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ABSTRACT

Processing-in-Memory (PIM) has been recently revisited to address the issues of mem-

ory and power wall, mainly due to the maturity of 3D-stacking manufacturing technology

and the increasing demand for bandwidth and parallel access in emerging data-centric

applications. Recent studies have shown a wide variety of processing mechanisms to be

placed in the logic layer of 3D-stacked memories, not to mention the already available

3D-stacked DRAMs, such as Micron’s Hybrid Memory Cube (HMC). Most of the stud-

ies in PIM architectures use the HMC as target memory, since its logic layer is suitable for

placing processing logic in the memory device. Nevertheless, the lack of tools for rapid

prototyping can be a limiting factor to explore new architectures, mainly when computer

architectures aim to simulate system integration. In this document, we present a PIM

support for the broadly adopted gem5 simulator and a methodology for prototyping PIM

accelerators. Using the proposed simulator, computer architects can model a full envi-

ronment and address open problems in the PIM research field. Also, we present two case

studies of a fixed-function and a programmable logic PIM placed alongside each vault

controller, and we highlight the generic points of our implementation which can be used

to the exploit efficiency of new PIM accelerators.

Keywords: Processing-in-memory. System simulator. 3D-stacked memory. .



PIM-gem5: um simulador de sistemas para exploração de espaço de projeto em

arquiteturas de processamento em memória

RESUMO

O conceito de Processamento em Memória (PIM) está sendo revisitado recentemente para

tratar de problemas relacionados ao gargalo de memória e energia dos sistemas compu-

tacionais atuais. A retomada à pesquisa em PIM deve-se principalmente à maturidade

da tecnologia de fabricação de circuitos 3D e à crescente demanda por banda de memó-

ria e acesso paralelo em novas aplicações que são centradas em dados. Para conciliar

aceleração e eficiência energética em aplicações emergentes, estudos recentes investiga-

ram diferentes projetos de circuitos digitais de processamento para a camada lógica de

memórias 3D, sem mencionar as memórias em produção como o Hybrid Memory Cube

(HMC) da Micron, que integram camadas de circuitos lógicos e DRAM por vias de alta

velocidade. A maioria dos estudos em arquiteturas PIM usa o HMC como memória alvo,

já que sua camada lógica é adequada para inserir lógica de processamento no dispositivo

de memória. No entanto, a falta de ferramentas para prototipagem rápida pode ser um

fator limitante para explorar novas arquiteturas, principalmente quando estas arquiteturas

necessitam simular a integração de sistemas para avaliar e testar alguma solução em nível

de sistema. Neste documento é apresentado um suporte para o simulador gem5 que per-

mite a simulação de novos projetos e uma metodologia para prototipagem de aceleradores

PIM. Usando o simulador proposto é possível modelar um ambiente completo e abordar

problemas em aberto no campo de pesquisa de PIM. Além disso, dois estudos de caso de

arquiteturas PIM são apresentados: um projeto do tipo função fixa e outro de lógica pro-

gramável, e destacam-se os pontos genéricos da implementação do simulador que podem

ser utilizados para a exploração de eficiência de novos aceleradores PIM.

Palavras-chave: Processamento em memória, Simulador de sistema, memórias 3D.
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1 INTRODUCTION

Over the past decades, microprocessor performance has improved, and the en-

ergy cost per operation has decreased by many orders of magnitude, which have been

resulted from equal efforts made in technology scaling and micro-architectural research

(DANOWITZ et al., 2012; HU; STOW; XIE, 2018). However, as technology scaling

slows down and we come to effectively notice the end of Moore’s Law, the current pro-

cess of manufacturing technology becomes more difficult and less beneficial to scale and

shrink (KISH, 2002; TRACK; FORBES; STRAWN, 2017). To make matters worse, the

scaling trends of off-chip memory bandwidth, which has historically been known as the

major bottleneck of traditional architectures, are not as promising as the trends of on-chip

computing capability.

