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ABSTRACT

Idiopathic  Pulmonary  Fibrosis  (IPF)  is  a  chronic,  progressive,  irreversible

lung disease. After diagnosis, the interstitial condition commonly presents 3-5 years

of  life  expectancy if  untreated.  Despite  the  limited  capacity  of  recapitulating  IPF,

animal models have been useful for identifying related pathways relevant for drug

discovery  and  diagnostic  tools  development.  Using  these  techniques,  several

immune-related  mechanisms  have  been  implicated  to  IPF.  For  instance,

subpopulations  of  macrophages  and  monocytes-derived  cells  are  recognized  as

centrally  active  in  pulmonary  immunological  processes.  One  of  the  most  used

technologies is high-throughput gene expression analysis, which has been available

for almost two decades now. The “omics” revolution has presented major impacts on

macrophage and pulmonary fibrosis research. The present study aims to investigate

macrophage dynamics within the context of IPF at the transcriptomic level. Using

publicly  available  gene-expression  data,  we  applied  modern  data  science

approaches to (1) understand longitudinal profiles within IPF models; (2) investigate

correlation between macrophage genomic dynamics and IPF development; and (3)

apply  longitudinal  profiles  uncovered  through  multivariate  data  analysis  to  the

development  of  new sets  of  predictors  able  to  classify  IPF  and  control  samples

accordingly. Principal Component Analysis and Hierarchical Clustering showed that

our  pipeline  was  able  to  construct  a  complex  set  of  biomarker  candidates  that

together outperformed gene expression alone in separating treatment groups in an

IPF animal model dataset. We further assessed the predictive performance of our

candidates on publicly available gene expression data from IPF patients. Once again,

the constructed biomarker candidates were significantly differentiated between IPF

and  control  samples.  The  data  presented  in  this  work  strongly  suggest  that

longitudinal  data  analysis  holds  major  unappreciated  potentials  for  translational

medicine research.
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1.  INTRODUCTION

Idiopathic  Pulmonary  Fibrosis  (IPF)  is  a  chronic,  progressive,  irreversible

lung disease. After diagnosis, the interstitial condition commonly presents 3-5 years

of  life  expectancy  if  untreated  (WOLTERS  et  al.,  2018).  Alveolar  damage  is

characterized by dilatation of the bronchi, tissue remodeling and parenchymal fibrosis

which seriously impair gas exchange. The first time the current name was used it

referred to radiography tests suggestive of pulmonary fibrosis of unknown etiology,

although the disease had been recognized over one hundred years before - named

cirrhosis of the lung at the time (ROBBINS, 1948, WOLTERS et al. (2018)). Over

three  decades  after  the  nomenclature  was  first  published,  in  1976  it  gained

widespread use after a review article (WOLTERS et al., 2018).

Currently,  radiographic  and  histopathological  patterns  of  usual  interstitial

pneumonia  (UIP)  with  apparently  no  secondary  causes  form  the  basis  for  IPF

definition (RICHELDI; COLLARD; JONES, 2017) and the disease presents sporadic

and familial forms. From the edges of the lungs - base and periphery -, it spreads all

over  the pulmonary tissue causing dry cough,  fatigue and dyspnea.  The latter  is

nearly universal in the history of IPF patients and may progress over a period of

years, while the first two may be absent in the early stages. Universal findings also

include low diffusion capacity of the lung for carbon monoxide (DLCO) and bilateral

Velcro-like  crackles.  The  chest  radiograph  may  present  nonspecific  changes  or

bilateral basal reticular abnormalities (LEDERER; MARTINEZ, 2018). The difficulty of

the diagnosis is illustrated by the fact that clinicians often mistake the presence of

dyspnea  as  indicator  of  heart  failure  or  chronic  obstructive  pulmonary  disease

(COPD),  failing  to  consider  interstitial  lung  disease,  which  delays  IPF  detection

significantly.

Although its cause is not clear, there is currently a recognized increase in IPF

prevalence worldwide (WOLTERS et al., 2018). As a disease of aging, this may be

due to population increasing phenomena, but also to recent improvements in disease

recognition (LEDERER; MARTINEZ, 2018). Unusual before the 50 years of age, IPF

prevalence  almost  doubles  for  every  decade of  life  thereafter  (WOLTERS et  al.,

2018). In North America and Europe, the incidence of IPF ranges from 3 to 9 cases
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per  100000 person-years,  while  South  America  and East  Asia  show less  than 4

cases  per  100000  person-years  (HUTCHINSON  et  al.,  2015).  Assuming  these

numbers as conservative, a recent Brazilian study tried to calculate more precise

estimates for the local reality. Using data from the 2010 Brazilian National Census

and rates reported by previous studies, the authors suggested annual incidence of

IPF between 6.841 and 9.997 cases per 100000 people, whereas the prevalence

was  estimated  at  a  range  of  13.9-18.3  cases  per  100000  people  (BADDINI-

MARTINEZ;  PEREIRA,  2015).  In  terms of  mortality,  another  study estimated  1.2

deaths per 100000 people in 2010, although this is certainly an underestimation as

the authors limited their analysis to data from the Information Technology Department

of  the  Brazilian  Unified  Health  Care  System (DATASUS),  which  does  not  reflect

private medicine practices (RUFINO et al., 2013). It is clear, however, that Brazil’s

data does not oppose the world tendency of IPF prevalence increase.

The number of disease cases has risen along with the number of identified

risk factors. Regarding hospitalization, over three quarters of the cases are due to

respiratory  events,  with  acute  exacerbations as  the  main  cause  (BROWN et  al.,

2015; SONG et al., 2011). In-hospital mortality rate has been reported to reach 50 %,

with five-year survival from initial diagnosis lower than 20 % (SONG et al., 2011). In

such  a  complex  scenario,  multidimensional  indexes  that  include  sex,  age  and

physiological abnormalities may be useful to predict mortality (RICHELDI; COLLARD;

JONES, 2017). Risk factors also include environmental exposures to dust and air

pollution, smoking, chronic viral infections ( e.g. Epstein–Barr virus, cytomegalovirus

and Kaposi sarcoma-associated herpesvirus) and other comorbidities. Of note, one

third  of  inherent  individual  risk  of  IPF  have  been  attributed  to  genetic  variants.

Mutations in genes associated with telomere length - such as TERT, TERC, PARN,

and RTEL1 - are related to higher higher risk of IPF. The same holds true for genes

responsible for cell adhesion, integrity, and mechanotransduction (e.g. DSP, AKAP13,

CTNNA, and DPP9) (LEDERER; MARTINEZ, 2018).

Mucin 5B overexpression in small-airway epithelial cells is a universal finding

in  patients  with  IPF,  which  has  led  to  the  hypothesis  that  impaired  mucociliary

clearance may be linked to changes in microbiome and innate immune responses

that  promote  IPF  (LEDERER;  MARTINEZ,  2018;  MOLYNEAUX  et  al.,  2017).

Although the gene expression pattern appears to be genotype-independent, single-

nucleotide polymorphisms in the MUC5B (Mucin 5B) gene are notable risk factors for
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IPF, even though - paradoxically - they may also predict slower disease progression

(PELJTO et  al.,  2013).  Host-microbiome  interactions  are  also  highlighted  by  the

central role of macrophages in lung fibrosis development along with the finding that

IPF risk is also increased by mutations in the TOLLIP gene, which encodes a protein

associated  with  toll-like receptor  family  pathways (LEDERER; MARTINEZ,  2018).

Lung of patients typically present higher bacterial  loads, differences in microbiota

composition and diversity, and even increases in potentially pathogenic bacteria ( e.g.

Staphylococcus spp. and Streptococcus spp.). Finally, epigenetic reprogramming has

been associated with pathogenesis of IPF (RICHELDI; COLLARD; JONES, 2017).

Upregulation of lung development genes,  trans-regulatory methylation marks near

transcription factors, and potentially pathogenic modifications in miRNAs have been

pointed  as  complex  reprogramming  processes  often  associated  with  pro-fibrotic

pathways.

Overall, it is well accepted that IPF arises from recurrent, subclinical epithelial

injury,  especially  in  genetically-predisposed  individuals  with  accelerated  epithelial

aging  (LEDERER;  MARTINEZ,  2018).  In  such  patients,  the  repetitive  alveolar

damage  can  induce  pro-fibrotic  epigenetic  reprogramming,  persistent  cell

senescence,  production  of  pro-fibrotic  molecules  as  well  as  activation  of

mesenchymal cells (RICHELDI; COLLARD; JONES, 2017). Recent studies, however,

have been suggesting that the trigger for lung fibrosis might not be strictly related to

exogenous aggression,  which is  yet  to  be further  investigated (KULKARNI et  al.,

2016;  NAIKAWADI  et  al.,  2016).  Still,  altered  migration,  proliferation  and  mixed

activation profiles of epithelial cells, especially alveolar epithelial type 2 cells, are a

hallmark of IPF (RICHELDI; COLLARD; JONES, 2017). These and other pathological

discoveries will be critical for early diagnosis and treatment development.

Currently, diagnosis of  IPF is mainly focused on high-resolution computed

tomographic (CT) imaging after identification of history and physical examination that

are suggestive of interstitial lung disease (LEDERER; MARTINEZ, 2018). Once the

suspicion is confirmed, further physical examination is performed to rule out related

disorders  such  as  chronic  hypersensitivity  pneumonitis  and  connective-tissue

disease,  as  well  as  autoimmune  conditions.  Antinuclear  antibodies,  rheumatoid

factor, antibodies against cyclic citrullinated peptides, Scl-70, SSA-Ro, SSB-La, U1-

RNP,  Jo-1  and  other  immunological  tests  comprise  the  serological  examination

routine, even though the presence of these biomarkers may not be enough to confirm
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IPF absence (LEDERER; MARTINEZ, 2018). Often, lung biopsy is not performed in

face  of  usual  interstitial  pneumonia  (UIP)  in  high-resolution  CT  associated  with

suitable history, these being enough for IPF diagnosis. However, obvious CT patterns

are not always present and invasive methodologies are needed. If histologic UIP is

present,  IPF  diagnosis  is  confirmed.  Otherwise,  multidisciplinary  discussions  are

encouraged  as  means  of  increasing  diagnostics  and  prognosis  assessment

(LEDERER; MARTINEZ, 2018).

Finally,  in terms of pharmacotherapy,  IPF management has been through

recent  international  standardization.  In  2015  the  American  Thoracic  Society,

European Respiratory  Society,  Japanese Respiratory  Society  and Latin  American

Thoracic  Association  (ATS/ERS/JRS/ALAT)  released  international  IPF  therapy

guidelines,  updating  a  previous  version  from  2011  (RAGHU  et  al.,  2015b).  The

guidelines  strongly  favored  the  recommendation  for  use  of  Pirfenidone  and

Nintedanib  (RICHELDI;  COLLARD;  JONES,  2017).  While  the  latter  is  a  tyrosine

kinase inhibitor  taken twice daily,  the former acts on various pathways,  inhibiting

TGF-b production  and  downstream  signaling,  among  other  effects  (LEDERER;

MARTINEZ, 2018).  In addition to the need of three daily doses, Pirfenidone may

cause anorexia, nausea and photosensivity, and may have its blood levels increased

by  CYP 1A2 inhibitors.  Nintedanib  causes  diarrhea,  risk  of  bleeding  and  arterial

thrombosis,  and a low risk of  gastrointestinal  perforation.  Both treatments require

liver-function  monitoring  and  have  similar  efficacy  profiles  -  reducing  forced  vital

capacity  decline  rate  by  nearly  half,  clearly  insufficient  for  stopping  disease

progression.

