is non existent there is no need to impose any new restrictions over the ordering of

≤c. Thus, we need to demonstrate that:

Theorem 3.26. For each potential delete-forbid in a strongly safe graph grammar, defini-
tion 3.25 correctly classifies these dependencies.

Proof. Given actions a1,a2 ∈ P in a potential delete-forbid where a1 deletes an element

x ∈ CT which is also the triggering element of a NAC in a2. The following situations are

possible:

Triggering element is present on the initial graph:
Let x be an element which is not created by any action in P, meaning that x is present on

the initial graph: x ∈ ICT . In such configuration, the delete-forbid is concrete, given that

x exists before the application of a2 (or any other action), preventing the application of the

action until it gets deleted. Therefore, we have a1 <df a2.

Triggering element is related to the action:
If a2 ≤c x, it means that x was either created by a2 or by another action that must to occur

after a2. In this configuration the delete-forbid dependency is non existent as the element

x can not exist to trigger N2 before a2 was already applied.

On the other hand, if x ≤c a2, it means that x must exist at some moment before a2 is

applied. In this configuration, we have that x must be deleted in order for a2 to be applied.

Since a1 is the only action that deletes x (otherwise the underlying grammar would not be

a strongly safe grammar) this delete-forbid is concrete and we have that a1 <df a2.

Triggering element is not related to the action:
Let x be not related to a2, but created to a third action a3 ∈ P (notice that in this

configuration we have that a3 <c a1).

If a3 is not related to a2, in which case we have that a1 and a2 would be in a concrete

delete-forbid dependency if a3 were applied before a2. On the other hand, the same

dependency would be non existent if a3 were applied after a2. This situation depicts an

abstract produce-forbid dependency as we have that either a1 <df a2 or a2 < a3 are

possible. Therefore (a2,a3,a1) is an abstract dependency.

Finally, if a3 is related to a2, then a2 is related to x, as a3 creates x, which corresponds to

our second case.

�
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Definition 3.27 (Produce-Forbid Relation in Strongly Safe Graph Grammars). Given
GG =

(
CT, ICT

,P
)
a strongly safe graph grammar, where P is a set of actions with

incremental, non-trivially triggered NACs only.

a1 N1 N2q

{{

a2

R1

��

K1

��

oo // L1

n1

OO

pre1 !!

L2

n2

OO

h21

yy
pre2}}

K2oo //

��

R2

H1 D1 e1
//

d1
oo CT

|L1L2
D2oo

Let a1,a2 ∈ P, be in a potential produce-forbid conflict according to the diagram

above, where a1 creates on H1 an element x ∈ N(CT ) ∪ E(CT ) which is the triggering

element of a NAC N2 of a2 for the extended match d1 ◦ h21. This produce-forbid conflict

is:

• concrete: iff (�a3 ∈ P | x ∈ L3 − K3) ∧ (x ≤c a2 ∨ a2 �c x);

• abstract: iff (∃a3 ∈ P | x ∈ L3 − K3) ∧ (a3 �c a2) ∧ (a2 �c a3);

• non existent: otherwise.

�

Similarly to the dependency situation, the produce-forbid conflict can have different

meanings according to the causal relation of its grammar. Nonetheless, oncewe are dealing

with strongly safe grammars and this element is created by one of the actions involved in

the conflict, we do not have to worry about the initial graph. Thus, we need to demonstrate

that:

Theorem 3.28. For each potential produce-forbid in a strongly safe graph grammar,

definition 3.27 correctly classifies these conflicts.

Proof. Given actions a1,a2 ∈ P in a potential produce-forbid conflict and an element

x ∈ CT which is the triggering element of the NAC in this conflict. The following

situations are possible:

Triggering element is related to the action:
Let a2 ≤c x, which means that x was either created by a2 or by another action that must

occur after a2 has been applied. In such a configuration, the produce-forbid conflict is

non existent as the element x can not exist to trigger N2 before the application of a2.
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Now let x ≤c a2, which means that x existed before a2 was applied, which leads to two

possible sub cases:

• Assume that there is no other action a3 which deletes x. In this situation, we have

both that the triggering element x exists before the application of a2 and that x is

never deleted. Therefore, the produce-forbid relation between a1 and a2 is concrete

and we have that the a2 <p f a1.

• Assume that there exists a third action a3 ∈ P which deletes x. This means that,

even though a1 and a2 are in a concrete produce-forbid conflict, this conflict can be

“annulated” by the application of a3, which must then happen before a2. Therefore,

this conflict is non-existent if a3 <c a2, otherwise it is concrete and we have that

a2 <p f a1.

Triggering element is not related to the action:
Let a2 be not related to x in the causal relation.

Suppose that there is no other action a3 which deletes x, then we know for a fact that once

a1 has been applied and x has been created it is no longer possible to apply a2. Therefore,

this produce-forbid relation is concrete and we have that a2 <p f a1.

On the other hand, suppose that there is an action a3 which deletes x (and thus a1 <c a3)

and a3 not related to a2 by the causal relation. In this configuration, we have an abstract

conflict, because a2 can not be applied after a1 has been applied, unless a3 is also

applied before a2, disabling the produce-forbid conflict. This situation depicts an abstract

delete-forbid conflict as we have that either a2 <p f a1 or a3 < a2 are possible. Therefore

(a2,a1,a3) is an abstract conflict.

�

Example 3.29 (Conditional Relations). Consider the strongly safe grammar show in

Figure 3.11 (the core, typed and initial graphs were omitted).

Figure 3.11: Strongly safe grammar GG3

(a) Action a1 (b) Action a2 (c) Action a3 (d) Action a4

The causal relation of this grammar is: a1 ≤c a2,a2 ≤c a4,a1 ≤c a4,a3 ≤c a3.

Without the NACs, any sequentialization where the order a1 < a2 < a4 is maintained

would be valid, such as [a1,a2,a3,a4], [a1,a3,a2,a4], [a3,a1,a2,a4] and [a1,a2,a4,a3].
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However, as this grammar have NACs, the following conditional conflicts and

dependencies have been identified:

• delete-forbids: a4 <df a3 caused by the deletion of #2.

• produce-forbids: a3 <p f a1 caused by creation of #1, and a3 <p f a2 caused by the

creation of #2.

Notice that, despite of the fact that a2 deletes #1, which triggers the NAC of

a3, a2 <df a3 is not a delete-forbid dependency because a2 also creates #2, an element

that still triggers the same NAC. Therefore the transformations when searching for the

dependency between a2 to a3 are not valid.

None of these conflicts or dependencies are concrete, they depend on how the

actions are applied according to the causal relation to exist. This situation is summarized

in Figure 3.12, where the causal relation, the conflicts and dependencies are represented

(without the explicit representation of transitivity and reflexivity). At first, if we are to

consider all the relations as they are calculated by the diagrams themselves, there would be

no possible sequentialization for this actions, denoted by the cycle in the ordering graph.

Figure 3.12: Cycle due to conditional conflicts and dependencies

Regarding the element #1, we have an abstract produce-forbid conflict as a3 can

be applied before a1 creates it or after a2 deletes it. Thus it is possible to apply a3 as

long as it is not applied between a1 and a2. As for the element #2, we have an abstract

produce-forbid conflict as a3 can be applied before a2 creates it or after a4 deletes it.

In fact, we have that the actions of this particular grammar can be executed in any

total ordering of its causal relation a1 ≤c a2,a2 ≤c a4,a1 ≤c a4,a3 ≤c a3 that also respects

the restrictions given by the abstract dependency/conflict tuples (a3,a1,a2) and (a3,a2,a4).

There exist two such sequentializations, namely: [a3,a1,a2,a4] and [a1,a2,a4,a3]. �
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Remark (Abstract Dependencies and Conflicts). The existence of an abstract produce-

forbid conflict, triggered by an element x is always conditioned to the existence of an

action which deletes x. Given an action a1 which creates x, an action a2 whose NAC

forbids x and provided a configuration where a1 was applied before a2, we have that a2

can be applied only after an action a3 which deletes x has been applied. In general, for

each abstract produce-forbid conflict a2 <p f a1 caused by an element x, we have that a2

must be successfully applied before a1 or after an action a j where ai deletes x and ai ≤ a j .

Analogously, for each abstract delete-forbid dependency a1 <df a2 caused by an

element x, we have that a2 must be successfully applied after a1 or before an action a j

where ai creates x and a j ≤ ai. �

There is one last situation that may arise with the addition of NACs in Occurrence

Graph Grammars. Given a strongly safe graph grammar GG =
(
CT, ICT

,P
)
with NACs, if

there is an action ai ∈ P which has a NAC triggered by an element x ∈ ICT , i.e. an element

that is already present in the initial graph, then theremust be an action a j ∈ P which deletes

x and a “mandatory” concrete delete-forbid dependency a j <df ai, otherwise GG can not

be an Occurrence Graph Grammar given that action ai would never be applicable in any

total ordering of actions.

Having the conflicts and dependencies classified as described above, we can now

use these characterizations to extend the original causal relation in order to work with

strongly safe graph grammars with (incremental) NACs. The main idea is that non-

existent conflicts and dependencies can be discarded, while the concrete ones must be

considered together with the causal relation and the abstract ones impose extra restrictions

over the causal and (concrete) produce-forbid and delete-forbid relations.