As the traditional 2D manufacturing process could not diminish the performance

gap between processor power and memory bandwidth, emerging die-stacking technolo-

gies have caught the attention of the memory industry to mitigate the effect of the band-

width wall. By stacking several memory dies on top of each other and connecting them

through dense vias, the 3D integration enabled high-bandwidth and high-capacity mem-

ory systems (HU; STOW; XIE, 2018). Although modern high-speed links and 2.5D de-

signs have been used to deliver improved off-chip bandwidth, they still provide a lower

bandwidth between the core die and the DRAM stacks (HASSAN et al., 2016), not to

mention that energy consumption remains as a bottleneck to the overall system (HADIDI

et al., 2017).

Due to constraints compelled by the end of Dennard scaling (DENNARD et al.,

1974; ESMAEILZADEH et al., 2013), computer architects are required to come up with

new designs to extract performance in order to provide more speed-up and consumes less

energy. A viable approach to achieve such computing capacity consists of avoiding data

movements by performing computation where the data resides, which is the main pur-

pose of Processing-in-Memory (PIM) and Near-Data Processing (NDP) concept (SIEGL;

BUCHTY; BEREKOVIC, 2016).

The main idea behind developing a PIM approach was to eliminate or at least

to lower the memory wall (STANLEY-MARBELL; CABEZAS; LUIJTEN, 2011), the

bandwidth wall (KAGI; GOODMAN; BURGER, 1996) and the power wall (POLLACK,

1999) gaps created by bringing data to be processed into the main processor. However,

the insertion of 2D-integrated PIM brought some implications and problems that were not
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completely solved and, thus, corroborated as the main reasons for a not widely PIM adop-

tion. Only with the advent of 3D-stacking technologies, which enabled new opportunities

for integration of distinct technology process, that PIM research was revived.

1.1 Current problem

3D-stacking PIM presents a massive change to the current hardware architecture

design and, consequently, reveals new challenges in how applications can extract enor-

mous acceleration. Researches have historically relied on software simulators to enable

architectural studies and evaluate their impact on benchmarks and real-life applications.

The primary goal of such simulators is to allow design space exploration of PIM archi-

tectures and, in some cases, serve as a virtual prototype that enables earlier software

design. Some simulators used in previous PIM architectural researches include: gem5

(BINKERT et al., 2011) PimSim (XU et al., 2018), Clapps (OLIVEIRA et al., 2017a),

SiNuca (ALVES et al., 2015) and zsim (SANCHEZ; KOZYRAKIS, 2013) and other in-

house simulators (AHN et al., 2015).

However, most of these simulators struggle to deliver generic models for im-

plementing PIM logic and a complete simulation platform encompassing both micro-

architectural and system-level aspects. One of the essential requisites for PIM acceptance

is easy programmability and system support, which may include code offloading, data

coherence, virtual address translation, and other issues depending on the type of PIM

logic. There is an increasing need for architectural and system-level approaches to solve

these issues. Thus, the lack of tools for rapid prototyping can be a limiting factor to ex-

plore new solutions for PIM architectures, mainly when one wants to simulate full-system

integration.

Many studies have relied on analytical models or separate simulators for evalu-

ating their PIM designs (DRUMOND et al., 2017; ALVES et al., 2016). Nonetheless,

analytical models do not provide important design metrics, and trace-based simulation is

not as accurate as a real memory model driving the CPU model. Although this can be

useful for a proof of concept, it can also be limiting for a proper design space exploration

and also for serving as a virtual prototype, which requires more accurate simulations.

On the other hand, some of the more recent works have used highly accurate mod-

els in their experiments (OLIVEIRA et al., 2017a; LLOYD; GOKHALE, 2018), which

yields useful statistics for a hardware-focused analysis. Although this approach can also
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provide rapid prototyping, the System-C models experience high simulation time, and

most of the hardware-related metrics may not be useful for system-level evaluation.