1.1.  IPF IMMUNOLOGICAL BACKGROUND

Despite the limited capacity of recapitulating IPF, animal models have been

useful  for  identifying related  pathways relevant  for  drug discovery and diagnostic

tools development. Using these techniques, several immune-related molecules have

been  implicated  to  IPF,  including  transforming  growth  factor  beta  (TGF-b),

connective-tissue  growth  factor  (CTGF),  tumor  necrosis  factor  alpha  (TNF-),

fibroblast  growth  factor  2  (FGF2),  platelet-derived  growth  factor  (PDGF),  several

matrix  metalloproteinases  and  chemokines  (LEDERER;  MARTINEZ,  2018;

RICHELDI;  COLLARD;  JONES,  2017).  The  fibrotic  process  itself  has  its  own
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singularities as well. A wide range of interleukins and other immunologically active

mediators have been proposed as critical for fibrotic processes. Among others, these

include  IL-33,  IL-17A,  IL-25,  TSLP,  and  IL-13  (Li2014;  CAMELO  et  al.,  2017;

GURCZYNSKI; MOORE, 2017; HAMS; BERMINGHAM; FALLON, 2015). Regarding

immune cell  populations,  macrophages have been shown to  play central  roles in

pulmonary fibrosis and the elucidation of their biological dynamics is an active area of

current research effort  (KUROWSKA-STOLARSKA et al.,  2009; LEE et  al.,  2018;

MISHARIN et al., 2013, 2017; VENOSA et al., 2016; WYNN; BARRON, 2010).

Subpopulations of macrophages and monocytes-derived cells are recognized

as  centrally  active  in  pulmonary  immunological  processes  (BRAGA;  AGUDELO;

CAMARA, 2015; HUSSELL; BELL, 2014; MARTINEZ; GORDON, 2014; MISHARIN

et  al.,  2013;  SYRBU;  THRALL;  SMILOWITZ,  1996).  Indeed,  these  cells  can  be

source  of  pathophysiological  information  throughout  disease  progression  for  two

main reasons. Firstly, they act as sentinels for foreign aggression, which assures

detectable variance in animal models from the very beginning of the induced lesion

and inflammation (MARTINEZ; GORDON, 2014). Secondly, as anti-inflammatory and

pro-fibrotic mechanisms progress, the above-mentioned cells are also fundamentally

involved in both the regulatory functions and the fibrosis promotion (CAMELO et al.,

2017; LUZINA et al., 2015). Most recruited monocytes differentiate into macrophages

upon  tissue  arrival.  These  cells  respond  differently  across  distinct  phases  of

pulmonary immunological activity so that understanding their dynamics throughout

the  course  of  lung  aggression  is  critical  (WYNN;  BARRON,  2010).  Although  not

limited  to  a  dichotomous  model,  M1-  and  M2-like  cells  typically  promote  and

modulate these mechanisms, and their deep phenotypic profiling is crucial for the

understanding of IPF and other fibrosis-related conditions.

1.2.      MACROPHAGES AND FIBROSIS DEVELOPMENT

The  definition  of  common  macrophage  subpopulations  is  currently  under

scientific  scrutiny  and  revision  (MARTINEZ;  GORDON,  2014).  Traditionally,

macrophages  were  thought  to  be  divisible  into  two  groups,  depending  on  the

activation stimuli  to which they are exposed (ABBAS; LICHTMAN; PILLAI,  2017).

Classical  activation is  triggered by exposure to  microbial  toll-like receptor  ligands

such as lipopolysaccharide (LPS) and cytokines commonly released by T helper 1
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cells  (TH1),  especially  Interferon-gamma  (IFN-).  These  signals  enhance  the

antimicrobial and tumoricidal properties of what is then named M1 macrophage. M1

cells promote potentially harmful inflammation, but are crucial to fight, for instance,

viral infections and cancer (ALFANO et al., 2013; GINHOUX et al., 2016; MALE et

al., 2013). Alternative activation occurs when macrophages are exposed to cytokines

characteristic of T helper 2 cells (TH2), notably IL-4 and IL-13, and the then called

M2  macrophages  inhibit  inflammation  and  promote  tissue  repair  and  fibrosis

(DELVES et  al.,  2017).  The  M1 vs  M2 paradigm has been used worldwide  and

certainly  contributed to  the  advancement  of  modern  immunology.  The M1 or  M2

responses were referred to as analogous to the TH1 and TH2 responses, and the

preferential differentiation of a group of cells in a given environment into one of the

phenotypes is termed as “macrophage polarization” (GINHOUX et al., 2016).

However, as these cellular subtypes were first defined with controlled in vitro

experiments,  more  complex  phenotypic  experimental  characterizations  started  to

give birth to the model questioning. Subdivisions of M2 macrophages arose from the

observation  of  subtly  distinct  phenotypes,  depending  on  the  anti-inflammatory

stimulus  used.  M2a  phenotype  is  traditionally  triggered  by  IL-4  and  IL-13;  M2b

phenotype  is  induced  by  IL-10  exposure;  and  M2c  cells  are  generated  with  a

combination of immune complexes and LPS. Flow cytometry analyses now include

several  markers  for  each  phenotype  and  their  subdivisions,  but  these  are  often

conflicting between studies (MISHARIN et al., 2013; TARIQUE et al., 2015; VENOSA

et al., 2016). It is now clear that many homeostatic and pathological situations do not

support M1 or M2 phenotypes dichotomy, and that in many cases these cells present

high phenotypic plasticity (GINHOUX et al., 2016). 

Macrophage activation is influenced by their ontogeny (i.e. if they derive from

yolk sac, as the microglia, fetal liver monocytes, as lung macrophages and Kupffer

cells, from both, as Langerhans cells, or if they are replaced with adult bone marrow

monocytes, as in the gut, heart an dermal macrophages). Tissue-specific signals also

drive macrophage activation both in homeostasis and disease and, importantly, the

same  stress  signals  with  the  same  kinetics  result  in  differentially  programmed

macrophages if these have been exposed to different microenvironments or previous

stimuli.  Taken  together,  these  recent  advances  lead  the  understanding  of

macrophage  biology  to  a  multidimensional  model  of  activation,  with  major

microenvironment  particularities  and  transcriptional  programs significantly  variable
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across human and mouse normal tissues and pathological conditions.

Faced with  the  need for  standardization,  a  group of  macrophage biology

researchers  suggested a  reviewed nomenclature  and experimental  guidelines  for

subpopulation studies (MURRAY et  al.,  2014).  The proposal  was based on three

principles:  “source of  macrophages,  definition of  the activators,  and a consensus

collection of markers to describe macrophage activation”. As it remains a challenge

to  define  macrophage  phenotypes  that  describe  accurately  the  cellular  function

across  time  and  environmental  conditions,  the  authors  proposed  nomenclature

designation based on the stimuli to which the cells are exposed, for in vitro studies.

For instance, traditional M1 macrophages would now be named M(LPS) or M(IFN-)

cells, while M2 would be further divided into M(IL-4), M(IL-4+IL-13), M(IL-10), and

others.  For  in  vivo studies,  the  cell  names would  explicitly  declare  their  multiple

markers rather then forcing a fit into M1 or M2 spectra. Many confusions are avoided

by this approach. A simple example, the expression of Arginase-1 has been used to

describe M2 - or M(IL-4) - macrophages, while it is well known that the enzyme is

also expressed by M1 spectrum cells as well as resident macrophages (MURRAY et

al., 2014). Additionally, the authors suggest terms to be avoided as these may further

confuse classification: “regulatory macrophages” has been used to refer to M2-like

cells, despite the fact that all macrophages show regulatory functionalities at some

point  and even within  the M2 spectrum the regulatory functions are considerably

heterogeneous.  Although  their  nomenclature  standards  have  been  extensively

encouraged,  macrophages  are  still  presented  as  M1-like  or  M2-like  in  many

occasions, especially when accurate classification is not achieved (BECKER et al.,

2015;  ITALIANI;  BORASCHI,  2014;  MALAVIYA  et  al.,  2016;  MURRAY,  2017;

VENOSA  et  al.,  2016;  WERMUTH;  JIMENEZ,  2015).  In  such  a  controversial

scenario,  novel  approaches are  currently  needed to  further  improve macrophage

classification.

1.3.  NOVEL APPROACHES IN MACROPHAGE BIOLOGY 

RESEARCH

One  of  the  promising  techniques  applied  to  macrophage  study  is  high-

throughput  gene  expression  analysis.  High-throughput  technologies  have  been

available for almost two decades now, and these have deeply challenged our current
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understanding  of  macrophage  biology  (KIDD  et  al.,  2014;  PEVSNER,  2015;

STABLES et al., 2011). A remarkable work from Xue and colleagues (2014) is an

outstanding example of these advances. Using diverse  in vitro stimuli, the authors

performed single-cell  RNA sequencing  on  almost  300  macrophages  (XUE et  al.,

2014).  Weighted Correlation Network Analysis identified 49 stimulus-specific gene

modules that could be used as gene sets for enrichment assessment on data from

patients  and  animal  models.  This  approach  deeply  extended  M1-  versus  M2-

paradigm towards a “spectrum model  of  human macrophage activation”  and was

able  to  identify  a  refined,  activation-independent  core  signature  for  human  and

murine macrophages. 

In fact, module analysis has been widely used to investigate transcriptional

profiles  of  immunological  processes.  First  designed  using  k-nearest  neighbors

clustering  algorithm  for  microarray  data,  it  identifies  groups  of  genes  that  are

coordinately expressed in a given dataset while supporting systems-scale analysis

for  translational  research  (CHAUSSABEL  et  al.,  2008).  Currently,  this  type  of

procedure  is  performed by  widely  used software  which  implement  diverse  set  of

machine learning algorithms (LANGFELDER; HORVATH, 2008). Additionally, it has

been adapted to RNA sequencing and single-cell RNA sequencing data. The wide

range of algorithms currently used has been comprehensively reviewed elsewhere

(SAELENS; CANNOODT; SAEYS, 2018).

Apart  from  transcriptome  studies,  proteomic  data  analysis  has  yielded

promising results as well (COURT et al.,  2017). Despite the difficulty of validating

direct  relationships  between  gene  and  protein  expression  patterns,  the  one

agreement  is  that  M1  versus  M2  model  is  not  enough  to  explain  macrophage

polarization  repertoire  (KAMAL  et  al.,  2018;  MARTINEZ;  GORDON,  2014;

TARASOVA et  al.,  2016).  Nevertheless,  as Next  Generation  Sequencing became

broadly available at relatively low costs, proteome research is still  to match high-

throughput  transcriptomic  techniques  in  terms  of  scaling  and  data  generation

capacity. Overall, multi-omics approaches start to gradually emerge as the amount of

data currently being generated by far exceeds the data analysis resources available

for the scientific community.
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1.4.  BIOINFORMATICS AND FUNCTIONAL GENOMICS

According to Jonathan Pevsner (2015), “functional genomics is the genome-

wide study of the function of the DNA (including genes and nongenic elements) as

well as the nucleic acid and protein products encoded by DNA” (PEVSNER, 2015).

The author also states that functional genomics relies primarily on the use of high-

throughput  technologies,  such  as  Next  Generation  Sequencing  (NGS)  and

microarray. More traditional techniques such as real-time polymerase chain reaction

are  used  as  means  of  validation.  Finally,  Pevsner  emphasizes  that  functional

genomics plays a fundamental role in solving one of the ultimate problems in modern

biology:  understanding  the  relationship  between  genotype  and  phenotype

(PEVSNER, 2015).

It  is  not  surprising  that  these  approaches  have  been  broadly  applied  to

macrophage biology studies (FONSECA; SEIDMAN; GLASS, 2017).  The massive

amount  of  data  generated,  though,  represents  a  challenge  for  researchers.  This

scenario  has  led  to  the  advance  of  the  bioinformatics  field,  which  stands at  the

interface between molecular  biology and computer  science.  Briefly,  bioinformatics

seeks the analysis of molecular sequences - which can derive from DNA, RNA, or

proteins - to answer a broad range of biological questions. Genomics is dedicated to

the analysis of DNA sequences of organisms - the genomes -, while transcriptomics

analyzes  the  transcriptome and  proteomics,  the  proteome  -  and  so  forth.  Going

further, Functional Genomics takes advantage of genome-wide assays to understand

gene, transcript, and protein functions. Although there are obvious overlaps among

the  terms,  a  first  perspective  of  the  big  picture  of  bioinformatics  suggested  by

Pevsner  is  the  cell  itself:  the  central  dogma of  molecular  biology states  that  the

relationships  between  DNA,  RNA  and  proteins  ultimately  generate  cellular

phenotype.  In  genomics,  the  central  dogma  is  translated  into  the  relationships

between the genome, transcriptome and proteome. This approach greatly enhances

the complexity of cellular phenotype modeling, and hence computational methods

are needed (PEVSNER, 2015). Still,  strict definition of these and related terms is

often controversial and beyond the scope of this work.