Definition 3.30 (Occurence Relation). Given a strongly safe grammar GG =
(
CT, ICT

,P
)
,

let ≤df be the set of all its concrete delete-forbids pairs and ≤p f be the set of all its concrete

produce-forbids pairs. Then, its occurrence relation ≤o of (P∪N(CT ) ∪E(CT )) is defined

as the transitive and reflexive closure of ≤c ∪ ≤df ∪ ≤p f . �

Definition 3.31 (Occurence Relation Restrictions). Given a strongly safe grammar

GG =
(
CT, ICT

,P
)
, its occurrence relation restrictions are the sets containing all its ab-

stract produce-forbid conflicts and delete-forbid dependencies. �

Definition 3.32 (Occurrence Graph Grammars). Let GG =
(
CT, ICT

,P
)
be a strongly safe

graph grammar. GG is an occurrence graph grammar with NACs iff:
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1. its occurrence relation ≤o is a partial order such that, for any n ∈ N(CT ), e ∈ E(CT )

such that n = s(e) or n = t(e), and for any p ∈ P, we have that:

• if p ≤o n, then p ≤o e

• if n ≤o p, then e ≤o p;

2. Let Min = {x ∈ N(CT ) ∪ E(CT ) | �y ∈ N(CT ) ∪ E(CT ) • y ≤o x}, and G(Min) =

(N,E, s, t) such that N = Min ∩ N(CT ), E = Min ∩ E(CT ), s = s|E , and t = t|E ;

then ICT
= G(Min);

3. ∀p ∈ P, p satisfies the identification condition;

4. ∀x ∈ N(CT ) ∪ E(CT ), x is consumed by at most one production in P, and it is

created by at most one production in P.

5. ∀pi ∈ P with NAC ni, if the triggering element x of ni is such that x ∈ ICT , then

there must exist another action p j ∈ P which deletes x and p j <df pi must be a

concrete delete-forbid dependency.

6. there is at least one total ordering of the actions a1, . . . ,an ∈ P that respects the

occurrence relation restrictions.

�

As was said in the beginning of this chapter, the idea is that an occurrence graph

grammar is a suitable way to describe the semantics of a graph grammar, in the sense

that it represents both all possible states and changes of states while also being a graph

grammar itself.

Our notion ofOccurrenceGraphGrammar is an extension of that of (CORRADINI;

MONTANARI; ROSSI, 1996). The first four conditions of our definition correspond to

those of the Definition 19 in their work, which assure that it is possible to find a sequence

of actions that respects the order of creation and deletion of elements given by the causal

relation, while extending it to also respect the order imposed by concrete produce-forbids

and delete-forbids of the grammar. In other words, it assures that there is no cycle of

conflicts and dependencies that can prevent the application of the grammar.

The fifth condition works over a specific triggering of NACs which may not be

captured by the delete-forbid and produce-forbid relations, which happens when the trig-

gering element of the NAC of an action already exists in the initial graph. If there is an
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action whose application may be prevented by the existence of an element in the initial

graph, then there must be another action responsible for the deletion of that same element

which in turn must always be executed before the action with the triggered NAC.

The sixth condition deals with the conflicts and dependencies induced by NACs

that do not participate in the concrete relations, thus generating intervals of actions inside

of which specific actions can not be applied. If it is possible to find a total ordering of

actions regarding the occurrence relation which also obeys the set of restrictions, then it

is possible to execute the underlying single typed grammar.

Definition 3.33 (Derivation of an Occurrence Graph Grammar with NACs). Given an

OGG =
(
CT, ICT

, A
)
and a total order s = a1,a2, . . . ,an of all actions in A which respects

the occurrence relation ≤o and the occurrence relation restrictions of OGG, the derivation

of OGG regarding s is given by the diagram below, where each individual transformation

ti : Hi−1
ai,preai
=====⇒ Hi is concrete over the elements of the core graph, as in Definition 3.16.

L1

prea1
��

K1

��

oo // R1

posta1
��

. . .

prea2
~~

postan−1
!!

Ln

prean
}}

Kn

��

oo // Rn

postan
��

ICT
D1oo // H1 . . .oo // Hn−1 Dnoo // FCT

A derivation for an OGG starts at the initial graph ICT and terminates at the final

graph FCT of OGG, and every intermediary graph is a subgraph of the core graph, i.e.

Di ↪−→ CT , Hi ↪−→ CT . �

Thus, an occurrence graph grammar represents a set of computations (derivations),

where each possible total order of actions that is compatible with the occurrence relation

and restrictions leads to one specific derivation. The fact that each Hi is indeed a graph

and that the squares are pushouts was proven in the original definition of occurrence graph

grammars of (CORRADINI; MONTANARI; ROSSI, 1996) (our definition just poses

additional restrictions on possible total orders of actions that may lead to derivations).

Of course, we have to guarantee, additionally, that each preai satisfies the corresponding

NACs. This is shown by the following theorem that also states that any derivation described

by an occurrence graph grammar is indeed a derivation of its underlying graph grammar.

Theorem 3.34. Given a graph grammar GG = (T, IT,P) and an Occurrence Graph

Grammar with NACs OGG =
(
CT, ICT

, A
)
. If we have that:

• ∀a ∈ A, its underlying rule p(a) ∈ P
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• typeC ◦ tT (ICT
) ≡ IT

Then any derivation represented by OGG is a derivation of GG.

Proof. Given a Graph Grammar GG = (T, IT,P) and an Occurrence Graph Grammar

OGG =
(
CT, ICT

, A
)
built from GG. It is possible to construct a derivation of OGG for

any total ordering of A which satisfies the occurrence relation and the occurrence relation

restrictions of OGG.

Let d = ICT a1,pre1
=====⇒ HCT

1
a2,pre2
=====⇒ HCT

2 . . .H
CT

n−1
an,pren
=====⇒ FCT be one of the possible

derivations of OGG. Given the type morphism t : C → T of the core graph and the

type morphism dti : Hi → CT of a CT -double typed graph, it is possible to compose

them in a (simple) type morphism t ◦ dti : Hi → T . Using the resulting family of

(simple) type morphisms obtained by such composition, it is possible to create a diagram

d′ = IT p1,m1
===⇒ HT

1
p2,m2
===⇒ HT

2 . . .H
T
n−1

pn,mn
====⇒ HT

n which has the format of a derivation ofGG.

If the graph grammar GG does not have NACs, the occurrence graph grammar

OGG also does not have NACs, and it holds true that d′ is a derivation of GG, since

it was constructed as given by the original definition of occurrence graph grammars

in (CORRADINI; MONTANARI; ROSSI, 1996).

Thus, we need to show that with the addition of (incremental) NACs in GG, our

extension for the construction of occurrence graph grammars with NACs still guarantees

that the derivation d′ obtained from d is a valid derivation of GG.

Let pi = LT
i ← KT

i → RT
i ∈ P be a rule with an incremental NAC ni : LT

i → NT
i

which participates in the (candidate) derivation d′. Assume that ni is triggered by an

elementi x around the match mi : LT
i → HT

i−1 in the derivation. There are four possible

cases that could lead to this configuration:

1. x ∈ IT and there is no rule which deletes it.

2. x ∈ IT , but the rule pk which deletes it was applied after pi, i.e. pi < pk .

3. x was created by a rule p j applied before pi and there is no other rule which deletes

x, i.e p j < pi.

4. x was created by a rule p j applied before pi and the rule pk which deletes x was

applied after pi, i.e. p j < pi < pk .

The construction of the occurrence graph grammar would identify these problems

as listed below:
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In the first case, the condition which requires the existence of another action p j

responsible for the deletion of x with a concrete delete-forbid dependency p j <df pi

between them would be violated, therefore OGG would not be a valid Occurrence Graph

Grammar.

In the second case, there would be a concrete delete-forbid dependency between

actions ak <df ai, therefore this dependency would be present on the occurrence relation

and any total ordering where ai < ak would not satisfy the OGG constraints.

In the third case, there would be a concrete produce-forbid conflict between actions

ai <p f a j , this conflict would thus be present on the occurrence relation and any total

ordering where a j < ak would not satisfy the OGG constraints.

In the fourth case, there would be an abstract delete-forbid dependency and/or an

abstract produce-forbid conflict denoted by the tuple (ai,a j,ak), which would be included

in the set of occurrence relation restrictions and forbid any total ordering of actions where

a j < ai < ak .

Therefore, given that either of the situations described above would result in a total

ordering of actions in A which does not satisfy the constraints of an Occurrence Graph

Grammar with NACs OGG =
(
CT, ICT

, A
)
, d′ not being a derivation of GG would con-

tradict the fact the d is a derivation of OGG, because it would be based on a total ordering

which does not satisfy the constraints of its underlying Occurrence Graph Grammar.

�

Theorem 3.35. Given a Graph Grammar with NACs GG = (T, IT,P), any derivation of

GG generates an Occurrence Graph Grammar with NACs OGG =
(
CT, ICT

, A
)
.

Proof. Let d = IT p1,m1
===⇒ H1

p2,m2
===⇒ H2 . . .Hn−1

pn,mn
====⇒ Hn be a derivation of GG. We

have that d provides a total order of rule applications or actions. Therefore, if we

calculate the colimit of the diagram defined by derivation d, as defined in (CORRADINI;

MONTANARI; ROSSI, 1996), the result is a graph CT containing all the elements ever

used in that derivation. This colimit also identifies the common elements among the rules

and initial (and final) graph. Thus, the colimit object CT is also a core graph.