1.2 Motivation

Despite all advances related to different types of PIM architectures, some issues

are still major concerns to enable the adoption of PIM at the system-level. Problems asso-

ciated with the programming model, data mapping, runtime scheduling support, granular-

ity of PIM scheduling and applicability to emerging memory technologies are just some

of them (GHOSE et al., 2018a). The increasing interest in evaluating how PIM architec-

ture can affect the entire compute-stack is essential not only to enable GPPs and GPUs to

use PIM capabilities, but also to allow in-memory accelerators.

The primary goal of such system-level exploration is to allow designers to identify

memory and PIM logic characteristics that affect the efficiency of PIM execution. For

instance, one can evaluate the trade-off between the number of PIM engines and memory

bandwidth, or affinity of PIM engine and data location. However, many optimizations can

only be made at execution time and, then, must be made by a system mechanism to avoid

increasing the energy of PIM computation.

The complex interactions between the CPUs, Input/Output devices, memory sys-

tem, and PIM logic are captured by using full-system simulation. As few previous sim-

ulators cannot provide a complete environment for the system and architectural PIM re-

search, there are open questions not only for evaluating the benefits of more accurate

models, but also for investigating novel interactions between system-level and PIM ca-

pabilities. Likewise, virtual prototypes are essential to the industry, since they provide

high-speed functional software models of physical hardware, enabling concurrent hard-

ware and software development. Thus, a complete simulation environment can also serve

as a virtual prototype.

1.3 Objectives

The main goal of this dissertation is to provide system-level information, which is

translated into statistics, for different types of PIM logic. As much work has been done in

system simulation, the first challenge consists of providing support for PIM simulation,

which includes different programming and execution models, as well as correct models

of memory system and system integration.
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Secondly, as the nature of PIM can widely vary, generic PIM mechanisms become

the second challenge of this work. It is expected to allow the development of system-level

solutions which apply to a wide variety of PIM architectures. Finally, the last challenge

resides on demonstrating the ability to use the simulator to perform design space explo-

ration in novel PIM proposals.

1.4 Contributions

In this document, PIM-gem5, a PIM support for the broadly adopted gem5 sim-

ulator (BINKERT et al., 2011) and a methodology for prototyping PIM accelerators is

presented. By using the PIM support described in this work, computer architects can

model a full environment and address open issues on PIM research, such as connection to

host processors, offloading mechanisms, Instruction Set Architecture (ISA) modifications,

data coherence protocols, and address translation methods, just to list some of them.

The validation of the simulator includes two case studies of PIM logic placed

alongside each vault controller of HMC, and we highlight the generic points of our imple-

mentation which can be used to exploit the efficiency of new PIM accelerators. Using the

proposed implementation, we show the potential for energy reduction and performance

improvement of different applications when compared to traditional architectures. Also,

we demonstrate how any processor available in the gem5 platform can be simulated in a

PIM fashion.

1.5 Document organization

This thesis is structured as follows: an overview of 3D-stacked memories and

the research field of Processing-in-Memory is presented in Chapter 2. In Chapter 3, we

present the recent developments on modeling and simulation tools, as well as system-level

challenges that prevent PIM architectures to be broadly adopted.

Then, the implementation of the support for PIM simulation in gem5 is reported in

Chapter 4, which is broken down into details of memory and PIM instance modeling, sys-

tem integration, and host interface. Two case studies of PIM architectures are described

in Chapter 5, which captures the potential of PIM-gem5 to simulate different PIM types.

In Chapter 5.3 we present the experimental setup used to validate the memory modeling

and evaluate the performance of the case studies. Then, in Chapter 6, we present the main

results of the HMC and case studies simulation. Finally, some considerations about this
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thesis and opportunities for future works are discussed in Chapter 7.
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2 BACKGROUND

As the Dynamic Random Access Memory (DRAM) has been a de facto standard

for main memory, some basic concepts of recent development on memory systems based

on DRAM, which includes high-performance interfaces for 3D-stacked DRAM, are pre-

sented. Next, an overview of the research field on PIM architectures and taxonomy is

described, as well as basic notions of simulation platforms for enabling the design and

exploration of computer-system architecture.