1.4.1.  Bioinformatics Development

The  development  of  bioinformatics  software  is  probably  one  of  the  most
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exciting areas of recent scientific advances. A popular approach is web-development

for scientific computing. Open, web-available tools such as Basic Local Alignment

Search Tool (BLAST) at National Center for Biotechnology Information (NCBI) make

it  possible  for  researchers  with  no  programming  experience  to  perform complex

bioinformatics analyses (QUEREDA et al., 2016). The paper that introduced BLAST

in 1990 counts over 74000 citations as of November, 2018 - similar to the citation

numbers from Cesar Victora, one of the Brazilian scientists with the highest citation

counts  at  Google  Scholar  currently  (VICTORA,  2018).  However,  programming

abilities are a restrictive must for those seeking to further customize their analyses or

to develop their own algorithms. Although several academic majors take advantage

of bioinformatics development, from biology to health sciences, programming skills

are  often  neglected.  In  Brazil,  few  are  the  undergraduate  programs that  include

bioinformatics as a discipline and even fewer are the specialized and well developed

bioinformatics  graduate  programs.  This  reality  is  now  trending  to  change  as

computational  biology  applications  gain  major  highlights  in  media  and  academic

routine.

Regarding  programming  languages,  one  is  particularly  outstanding  in  the

field of Functional Genomics. The R programming language is both a language and

an environment  for  statistical  computing  and graphics,  similar  to  the  S language

previously developed by John Chambers and colleagues at Bell Laboratories (TEAM,

2018).  Like  S,  in  R  one  can  program  their  own  functions  and  extend  base

functionality  through  the  use  of  packages  -  which  are  just  R  code  with  certain

functionalities validated and encapsulated. Also, it is possible to link C and C++ code

to these packages so that computationally-intensive tasks can be performed. The

idea of programming “environment” comes from the production a coherent and well-

planned framework in which statistical computing can be run and developed. This

can  contrast  with  other  programming  languages  such  as  python,  which  can  be

applied to statistics and data analysis in spite of its broader range of applications.

Python  is  another  very  popular  data  science  language  with  extensive  machine

learning algorithm development, although its reach in the field of functional genomics

may not be as extensive as in the case of R.

The success of R within bioinformatics field has a particular reason. In 2001,

a group of researchers, bioinformaticians, statisticians, and data scientists released

Bioconductor, an open-source, open development software project dedicated to the
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analysis of high-throughput genomic data (GENTLEMAN et al., 2004). To date, the

package  repository  contains  over  1600  software  packages,  which  undergo

continuous automated testing in addition to formal initial review (HUBER et al., 2015).

Bioconductor also supports the rapid development of standard workflows combining

highly complex data structures and statistical  inference tools,  regression,  network

analysis, machine learning and data visualization, which is especially important for

reproducible  research.  It  is  deeply  documented  at  three  levels:  whole  workflows

combining multiple tools, packages vignettes providing the narrative for the package

usage  with  code  and  data  analysis  examples,  and  manual  pages  that  serve  as

reference  for  detailed  descriptions  of  all  inputs  and  outputs  for  the  packages

functions. With enough experience, users can become developers and share their

work with others through the repository. The choice of R language is justified by its

high-level statistical and graphical utilities, which yields rapid prototyping creativity,

flexibility and reproducibility unmatched by web-based tools software and general-

purpose languages (HUBER et  al.,  2015).  The whole Bioconductor  structure and

development culture are focused on reproducible research and data analysis, which

translate into good practices for documentation and software development that well

enforced by the users and developers community.

1.4.2.  Microarray data analysis using Bioconductor

DNA Microarray is a genome-wide gene expression measurement technique

that emerged by 2000, although it  was first  developed in the previous decade at

Stanford University and National Institute of Health (NIH) (PEVSNER, 2015). It has

been one of the most widely used tool for genomic studies worldwide (SINHA, 2014).

On the surface of a solid support, several nanograms of DNA are immobilized in a

grid-like array. The RNA extracted from biological samples is usually converted to

complementary DNA (cDNA) - or cRNA, depending on the platform -, labeled with

fluorescence, and selectively hybridized to the array. Each transcript should have a

corresponding nucleic acid molecule to which hybridize, although often more than

one probe maps to the same gene. 

Either for technical reasons, or because a particular gene may have more

undergo  alternative  splicing  and  thus  different  expression  values  are  expected,

probesets are particularly common on the Affymetrix platform (LIU et al., 2003). Once

the microarray is washed, image analysis quantifies the fluorescence signals, and the
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spot intensities are assumed to correlate with the initial quantity of sample mRNA.

The amount of starting material varies across technologies, but for many cases about

1-3 g (micrograms) of total RNA is needed and the yielded hybridization materialg (micrograms) of total RNA is needed and the yielded hybridization material
usually consists of 5 ng of cDNA.

Data analysis seeks the identification of differentially expressed genes and

broad  patterns  of  gene expression  (PEVSNER,  2015).  The Minimum Information

About  a  Microarray  Experiment  (MIAME)  provides  good  practices  for  experiment

description,  including  experimental  and  microarray  design,  sample  preparation,

hybridization  procedures,  image  analysis,  and  normalization  controls.  Microarray

data is public available mainly through ArrayExpress and Gene Expression Omnibus

from the European Bioinformatics Institute (EBI) and NCBI, respectively. Following

MIAME is a requirement for using these databases to share your own data. Once

microarray  data  is  acquired,  it  must  be  properly  normalized,  undergo  inferential

statistics (e.g. t-tests, analysis of variance), exploratory analysis ( e.g. unsupervised

learning as clustering, dimensionality reduction), and classification ( e.g. supervised

analyses, support vector machines). These procedures ultimately lead to biological

confirmation, which may be performed by non-high-throughput technologies such a

RT-PCR. As all steps require complex calculations and extensive computing, many

software options are available at Bioconductor, including platform-specific workflows

and high-dimensional statistics tools.

Microarray  data  distribution  is  often  non-parametric  and  thus  data

normalization  is  essential  for  sample  and  experiment  comparisons

(QUACKENBUSH, 2002). This is because of differences in the labeling efficiency, the

amount  of  starting  material,  cDNA quality,  signal  detection,  and  so  forth.  Many

techniques  have  been  developed  to  solve  this  issue.  Variance  Stabilization  and

Normalization (VSN) assumes the variance for a specific probe mainly depends on

its  mean  expression  level  and  uses  a  linear  transformation  procedure  to  keep

variance approximately constant (HUBER et al., 2002). Such a technique is broadly

applied  and  is  implemented  in  R  through  the  VSN  package  -  available  from

Bioconductor.

In  2003,  Rafael  Irizarry  introduced  the  Robust  Multiarray  Analysis  as  a

method  of  background  correction,  quantile  normalization,  and  probeset

summarization of probe intensities from Affymetrix platform raw data (IRIZARRY et

al.,  2003).  As  a  non-parametric  approach,  quantile  normalization  makes  no
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assumptions on the expression distributions. For each array, each probe expression

measurement is assigned to a quantile. Normalization results from converting original

probeset values to their corresponding quantile values. Using a convolution model,

RMA is  able  to  distinguish  true  probeset  signal  from noise.  A improved  version,

GCRMA,  increases  RMA’s  accuracy  by  adjusting  nonspecific  hybridization  using

sequence information  (PEVSNER, 2015).  After  comparing  over  30  algorithms for

Affymetrix microarray data, Irizarry and colleagues demonstrated the leading capacity

of RMA and GCRMA procedures (IRIZARRY; WU; JAFFEE, 2006). Both methods

can be easily applied through the affy package (GAUTIER et al., 2004).

Another issue with high-throughput data analysis is the amount of statistical

tests. When measuring differential gene expression, one may perform over 20000 t-

tests or Mann-Whitney and Wilcoxon tests, for instance - one for each probeset or

gene. In this scenario, with a p-value threshold of 0.05, one can expect around 1000

false-positive rejections of the null hypothesis - an unacceptably high rate of type I

error. In order to control for these, one must consider correction of p-values.

The Bonferroni  procedure is  used to  control  the Family  Wide Error  Rate,

which can be defined as the probability of making at least one type I error among all

tests (IRIZARRY; LOVE, 2015). It is considered a rather conservative correction as it

sets a new significance cutoff by dividing our previous one - 0.05 - by the number of

statistical tests performed. Thus, one must not expect high statistical power with a

resulting . A more common approach is to control the False Discovery Rate (FDR),

which is the proportion of false calls among one’s positive results - amount of errors

over the number of rejections of the null. In gene expression experiments,  means

that  5%  of  transcripts  that  were  called  significant  are  actually  not  differentially

expressed (PEVSNER, 2015). For a dataset with 20000 genes and 100 significantly

induced or repressed genes, such an FDR value would yield only 5 type I errors. The

Benjamini-Hochberg procedure, easily applied in R, ranks p-values and assures an

FDR below a given value of the analyst choice - typically 0.05 (IRIZARRY; LOVE,

2015).

A final topic on microarray data analysis deserves consideration - regarding

the detection of differentially expressed genes. In R, this task is commonly performed

using linear models.  The most common Bioconductor package for this purpose is

limma (RITCHIE et al., 2015). It computes ordinary t-statistics for linear model fits to

all genes and then uses Bayesian modeling to moderate residual variance. As limma
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has been available for almost two decades now, novel packages became publicly

available  trying to  extend and improve limma capabilities.  Alternative  approaches

emerged  for  time-course  gene  expression  analysis  as  it  is  particularly  complex.

MaSigPro is another R package which uses two regression steps for this specific

scenario. First, it fits a global regression model - typically polynomial - and, secondly,

it  performs  step-wise  regression  to  observe  group  differences  and  statistically

significant longitudinal profiles of gene expression (CONESA et al.,  2006). Finally,

longitudinal  gene  set  analysis  software  has  been  developed  by  Hejblum  and

colleagues  (HEJBLUM;  SKINNER;  THIÉBAUT,  2015).  The  Time-Course  Get  Set

Analysis (TcGSA) package, available from the Comprehensive R Archive Network

(CRAN), extends limma and MaSigPro techniques through random effects modeling

with maximum likelihood estimates. It is capable of handling unbalanced repeated

measures  of  gene  expression  and  takes  into  account  potential  heterogeneity  of

expression profile within gene sets. The identification of differences in longitudinal

expression patterns across factors of interest is thereby made possible.

1.4.3.  Microarray data quality assessment

Quality  assessment  for  gene  expression  data  must  be  computed  for  all

arrays  after  preprocessing.  The  preprocessing  is  platform-specific,  but  generally

includes background subtraction, between array intensity adjustment (normalization),

probeset  summarisation  and  log2  transformation  (PEVSNER,  2015).  Next,

exploratory data analysis is  performed in order to  find any outliers that were not

successfully handled by preprocessing – see Figure 3. Outliers are tipically detected

using the R package arrayQualityMetrics, which computes several different measures

that reflect biases in the data, normalization failures and noise in particular arrays

(KAUFFMANN; GENTLEMAN; HUBER, 2009). The package generates an interactive

HTML report with deeper descriptions for each measurement applied to all arrays,

although dataset-specific  reasoning is  advisable as each experiment  has its  own

design particularities (SINHA, 2014). An example of “good-quality” microarray data is

presented in Figure 1. Density plots (left panel) for all arrays are overlapped, and the

consistent data distribution is also made clear by box plots (right panel). Simulation

from (SINHA, 2014).
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1.4.4.  RNA sequencing data analysis

RNA  sequencing  (RNA-seq)  is  the  implementation  of  Next  Generation

Sequencing (NGS) applied to RNA expression analysis (PEVSNER, 2015). Initially,

isolation of fragmented messenger RNA and acquisition of cDNA are performed. The

experimental  procedures vary  depending on  the  platform and  on the  experiment

objectives ( i.e. qualitative or quantitative), but they often involve target enrichment,

which consists of  removal  of  ribosomal RNA and selecting 3’-end transcripts with

long  poly-A tails.  Once  the  double-stranded  cDNA library  is  prepared  along  with

platform-specific  adaptor  sequences,  the  DNA can  be  amplified  for  subsequent

sequencing.  Many  platforms  are  available,  and  they  vary  largely  in  terms  of

sequencing  chemistry,  base-call  quality,  read  length,  and  many  strengths  and

weakness that need to assessed based on the experiment objectives (METZKER,

2010).  Of note, read lengths for RNA-seq experiments are often around 50 base

pairs (single-end), although novel transcriptome assembly and annotation projects

may benefit from paired-end sequencing with larger reads (CHHANGAWALA et al.,

2015).