Given the rules p1, p2, . . . , pn used in the derivation, if we consider their mor-

phisms to CT as typing morphisms, we arive at a set of double-typed graph rules

A = (a1,a2, . . . ,an) over CT . Similarly, if we consider the morphism from the initial

graph IT to the colimit as a typing morphism, we arive at a double-typed graph ICT . Thus,

the grammar defined by OGG = (CT, ICT
, A) is in fact a strongly safe graph grammar,

therefore a candidate to be an occurrence graph grammar with NACs.
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We now have to prove that (1) the occurrence relation ≤o underlying OGG is a

partial order and that (2) there is at least one total ordering of ≤o which also respects the

occurrence relation restrictions generated by the analysis of conflicts and dependencies

induced by NACs in OGG.

If we use the same order of actions in A given by the application of their corre-

spondent graph rules from P in the derivation d, we have a total order <o which allows

the application of all actions in A, thus ≤o must be a partial order.

As for the occurrence relation restrictions, we have at least one total order which

satisfies them, also given the same order of rules application in d. If this order did not

satisfy these restrictions, then there would be at least one triggered NAC disabling a

transformation in d, therefore d would not be a valid derivation. �

Thus, we conclude that the set of occurrence graph grammars that can be built

from the derivations of a graph grammar describe exactly all derivations (computations)

of this grammar and can be regarded as its semantics.

Definition 3.36 (Semantics of a Graph Grammar). Given a Graph Grammar

GG = (TG, I,P) the semantics of GG is described by the set of OGGs corresponding

to its derivations. �
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4 VERIGRAPH TOOL OVERVIEW

Verigraph (BEZERRA et al., 2017) is a new tool for simulating and analizing graph

grammars implemented in Haskell1, a purely functional programming language. The tool

is being developed by the Verites group2 with two particular aims. The first one is to build

a software tool that serves as an implementation of standard constructions and analysis for

graph grammars, while also being as closely related to the theory as possible. The second,

to provide a framework for exploring new ideas and techniques in graph grammars and

other category theory related topics (BEZERRA; RIBEIRO, 2016; COSTA et al., 2016;

COSTA; MACHADO; RIBEIRO, 2016; BECKER, 2014).

Regarding category theory, Verigraph implements important basic constructions

such as coequalizers, coproducts, colimits, pushout complements, initial pushouts, pull-

backs, negative application conditions, constraints, among others. The implementation of

these constructions follows a very similar approach to the one used in (RYDEHEARD;

BURSTALL, 1988), where categorial concepts are implemented as types in the ML pro-

gramming language and constructive proofs of theorems in category theory are built as

ML programs.

The implemented categorial constructions are used as a basis to implement

several graph grammar analyses, such as critical pair analysis (LAMBERS; EHRIG;

OREJAS, 2006), state space generation and model checking (BECKER, 2014), concur-

rent rules generation (BEZERRA; RIBEIRO, 2016) and higher-order graph transforma-

tions (MACHADO; RIBEIRO; HECKEL, 2015). They were also used to implement the

construction of occurrence graph grammars with NACs explained in depth in Chapter 3.

The analysis algorithms are implemented in a generic functional style, having the

advantage of being closely related to the formal definitions, thus making it easier to reason

about them and to inspect for correctness. In addition, Verigraph benefits from a layered

architecture, shown on Figure 4.1, where it is easy to reuse the same analysis algorithms

(top layer) for other categories different than TGraphT (bottom layer), as long as they

implement the contracts given by the type classes (middle layer) defined on the system.

Examples of these type classes are shown on Figures 4.2 and 4.3. To implement the

constructions defined in this work, it sufficed to add the module OcurrenceGrammar

which reused the already existing categories and analysis algorithms present in other

modules.

1The source code is available at <https://github.com/Verites/verigraph>
2<http://www.ufrgs.br/verites>

https://github.com/Verites/verigraph
http://www.ufrgs.br/verites
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Figure 4.1: Verigraph architecture

There are tools for analysing graph grammars which are similar to Verigraph in

some aspects, such as AGG (TAENTZER, 2000) and GROOVE (RENSINK, 2004). Re-

cently, (DECKWERTH, 2016) introduced a Java framework for static verification of graph

transformations also based in category theory. However, to our knowledge, Verigraph is

the only tool that integrates static and dynamic analyses, second-order specifications and

provides support for new categorial constructions and algorithms, besides being the only

tool in this field implemented in a pure functional language (COSTA et al., 2016). More-

over, Verigraph is a free and open source software, available online for the community in

one of the biggest platforms for software repositories currently available. In addition to

it, not only its source code, but also its roadmap is public and open to suggestions and

collaborations from outside the Verites group.

In the next sections of this chapter, we demonstrate basic aspects of Verigraph im-

plementation. First we present general categorial constructions which are the basic foun-

dations of the tool; then we provide details about the implementation of concrete objects

and categories, specifically focusing on TGraphT; after, we present the implementation

of some analysis algorithms and show how they can be reused by other categories.
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4.1 Implementation of Categorial Constructions

The first basic type class in Verigraph is Morphism, shown in Figure 4.2, which

serves as the minimal contract for any category to be implemented in the tool. Notice how

the contract of this type class reflects the category definition (see Definition A.1).

Figure 4.2: Morphism Type Class

1 class (Eq m) => Morphism m where
2 type Obj m :: *
3 compose :: m -> m -> m
4 domain :: m -> Obj m
5 codomain :: m -> Obj m
6 id :: Obj m -> m
7 isMonomorphism :: m -> Bool
8 isEpimorphism :: m -> Bool
9 isIsomorphism :: m -> Bool

All the other type classes in the tool that are related to category theory are somehow

defined in terms of Morphism. For example, the Cocomplete type class shown in

Figure 4.3 defines some of the most basic categorial constructions used in Verigraph, such

as coequalizers, coproducts and pushouts.

Notice that in the Cocomplete definition any category that implements the

functionscalculateCoequalizer andcalculateCoproduct automatically has

a standard implementation of the calculatePushout function based only on these

two constructions. This is due to the fact that, whenever a category has coequalizers

and coproducts, it is possible to calculate any (finite) colimit based only on these two

constructions, as demonstrated in (PIERCE, 1991).

We took advantage of this result to implement not only thecalculatePushout,

but also the calculation of the colimit of a diagram. The later being used in the

generation of occurrence graph grammars as is shown in chapter 5.

Another interesting characteristic of the Morphism type class is that, even

though pushouts and colimits are implemented in terms of coproducts and

coequalizers, the programmer can override the default implementation and provide

his/her own (categorial specific) implementation. This could be useful, for example, when

for a given category C, a particular algorithm to calculate the pushout is known to be more

optimized than using the composition of basic operations.

In addition to Morphism, Verigraph has several other important type classes,
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Figure 4.3: Cocomplete Type Class
1 class (Morphism m) => Cocomplete m where
2 calculateCoequalizer :: m -> m -> m
3 calculateNCoequalizer :: NonEmpty m -> m
4 calculateCoproduct :: Obj m -> Obj m -> (m,m)
5 calculateNCoproduct :: NonEmpty (Obj m) -> [m]
6

7 calculatePushout :: m -> m -> (m, m)
8 calculatePushout f g = (f', g')
9 where

10 b = codomain f
11 c = codomain g
12 (b',c') = calculateCoproduct b c
13 gc' = compose g c'
14 fb' = compose f b'
15 h = calculateCoequalizer fb' gc'
16 g' = compose b' h
17 f' = compose c' h

some examples are:

• FindMorphism for finding morphisms between objects of a category;

• AdhesiveHLR for operations that AdhesiveHLR categories (e.g. TGraphT) are

guaranteed to have, such as calculating initial pushouts and pushout complements

(when they exist);

• DPO for operations related to DPO graph rewriting approach, such as inversion of

rules.

As for the concrete categories used, currently there are three specific implemen-

tations in Verigraph. Besides Graph and TGraphT, which were reviewed on chapter 2,

there is also an implementation of TSpanT, where we have T−typed graph morphism

spans are objects and span morphisms are arrows or, from a more concrete perspective,

DPO graph rules as objects and morphisms between rules as arrows.

4.2 Implementation of Graph Grammars

The main concrete structures in Verigraph are (typed) graph grammars, which is

currently the focus of the Verites group. The basic implementation begins with the Graph

type, which consists of a list of nodes and a list of edges together with an API for graph

manipulation with basic functions.
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The Graph definition on Haskell is show on Figure 4.4. The Graph API is not

shown, but it includes basic graph operations such as insertNode, insertEdge,

removeNode, removeEdge, incomingEdges, outgoinEdges, sourceOf,

targetOf, among others.

Figure 4.4: Graph implementation

1 data Node a = Node
2 { getNodePayload :: Maybe a
3 }
4

5 data Edge a = Edge
6 { getSource :: NodeId
7 , getTarget :: NodeId
8 , getEdgePayload :: Maybe a
9 }
10

11 data Graph a b = Graph
12 { nodeMap :: [(NodeId, Node a)]
13 , edgeMap :: [(EdgeId, Edge b)]
14 }

We use Graph to progressively build the morphisms necessary to implement the

categories Graph, TGraphT and TSpanT. A graph morphism consists of a graph as

domain, a graph as codomain and relations that map the nodes and edges in the domain

graph to the ones in the codomain one. A typed graph is regarded as a simple graph

morphism and a typed graph morphism consists of a typed graph as domain, a typed graph

as codomain and a graph morphism relating the two of them.

Figure 4.5 shows all categories currently implemented in Verigraph based on their

morphisms. Moreover, all concrete morphisms presented implement the Morphism type

class. Figure 4.6 shows how TypedGraphMorphism implements Morphism type

class in order to provide the TGraphT category.