2.1 3D high-density DRAMs

3D high-density memories rely on multiple stacked DRAM dies to provide high

bandwidth and capacity to meet the demand of today’s system workloads. Most of the

today’s major memory manufacturers develop 3D-DRAMs, such as Samsung’s DDR4,

Tezzaron’s DiRAM4, AMD and Hynix’s High Bandwidth Memory (HBM) and Micron’s

Hybrid Memory Cube (HMC). Due to the limitation of parallelism and bandwidth of

Double Data Rate (DDR) interfaces for high-performance computing, different industry

leaders have gathered efforts to propose high-performance RAM interface for through-

silicon vias (TSV)-based stacked DRAM memories.

Although significant changes can be seen in these new interfaces over planar

DRAM devices, 3D high-density memories use the same basic DRAM circuitry, array

organization, and DRAM operations. For details of DRAM technology and devices, we

refer the interested readers to (JACOB; NG; WANG, 2010; HANSSON et al., 2014; KIM,

2016; GHOSE et al., 2018b).

The HBM and HMC interfaces are the most prominent specification in the present

time. For instance, the HBM is a JEDEC’s standard composed of four DRAM dies and

one single logic die at the bottom. Each DRAM die consists of 2 channels, where each

channel has 1 Gb density with a 128-bit data interface and 8 independent banks (STAN-

DARD, 2013; LEE et al., 2014). The logic die is divided in PHY, which is responsible

for interfacing DRAM and memory controller, TSV arrays, and a direct access port for

testing. HBM communicates with memory controller through a 2.5D interposer, which

has 1024-bit. The available bandwidth with an 8-channel read operation is 128 GBps at

1.2V.
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2.1.1 HMC architecture

As described in the last specification (CONSORTIUM et al., 2015), the HMC is a

package containing either four or eight DRAM die and one logic die stacked together and

connected by TSV, as shown in Figure 2.1. Within each cube, the memory is organized

vertically into vaults, which consist of a group of corresponding memory portions from

different DRAM dies combined with a vault controller within the logic die, as shown in

the red region of Figure 2.1. Each HMC contains 16 or 32 vaults depending on the version

and each vault controller is functionally independent to operate upon 16 memory banks

in the eight DRAM layers configuration. The available bandwidth from all vaults is up to

320 GBps and is accessible through multiple serial links, each with a default of 16 input

lanes and 16 output lanes for full duplex operation. All in-band communication across a

link is packetized and there is no specific timing associated with memory requests, since

vaults may reorder their internal requests to optimize bandwidths and reduce average

latency.

A request packet includes an address field of 34 bits for internal memory address-

ing (vault, bank and DRAM address) within the HMC. The address mapping is based

on the maximum memory block size (32B, 64B, 128B OR 256B) chosen in the address

map mode register. This mapping algorithm is reffered to as l̈ow interleave,̈ and forces

sequential addressing to be spread accross different vaults and then across different banks

within a vault, thus avoiding bank conflict. The user can select a specific address map-

ping scheme to optimize the bandwidth based on the characteristics of the request address

stream.

Some of the benefits of the HMC over the traditional DRAM modules can be

summarized as:

Capacity: one of the advantages of the HMC architecture resides on the capacity

and density problem of current DRAM devices. Due to the difficult of scaling DRAM

cells, DRAM density have slowed in recent years. With stacked DRAM dies, a single

cube can contain a multiple of 4 or 8 times the storage in the same package footprint as a

single DRAM device. Even improvements in traditional devices, such as DDR4 standard,

has 3D stacking extension to increase density without increasing pin count.