Bioconductor  offers  many  pipelines  for  RNA-seq  data,  which  differs  from

microarray  mainly  because  the  common  linear  models  -  based  on  Gaussian

distribution - fail to accurately describe data structure. This is due the fact that NGS

technologies yield data in the form of read counts ( i.e positive integers, as opposed

Figure 1. Example of successfully normalized microarray data.
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to fully continuous variables) and these tend to better fit into Poisson or negative

binomial  distributions  (ANDERS;  HUBER,  2010).  Recently,  Costa-Silva  and

colleagues assessed several available software tools for RNA-seq analysis (COSTA-

SILVA; DOMINGUES; LOPES, 2017). Using quantitative RT-PCR as reference, the

authors  concluded  that  read  mapping,  a  crucial  step  in  data  preprocessing,  is

satisfactorily performed by all software evaluated. Regarding modeling for statistical

detection  of  differentially  expressed  genes,  the  best-performing  options  were

limma+voom (LAW et al.,  2014),  NOIseq (TARAZONA et al.,  2015),  and DESeq2

(LOVE; HUBER; ANDERS, 2014).

Limma,  which  stands  for  Linear  Models  for  Microarray  Data,  was  not

originally developed for RNA-seq data. However, the so-called voom method is able

to  generate  precision  weights  for  each  observation  by  estimating  mean-variance

relationships of log-counts.  When entering these into Bayesian modeling pipeline,

microarray-derived  analytical  tools  become  as  accurate  as  count-based  analysis

methods - most common strategy for RNA-seq (LAW et al., 2014). For this reason,

one  may  perform  both  microarray  and  RNA-seq  data  analysis  using  the  same

Bioconductor-availabe limma package.

Another  Bioconductor  package,  NOISeq,  combines  non-parametric

methodology  with  empirical  Bayes  modeling  to  build  its  NOISeqBIO  pipeline

(TARAZONA et al., 2015). It estimates a statistic Z whose distribution is a mixture of

those from (1) invariant genes, and (2) genes whose expression changes between

conditions.  Given  a  Z-score  for  a  particular  gene,  the  probability  of  differential

expression can then be calculated using Bayes Rule.

Finally,  DESeq2  extends  its  previous  version  (DESeq)  by  first  fitting  a

generalized linear model for each gene in an expression matrix - assuming negative

binomial  distribution  (or  gamma-Poisson  distribution)  (LOVE;  HUBER;  ANDERS,

2014).  The  mean parameter  is  correcter  by  a  scaled  normalization  factor,  which

accounts  for  sources of  technical  biases,  including GC content  differences,  gene

length, and sequencing depth between samples. The model uses a logarithmic link

so that, in the simplest instance of control versus treatment experiment, it returns

coefficients that indicate the gene’s overall expression strength plus its fold change

between the conditions as binary logarithm (log2 Fold Change). Next, DESeq2 uses

shared  variance  information  across  genes  while  assuming  similar  dispersion  for

genes  with  similar  average expression  strength.  It  shrinks  gene-wise  dispersions
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towards a predicted value based on expression strength similarities - a process that

is weighted using Bayes approach. A similar shrinkage method is used to correct log2

fold changes thereby removing overestimation of expression changes for low read

counts.  According to the work from Costa-Silva and colleagues, DESeq2 pipeline

yields 93% of specificity and 84% of true positive rate, thus being the top-performing

method among those included in the study (COSTA-SILVA; DOMINGUES; LOPES,

2017).

1.5.  GENOMIC CHARACTERIZATION OF MACROPHAGES

1.5.1.  Macrophage Genomic Integrative Analysis

Genomic  integrative  analysis  is  a  computationally-expensive  and  rather

complex task. First, one must integrate different technologies (e.g. microarray and

RNA sequencing) from several distinct platforms (e.g. Affymetrix, Illumina, Agilent)

(WALSH et al.,  2015). Second, although greater number of samples yields higher

statistical power, potential confounding factors must be taken into account. When it

comes to lung injury, a wide range of animal models and human conditions have

already been tested, and their respective datasets should be treated with care. For

instance,  the  widely  used  bleomycin-induced  IPF  model  shows  enrichment  of

traditionally M1-associated genes at very early stages (BAUER et al., 2015). Fungal

infection models, on the other hand, show divergent genomic markers with potentially

protective roles associated with genes from the M2 spectrum (BHATIA et al., 2011;

MARGALIT; KAVANAGH, 2015). Both cases, though, may lead to pulmonary fibrosis

through  macrophage  activity  (GIESECK;  WILSON;  WYNN,  2017;  IWASAKI;

FOXMAN; MOLONY, 2016; WYNN; VANNELLA, 2016). 

Other  challenges  include  the  adequacy  of  sample  sizes,  pre-processing

techniques, statistical analysis, modeling validation, experimental design as well as

the lack of a comprehensive framework for the execution of genomic meta-analyses

(RAMASAMY et al., 2008). Of note, the term “meta-analysis” refers to cases when

the researcher analyzes each dataset separately and draws conclusions based on

the combination of final statistical results, whereas “cross-platform normalization” is

used to describe the integration of raw data (“merging”) from multiple sources for

combined downstream analysis  (WALSH et  al.,  2015).  Here,  we  use “integrative
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analysis”  to  denote  both  terms interchangeably  as  not  all  datasets  analyzed  are

suitable for merging.

The  applicability  of  integrative  analysis  for  elucidating  reproducible

macrophage dynamics and even predicting clinical outcome based on the enrichment

of their gene signatures has been previously tested (BECKER et al., 2015). Using

data from human-derived macrophages challenged with two sets of in-vitro activation

stimuli, namely “classical” (IFN-γ + LPS; TNF-α) and “alternative” (IL-4; IL-13), the) and “alternative” (IL-4; IL-13), the

authors were able to establish prognostic values in diverse clinical settings such as

viral  infections and asthma. Noteworthy, however, is the fact that gene signatures

were  still  relatively  limited  by  the  M1  versus  M2  paradigm,  which  hinders

interpretation at the cellular and molecular levels. After all, how to understand the

heterogeneity  within  such  microenvironments  and,  furthermore,  how  to  address

similar macrophage subsets that are constantly overlooked (or that  are yet to be

described)?  How  comprehensive  should  an  integrated  analysis  be  to  assure

robustness of detected gene expression patterns? The answers to these questions

may eventually lead to better pharmacology development and health care regarding

many life-threatening, macrophage-related diseases.

Recently, an elegant work integrated several datasets from human biopsies

as well as data from wide range of mouse strains within the context of LPS exposure

(BUSCHER et  al.,  2017).  Surprising  was  not  the  high  level  of  gene  expression

variability  across  strains,  but  the  ability  to  nevertheless  infer  the  degree  of

polarization of macrophages in transcriptome samples. To do so, the authors looked

at the expression levels of IL-12b and arginase-1, known as M1- and M2-markers,

respectively. After correction by population expression mean, the quotient between

the  two  molecules’  RMA  (robust  multi-array  average:  quantile  normalized,

background-corrected,  log2 transformed intensities)  represented what  was named

Polarization Factor  Ratio  (PFR).  Next,  the authors identified gene sets that  were

highly correlated with the PFR measurements. Those gene sets could then be used

to describe the activation state of tumor-associated macrophages in cancer biopsy

samples and even predict patient survival.

Buscher’s  paper  (2017)  is  an  example  of  successful  integrative  analysis

applied to the molecular study of macrophage biology. When it comes to IPF, their

findings  are  further  supported  by  protein-level  assessment  approaches  as  the

behavior  of  immune  cells  in  such  conditions  has  been  extensively  studied



23

(MISHARIN et al., 2013; Mittar2011; LANDI et al., 2014; YU et al., 2016). Venosa and

colleagues (2016) characterized the macrophage subpopulations in BAL fluid from

Wistar rats exposed to nitrogen mustard (NM) – Figure 2 (VENOSA et al., 2016). In

their study, infiltrating M1-like macrophages rapidly increased until three days after

the treatment, which correlated with the upregulation of proinflammatory M1 genes

and tissue injury. The infiltrating M1 cells started being replaced after the third day,

and an accumulation of M2-like macrophages was seen by the 7th day after NM

exposure. A persistent increase of M2-like cells was observed until the 28th day after

NM,  and  that  response  was  correlated  with  M2  genes  upregulation  and  fibrosis

development. Figure 2 shows the time-course profile of such cells.

Figure  2.  Macrophage  dynamics  in  IPF  model.  Adapted  from:
(VENOSA et al., 2016).
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Many other studies confirm Venosa’s data (BAUER et  al.,  2015;  BRAGA;

AGUDELO;  CAMARA,  2015;  GIESECK;  WILSON;  WYNN,  2017;  HAMS;

BERMINGHAM; FALLON, 2015; KOLAHIAN et al., 2016; LEE et al., 2018; LUZINA et

al., 2015; MALAVIYA et al., 2016; NIE et al., 2017; PENG et al., 2013; WILLIAMSON;

SADOFSKY; HART, 2014; WYNN; VANNELLA, 2016). However, one may note the

repetitive assumptions over the M1 versus M2 paradigm for most of the past works.

High-throughput  technologies  combined  with  single-cell  techniques are  constantly

being  applied  to  yield  more  precise  and  informative  data.  Such  a  promising

methodology  has  already  revealed  molecular  heterogeneity  much  greater  than

previously predicted - for both innate and adaptive immune responses (CHEVRIER

et al., 2017; LU et al., 2015; NEU et al., 2017). As an example, mature T helper 17

(Th17)  cells  have  been  demonstrated  to  develop  a  wide  range  of  transcription

programs, which opposed previous conceptions of high gene expression similarity

among antigen-specific T cells (HAN et al., 2014). 

The ability to understand the development of these transcription diversities

within populations once thought as homogeneous is one of the current challenges in

biology and health research. Furthermore, we are still to meet comprehensive and

reproducible  proteomic  characterization  of  macrophage  subpopulations,  although

relevant advances have been made (BECKER et al., 2012; CHEVRIER et al., 2017;

COURT et al., 2017; TARASOVA, 2016). Multi-omic integrative characterizations will

therefore build a stronger and more robust body of knowledge to drive macrophage-

based therapy and diagnostics (BAKKER et al., 2018).

Here, we seek to determine a vast set of protein-coding genomic signatures

that  allows  the  investigation  of  possibly  unacknowledged  macrophage  activation

patterns across multiple datasets of pulmonary fibrosis models and IPF patients. In

order  to  do  so,  we  take  advantage  of  single-cell  sequencing  data  from  human

macrophages that were artificially stimulated with common and uncommon sets of

signaling  molecules  so  that  we  reach  greater  depth  in  our  cross-platform

characterization of macrophage dynamics (XUE et al., 2014).

1.5.2.  Macrophage Gene Signatures

Macrophages have been demonstrated to develop highly complex activation

profiles in a diverse set of microenvironments (GINHOUX et al., 2016). As previously

discussed, these cells are key players in conditions as IPF (BAUER et al.,  2015;
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VENOSA et al., 2016; WYNN, 2011). Although many genetic markers are known to

play important roles within the macrophage biology context, defining a robust set of

gene signatures for the currently known phenotypic subsets remains a challenging

task  (MARTINEZ;  GORDON,  2014).  Recent  cytometric  and  genomic  approaches

have revealed major  limitations  regarding  the  classic  M1-  versus M2-polarization

model, which is no longer suitable to explain the biological dynamics of macrophage

response (MARTINEZ; GORDON, 2014).

In the pursuit of standardization towards reproducible research, back in 2014

a group of specialists suggested nomenclatures and experimental guidelines for the

macrophage  activation  profiles  well-established  by  then  (MURRAY et  al.,  2014).