Similar implementations were done for GraphMorphism and RuleMorphism.

4.3 Implementation of the Analysis Algorithms

The analysis algorithms are also implemented at a high level of abstraction, based

on categorial definitions and their implementation as type classes. For example, the code

for calculating conflicts or dependencies between two rules was first implemented for
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Figure 4.5: Basic concrete morphisms of Verigraph.

1 data GraphMorphism a b = GraphMorphism
2 { getDomain :: Graph a b
3 , getCodomain :: Graph a b
4 , nodeRelation :: R.Relation G.NodeId
5 , edgeRelation :: R.Relation G.EdgeId
6 }
7

8 type TypedGraph a b = GraphMorphism a b
9

10 data TypedGraphMorphism a b = TypedGraphMorphism
11 { getDomain :: TypedGraph a b
12 , getCodomain :: TypedGraph a b
13 , mapping :: GraphMorphism a b
14 }
15

16 data RuleMorphism a b = RuleMorphism
17 { rmDomain :: Production (TypedGraphMorphism a b)
18 , rmCodomain :: Production (TypedGraphMorphism a b)
19 , mappingLeft :: TypedGraphMorphism a b
20 , mappingInterface :: TypedGraphMorphism a b
21 , mappingRight :: TypedGraphMorphism a b
22 }

Figure 4.6: Typed graph morphism implementing morphism type class.

1 instance Morphism (TypedGraphMorphism a b) where
2 type Obj (TypedGraphMorphism a b) = TypedGraph a b
3 domain = getDomain
4 codomain = getCodomain
5 compose t1 t2 = TypedGraphMorphism (domain t1) (codomain t2) $

compose (mapping t1) (mapping t2)↪→

6 id t = TypedGraphMorphism t t (M.id $ domain t)
7 isMonomorphism = isMonomorphism . mapping
8 isEpimorphism = isEpimorphism . mapping
9 isIsomorphism = isIsomorphism . mapping

TGraphT, but since it is based on the abstraction of DPO type class this piece of code can

be reused by any other category implementing the DPO contract.

Furthermore, Figure 4.7 shows a piece of code with functions responsible for

testing whether an overlapping pair of two rules rises a conflict or a dependency for

one of those rules. Notice how this code resembles the definitions of delete-use conflict

(Definition 2.18) and produce-use dependency (Definition 2.16).

As an example of its application at other categories we have TSpanT, which also
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Figure 4.7: Delete-Use and Produce-Use Implementation

1 -- | Rule @p1@ is in a delete-use conflict with @p2@ if @p1@
deletes something that is used by @p2@. This function
verifies the non existence of h21: L2 -> D1 such that d1 .
h21 = m2

↪→

↪→

↪→

2 isDeleteUse :: (DPO m) => Production m -> (m, m) -> Bool
3 isDeleteUse p1 (m1,m2) = null h21
4 where
5 --gets only the morphism d1 from D1 to G
6 (_,d1) = calculatePushoutComplement m1 (getLHS p1)
7 h21 = findAllPossibleH21 m2 d1
8

9 isProduceUse :: (DPO m) => Production m -> (m, m) -> Bool
10 isProduceUse p1 (m1',m2) = null h21
11 where
12 --gets only the morphism d1 from D1 to G
13 (_,e1) = calculatePushoutComplement m1' (getRHS p1)
14 h21 = findAllPossibleH21 m2 e1

implements the DPO type class and benefits from the same algorithms for finding conflicts

and dependencies. This also can be used for different categories based on graphs, algebras,

logics and so on.

Besides basic categorial constructions and several analysis techniques for graph

grammars, Verigraph was also used to implement the construction of Occurrence Graph

Grammars and the relations presented in Chapter 3. This construction is presented in

more detail in the following chapter.
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5 CONSTRUCTION OF OCCURRENCE GRAPH GRAMMARS WITH NACS

In this chapter, we present the process of constructing Occurrence Graph Gram-

mars with NACs (OGGs) in a systematic manner and how this process was implemented in

Verigraph. We make use of some example grammars in order to illustrate the explanation.

We also applied this process in more complex graph grammars: One of the grammars

models the system of a restaurant, with functionalities such as login of employees, reser-

vation and cancellation of tables, accommodation of clients, serving tables, among others.

Another models the system of an e-Store, with functionalities such as browse and search

catalogue, registration of clients, login, maintain shopping cart, effectuate purchase, etc.

The grammars, their textual specifications (use cases), together with their generated OGGs

can be found at the Verites repository for case studies1.

Our first example is the Mail Server Graph Grammar presented on Chapter 2,

which are reintroduced. Then we proceed to the explanation of the necessary steps to

build an Occurrence Graph Grammar according to the definitions presented on Chapter 3.

Our second example is a Traffic-Light Graph Grammar, which is introduced later on this

chapter and also used to explain the process of constructing an OGG. The implementation

of this process in Verigraph is also part of this work contribution, as Verigraph is the first

tool in the field to implement the construction of Occurrence Graph Grammars for general

Graph Grammars, even when considering OGGs without NACs. As a possible practical

application of this, at the end of the chapter, we provide some insight about how OGGs

can be used to generate test cases for the system they model.

Example 5.1. The grammar used here illustrates a mail server scenario for a simple e-mail

application composed of four rules, which are described in the following and depicted in

Figure 5.1. In order to better present the ideas of this chapter in terms of its implementation,

we use the rules in the format provided by AGG (TAENTZER, 2000), which is also the

format used as input and output by Verigraph. This format depicts the LHS and RHS

graphs of rules, but does not explicitly show the interface graph, which can be inferred by

identification numbers correlating items of LHS and RHS.

(a) Send message: a client writes a message which they send to a server, however there

is a NAC forbidding the message of being sent if it has a piece of data attached to it.

(b) Get data: a piece of data is obtained from a server and attached to a message.

1https://github.com/Verites/case-studies
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(c) Receive message: a server sends a message with attached data to a client.

(d) Delete message: a client obtains a piece of data from a received message and this

message is destroyed.

�

Figure 5.1: Rules for a mail server application

(a) Rule send message

(b) Rule get data

(c) Rule receive message

(d) Rule delete message



71

5.1 Selecting a Computation of GG

In this work we defined only deterministic Occurrence Graph Grammars (OGGs)

with NACs, and therefore, in contrast to (RIBEIRO, 1996), where the semantics of a Graph

Grammar is represented by only one (non-deterministic) Occurrence Graph Grammar,

here we need a set of Occurrence Graph Grammars to represent the behaviour of a Graph

Grammar. Nevertheless, this set is usually much smaller than the set of all derivations of a

Graph Grammar since each OGG represents a (shift-)equivalent set of derivations, that is,

a set of derivations that are equivalent with respect to switching the order of independent

steps. In the following we describe how to construct one OGG, the complete behaviour of

a GG would be described by the (possibly infinite) set of OGGs that can be constructed

with the rules of the underlying GG. Note that, even in the case of (RIBEIRO, 1996),

where the semantics was described by only one OGG, this structure may be infinite in the

case the system has the possibility of a non-terminating computation.

Thus, in order to construct an Occurrence Graph Grammar OGG for a graph

grammarGG = (TG, I,P), we need (1) a collection2 of rules F based on P, which represent

the rules that are applied in the computation depicted by the OGG, and (2) a way of

specifying how the rules in F interact among themselves. The latter is needed to define

which elements are common throughout the rules. To this purpose, we use an input-output

relation, depicting connections between the rules in F. The objects in this relation identify

which elements must be the same between pairs of rules. This construction is similar to

the construction of concurrent rules in AGG. The difference is that instead of building a

rule, the result of our construction is an OGG, i.e., represents a computation.

Definition 5.2 (Input-Output Relation). Given a collection F of rules, an input-output

relation IO over F is a set of typed-graph morphism spans of the form Rx ← IOi → Ly

each of which connects two distinct rules x, y ∈ F. �

The IOi object of each span works similarly to the gluing graph K of a rule, but

instead of identifying elements that are the same in both left and right sides of a single

rule, it identifies elements that are necessarily the same between the right and left sides

of two different rules. An input-output relation for a collection of rules has an appearance

similar (but not necessarily equal) to the following diagram, where there are several IO

objects connecting the right-hand side of a rule with the left-hand side of another one.

2We use the term collection instead of set because, in this case, a rule can appear more than once since
each rule in F represents the application of a rule in P.
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IO6

%%yy

IO3

�� ((

IO4

��vv

IO1

�� !!

IO5

((vv

IO2

��}}
L1 K1oo // R1 L2 K2oo // R2 L3 K3oo // R3

Remark. We could have also included in the IO relation a type of span that also connects

only the left (resp. right) sides of rules together, however we would accomplish very

little with this kind of span. Given that we are looking for Occurrence Graph Grammars,

where the exact same element can not be deleted or created by two different rules, this

particular kind of span would serve only to identify elements that are preserved by both

rules, otherwise they would introduce inconsistencies, therefore preventing the creation of

OGGs. �

Example 5.3 (Input-Output Relations). Figure 5.2 shows one possible IO relation for our

running example. Notice that the elements which should be the same in both rules have

the same prefix number in their identification. The first IO object connects the rules send

message and get data. In this case, we want the server, the message and the connection

between them to be the same in both rules.