Parallelism and Aggregated Bandwidth: the high bandwidth of HMC is achieved

by combining dense TSV (thousands of TSVs in each cube) and transferring at a high fre-

quency. In addition to the TSVs, each cube has several high speed serialized links to
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provide high-bandwidth to off-chip processors. Since each vault is operated indepen-

dently, each one with one or more banks, there is a high level of parallelism inside of

a cube. Each vault is practically equivalent to DDRx channels. With 16 or 32 vaults

per cube, the vault-parallelism adds an order of magnitude within a single package. As

vertical stacking allows a greater number of banks per vault, bank-level parallelism also

increases the bandwidth within each vault.

Energy Efficiency: by reducing the length and capacitance of the connections

between the memory controller and the DRAM devices with short TSV bus, the HMC

is more efficient than traditional DDRx memories. The first measurements of HMC in-

dicates 3.7 pJ/bit for the DRAM layers and 6.78 pJ/bit for the logic layer, while existing

DDR3 modules spend 65 pJ/bit (JEDDELOH; KEETH, 2012). In a design space explo-

ration, Weis et al. (2011) demonstrate that 3D-stacked memories like HMC can be 15x

more efficient than an equivalent LPDDR from Micron. Current estimations considering

the DRAM process scaling were not available in the literature.

Interface Abstraction: Differently from DDRx systems, a CPU must use a gen-

eral protocol to communicate with the cube or a topology of cubes that decouple memory

controller functions from CPU. The CPU sends read and write commands, instead of

traditional RAS and CAS commands, that are converted into device-specific commands

within the vault controller. This effectively hides the natural silicon variations and bank

conflicts within the cube and way from the host CPU. The DRAM can be optimized on

a vault-basis without exposing the change to the CPU. (SCHMIDT; FRÖNING; BRÜN-

ING, 2016; JEDDELOH; KEETH, 2012).

Near-Memory computation: as presented in the specification (Hybrid Memory

Cube Consortium, 2013b), the logic die of HMC not only plays a role as vault controller,

but also supports a set of atomic operation instructions. These instructions operate on

16-bytes memory operands and writes the result back to the DRAM arrays following a

read-modify-write sequence.

2.2 Processing-in-Memory

Modern applications, such as data analytics, pattern recognition and bioinformat-

ics, can benefit from PIM since they present poor temporal locality and can use in-memory

computing instead of passing the data back and forth through the memory hierarchy (ZHU

et al., 2013; SIEGL; BUCHTY; BEREKOVIC, 2016).
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Figure 2.1: HMC overview
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Source: provided by the author

2.2.1 History

The concept of PIM as presented today appeared in the 90s, where the main idea

behind developing a PIM approach was to eliminate or at least to lower both the memory

wall (STANLEY-MARBELL; CABEZAS; LUIJTEN, 2011), the bandwidth wall (KAGI;

GOODMAN; BURGER, 1996) and the power wall (POLLACK, 1999) gaps. The first

studies on 2D-integrated PIM brought some implications and problems that were not com-

pletely solved and, thus, corroborated as the main reasons for not having 2D-integrated

PIM largely adopted. Only with the advent of 3D-stacking technologies, which enabled

new opportunities for integration of distinct technology process, and also with the arising

of data-intensive workloads that the PIM research field was revived and leveraged.

In the past decades, several attempts were made to include processing logic in

different locations of the memory system. The main contributions are listed below and

classified according to the location where processing units were placed:

Processing in the DRAM Module or Memory Controller: some recent works

have examined how to process near the memory, but not within the DRAM chip, to

leverage conventional DRAM modules or memory controllers (SESHADRI et al., 2015;

ASGHARI-MOGHADDAM et al., 2016; HASHEMI et al., 2016). This approach was

proposed mainly to reduce the cost of PIM manufacturing, as DRAM chip remains un-

modified and it avoids the use of still costly 3D-stacking technology. However, it may

suffer from challenges in programmability and consistent PIM interface to tackle the

problems of address translation and cache coherence challenges. Moreover, the efficiency

of PIM execution in this approach is limited, since it cannot take advantage of internal
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memory bandwidth as in-DRAM chip mechanisms and 3D-stacked accelerators do.