However,  the  recent  abundance  of  genomic  data  has  challenged  the  classical

protein-level  techniques  used  to  sort  macrophage  subsets  and  therefore  novel

classifications emerged. In the same year that Murray’s paper was published, a multi-

center work attributed a much higher heterogeneity to macrophages through machine

learning algorithms applied to single-cell transcriptome analysis (XUE et al., 2014).

Assessing  the  transcriptomes from almost  300  in  vitro stimulated  human

macrophages,  Xue  and  colleagues  used  weighted  gene  co-expression  network

analysis (WGCNA) to identify 49 co-expression modules, each of which ranging from

less than 30 to over 800 distinct genes of size (XUE et al., 2014). Based on Pearson

correlation, WGCNA defines gene clusters, known as transcriptional modules, which

present  specific  co-expression  patterns  across  each  treatment  condition

(LANGFELDER; HORVATH, 2008). As an example, these modules can then be used

to visualize the comprehensiveness of the M1 versus M2 model. As noted by the

authors, stimuli not M1- or M2-associated showed prominent patterns consistent with

a rather dynamic spectrum model of cell activation.

In  order  to  achieve  greater  depth  of  macrophage  phenotypes

characterization, in this study the 49 transcriptional modules produced by Xue and

colleagues were used as relevant gene sets for further analyses. The Figure 3 shows

the distribution of number of genes across the different modules. As reproducibility of

gene  signatures  discovery  is  particularly  challenging,  here  we  also  employ

assessment of animal models data so that between-species reproducible genomic

patterns - presumably more robust - can enrich integrative analysis.
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Figure 3. Gene modules distribution - data from Xue and colleagues (2014).
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2.  OBJECTIVES

Integrative genomic analysis is an interdisciplinary approach that arises from

health sciences, engineering, biostatistics, computer sciences, and molecular biology

advances. This study is mainly focused on the characterization of macrophage gene

expression patterns within the context of Idiopathic Pulmonary Fibrosis, as well as

the understanding of cellular subpopulations behavior at the transcriptomics level. As

a general objective, we pursue the identification of genomic markers correlated with

histopathological kinetics of IPF. Specific objectives are listed below.

  •  Characterize  the  temporal  profile  of  gene  signatures  derived  from

macrophage subpopulations in animal models of IPF;

    • Build numerical factor kinetically correlated with the profiles identified in

the previous item;

    • Assess the previously built numerical factor in gene expression datasets

from IPF patients.
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3.  MATERIALS AND METHODS

All  analyses  were  performed  using  R  software  (3.4.3)  and  CRAN  or

Bioconductor packages - Table 1. Complex file parsers were built with python (3.6 or

later).  Parametric  differences  were  assessed  using  linear  and  generalized  linear

models, T tests, and Tukey’s Honest Significant Difference test. False Discovery Rate

was controlled for multiple comparisons using Benjamini-Hochberg procedure at 5%

level. Non-parametric differences were assessed using Wilcoxon or Mann-Whitney

tests.  Other  statistical  procedures  were  performed  according  to  R  packages

implementations.  All  code  and  figures  are  publicly  available  at

github.com/giulianonetto/tcc.

 

Table 1. R packages used in this work.
Package Utility

arrayQualityMetrics Microarray quality control
Biobase Microarray analysis
biomaRt Data base query
car General statistics
coin General statistics
convert Microarray analysis
dplyr Data wrangling
GEOquery Data base query
ggfortify Plot with statistics
ggloop Plot iteratively
ggplot2 Plot
ggpubr Plot
ggrepel Plot
ggsignif Plot with statistics
limma Microarray analysis
maSigPro Microarray analysis
multcomp General statistics
nlme General statistics
rafalib General statistics
RColorBrewer Plot
reshape2 Data wrangling
stringr Data wrangling
tidyr Data wrangling
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4.  RESULTS AND DISCUSSION

4.1.  IPF ANIMAL MODEL AT THE GENOMIC LEVEL

The bleomycin-induced IPF animal model is widely used to understand lung

fibrosis pathology, regardless of its limited capability of mimicking the actual human

disease (MOELLER et al., 2008). Bauer and colleagues studied this question when

comparing microarray data from one hundred lung samples from IPF patients with rat

lungs sampled several at time points after bleomycin and phosphate buffer (PBS)

exposure (BAUER et al., 2015). Although they were able to identify disease-relevant

translational  gene  markers,  the  point  of  highest  rat-human  gene  expression

commonality was at day 7 after rat lung aggression. The authors suggest that these

gene signatures can be used to identify IPF patients and to stratify these according to

disease severity. Here, we reanalyze their data in order to further understand time

course  patterns  in  gene  expression  and  their  relation  with  cellular  pathological

activity.

Using  the  arrayQualityMetrics  R  package,  we  were  able  to  identify  five

outliers  based  on  overall  expression  data  and  these  were  removed  from further

analysis - although the original paper indicated 17 outliers (BAUER et al., 2015). As

morphological and cytometric analyses indicate that bleomycin model shows time-

related pathological events (IZBICKI et al., 2002; VENOSA et al., 2016), we cut the

original  data into  5 supposedly divergent  phases:  namely,  “Healthy”  for  untreated

samples, “Injury” for rats killed at early exposure time points (3 and 7 days), “Early

Fibrosis”  (day 14),  “Late  Fibrosis”  (days 21 through 28),  and “Healing”  (days 42

through 56).  This generally arbitrary classification successfully showed descriptive

gene expression patterns in principal component analysis - Figure 4.

The  first  three  principal  components  separate  control  and  bleomycin

samples, explaining over 86% of the total variance. Most importantly, the samples at

early  time  points  -  i.e.  when  the  recent  aggression  induces  major  inflammatory

responses -  fall  well  separated from later times as well  as from control  samples.

Notably,  the  injury-labeled  samples  fall  further  beyond  others,  followed  by  early
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fibrosis,  late  fibrosis,  and  finally  healing-labeled  and  control  samples  -  almost

mimicking the actual time course experimental design and suggesting the impact of

measurement  times  on  IPF animal  model  assessment.  Even  though  the  authors

indicate that day 7 (injury phase) is the point with maximum similarity among animal

model and the actual human lung disease, the variance observed here may not be

neglected, especially regarding assessment of IPF candidates and early-diagnosis

procedures.

Once  disease  is  installed,  one may expect  reproducible  gene expression

patterns, even though this understanding is hindered by the idiopathic characteristic

of  the  condition.  However,  those  patients  with  developing  histopathological

Figure  4. Principal Component Analysis of gene expression from Bauer and
colleagues data (2016).
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characteristics  that  are  yet  to  be  diagnosed as  typical  IPF may  not  reflect  such

genomic  patterns.  Furthermore,  it  has  been  reported  that  gene  signatures  differ

significantly across IPF patients with progressive and stable conditions (BOON et al.,

2009). Thus, it is important to note the importance of longitudinal studies regarding

genomic signatures as these may prove themselves helpful when predicting disease

onset, progression, and stabilization.

Regarding macrophage biology, several approaches are possible to assess

their dynamics in animal models. As previously noted, Venosa and colleagues were

able to describe macrophage activity in an animal model of IPF induced by nitrogen

mustard (VENOSA et al., 2016). Using data from cytometric, qRT-PCR, and other

non-molecular  assays,  the  authors  demonstrated  the  inflammatory  profile  of

infiltrating  cells  at  early  time  points,  while  anti-inflammatory  and  healing  profiles

where  dominant  at  later  times.  The  proposed  kinetics  related  well  with  gene

expression patterns, although high-throughput technologies were not used.

4.1.1.  Macrophage polarization in IPF animal model

Here,  the first  macrophage characterization addresses the M1 versus M2

paradigm. As proposed by Buscher and colleagues, the Polarization Factor Ratio

(PFR) is intended to describe the degree of macrophage polarization towards M1 or

M2  spectra  (BUSCHER  et  al.,  2017).  As  a  simple  model,  it  derives  from  the

expression levels of M1- and M2-markers. Using Bauer’s data, two-way mixed design

ANOVA with multilevel  modeling did not  reveal  any time-dependent  patterns (p >

0.05).  However,  it  did  reveal  significant  differences across treatment groups (p <

0.005),  which was further confirmed by t-student (p < 0.01) and Exact  Wilcoxon-

Mann-Whitney tests (p < 0.01). Figure 5 shows that time courses for both groups fail

to trend any direction significantly - perhaps due to noisy data points. However, the

curves  do  not  overlap  completely,  and  the  boxplots  illustrate  the  distribution

differences.  In  the  original  paper,  Buscher  and  colleagues  demonstrated  higher

prediction power for the PFR built  over IL12b and Arginase 1 expression levels -

when comparing to the same score constructed with inducible nitric oxide synthase

(iNOS - NOS2 gene, also M1-related) instead of the cited interleukin. Here, the effect

size comparison seemed to  be  shifted,  and the PFR (iNOS/Arg1)  showed better

separation between bleomycin- and PBS-treated animals. Taken together, these data

initially indicate that PFR is capable to reflect a slight overall macrophage polarization
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towards an M1 spectrum in the given pulmonary fibrosis animal model. As a two-

gene  model,  however,  such  a  conclusion  is  clearly  an  oversimplification  of

macrophage and IPF biology.

In order to further characterize the time-course differences in overall  gene

expression of bleomycin- and PBS-treated rats, we performed differential expression

analysis  on  Bauer’s  data  using  a  two-step  statistical  method  which  is  especially

designed for  time course data  and is  implemented in  the  Bioconductor  package,

maSigPro (CONESA et  al.,  2006).  First,  the procedure fits  a global  model  for  all

genes  in  a  given  dataset.  Then,  it  applies  step-wise  regression  as  a  means  of

variable selection so that it can detect significant differences across study groups and

consistent  expression  profiles  across  time  points.  Although  the  dataset  tested

contained eight time points for each group, here we relied on a cubic regression

model, Higher polynomial degrees have yielded high noisy fitting and possibly high

Figure 5. PFR with IPF animal model data from Bauer and colleagues. 

** p = 0.007983; *** p = 4.335e-07 (Exact Wilcoxon-Mann-Whitney Test).



33

rates of type I error (data not shown), which is somehow expected when working with

overly  complex polynomials  (CONESA et  al.,  2006).  One could argue the use of

splines, but these are not available in the maSigPro package. To avoid underfitting,

the time points 42 and 56 were excluded from this analysis. A 5% FDR cutoff was

used to identify genes with significant differential expression between groups.

MaSigPro also conducts cluster analysis with several strategies to identify

similar expression profiles across time. Using the algorithm from mclust R package

(Normal  Mixture Modeling for Model-Based Clustering,  Classification, and Density

Estimation - available on CRAN), it can group the time courses into an optimal k

number of clusters based on finite normal mixture modeling (SCRUCCA et al., 2016).

However, hierarchical clustering showed similar results (with k = 9) and these were

taken for further analysis. Figure 6 shows the nine clusters produced by maSigPro

and their time course profiles. The dashed lines represent the fitted models, while

solid lines show the true median expression values (higher resolution file available in

https://github.com/giulianonetto/tcc/tree/master/rmd-files/Development_files/figure-

docx/hclust_bauer2015_better.png).

Notably,  there  are  fairly  similar  clusters  (  e.g.  clusters  6  and  7).  Here,

however, we are particularly interested in those which show overexpression either at

early or later time points, as these may be representative of eventual macrophage

polarization  patterns.  For  instance,  one may speculate  cluster  1  to  be  filled  with

genes related to the M1 spectrum, while cluster 4 seems to follow a transitory course

and, finally, cluster 9 may represent an M2-polarized environment. Clearly, these are

limited speculations once overall expression patterns greatly overlook macrophage

dynamics. Therefore, deeper characterization required assessment of gene profiles

on a case-by-case basis.