As a side note, the reader may notice that it is not mandatory to create an IO

span
(
Rx ← IOi → Ly

)
for every pair of rules. For example, consider that we want to

analyse a scenario where the server node is unique. Given rules get data and receive

message, we have the options of building the span that identifies the server node as

RsendMsg ← IOn → LreceiveMsg or RreceiveMsg ← IOm → LsendMsg, or even combining

the two of them. Any option would result in the same final effect: both rules use the same

server. �

Currently, the generation of the input-output relation is a manual step in our

strategy, therefore the analyst needs to decide how to better implement his/her own IO

relation. This has not shown to be a problem, as in our analysis we usually wanted to

restrict the number of possible combinations to more realistic cases. However, its fully

automation has been scheduled as future work.
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Figure 5.2: A basic Input-Output relation building

5.2 Constructing the OGG

Having GG, the graph grammar model of the system; F, a collection of rules;

and IO, an input-output relation, we proceed to the construction of an occurrence graph

grammar for GG accomplished by means of an amalgamation of F over its input-output

relation IO. This amalgamation is later used in the construction of a doubly-typed

graph grammar, which we then check to verify whether it satisfies the conditions to be

an occurrence grammar. The construction steps are specified in Definition 5.4, which

is an adaptation of the construction of an occurrence graph grammar without NACs

from (CORRADINI; MONTANARI; ROSSI, 1996).

Definition 5.4 (Deterministic Occurrence Graph Grammar Construction). Given a gram-

mar GG = (TG, I,P), F a collection of rules from P, and IO and input-output relation

over the rules in F:

1. calculate the amalgamation (colimit) Occ of the rules in F with respect to IO as

presented in the following diagram, where all squares commute.
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2. retype the rules in F over Occ: use each morphism found from each Li,Ki,Ri to

Occ as their respective new typing morphism. This step generates a set F′ of

doubly-typed graph rules, given that Occ is a TG-typed graph itself.

3. calculate the causal relation ≤c of the doubly-typed graph rules in F′ and verify

whether it is a partial order.

4. generate the initial and final graphs I and J by respectively deleting from Occ all

elements ever created and deleted by the rules in F′.

5. calculate and categorize the produce-forbid conflicts and delete-forbid dependencies

according to definitions 3.25 and 3.27.

(a) use the concrete conflicts and dependencies to extend the causal relation in

order to obtain the occurrence relation ≤o.

(b) use the abstract conflicts and dependencies to generate the set R of restrictions

over the ordering of rules applicability.

6. find one or more total orderings of rules in F′ which respects both the occurrence

relation and the occurrence restrictions.

�
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If all the steps in such a construction can be successfully executed, specially steps 4

and 6, we have that OGG = (Occ, I,F′) is not only a doubly-typed graph grammar, but

also a deterministic occurrence graph grammar.

The first step of the construction, the amalgamation of rules in F w.r.t. IO, is

responsible for “gluing” the graphs of all rules in one typed graph Occ, while identifying

the items that are meant to be the same throughout the grammar execution. This can be

regarded as a mapping which turns generic elements such as a user into concrete elements

such as the user named Bob. It also discriminates these elements, for instance: the user

Bob is different from the user Alice. Therefore, at the end of this step, Occ contains

all concrete elements ever to be created, preserved or deleted by any of the rules in the

collection F. Figure 5.3 shows the amalgamation of an F containing one copy of each

rule in our example grammar w.r.t. the IO relation depicted on Figure 5.2.

Figure 5.3: Amalgamation (colimit) of rules according to the basic IO relation.

The retyping step is responsible for generating actions: “new” graph rules

which, rather than being generic descriptions of system transformations, represent con-

crete executions of the original rules over a given context. Therefore, a rule which

describes the process where a user receives from the server a message sent by an-

other3 user becomes a concrete action where Alice receives the message sent by Bob.

For each graph rule pTG
i =

(
LTG

i ← KTG
i → RTG

i

)
∈ F, we generate a new action

qOcc
i =

(
LOcc

i ← KOcc
i → ROcc

i

)
∈ F′, where the typing morphisms are those from the

original rules in F to the colimit graph Occ. Since Occ is the type graph of the new rules

and, at the same time, a typed graph over TG, the actions are now doubly-typed rules over

OccTGT . Figure 5.4 shows the actions generated for our running example4.

3Notice that the original graph grammar does not specify that the sender must be different from the
receiver, therefore we would be able to choose a computation where they are the same user.

4Since we use AGG as our form of output visualization and it was not intended to provide support
for doubly-typed graph grammars, the NACs of our actions can not be properly seen, however they are
maintained and used in Verigraph internal format.
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Figure 5.4: The set of actions generated w.r.t. our basic IO relation

(a) Rule send message

(b) Rule get data

(c) Rule receive message

(d) Rule delete message

Once the set F′ of actionswas created, we proceed to calculating the causal relation,

as described in Definition 3.18. This relation is the very first indicative of whether it is

possible to construct an occurrence graph grammar for the given collection of rules.

Remember that this relation must be a partial order, otherwise the totality of rules in F

are not executable. Specifically, the causal relation gives us hints over the order in which

the actions must be performed to accomplish the functionality aims, for example: Bob

must sent the message to the server before it reaches Alice. The occurrence relation of

our example is [getData < deleteMsg, getData < receiveMsg, receiveMsg < deleteMsg,

sendMsg < deleteMsg, sendMsg < getData, sendMsg < receiveMsg]. It is also easy to see

that this relation is a partial order. In fact, there is only one possible total order derived

from it: [sendMsg < getData < receiveMsg < deleteMsg].
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The next step consists of using the causal relation and the graph Occ in order to

generate the initial and final graphs of our target grammar. These graphs correspond to

the necessary input and expected output of performing F in a minimal context. In order to

create the graphs, we delete from Occ the elements that are created (resp. deleted) by the

rules in F′ according to the causal relation. For example: Alice is a person who can never

be created by any action of our system, no matter how advanced. As a consequence she

must be present in any initial states of the actions performed with her. The message sent

by Bob is never created by any action either, hence it must be present in the initial graph.

However, it is deleted by the action deleteMsg, so it must not appear in the final graph.

Figure 5.5: Instance graphs

(a) Initial graph (b) Final graph

In general, after simply deleting those elements from Occ, the result may be that

either Initial or Final graphs are not valid, in the case that any source or target node of an

edge is deleted, but not the edge itself. This means that the execution of F would need to

begin in or lead to an inconsistent state, therefore no sequencing of actions in F could be

performed in a real execution. However, if they are indeed valid graphs, as they are in our

example, we have just found the initial and final (minimal) states of the system regarding

the execution of all rules in F.

Notice that, if the steps listed so far (1 to 4) were able to be successfully performed,

we have a grammar OGG = (Occ, I,F′) that is not only doubly-typed, but also strongly

safe in the sense of Definition 3.16. Therefore it is a candidate to be an occurrence graph

grammar.

In step 5, we proceed towards creating the occurrence relation and occurrence

relation restrictions. In 5a, we calculate all produce-forbid conflicts and delete-forbid

dependencies between the rules in F′ by using the categorial algorithms presented in Def-

initions 3.25 and 3.27. Initially, we do not know whether these conflicts and dependencies

are exercised during the execution of the underlying grammar.

In our example, we find one conflict and one dependency induced by NACs. The
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first is a produce-forbid between getData and sendMsg regarding the creation of the

attachment between the piece of data and the message in getData, which is forbidden

by the NAC of sendMsg. The second, a delete-forbid between deleteMsg and sendMsg,

regarding the deletion of that same attachment. Given the information collected so far we

can deduce whether any of these conditions exists in the local context. Hence, we use

the information acquired in previous steps to classify those conflicts and dependencies as

concrete, abstract or non-existent as specified in Definitions 3.25 and 3.27.

In this particular case we already know, by looking at the causal relation, that

sendMsg must be executed before getData, therefore the later action can never trigger the

NAC of an action that occurs before it, and this conflict is non-existent. Similarly, for the

delete-forbid, as we know that the condition that triggers the NAC of sendMsg does not

exist prior to any possible of its executions, it is not necessary for deleteMsg to remove the

element triggering the NAC, therefore this dependency is also non-existent.

The occurrence relation ≤o is then calculated from the causal relation together with

the concrete conflicts and dependencies. In step 5b we create the set Ri of restrictions as

the union of all abstract conflicts and dependencies calculated before. In our example,

since no concrete conflicts or dependencies were found, the occurrence relation remains

equal to the causal relation. As for the set of restrictions, since no abstract conflicts or

dependencies were found, it remains empty.

Finally, we have the strongly safe grammar OGG together with its corresponding

occurrence relation ≤o and a set of restrictions R. As it was shown, if ≤o is a partial

order and it is possible to find a total ordering of it that respects all restrictions in R,

it follows that OGG is an occurrence graph grammar according to Definition 3.32.

In our previous example, no situation with abstract conflicts or dependencies was

found. This grammar and the particular execution chosen have a causal relation which

forces a sequencing of actions that avoids the existence of abstract conflicts/dependencies.

In our case studies, this situation has shown to be very common in graph grammars ex-

tracted from use cases, where there are clear steps that must be followed in a specific order

to accomplish the completion of a functionality. Nonetheless, in graph grammars that

model systems with higher parallelism or concurrency, situations with abstract conflict-

s/dependencies have shown to arise more often. We now introduce another graph grammar

example with more independent rules to illustrate the construction of an occurrence graph

grammar with NACs which has a non-empty set of restrictions.
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Example 5.5. This graph grammar models a common traffic situation, where a pedestrian

crosses or not a street according to the state of a traffic light. The grammar is depicted in

Figure 5.6 while its rules are summarized as follows:

(b) walk: a pedestrian is on a sidewalk and crosses the street to be on another sidewalk,

however they can not do so if there is a closed traffic light.