Processing in 3D-stacked Memory: meanwhile, several works (KLEINER; KUHN;

WEBER, 1995; LIU et al., 2005) studied the possibility of stacking memory dies and in-

terconnecting them through very small vias, granting the emerging of 3D-stacked processing-

in-memory approach. Moreover, the evolution of Through-Silicon-Via (TSV) technique

(DAVIS et al., 2005; SAKUMA et al., 2008) solved some problems present on previ-

ous versions of 3D-stacked memory like thermal dissipation influences making feasi-

ble the production and exploitation of stacked memories as done by the HMC (Hybrid

Memory Cube Consortium, 2013a) and HBM (STANDARD, 2013) products. Conse-

quently, since 2013 3D-stacked PIMs have regained focus with different projects ap-

proaches, varying from multicore systems placed into the logic layer as in (PUGSLEY

et al., 2014; AHN et al., 2016; AZARKHISH et al., 2016; DRUMOND et al., 2017; SCR-

BAK et al., 2017), alternative cores (NAIR et al., 2015; KERSEY; KIM; YALAMAN-

CHILI, 2017), Single Instruction Multiple Data (SIMD) units (SANTOS et al., 2017;

OLIVEIRA et al., 2017b), Graphics Processor Units (GPUs) (ZHANG et al., 2014; PAT-

TNAIK et al., 2016) to Coarse-Grain Reconfigurable Arrays (GAO; KOZYRAKIS, 2016;

FARMAHINI-FARAHANI et al., 2015a). Despite all advances related to 3D-stacked

memory PIM, some issues are still major concerns in the recent 3D-PIM architectures

such as how to perform offloading of instructions from the host processor to the PIM unit,

data coherence among host processor and PIM units.

Processing within the memory chip or memory array: several recent works

have investigated how to perform memory and arithmetic operations directly within the

memory chip and also the memory array. These works take advantage of architectural

properties of memory circuits and add bulk operations to them as new functionality to

the memory chip. They can significantly improve computational efficiency and do not

require 3D integration, although they still face the same challenges of processing in 3D-

stacked memory. Most of the mechanisms in the literature following this concept rely

on the bulk copy, data initialization (SESHADRI et al., 2013), bulk bitwise operations

(SESHADRI et al., 2017; LI et al., 2016; KANG et al., 2017; ANGIZI; HE; FAN, 2018),

and simple arithmetic operation (SHAFIEE et al., 2016; CHI et al., 2016) in different

memory technologies.

Despite all advances related to 3D-stacked and in-DRAM PIM, some issues are

still major concerns, such as how to perform offloading of instructions from the host

processor to the PIM unit, cache coherence and interconnection communication network
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between host processor and PIM, and also between PIM units.

2.2.2 Taxonomy of PIM logic

Regarding execution model, two main classes of processing units are identified by

Loh et al. (2013): Fully programmable PIM and Fixed-function PIM.

• Fully programmable PIM: This class comprises full or simplified processors which

fetch, decode and execute instructions from code offloaded to the PIM accelerator.

Since existing core processors are used as PIM units, existing compilers can be

used without any change. On the other hand, it generally requires programmer’s

efforts to manage the communication between host processors and PIM, and also

requires the use of external libraries such as OpenMP and MPI (FANG et al., 2012;

DRUMOND et al., 2017; NAIR et al., 2015).

• Fixed-function PIM: This class provides pre-defined simple FUs, or fixed oper-

ations based on existing memory access instructions. An extension of LOAD and

STORE instruction could encode PIM operations directly in the opcode or as a spe-

cial prefix in case of General Purpose Processors’ ISA. Fixed-function PIM opera-

tions can be divided into Bounded-operand PIM Operation (BPO) and Compound

PIM Operation (CPO). BPO comprises a single operation or a limited set of oper-

ations on single or multiple data (e.g., add and multiply-accumulate), while CPO

includes a dynamic number of operations and arbitrary number of memory loca-

tions.