4.1.2.  Overall gene expression and immune-related pathways

Based on recent literature, we sought to find genes that have been previously

reported as related to immune cells activity and IPF. Figure 7 shows the expression

for chemokine (C-C motif) ligand 2 (CCL2), also known as Monocyte chemoattractant

protein 1 (MCP1), whose time course profile is representative of a selected set of

other significantly differentiated chemokines that were also gathered into cluster 2.
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Many chemokines have been related to fibrotic processes in general (SAHIN;

WASMUTH, 2013). Specifically, CCL2/MCP1 contributes to fibrosis development as

chemoattractant to monocytes, macrophages, epithelial cells, and fibroblasts - a role

Figure 6.  Hierarchical clustering reveals time course expression profiles of differentially expressed genes
in IPF animal model.
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that interacts with other cytokines such ass TGFβ-1, IL4 and IL13 (DELLA LATTA et

al.,  2015).  In  fact,  CCL2  directly  induces  fibroblasts  to  express  TGFβ-1,  which

mediates collagen production. Pirfenidone, a medication currently indicated for IPF

treatment (see Introduction), has been shown to inhibit the release of both CCL2 and

CCL12,  which  helps  to  lower  fibrotic  process  (INOMATA  et  al.,  2014).  Not

surprisingly,  the  latter  chemokine also  showed expression  profile  compatible  with

cluster 2 (Figure 7)  as its  involvement in lung fibrosis has been well  established

(MOORE et al., 2006). CXCL12, which stands for C-X-C motif chemokine 12, has

similar functional properties, although its expression values were somewhat noisier

and appeared within cluster 4 - which shows higher increase at slightly later time

points (data not shown). Finally, CCL7, CCL22, and CCL24 also clustered into the

second group, are all associated with increased fibrosis and are thought as potential

targets for immunotherapy development (YOGO et al.,  2009; SAHIN; WASMUTH,

2013; AMUBIEYA et al.,2016; GIESECK; WILSON; WYNN, 2017; LEE et al., 2018).

Chemokines ligands act through interaction with chemokine C-C/C-X-C motif

receptors, and the expression of these latter molecules is also correlated with IPF

(SAHIN; WASMUTH, 2013). Interestingly, the expression of CCR5 was grouped into

cluster 1, showing high levels at very early time points - this held true for two probes

Figure 7. CCL2 (MCP-1) as representative of selected chemokines in Cluster 2. Similarly expressed
chemokines listed on the right.
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mapping to the same gene, a common finding in microarray data. This protein has

shown reportedly reduction behavior in bleomycin animal models and IPF patients,

although has been suggested that its depletion has anti-fibrotic effects (ISHIDA et al.,

2007). Another chemokine receptor, CCR2, is associated with CCL2 activity, although

it  does  interact  with  other  chemoattractant  agents,  including  CCL7,  CCL8,  and

CCL13 (SAHIN; WASMUTH, 2013). It is present in monocytes, T helper lymphocytes,

and dendritic cells. As CCR2 deficient mice have been reported as protected against

lung fibrosis through multiple mechanisms (rather than immune cell trafficking solely),

the  CCL2-CCR2  axis  revealed  itself  as  a  potential  pharmacological  target.

Expression profiles of CCR2 and CCR5 are illustrated in Figure 8.

Not long ago, clinical investigation was carried out to assess the efficacy of

Carlumab, an anti-CCL2 antibody (RAGHU et al., 2015a). The evident failure of the

treatment suggested that modulating chemokine pathways may turn out much more

complex than expected. Recently, Milger and colleagues addressed this unfortunate

surprise  by  measuring  CCR2  expression  levels  on  subtypes  of  immune  cells

(MILGER  et  al.,  2017).  Previous  work  from  their  research  group  revealed  that

children with  interstitial  lung disease showed increased CCL2 release as well  as

CCR2+ CD4+ T-cell  frequencies, and these findings were correlated with disease

Figure 8. Expression profiles for CCR2 and CCR5.
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severity and lung function (HARTL et al., 2005). The confounding scenario led the

authors  to  wonder  about  the  “multi-faceted  role  of  CCR2+  cells  in  lung  injury”

(MILGER et al.,  2017). In the updated work, they found major immunosupressive

roles played by CCR2+ CD4+ T cells, which were associated with T regulatory cells.

Using adoptive cell assays, they were able to attenuate lung inflammation and fibrotic

process development. This is specially surprising as CCR2/CCL2 signals have been

extensively  associated  with  pro-inflammatory  activity  -  mainly  related  to  innate

immune system. They conclude that depleting such CCR2-depending pathways can

no  longer  be  addressed  while  not  considering  their  heterogeneous  functional

properties throughout immune cellular system - a claim that might hold true for other

related molecules.

Another  set  of  molecules  particularly  investigated  in  IPF  is  the  group  of

metalloproteinases  (DANCER;  WOOD;  THICKETT,  2011).  A wide  range  of  these

enzymes has been reported as overexpressed in IPF patients and animal models

(PARDO et al., 2016). Potential peripheral blood biomarkers for IPF include MMP1

and  MMP7  (RICHELDI;  COLLARD;  JONES,  2017).  Their  plasma  concentrations

were  able  to  distinguish  IPF  from  patients  with  chronic  obstructive  pulmonary

disease, sarcoidosis, and chronic/subacute hypersensitivity pneumonitis - reaching

sensivity and specificity values as high as 96.3% and 87.2%, respectively. MMP7

also predicted well subclinical interstitial lung disease, reduced forced vital capacity

and carbon monoxide diffusing capacity. 

On the other hand, not all studies with bronchoalveolar lavage fluid studies

have accused increased MMP1 levels, although microarray data on whole lung tissue

does support increase detection (DANCER; WOOD; THICKETT, 2011). Bauer and

colleagues, the authors of the study whose data we have been analyzing so far, did

find upregulation of MMP7 gene, but not MMP1 (BAUER et al., 2015). Similar results

were generated by maSigPro algorithm herein reported, and the gene fell into cluster

1  -  Figure  9.  Still,  while  the  former  is  known  as  a  pro-fibrotic  agent,  the  latter

represents a paradox that is yet to be solved. Capable of cleaving fibrillar collagens,

MMP1  is  associated  with  excessive  extracellular  matrix  degradation  -  which  is

opposed to IPF pathogenesis (PARDO et al.,  2016). Although partial  explanations

involve  its  production  location,  usually  separated  from  fibroblasts  and  collagen

accumulation, the roles of MMP1 are far from being fully explained. Overexpression

of MMP12, another pro-fibrotic agent, is also a common finding in IPF animal models
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(PARDO et al., 2016). Here, it was found to be significantly overexpressed across

time, being associated to cluster 2 from maSigPro analysis - Figure 9. More time-

consistent, however, was the time course profile of MMP14 (cluster 4), whose role in

IPF is presently unknown - note its expression increase takes longer than genes in

cluster 2. Both enzymes were also identified by Bauer’s analysis with similar time

trends.

As in the case of chemokines, metalloproteinases have been proven as a

complex  set  of  opportunities  for  pharmaceutical  and  biomarkers  development.

Augmenting expression MMP13 and MMP19, two anti-fibrotic enzymes, seems to

have therapeutic potential (CRAIG et al., 2015). Inhibiting pro-fibrotic MMPs is also

intended.  While  global  inhibition  may  not  be  beneficial,  monoclonal  antibody

engineering  is  an  approach  under  active  research  (CRAIG  et  al.,  2015;  SELA-

PASSWELL et  al.,  2012).  The enzymes,  though,  represent  only  a  fraction of  the

complexity involved in IPF pathogenesis.

Major cytokines associated with IPF include IL12, IL33, IL1-b1, TGF-b1, IL4,

IL13,  IL25,  and  so  on  (GIESECK;  WILSON;  WYNN,  2017).  The  highly  complex

interaction networks formed by these multiple-origin and multiple-targeted molecules

has  been  extensively  addressed,  and  the  current  understanding  is  that  wound-

healing and pro-fibrotic mechanisms are still to be scrutinized. As illustrated by the

CCL2/CCR2  case,  these  molecular  patterns  are  thought  to  be  highly  context

Figure 9. Expression profiles for MMP7, MMP14, and MMP12.
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dependent,  and  so  the  cellular  dynamics  behind  their  expression  and  biological

activities  builds  a  major  and  multifaceted  challenge  towards  pulmonary  fibrosis

understanding.  In  this  sense,  it  is  important  step  back  and  acknowledge  that  a

hallmark  of  dysregulated  fibrogenesis  is  the  excessive  deposition  of  extracellular

matrix  (ECM).  Fibroblasts  are  prominent  players  in  ECM  deposition  as  they

hyperproliferate  within  damaged  tissue,  become  resistant  to  apoptosis,  and

differentiate into pro-fibrotic myofibroblasts - which perpetuates the fibrotic process

(KOLAHIAN et al.,  2016). While in this inflammation-driven activated status, these

cells show hypersensitive responses to a wide range of chemical signals, including

many of the above cited molecules, but  also to leukotrienes, prostaglandins,  and

growth factors (KENDALL; FEGHALI-BOSTWICK, 2014). Moreover, myofibroblasts

can also produce, for instance, IL1-b1, TGF-b1, IL33 and other allarmins, several

chemokines,  and  even  reactive  oxygen  species.  Finally,  fibroblast-mediated

remodeling  of  extracellular  space greatly  contributes  to  the  trafficking  of  immune

cells. In fact, fibroblasts work alongside epithelial/endothelial cells and perivascular

macrophages to regulate alveolar repair and fibrosis (KOLAHIAN et al., 2016). It is

within  this  complex  scenario  that  we  address  cytokine  production.  Although  cell

population frequencies can be inferred from gene expression studies, one must keep

in mind the multiple sources and targets of immune-related chemicals.

TGF-b1 has been classically associated with fibrotic processes, and many

other fibrosis-related cytokines are thought to work through its signaling pathways

(FERNANDEZ; EICKELBERG, 2012). It is centrally active in epithelial-mesenchymal

transition  (EMT),  a  process  through  which  epithelial  cells  assume  mesenchymal

properties,  acquire  capacity  migrate  and  to  differentiate  into  ECM-producing

fibroblasts  (KALLURI;  WEINBERG,  2009;  KOLAHIAN et  al.,  2016).  Inflammatory

cytokines, such as IL1-b1, TNF-, and IFN-, have modulatory effects over TGF-b1

production, comprising a network that involves monocytes, macrophages, epithelial

cells. Its gene expression profile has been demonstrated both in IPF patients and

animal models (LUZINA et al., 2015). Interestingly, using our third-degree polynomial

regression model, TGF-b1 overexpression over time could not be detected. As in the

case  of  PFR,  however,  Exact  Wilcoxon-Mann-Whitney  test  revealed  global

differences between bleomycin- and PBS-treated rats - Figure 10. Of note, Bauer and

colleagues detected differential  expression for this gene at day 3 after bleomycin

exposure (BAUER et al., 2015).
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Note that we have been using maSigPro plotting functions for cases were the

generated regression curves produced statistical significance. In this particular case,

however,  we  use  the  versatile,  CRAN-available  ggplot2  package,  which  is  an

implementation of “The Grammar of Graphs” (WICKHAM, 2015).

Another important cytokine in the context of IPF is IL1-b1 (LUZINA et al.,

2015). As well as TGF-b1, the molecule is produced by and it acts on fibroblasts

(KENDALL;  FEGHALI-BOSTWICK,  2014).  Major  amounts  are  also  produced  by

macrophages (WYNN; BARRON, 2010). In fact, this cytokine is able to reproduce

many  features  of  bleomycin-induced  pulmonary  fibrosis,  and  the  blockade  of  its

signals  through  monoclonal  antibody  administration  has  reduced  mice  fibrotic

development  (BYRNE;  MAHER;  LLOYD,  2016).  As  a  classical  inflammation

biomarker,  IL1-b1  was  detected  through  polynomial  regression  and  placed  into

cluster 1. Nonetheless, Bauer and colleagues did not reported differential expression

for this gene. 

As shown in Figure 11, the levels of this cytokine were indeed uncommonly

increased in two of samples from day 0, and all  the control data looks somewhat

noisy. Still, pairwise comparisons using Wilcoxon rank sum test revealed significant

differences at days 3 and 7 after treatment (p < 0.01; data not shown). Overall, this is

a good example of why microarray experiments often need to undergo validation with

qRT-PCR assays, and even of how different statistical and bioinformatics procedures

can impact results. Another confusing case includes the detected underexpression of

IL33 (cluster 6), which goes against recent literature reports (KOLAHIAN et al., 2016;

Figure 10. Expression profiles for TGF-1. *** p < 0.0001
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LI et al., 2014). Additionally, overexpression at late time points of its receptor gene,

Interleukin 1 receptor-like 1 (IL1RL1), was detected in cluster 9 - and also reported

by Bauer and colleagues (days 14 and 21).