(c) open: turns a closed traffic light into an open one.

(d) close: turns an open traffic light into a closed one.

�

Figure 5.6: Graph Grammar of the Traffic System

(a) Type Graph of the Grammar

(b) Rule walk

(c) Rule open (d) Rule close

As before, to begin the construction of the occurrence graph grammar with NACs

from our graph grammar, we need a collection of rules and an input-output relation. The

chosen collection consists of one copy of each rule in the original grammar. The IO
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Figure 5.7: Input output relation for the traffic graph grammar

relation is also very simple: it only identifies the traffic lights and the edges that represent

they are closed in rules close and open. The relation is depicted on Figure 5.7.

The first step in the construction, the amalgamation of rules, results in the core

graph depicted in Figure 5.8. Notice that, differently from the type graph in Figure 5.6a, it

has concrete elements, a generic pedestrian is now Jane, there are two specific sidewalks

which are connected by the Avenue B, etc.

Figure 5.8: Amalgamation (colimit) of rules for the traffic grammar example.

The second step retypes the rules generating the actions depicted in Figure 5.9.

Once again, NACs are not shown due to limitations with AGG format compatibility for

double-typed graph grammars.

The third step is to calculate the causal relation. For this particular execution of

the grammar it consists of the set cointaining only the pair close < open. Therefore, in

this context, the traffic light must be closed before it opens and, so far, the action walk

does not relate to any of the others. This relation is a partial order, given that there are

multiple options of total orderings which respect this relation: [walk < close < open],

[close < walk < open] and [close < open < walk].

After calcultating the causal relation, we construct the Initial and Final graphs

obtained by deletion of elements created (resp. deleted) by the actions in the core graph.

The graphs for this execution are shown in Figure 5.10.

The characterization of conflicts and dependencies is where the behaviour of this

graph grammar greatly differs from our previous example. There is one potential produce-
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Figure 5.9: The set of actions generated for the traffic graph grammar.

(a) Action walk

(b) Action open

(c) Action close

Figure 5.10: Instance graphs for the traffic grammar

(a) Initial graph (b) Final graph

forbid conflict between actions close and walk and one potential delete-forbid dependency

between actions open and walk. Both the conflict and the dependency act over the same

triggering element, the closed edge in the NAC of action walk. This element is not present

in the Initial graph, as it is created by action close. Also, the element is not (causally)

related to action walk, given that the actions which create and delete it are themselves not

related to that action. It is easy to see that the action walk can either occur before action

close or after action open, but never in between them, because Janemust not cross Avenue

B while the traffic light is closed. Therefore, we have an abstract produce-forbid conflict

as well as an abstract delete-forbid dependency which, in this case, are both denoted by the
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tuple (walk, close,open). Moreover, as there are no concrete conflicts and dependencies

induced by NACs, the occurrence relation remains equal to the causal relation.

Finally, we have to find at least one total ordering of the actions respecting both the

occurrence relation ≤o = [close <o open] and the set of occurrence relation restrictions

R = (walk, close,open). In fact, there are two such orderings: [walk < close < open]

and [close < open < walk]. Therefore, the strongly safe graph grammar constructed

from this graph grammar execution is also an occurrence graph grammar with NACs.

5.3 Generating Test Cases

Occurrence Graph Grammars may be used to generate a set of tests for a Graph

Grammar. The process of constructing an occurrence graph grammarmay provide insights

for tests even when it fails. In the case where OGGs are found, we have test cases for

successful executions of the system under modelling and conditions under which the

system should execute. In the case where OGGs are not found, we have test cases for

executions where the system must always fail.

We use the occurrence relation and the set of abstract restrictions as test oracles, to

define the acceptance of tests: any path that complies with the format imposed by them is

considered valid and must always succeed. On the other hand, paths that break at least one

of such restrictions are considered invalid, and their corresponding test cases must always

capture them as failures.

The tests are represented by the concrete orderings of the rules execution, orderings

of elements creation/deletion, and by the initial and final graphs. An ordering of rules

is one of (possibly) many valid orders in which the rules can be applied according to

the occurrence relation. An ordering of elements represents an ordering in which the

state of the system may be constructed, whereas the initial and final graphs translate the

valid/necessary data for the input and output of each test. More specific usability details

can be found on the Verigraph tutorial at <https://github.com/Verites/verigraph-tutorial/

releases>.

The output of Verigraph for an OGG creation and its test case generation is shown

in Figure 5.11. On the first figure, Verigraph performs the basic verifications to check

whether the generated output is, in fact, an occurrence grammar.

The analysis file contains a summary of the results for calculation of conflicts

and dependencies among rules and among elements. For example: which conflicts and

https://github.com/Verites/verigraph-tutorial/releases
https://github.com/Verites/verigraph-tutorial/releases
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Figure 5.11: Tool command line output

1 Testing Serialization:
2 [OK] Unique creations and deletions
3 [OK] Initial graph is valid
4 [OK] Final graph is valid
5 [OK] Concrete occurrence relation is a total order
6 [OK] Concrete elements relation is a total order
7 [WARN] There are abstract restrictions
8 Analysis written in ogg_execution_analysis
9 Test cases written in ogg_execution_test_cases

10 Doubly-typed grammar saved in ogg_execution.ggx

dependencies were found; for the conflicts and dependencies induced by NACs which are

the triggering elements of each NAC; the causal relation between elements and actions

that created/deleted them, etc. Figure 5.12 depicts the content of the analysis file for our

traffic example.

Figure 5.12: Analysis file content

1 Conflicts and Dependencies:
2 [
3 Interaction {firstRule = "close", secondRule = "walk",

interactionType = ProduceForbid, nacInvolved = Just 0},↪→

4 Interaction {firstRule = "close", secondRule = "open",
interactionType = ProduceUse, nacInvolved = Nothing},↪→

5 Interaction {firstRule = "open", secondRule = "walk",
interactionType = DeleteForbid, nacInvolved = Just 0}↪→

6 ]
7

8 Creation and Deletion Relation:
9 [

10 (Edge 1,Rule "open"),(Edge 4,Rule "walk"),(Rule "close",Edge
1),(Rule "walk",Edge 7)↪→

11 ]
12

13 Conflicts and dependencies induced by NACs:
14 [
15 (Interaction {firstRule = "close", secondRule = "walk",

interactionType = ProduceForbid, nacInvolved = Just
0},Edge 1),

↪→

↪→

16 (Interaction {firstRule = "open", secondRule = "walk",
interactionType = DeleteForbid, nacInvolved = Just 0},Edge
1)

↪→

↪→

17 ]

The test cases file contains information we consider relevant to a test designer,
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such as the rules and elements involved in that particular execution of the graph grammar

represented by the occurrence graph grammar, as well as the occurrence relation, a total

ordering of rules application (if found) and the set of restrictions (if found). Figure 5.13

presents the content of the test cases files for our traffic example.

Figure 5.13: Test cases file content

1 Rules involved:
2 [Rule "close",Rule "open",Rule "walk"]
3

4 Concrete Rules Relation:
5 [(Rule "close" < Rule "open")]
6

7 Elements involved:
8 [Node 1,Node 7,Node 8,Node 9,Edge 1,Edge 3,Edge 4,Edge 7]
9

10 Elements Relation:
11 [(Edge 4 < Edge 7)]
12

13 Rules Ordering: Just [Rule "close",Rule "open",Rule "walk"]
14

15 Elements Ordering: Just [Node 1,Node 7,Node 8,Node 9,Edge 1,Edge
3,Edge 4,Edge 7]↪→

16

17 Set of Abstract Restrictions:
18 [
19 (AbstractProduceForbid: Rule "walk" must not occur between

[Rule "close" < Rule "open"]),↪→

20 (AbstractDeleteForbid: Rule "walk" must not occur between
[Rule "close" < Rule "open"])↪→

21 ]

Finally, the .ggx file presents a translation of the constructed occurrence graph

grammar from Verigraph format to AGG format in order to support the OGG graphical

visualization. It contains its actions (without NACs), initial and final graphs and core graph

(which assumes the role of the type-graph in AGG) as shown in the previous section.
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6 RELATEDWORK

We proposed a new semantical model for Graph Grammars with Negative Appli-

cation Conditions based on unfoldings (Occurrence Graph Grammars). It relies on and

extends previous work that defined the semantics of Graph Grammars as one unfolding

structure (describing a non-deterministic computation) or as a set of unfolding structures

(describing a set of deterministic computations). The main difference is that our approach

considers Negative Application Conditions, that were not tackled by any of the existing

approaches.

6.1 Semantics of Graph Grammars

6.1.1 Unfolding Semantics

Unfolding techniqueswere initially proposed for Petri Nets (NIELSEN; PLOTKIN;

WINSKEL, 1981) and later generalized to Graph Grammars (RIBEIRO, 1996) and other

Adhesive Systems (BALDAN et al., 2009). The idea of Unfolding of a Graph Grammar

uses that of Occurrence Graph Grammars and consists of a non-deterministic process that

expresses the Graph Grammar behaviour: for a given grammar G, it is possible to build a

sequence of Occurrence Grammars On where each On represents all computations up to

depth n, where the depth of a concurrent computation is the length of a maximally parallel

execution of the computation (BALDAN et al., 2009).