The authors do not limit their classification as the only one possible. In fact,

they acknowledge that fixed-function can be more complex than the examples shown in

their position paper. The exploration of fixed-function PIMs can lead to partially pro-

grammable designs, although they cannot be classified as fully programmable PIM since

they do not present a mechanism for fetching instructions, translating virtual addresses,

and other mechanisms present in fully programmable cores. In addition, there are several

challenges regarding system-level decisions and compiler tools in fixed-function PIMs,

since a new ISA organization, a different virtual memory translation, and data coherence

mechanism, and other requirements may be expected.

In recent 3D-stacked PIM, most of the studies consider a logic layer organized

into vaults similar to the one available on HMC devices, where simple processing units

are placed within each vault to minimize communication costs (Hybrid Memory Cube
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Consortium, 2013a). Also, in recent PIM architectures based on HMC architecture (AHN

et al., 2016; SANTOS et al., 2017), each processing unit is placed next to its home vault

router to reduce routing complexity and improve performance. Regarding communication

costs, fully programmable PIM usually requires a complex memory hierarchy. Inside the

vault, area and power dissipation are critical constraints that can lead to performance

limitations (ECKERT; JAYASENA; LOH, 2014; ZHU et al., 2016; LIMA et al., 2018).

In this case, communication between different cores across different vaults tends to harm

performance, and/or require more attention from the PIM programmer (AHN et al., 2016).

2.3 System simulation basics

Before diving into the implementation of the PIM support in gem5, some details

regarding simulation mode, accuracy of simulation and interfaces for connecting models

have to explained.

Although cycle-based models can be easily portable to different simulation frame-

works, as they do not depend on any specific event semantics, a huge penalty is paid on

simulation speed. Event-based models, instead, are only updated when part of the model

has to be changed and, then, it skips ahead to the next event. The simulation speed is in-

creased by orders of magnitude. Even though event-based models are tied to a particular

simulation platform, many models created on it can also be applied to any discrete event

simulator. The gem5 simulator (BINKERT et al., 2011) was chosen as basis of this work

due to mature event-based models.

Apart from this level of abstraction, which is suitable for system simulation, gem5

enables three more modes. These simulation modes are closely coupled with the mas-

ter/slave port interface, which are the most basic, rigid interface protocol in the simulator

to implement communication between CPU models and memory system models. As

summarized in Figure 2.2, the master/slave protocol allows four sequences of message

exchanging in which the request/response is straightforwardly transmitted, or either the

slave or master module denies the request/response when busy. These ports implement

three different memory system modes: timing, atomic and functional. The timing mode is

used to provided correct simulation results dynamic behavior since it makes use of events.

Atomic and functional modes, instead, are used in special circumstances that do not re-

quire accurate results of the memory system, such as in fast-forwarding simulations and

loading binary from the host to the simulated system’s memory.
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Figure 2.2: Three behaviors of master/slave protocol employed in the gem5 simulator
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Source: provided by the author

In addition to hardware simulation modes, gem5 enables architects to use two

modes with different system-level accuracy. The full system mode simulates not only the

hardware, but also system details similar to emulators like QEMU1 and hypervisors. This

allows gem5 to execute unmodified OS binaries and investigate the impact of operating

system, Input/Output devices and other low-level details Likewise, a less accurate system

model is supported in the system emulation mode. This mode restricts gem5 to use only

basic OS syscalls, which are imitated, rather than executed from the OS binaries. This

mode does not require any OS kernel, device drivers, disk image or interaction with the

OS.

The models are generally integrated in full-system simulation to form a complete

architectural-exploration framework. For more details, we refer the readers to gem5 tu-

torial and documentation (LOWE-POWER, 2017; LOWE-POWER, 2019; BINKERT et

al., 2011).

1https://www.qemu.org
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3 RELATED WORK

This chapter presents the recent development of tools for exploring memory and

processing-in-memory design space, as well as system-level challenges that prevent PIM

architectures to be broadly adopted.