Finally,  other  noteworthy  immune-related  genes  that  were  found  to  be

differentially expressed in Bauer’s data include the costimulatory molecules CD80

and  CD86,  which  are  prominent  in  the  functionality  of  antigen-presenting  cells

(APCs) such as macrophages (COLLINS; LING; CARRENO, 2005); the macrophage

surface  marker,  CD68,  a  scavenger  receptor  (VENOSA  et  al.,  2016);  the

macrophage-modulating, anti-inflammatory apolipoprotein E (ApoE) (BAITSCH et al.,

2011; YAO et al., 2016); and the IL-13 receptor subunits alpha-1 and alpha-2 (IL13R-

1/2). Note that both subunits were overexpressed in Bauer’s data, contradicting

recent reports for subunit alpha-1 in murine models and IPF patients (KARO-ATAR et

al., 2016). Additionally, protective roles have been suggested for both IL13R-1 and

IL13R-2 in the context of pulmonary fibrosis (KARO-ATAR et al., 2016; LUMSDEN

et al., 2015). The expression profiles of the cited molecules are illustrated in Figure

12.

Figure 11. Expression profiles for IL1-b1.
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4.2.  MACROPHAGE POLARIZATION FACTOR RATIO REVIEWED -

A MODULAR PERSPECTIVE

In the last decade, traditional immunology research was faced with innovative

systems  biology  approaches  in  the  work  of  Chaussabel  and  colleagues

(CHAUSSABEL et al., 2008). As noted by Ena Wang and Francesco M. Marincola

(2008) in the Immunity Previews of July 18, 2008:

“In summary, Chaussabel et al. (2008) suggest an inductive approach to

pathway discovery: Disease-specific gene-expression patterns are identified and

condensed into few functional units; these are presumed to represent down-stream

effects of biological mechanisms determining the disease status (…). This evidence-

based analysis represents a paradigm shift in which system biology (immunology) is

approached from the bedside, yielding information most likely to be relevant to

human suffering and confronting the basic immunologist and cell biologist with the

challenge of aligning experimental observations with the reality of human disease

approached in its uncontrollable complexity. Moreover, the modular approach offers

practical applications as a global-biomarker-discovery tool that will need to be

Figure 12. Expression profiles for CD68, CD80, CD86, ApoE, and 1/2 subunits of the IL13 receptor.
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aggressively validated in the future.” 

(WANG; MARINCOLA, 2008)

This  was  the  very  first  introduction  to  the  approach  used  by  Xue  and

colleagues, over 6 years later, to describe the transcriptome patterns from almost

300 human macrophages through single-cell RNA sequencing technology (XUE et

al., 2014). In fact, although the PFR performed well in the recent work form Buscher

and  colleagues,  a  2-gene  model  is  clearly  an  oversimplification  of  macrophage

biology and hence probably not the best method for describing disease pathological

status. In the original paper, the authors actually employed their PFR to select gene

signatures from LPS-stimulated murine macrophages and these were ultimately used

to assess human disease (BUSCHER et al., 2017). Using Bauer’s IPF animal model

data, we identified global differences in “raw” PFR between bleomycin-treated and

control  rats,  even  though  IL12,  arginase  1  and  iNOS  were  not  detected  as

differentially expressed. Now, we employ these new perspectives of immunology to

study modular Polarization Factor Ratio (mPFR) candidates, which are based upon

Xue’s  modules  and the  clusters  derived from longitudinal  assessment  of  Bauer’s

data.

4.2.1.  Defining modular Macrophage Polarization Factor 

candidates

Twenty eight candidates to modular Macrophage Polarization Factor (mPFR)

were defined according to  Equation 1.  The difference in  sample means for  each

module  (or gene set) was corrected by a baseline factor constructed with a reverse

ratio between the global means from the tested modules.

Given its complex structure, the complete list of the modules are stored as an

R  data  frame  object  at

Equation 1. Formula for mPFR candidates calculation. Each module is represented by a “gene 
set”.
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github.com/giulianonetto/tcc/rmd-files/data/mPFRcandidates.RDS.  It  can  be

downloaded and analyzed using R software - its conversion into text or spreadsheet-

like files is not trivial. Basically, there are two columns organized so that the rows

assign the two sets used to construct a given mPFR candidate, which is identified by

a row name. As a reference, IL12b and Arginase 1 were used for the first candidate,

namely Set 1 (S1). The following two candidates, S2 and S3, were constructed with

relevant chemokines and cytokines sorted out according to gene expression profiles

described in the previous section. The other twenty five candidates were constructed

using the nine clusters observed in the longitudinal analysis of Bauer’s data. These

were identified with a letter C regarding their clustering origin (C1-25).  Using this

approach, the previously described clusters 1 through 5 were matched with clusters

3, 6, 7, 8, and 9, and the resultant candidates were assigned as C1-C20. Candidates

C21 through C23 were formed from cluster 1 against clusters 2, 4, and 5. Finally,

candidates C24 and C25 were built with cluster 2 against clusters 4 and 5. 

The generation of mPFR candidates respected the reasoning that differences

between clusters with overexpression at early time points (e.g. cluster 1) and those

with either underexpression (e.g.  cluster 7) or late overexpression (e.g.  cluster 9)

profiles are expected to show higher descriptive power of injured and normal tissues.

Although arbitrary, this hypothesis generated twenty eight new variables which were

approximately normally distributed. This can be seen in the quantile-quantile (QQ)

plot  shown in  Figure  13.  QQ plots  are  often  used  to  visually   compare  a  given

distribution – in this case, Gaussian (IRIZARRY; LOVE, 2015).  If the data is normally

distributed, the residuals from a fit linear model should also follow such distribution

and so the proportion of data that fall into its ranked quantiles can be predicted. In

Figure 13, the red lines show the expected values, while dark dots show amount of

real  data  within  each  quantile.  The  distribution  of  candidate  S2  was  used  as

representative,  but  QQ  plots  for  all  variables  are  available  at

github.com/giulianonetto/tcc/rmd-files/Development_files/figure-docx/LastChapter.
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4.2.2.  mPFR candidates descriptive power

In  order  to  investigate  global  patterns  of  newly  constructed  mPFR

candidates, principal component analysis (PCA) was once more applied. Using only

the  first  two  principal  components,  one  must  notice  the  radical  improvement  in

Bauer’s data separation as described by the treatment factor – Figure 14. Recall that

our first PCA investigated patterns using whole gene expression data. As illustrated

in Figure 4, the procedure was able to separate bleomycin- and PBS- treated rats

with some group overlap. Also, its pathological time-trend seemed to be revealed

when coloring by “disease phase” - e.g. injury, days 3 and 7, and healing, day 56.

Here,  the  separation  between  control  and  bleomycin  sample  is  complete.

Furthermore,  when  looking  at  the  time trends,  one  can  recognize  days 3  and 7

clustered together,  while  samples  from day 14 form a one-factor  group,  and the

following days seem to distribute accordingly until healing phase (days 42/56) and,

finally, control/untreated samples – Figure 15.  

Figure  13. Quantile-quantile plot for C25 candidate showing approximately normal
distribution.
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Figure  14.  Principal  component analysis of bleomycin- and PBS-treated
samples  using  the  28  mPFR  candidates.  Colors  represent  treatment
conditions.

Figure  15.  Principal  component  analysis  of  bleomycin-  and PBS-treated
samples using the 28 mPFR candidates. Colors represent time points, while
shape now describes the treatment.
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Finally,  hierarchical  clustering was performed in order to further compare

descriptive performances between our candidates and the original gene expression

matrix. Using the actual genes from Bauer’s dataset, the sample-scaled clustering

failed to  separate well  case and control  subjects – Figure 16.  Surprisingly,  when

performing the same procedure over the matrix of sample-scaled mPFR candidates,

perfect separation between treatment and control samples is revealed – Figure 17.

Additionally, the time trend was partially kept consistent with early time points (injury

phase) clustered together while clusters from later times (late fibrosis and healing

phases)  appearing  increasingly  closer  to  control-sample  clusters.  Taken together,

these data strongly suggest that the proposed data transformations can potentially

build genomic fingerprints for pulmonary fibrosis that are even more powerful than

gene expression alone.

Figure 16. Hierarchical clustering over gene expression matrix shows partial separation between
bleomycin (red) and control (blue) samples.
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4.2.3.  mPFR candidates as prediction variables

Next, we aimed to assess which of the mPFR candidates were significantly

different across treatment groups. As normal distribution was not met for all variables,

we used Wilcoxon rank sum test to check for statistical significance with a cutoff of p

< 0.05. Still, t-tests were also computed in order to check for results consistency -

outliers  were  removed  using  linear  modeling  and  Bonferroni  correction  to  detect

unusually biased observations. Figure 18 shows the results for the first 4 candidates

tested  –  all  boxplots  are  publicly  available  at

Figure 17. Hierarchical clustering over mPFR candidates matrix shows complete separation
between bleomycin (red) and control (blue) samples. Bleomycin-treated samples also show
partially consistent time trends.
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github.com/giulianonetto/tcc/Development_files/figure-docx/LastChapter. Most of the

variables showed statistically significance differences between bleomycin- and PBS-

treated rats, although the sizes of the differences varied greatly. Of note, bleomycin

effect  over  S1  candidate,  used  as  reference  (IL12b-  and  Arg1-based),  was  not

statistically significant in the robust test performed. The test used Bauer’s data from

day 7,  which  is  reported  as  the  one with  greatest  correlation  with  actual  human

disease (BAUER et al., 2015).

As visualization of twenty eight boxplots is not trivial for human interpretation,

the relationship between statistical significance and effect size was illustrated as a

volcano plot in Figure 19. This graph shows the inverse of the p value in logarithmic

scale as a function of effect size. In this case, the p values are computed using

regular linear model and therefore are similar to those generated using a t-Student

test. 

Figure 18. Wilcoxon rank sum test for the first 4 mPFR candidates between bleomycin- and
PBS-treated samples. * p < 0.05.
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Notice  that  most  candidates  show positive  bleomycin  effect,  meaning  an

increase trend  following bleomycin exposure. The higher the point in the graph, the

lower  is  the  associated  p value.  Some candidates  show negative  effect,  though.

These are mostly based on cluster 9 as “Set2” in equation 1, which showed a late

overexpression profile. They also include candidates built from differences between

cluster  1/2  (early  overexpression)  versus  cluster  5  (intermediary  longitudinal

expression profile). As speculated, the greatest effects and lowest p values (upper

right  corner)  were  achieved  using  differences  between  clusters  with  early

overexpression versus underexpression profiles (e.g. candidates  C3 and C7, built

from differences between cluster 4 versus cluster 3, and cluster 4 versus cluster 6,

respectively – see Figure 6). 

As normal distribution was a partially-met assumption for the previous linear

model,  we  wondered  whether  the  fitted  values  corresponded  well  to  the  actual

averages. To generally visualize the fitted mPFR performances, we plotted the three-

way relationship between statistical  significance (inverse of p value in logarithmic

scale), effect size (linear model coefficients), and “goodness of fit” (“R squared” from

Figure 19. Volcano plot for the 28 mPFR candidates. Dashed line shows p
= 0.05, which was used as significance cutoff – also referred in the colors
of the points.



51

Pearson’s Correlation Coefficient) in Figures 19-20. From the first visualization, one

must note that the most significant effects also share the best fits. Also, note the

relatively poor performance of the reference candidate, S1. The second plot, known

as a “bubble chart”, shows that mPFR candidates were satisfactorily fitted for most

cases,  especially  those with  the  greatest  statistical  significance and higher  effect

sizes (greatest -log10(p) values and bleomycin effects - upper right corner). Again,

candidates C3 and C7 appear as top performing.