The Unfolding begins at the start graph of the grammar G and proceeds by con-

tinuously applying all rules in all possible ways to its concurrent subgraphs until depth

n, then each occurrence of a rule and each new graph element created is recorded in the

unfolding. As in our approach, no element is ever deleted from this structure, therefore

it can be seen as a “partial application” of a rule to a match, given that it generates the

new items created by the application of the rule, without actually erasing the elements that

have been deleted (BALDAN; CORRADINI; KÖNIG, 2008).
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6.1.2 Abstract Graph Processes

The concept of Graph Processeswas introduced by (CORRADINI;MONTANARI;

ROSSI, 1996) and it also uses that of Occurrence Graph Grammars. A Graph Process for a

grammarGG = (TG, I,P) consists of anOccurrenceGraphGrammarOGG =
(
CT, ICT

, A
)

together with its causal relation ≤c and a pair of morphisms (mg,mp)mapping (1) the core

graph of the occurrence grammar to the type graph of its underlying grammarmg : CT → T

and (2) the actions in A to their corresponding rules in P, mp : A→ P.

Abstract Graph Processes are classes of Graph Processes which have the same

structure and despite having different concrete identities for the elements and actions should

still be considered equivalent. Therefore, they encompass a greater number of possible

grammar executions with a smaller number of processes (or occurrence grammars).

6.2 Generating tests cases

6.2.1 Unfolding of graph transformations

In (BALDAN; KÖNIG; STÜRMER, 2004) the unfolding of graph transformation

systems is used in order to generate test cases for code generators of the automotive

industry. Their work is based on the category of hypergraphs and, similarly to ours, it also

extends their framework to include negative application conditions.

According to the authors, code generators are widely used in the development

of embedded software, however they lack the maturity and testing when compared to

compilers of standard programming languages. Thus, one of the biggest problems in

testing code generators is the difficulty to describe the transformation rules from a graphical

model to a target language (as well as the interactions amongst the rules) in a precise

and formal way. Therefore, they propose a graph transformation based approach for

systematically deriving test cases in this particular scenario.

Their approach is based on the use of unfolding of graph transformation sys-

tems (RIBEIRO, 1996) over two graph grammars, a generating grammar, responsible

for generating all possible input models, and an optimising grammar, which formalises

specific transformation steps towards code optimisation. The main purpose is to test the

optimisation phase, in an attempt to ensure no mistakes will be introduced by improving

the code while preserving its behaviour.
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In this environment, a test case for a subset of optimising rules R is an input model

G such that all the rules in R can be computed over G. This is similar to our approach

where, for a sequence to be executable, all rules in that sequence must be applicable over

the occurrence graph. However, we also use the non-executable ones in order to generate

test cases where the system is indeed expected to fail.

In spite of using the double-pushout approach the same way we do, they use the

category of (typed-)hypergraphs with some restrictions, such as: isolated nodes1 can

never exist in the LHS or in any N AC of a rule, every node that by any means becomes

disconnected is considered “garbage collected”, and NACs can extend the match only with

one edge (which, according to the authors, makes them weaker than general NACs). Thus,

despite of several similarities, our results are not fully comparable.

Their approach is focused on testing the optimization steps of code generation,

but little is presented about the code generation itself. Also, although their approach was

proposed for a very practical application, no supporting tool was presented.

6.2.2 Visual Contracts

An approach proposed by (HECKEL; KHAN; MACHADO, 2011), (KHAN;

RUNGE; HECKEL, 2012a), (KHAN; RUNGE; HECKEL, 2012b), (RUNGE; KHAN;

HECKEL, 2013) focusing mainly on generating test cases for service-oriented or

component-based systems. Given that systems of this kind often hide their implementa-

tion, the authors use interface descriptions known as visual contracts2 in order to model

the observable behaviour of the system.

Coverage criteria is defined by means of static analysis, where potential conflicts

and dependencies amongst visual contracts are calculated and used to build a dependency

graph. In this situation, despite of being called “a dependency graph”, this structure

is rather similar to our occurrence relation, summarizing the results of both conflict and

dependency analysiswhile representing the possible orderings inwhich the visual contracts

may be executed.

In the process of generating test cases, it is necessary to provide an initial graph,

which is used to find out which visual contracts are applicable to it. One of such visual

contracts is chosen as the first step and all the paths through the dependency graph in

1Nodes that are neither the source nor the target of any edge.
2Formally regarded as graph transformation rules with operation signatures.
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which each rule is applied at most once are computed and stored as a set of rule sequences.

Thereafter, the sequences are enriched to encompass rules with multiple dependencies and

lately redundant rules contained in larger ones are removed. Afterwards, each sequence

is executed (if possible), and any new edges in the dependency graph reached by them

are added to coverage. The entire process is then repeated as long as the coverage shows

improvement.

In comparison to our work, this approach has both advantages and limitations.

As an example of the first, there are: the possibility of working with attributed typed

graph transformation systems and multi-rules. As for the second: it requires more user

involvement during the process of test case generation, it does not enclose negative appli-

cation conditions, it was planned to work in a configuration where each rule is applied at

most once and, although being an extension of AGG (TAENTZER, 2000), the tool is not

available for download.

6.3 Tools

Although Verigraph (COSTA et al., 2016; BEZERRA et al., 2017; AZZI et al.,

2018) is the first tool in the field to implement Occurrence Graph Grammars (with or

without Negative Application Conditions) for general Graph Grammars while also having

its source code closely related to Category Theory, there are other Graph Grammar tools

with different approaches and analysis available. In the following, we list the ones which

are to some extent closely related to Verigraph.

6.3.1 AGG

The Attributed Graph Grammar System (TAENTZER, 2000) is a graph transfor-

mation tool which supports typed graph grammars. Its main rewriting approach is the

SPO, but it can configured to execute the analyses of graph grammars as in the DPO

approach. AGG supports attributed graphs, thus elements of a graph can be enriched

with algebraic types. This tool is focused on static analysis such as critical pair/sequence

analysis and concurrent rules, but also several others like termination and consistency

checking.
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6.3.2 Groove

The Graphs for Object-Oriented Verification (GROOVE) Tool Set (RENSINK,

2004) aims for modelling graph grammars. As AGG, its rewriting engine also implements

the SPO approach. Its main focus is the generation and exploration of state space,

implementing many exploration strategies as well as an efficient search for isomorphic

states. Graphs in GROOVE are untyped, however it does support labelling to simulate

types in complex systems.

6.3.3 SyGrAV

The Symbolic Graph Analysis and Verification (SyGrAV) tool prototype (DECK-

WERTH, 2016) is a tool for static verification of attributed (symbolic) graph transforma-

tion systems. It is based on the DPO approach and implemented in Java. It shares with

Verigraph its inspiration to maintain the source code as closely related to the theory as

possible, for which it makes use of a series of APIs defining contracts over the behaviour

of the underlying Categories.

6.3.4 Augur 2

Augur 2 is a tool for the analysis of (attributed) graph transformation systems using

approximative unfolding techniques (KöNIG; KOZIOURA, 2008). It allows the analysis

of Graph Transformation Systems by approximating them with Petri nets. The tool is also

based in the DPO approach (with some restrictions) and its source code is written in C++.
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7 CONCLUSIONS

An Occurrence Graph Grammar (OGG) is a way of representing the semantics of a

graph grammar as a graph grammar itself. OGGs were previously defined by (RIBEIRO,

1996) and (CORRADINI; MONTANARI; ROSSI, 1996). Notwithstanding, its original

definitions do not consider Negative Application Conditions, which are nowadays essential

for modelling of complex, real-life systems.

In our work, we proposed an extension of the framework of occurrence graph

grammars in order to include Negative Application Conditions (NACs), which has not

been done so far. Additionally, the process of constructing occurrence graph grammars

was implemented on Verigraph, a systems specification and verification software based

on graph rewriting.

In order to implement the techniques presented in this work, we took advantage of

the previouswork already existent in Verigraph, mainly based on categorial notions. In this

sense, one of our derived contributions was the implementation of more basic categorial

operations than originally present, such as coequalizers, coproducts and colimits. This

operations may now be used by different category implementations with relatively little

effort.

Moreover, Verigraph is now (as far as we know) the only tool in this field that

supports the construction and analysis of doubly-typed graph grammars and occurrence

graph grammars, both with and without NACs.

Furthermore, Verigraph is a free and open source software, publicly available at

github. Thus, we expect that any users in the community of graph grammars and category

theory in general can find it and use it, besides making suggestions and even implementing

new features according to their specific needs.

We also provided some insight about how the semantic of graph grammars, in the

form of occurrence graph grammars, can be used in order to generate sets of test cases to

the system under modelling, a strategy we intend to refine in our future work.

7.1 Open Questions and Future Work

Although our main objectives were accomplished during the work of this thesis,

there are several other open paths that could (should) be investigated.

Incremental NACs: The entire process of calculating the occurrence graph gram-
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mars and the later generation of test cases depends on all the NACs of the input grammar

being incremental. Despite incremental NACs being sufficient for most applications and

that our case studies only used grammars which respect this restriction, there may be cases

where it is needed to use grammars with general NACs.

The current implementation of Verigraph assumes the input grammars have incre-

mental NACs only, therefore it remains as a future work to implement the algorithm that

compiles arbitrary NACs to incremental ones and use it as a previous step to our main

work.

NACs in strongly safe grammars: In our work, we defined NACs in strongly

safe grammars that are only single-typed. However, the definition of doubly-typed NACs

seems to be useful if one wants to point concretely each element in the core graph that

triggers the NAC of an action.

The idea is to create a doubly-typedNAC for each concrete triggering of the original

NAC over the core graph. Moreover, this translation may yield the creation of (possibly)

many doubly-typed NACs for each original single-typed. Thus, it remains as future work

to formally define this other kind of NAC, to verify whether and when it would really

be useful, how to use it to improve the expressiveness of test cases generation and then

implement it on Verigraph.

Different graph rewriting approaches: Occurrence graph grammars were orig-

inally defined for DPO and SPO approach without NACs, our extension adds NACs to

the DPO approach. It remains open how to extend them for SPO or even other different

approaches, such as SqPO and AGREE.

Complexity of finding a total ordering: To this point, it is not clear to us what is
the complexity of an algorithm to find (or to check if it is possible to find) a total ordering

of actions of a strongly safe grammar that respects both the concrete occurrence relation

and arbitrary abstract restrictions.

In our practical applications so far we did not find strongly safe graph grammars

with a prohibitive number of constraints (for many chosen executions there was no con-

straint at all) in the set of occurrence relation restrictions. We believe this happened

because most of our graph grammars were extracted from use cases which provided “nat-

ural” orderings under which the actions must be applied, thus limiting the possible cases

in which abstract conflicts/dependencies might occur. However, in graph grammars which

were not extracted from use cases and where the system execution hadmore possibilities to

execute in parallel than sequentially, those situations appeared more frequently. Therefore,
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more study is necessary regarding this aspect, specifically, we want to be sure whether it

is possible to find total orderings for arbitrary strongly safe graph grammars or at least

under which conditions (besides an empty set of abstract restrictions) would it still be

feasible. After that, we will know if this process is suitable to generate tests for grammars

that model arbitrary systems and not only those described by use cases.

Concurrent Graphs: In the original definitions of Occurrence Graph Grammars,

there exist the concept of concurrent graphs, which consist of all reachable graphs while

executing the underlying grammar. Such a concept was not used, therefore not defined in

our extension for DPO approach with NACs. Refining our work to include this concept

would both complete our definitions regarding the previous works and improve the gener-

ation of tests, by allowing us to know which (intermediary) states the system can or can

not assume.

Graphical Interface: Regarding input and output, Verigraph does not have an

operational graphical user interface (GUI) yet, using the AGG tool and its .ggx file

format for providing this operations. However, AGG does not support doubly-typed graph

grammars nor NACs under this framework, thus the graphical visualization of the output

of the test generation process is not completely possible, which makes the development of

a GUI dedicated to Verigraph a necessary step to address this issue1.

1the development of a responsive, dedicated GUI is currently one of the main focus of the Verites group
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APPENDIX A— CATEGORY THEORY

Category theory is a powerful mathematical framework, defined by (EILENBERG;

MACLANE, 1945), that provides an abstract way to reason about mathematical structures

and the relationships between them.

Categories are particularly useful in Computer Science, having several applications

such as design of programming languages, implementation techniques, semantic models,

concurrency models, type theory, among others (PIERCE, 1991).

Category theory is also the basis for graph transformation systems, which is central

to the work proposed in this thesis. Therefore, we present a brief introduction of the field

and basic categorial constructions that are used throughout this work.

DefinitionA.1 (Category). AcategoryC consists of a collection of objects and a collection

of arrows between objects (also called morphisms) such that:

1. for all arrows f : A → B, g : B → C and h : C → D, with objects A,B,C,D not

necessarily distinct, the composition of arrows is associative:

h ◦ (g ◦ f ) = (h ◦ g) ◦ f ;

2. for every object A there is an identity arrow idA : A → A such that for any arrow

f : A→ B:

idB ◦ f = f and f ◦ idA = f .

�

Example A.2 (Category of Sets). Set is the category whose objects are sets and the

arrows are total functions between sets. The composition operator is given by function

composition, while the identity arrow is given by the identity function.

�

Definition A.3 (Diagram). Given a category C, a diagram in C is a collection of vertices

and directed edges such that, if an edge in the diagram is named with an arrow f and f

has domain A and codomain B, then the outgoing vertex of the edge must be named A and

the incoming vertex B.

A diagram is said to commute if, for every pair of objects A,B, all the paths in the

diagram from A to B are equal. In other words, each path in the diagram determines an

arrow and these arrows are equal in C. If the following diagram commutes than we can

say that g′ ◦ f = f ′ ◦ g.
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A
f //

g
��

Y

g′

��
X

f ′
// B

�

Definition A.4 (Monomorphism, Epimorphism and Isomorphism). An arrow f : B→ C

in a category C is said to be a monomorphism if, for any pair of arrows g : A → B and

h : A→ B, we have that f ◦ g = f ◦ h⇒ g = h.

A
g //

h
// B

f // C

An arrow f : A→ B is said to be an epimorphism if, for any pair of arrows

g : B→ C, h : B→ C, we have that g ◦ f = h ◦ f ⇒ g = h.

A
f // B

g //

h
// C

An arrow f : A→ B is an isomorphism if there is an arrow f −1 : B→ A, the

inverse of f , such that f −1 ◦ f = idA and f ◦ f −1 = idB

A
f // B

f −1
oo

�

Categorial Constructions

Here we present basic categorial constructions that are used in this thesis. Notice

that this is not an extensive list, we present only the constructions necessary to our scope.

For a more in-depth explanation of Category Theory and its application in Computer

Science refer to (PIERCE, 1991).

Definition A.5 (Coproduct). Given two objects A and B, their coproduct (also called

categorical sum) is an object A + B and two injection arrows iA : A→ A + B and

iB : B→ A + B such that, for any other object X and pair of arrows f : A→ X and

g : B→ X , there is one unique arrow ! : A + B→ X such that the following diagram

commutes:

A
iA //

f ##

A + B

!
��

B
iBoo

g
||

X
�

Example A.6 (Coproducts in Set). Coproducts can be used to generalize the notion of
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disjoint union. Figure A.1 shows an example of it in the category Set1. Having the sets

A = {1,2,3} and B = {1,2} as objects, we have that the set A+B together with morphisms

iA and iB is their coproduct: all elements of A and B are mapped to A+B, no elements from

the source objects are identified in the target, and it is possible to find a unique function

from A + B to any other candidate satisfying the commutative restriction.

Figure A.1: A coproduct in Set

Notice that (A + B)′ = {(1,0), (2,0), (3,0), (1,1), (2,1)} or (A + B)′′ = {a, b, c, d, e}

or any other set with five elements would be equally valid as coproducts for this case. This

is due to the fact the categories deal with their objects up to isomorphism, i.e. all this

objects have the same format regardless of their internal representations. �

Definition A.7 (Coequalizer). Given two objects A and B with two parallel morphisms

f : A→ B g : A→ B, the coequalizer of the diagram is an object X together with a

morphism h : B→ X such that h ◦ f = h ◦ g and, for any other such objects X′ with a

morphism h′, there is a unique morphism ! : X → X′ such that the following diagram

commutes.

A
f //
g
// B h //

h′   

X

!
��

X′
�

Example A.8 (Coequalizers in Set). Coequalizers generalize the notion of smallest equiv-

alence relation. Figure A.2 shows the coequalizer for two functions from A to B, let f be

the one represented with a solid line and g the one with a dashed line. It is easy to see that

the function h from B to X corresponds to the equivalence relation that glues together the

items that are identified by the functions f and g. Notice that X does not contain any other

1The morphisms are represented in an expanded notation to explicitly show how the mappings were
done.
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element which is not mapped from B and no element in X was glued together without

respecting f and g.

Figure A.2: A coequalizer in Set

�

Definition A.9 (Pushout). Given a span of arrows B
f
←− A

g
−→ C, its pushout is an object

X together with a pair of arrows f ′ : C → X and g′ : B→ X such that (1) f ′ ◦ g = g′ ◦ f

and (2) for any other object X′ with morphisms i : B→ X′ and j : C → X′ such that

i ◦ f = j ◦ g there is a unique morphism ! : X → X′ such that i = ! ◦ g′ and j = ! ◦ f ′.

A
f //

g
��

B

g′

�� i

��

C
f ′
//

j //

X
!
  
X′

�

Example A.10 (Pushouts in Set). A pushout in Set can be seen on Figure A.3. Notice

that a pushout maps all elements of sets B and C into set X , “gluing” the ones that are

identified via the morphisms f : A→ B and g : A→ C.

�

Definition A.11 (Colimit). Given a diagram D in a category C, a cocone for D is an object

X and a family of morphisms fi : Di → X (one for each object Di in D), such that for each

morphism g in D the outer part of the following diagram commutes.

Di
g //

fi ��

D j

fj~~
X
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Figure A.3: A pushout in Set

A colimit for a diagram D is a cocone { fi : Di → X} such that for any other cocone

{ f ′i : D′i → X′} there exists a uniquemorphism ! : X → X′ such that the following diagram

commutes for every Di in D.

Di

f ′i

##

g //

fi   

D j

f ′j

{{

fj~~
X

!
��

X′
�

ExampleA.12 (Colimits in Set). Colimits generalize several constructions such as disjoint

unions, direct sums, coproducts, pushouts and others, where different objects of a diagram

are “glued” together in one single object respecting commutativity. All previous examples

of coproduct, coequalizer and pushout are special cases of colimits. Figure A.4 shows

a colimit for a diagram that can not be calculated in (one step) by any of the previous

constructions.

�
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Figure A.4: A colimit in Set
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