Figure  20. Relationship between statistical significance and goodness of
fit,  as  measured  by  linear  model  p  value  and  Pearson’s  Correlation
coefficient,  respectively.
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4.2.4.  Macrophage gene modules as mPFR candidates

Macrophage gene modules produced by Xue and colleagues (2014) using

machine learning approach were also used to build mPFR candidates. Consistent

with the previous reasoning, we produced candidates with the differences between

modules associated with the M1-like activation spectrum versus those related to M2-

like spectrum (see Figure 2). 

Figure 21. Three-way relationship between effect size, statistical significance,
and goodness of fit for all mPFR candidates using Bauer’s data. Bubble sizes
represent  statistical  significance,  R  squared  is  used  as  a  measure  of
goodness of fit, and bleomycin effect is the difference in averages between
bleomycin- and PBS-treated samples.
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Exploratory  data  analysis  revealed  similar  distribution  as  previous  mPFR

candidates – data not shown. However, PCA failed to separate well bleomycin- and

PBS-treated samples based on macrophage modules-derived mPFRs – Figure 21.

Still, the mPFR candidate built from module 9 versus module 15 did show statistically

significant differences at day 3 and 14 after bleomycin exposure (Wilcoxon rank sum

test, p < 0.05). Its very small effect size, though, questions this result’s reliability –

Figure 22. Fitted linear model showed similar results, with an R2 ~ 0.9 and p value <

0.01  –  data  not  shown.  Overall,  mPFR  candidates  derived  from  macrophage

modules  were  outperformed by  those created with  maSigPro-derived longitudinal

clustering  analysis.  This  is  not  entirely  surprising  as  the  former  is  basically

macrophage-driven, while the latter takes into account gene expression from a wide

range of cells. This is also evidence that longitudinal profiles may perform better in

generating genomic fingerprints  capable of classifying disease-relevant  groupings,

although such a claim surely needs to be further validated.

Figure  22. Principal component analysis is not able to separate case and
control samples using Xue modules-derived mPFR candidates.
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4.3.  MODULAR PFR’S AS CLINICAL PREDICTORS – PRELIMINARY

RESULTS AND CURRENT CHALLENGES

As mPFR candidates derived from longitudinal cluster analysis showed good

performance  in  segmenting  treatment  groups  in  IPF  animal  model,  we  further

wondered  about  their  performance in  human-derived  gene  expression  data.  This

represented  a  particularly  challenging  set  of  tasks.  First,  one  must  recover  all

orthologs for those genes used to construct mPFR candidates. In a first attempt, out

naive exact match algorithm, applied to gene symbols alone, was able to recover 60-

90% of the genes comprising each candidate. This is surely not ideal and has major

impacts on later results, so a better strategy using official identifiers and fuzzy logic

for database querying will probably increase the candidates performance. Mea culpa

shall be empathized as one must acknowledge that the programmatic translation of

thousands of gene symbols must be anything but trivial. A second challenge includes

the  interpretation  of  microarray  probes  that  map  to  the  same  gene.  In  Bauer’s

dataset, for instance, CCL2 showed over nine probes, all of which with similar gene

expression profiles. However, IL13R-a1 also showed more than one correspondent

Figure  23.  Wilcoxon  rank  sum  test  shows  significant  differences  in  mPFR
candidate, m9m15, between bleomycin and control groups. Data for day 3 after
bleomycin exposure. * p < 0.05.
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probe,  but  these  were  not  identical  in  terms  of  expression  levels.  Even  though

averaging  is  often  advisable  –  if  the  data  was  previously  normalized  -,  this  can

potentially impact reproducibility of translational assessments. Of course, other major

issues with  regard to  rat-to-human genomic translation also apply.  One must  not

expect to observe identical gene expression profiles for all genes between species,

for example.  Nevertheless,  some level  of  consistency is expected and this is the

basic assumption for genomic studying  of animal models.

In order to extract first evidences about the performance of mPFR candidates

with  humans  data,  we  analyzed  microarray  gene  expression  from  GSE53845

(DEPIANTO et  al.,  2015).  The  dataset  is  comprised  of  over  30  samples  of  IPF

patients that  underwent biopsy or  transplant  procedures, plus 8 necropsy-derived

control samples. This dataset was chosen given the simplicity of study design. The

microarray platform was from Agilent Technologies, the same used in the study from

Bauer  and  colleagues.  Raw  data  was  retrieved  from  GEO  database  using  the

GEOquery R/Bioconductor package (HUBER et al., 2015). The same preprocessing

and normalization procedures as for Bauer’s data were applied.

4.3.1.  Exploratory data analysis of DePianto and colleagues data

Principal component analysis was used to assess global trends in original

gene expression data. As shown in Figure 23, the first three principal components did

show some separation between IPF and control samples, although consistency is not

clear. The scaled PCA resulted in most of the variance being explained by the first

principal component, and the following components do not differ significantly. This is

in accordance with the first PCA performed over Bauer’s data, which also showed

major between-group overlaps (Figure 4 – please, note color aesthetics are not the

same as in the previous plots). 

Here,  when  performing  the  same  PCA  with  the  28  mPFR  candidates

previously  constructed,  the  separation  between  control  and  IPF samples  did  not

appear to increase significantly, although the spread of data across first and second

components did increase sensibly – Figure 24. This is made clear by the scree plot in

the figure’s lower right panel, which shows the percentage of variance explained by

each  principal  component.  Despite  the  loss  of  data  resultant  of  poor  orthologs

translation, this suggests that mPFR candidates might resolve better classification

between normal and disease samples in clinical datasets, when comparing with mere
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normalized gene expression.

Figure 24. Principal component analysis of DePianto’s gene expression data.

Figure 25. Principal component analysis of mPFR candidates using DePianto’s data.
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4.3.2.  mPFR candidates as prediction variables using humans 

data

Following the previous workflow, we next assessed the mPFR differences

between control and IPF groups. As normal distribution was again partially met (data

not  shown),  Wilcoxon  rank  sum test  was  performed.  Similar  to  the  results  from

Bauer’s  animal  model,  here we detected statistical  significance for several  of  the

mPFR candidates, while the reference (S1) was again non-significant – Figure 25.

The same figure as .png file with better resolution and all  remaining boxplots are

publicly  available  at  github.com/giulianonetto/tcc/rmd-files/Development_files/figure-

docx/LastChapter/HUMANS. Notice the major IPF effects over S2 and S3, the ones

constructed  with  semi-arbitrary  selection  of  chemokines,  metalloproteinases,

interleukins,  and  other  relevant  proteins.  These  were  chosen  according  to  their

reported relationship with macrophage polarization, but accounting for their clustered

profiles in maSigPro longitudinal analyses. This approach seeks to correct for the

issues seen in the analysis of macrophage modules from Xue and colleagues (2014).

Although macrophages are major players in pulmonary fibrosis (WYNN, 2011), the

results from the previous section indicate that overall gene expression profiles need

to be taken into account – see Figures 14 and 21. 

For instance, the candidate S3 is comprised of CCL2 (MCP1), CCR2, and

ILb1 for the Set 1 (see equation 1), while Set 2 included Apolipoprotein E, MMP14,

Lipopolysaccharide-biding protein (LBP), and IL1rl1. This suggests that out approach

combines recent literature insights with sophisticated multivariate analysis techniques

to successfully build a workflow for translational research. Additionally, note that the

previously top-performing candidates in animals data, C3 and C7, once again appear

as significantly different between IPF patients and controls. Using non-robust linear

models, they also show relatively higher Pearson’s correlation coefficients and lower

p values. However, the goodness of fit was heavily impaired, maybe due to diversity

of sample origins – Figure 26. Also, most of Xue’s modules showed neither statistical

significance or minimally good linear model fits. Wilcoxon tests showed p < 0.05 for

candidates m8m13, m8m15, m9m15, despite their very small effect sizes (data not

shown). As PCA with these macrophage-driven candidates did not show any clear

trend, they were dropped from further analyses. 

Finally,  deeper validation of  these results  will  require  bigger  datasets and
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adequacy to software development best practices. Still, the longitudinal assessment

of genomic data from animal models seems to hide major potentials for biomarker

discovery.  Here,  it  has  been  developed  an  analytical  workflow for  future  studies

involving  innovative  longitudinal  gene expression  analysis,  immunopathology,  and

multivariate  statistical  analysis  successfully  applied  to  translational  medicine

research.  As of  these preliminary  results,  though,  it  remains to  be answered the

questions  about  the  actual  clinical  performance  of  our  28  modular  Macrophage

Polarization Factor candidates as IPF biomarkers.

Figure 26. Wilcoxon rank sum test for 12 of the 28 mPFR candidates using clinical data from DePianto
and colleagues (2015). * p < 0.05; ** p < 0.01; *** p < 0.001, ns = non-significant.
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Figure 27. Three-way relationship between effect size, goodness of fit, and statistical significance
of mPFR candidates differences between IPF patients and controls.  Note the heavily impaired
linear model fits. 
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5.  CONCLUSION

Idiopathic Pulmonary Fibrosis is a devastating disease and a current challenge

for medical research. Traditional approaches have failed in identifying early diagnosis

tools  and  pharmacological  targets  that  could  actually  stop  disease  progression.

Functional genomics has appeared in the past decades as a major source of hope,

although diversity of analytical procedures, wet lab platforms, and study designs has

been added to the intrinsic complexity of genomic data to ultimately hinder research

reproducibility. Software development driven by data science approaches has been

the major tool with which bioinformaticians are now struggling to extract meaningful

and  reliable  insights  from genomic  data,  Their  work  along  with  traditional  bench

researchers has yielded synergistic results that impact the whole field of  biological

sciences.

In  this  context,  here  we  aimed  to  characterize  temporal  gene  expression

profiles in IPF animal models, build numerical factor kinetically correlated with such

profiles,  and assess the predictive and descriptive performance of such factor.  In

order to do so, we reasoned that rather than a picture of gene expression at a certain

point  in  time,  instead  one  would  record  the  entire  longitudinal  trends.  This  was

achieved  through  assessment  of  expression  data  from  bleomycin-treated  rats  in

publicly available data (BAUER et al., 2015). As a set of different movies that are

classified  into  subject  groupings,  the  longitudinal  expression  trends  were

hierarchically  clustered.  As  opposed  to  inferences  from single  time  points,  these

clusters were expected to better describe the stories of bleomycin-treated animals. 

Baseline-corrected  differences  between  the  constructed  clusters  were

computed  and  shown  to  successfully  classify  original  treatment  groups,  an

achievement not met by the actual gene expression data. Both robust and traditional

hypothesis  tests  showed  significant  differences  in  most  of  the  thereby  built  28

modular Macrophage Polarization Factor candidates. In fact, these candidates were

constructed using data from whole lung experiments, and assumed to be correlated

with  macrophage  biology  as  these  are  major  players  in  pulmonary  fibrosis

development. When performing the same workflow over machine learning derived

macrophage gene modules, however,  this assumption was revealed to be flawed

(XUE  et  al.,  2014).  Although  some  mPFR  candidates  constructed  from  Xue’s
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modules did show statistical  significance, their prediction power was limited when

compared to the ones built out of longitudinal clustering.

Finally, preliminary results on clinical applicability of the mPFR candidates is

presented.  Although  of  limited  performance,  partially  due  to  poor  orthologs

recovering, the mPFR candidates showed significant differences between IPF and

control  patients,  especially  when  using  robust  statistics  techniques.  The  top-

performing candidates were those derived from clusters of  opposed profiles -  i.e.

early overexpression versus late overexpression or underexpression trends. Although

further  validation  is  needed,  it  is  clear  that  the  longitudinal  analytical  procedures

herein  presented  show promising  applicability  for  biomarker  and  pharmacological

target discovery. 

Future  analysis  must  include  greater  number  of  datasets,  more  robust

statistical  methods,  and  machine  learning  classification  approaches.  Here,  we

successfully described temporal  profiles of  gene expression in IPF animal  model,

built  numerical  candidates  kinetically  correlated  with  IPF  development,  and

demonstrated  the  promising  performance  of  these  candidates  as  predictive  and

descriptive factors.  Larger datasets will  be needed in order to further validate the

results herein presented. Still, as a movie rather than the picture, it is the study of

time  courses  that  will  ultimately  capture  the  genomic  features  of  IPF  patients,

capable of giving these very people more than just hope, but actual time.
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