3.1 Memory modeling tools and simulators

When it comes to DRAM design space and architectural research, the tools are

divided into DRAM bank/chip modeling and DRAM controller simulation tools. Devel-

oped by HP Labs, CACTI (CHEN et al., 2012) is one of the most cited tools for DRAM

modeling. CACTI produces as output energy and timing parameters, and also an esti-

mation of performance and power for future DRAMs, but it is not suitable for exploring

advanced DRAM architectures or devices (WEIS et al., 2017). DRAMSpec (WEIS et al.,

2017), in turn, generates datasheet timing and current parameters, as well as it provides

support for novel memory devices, such as HMC. The authors claim that their tool en-

ables to explore DRAM design space and key parameters very fast with enough accuracy.

Also, the estimation tool is seamlessly integrated into gem5 (BINKERT et al., 2011).

The second type of tools features the DRAM controller simulation driven by pre-

viously collected memory-access patterns or by a simulated processor. Some examples

of planar DRAM simulators include: DRAMSim2 (ROSENFELD; COOPER-BALIS;

JACOB, 2011), Ramulator (KIM; YANG; MUTLU, 2016), DRAMSys (JUNG; WEIS;

WEHN, 2015). DRAMsim2 provides a cycle-accurate simulation of DRAM using Ver-

ilog descriptions. Although current research efforts try to abstract from low-level accu-

racy to speed-up simulation time, DRAMsim2 is still a largely adopted tool. Ramulator

offers an abstract C++-based simulation which part of the model needs to be clocked at a

specific point in time. DRAMSys leverages transactional-level modeling to provide rapid

simulation in conjunction with approximated timing to enable characterization of new

DRAM subsystems and even allows the evaluation of 3D-stacked memories.

While previous mentioned simulators were focused on planar memories, recent

simulators have been focusing on enabling 3D-stacked models, which includes HMC-Sim

(LEIDEL; CHEN, 2016), CasHMC (JEON; CHUNG, 2017), Clapps (OLIVEIRA et al.,

2017a) and gem5’s simple HMC model (AZARKHISH et al., 2015). HMC-Sim provides

cycle-accurate memory simulation for any of the supported HMC 1.0 and 2.0 configura-
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tions. Though, the approach taken to implement HMC instructions harms scalability for

future PIM extension and also the interoperability between different host operating sys-

tems. CasHMC is a C++ simulator that implements most of the HMC resources, as packet

error detection, link flow control, and HMC instructions. The drawbacks of this tool are

due to its offline simulation, which only uses an external memory trace as input and the

lack of PIM extension. Clapps (OLIVEIRA et al., 2017a) is a cycle-accurate trace-driven

HMC simulator that includes the HMC commands and a generic interface for custom PIM

logic. As this tool is built on System-C library, it can be integrated into other simulation

platforms such as gem5.

A previous attempt of modeling HMC architecture on gem5 was made by Azarkhish

et al. (2015), and their contribution was added to gem5’s repository. However, their ex-

periments did not achieve the vault bandwidth reported by Micron due to mistakes in the

memory interleaving. In fact, each vault controller received a single contiguous memory

range of 256 MB, preventing the cube to exploit both vault-level and bank-level paral-

lelism in sequential request streams. In addition to that mistake, this model of HMC had

three modes of interconnection, but all modes presented distortions to the HMC specifi-

cation. These issues are related to an incorrect behavior on the address range assigned

to each serial link, either limiting each link to a specific memory range or adding extra

latency to provide complete memory range to all links.

3.2 Simulating a PIM-based architecture

Most of the recent PIM works focus on fully-programmable cores, which are gen-

erally simulated by adjusting constraints of 3D integrated circuits in existing simulators

and by taking advantage of existing execution models and compilers. For example, zsim

(SANCHEZ; KOZYRAKIS, 2013) is a fast and scalable simulator that supports thousand

of core simulation, including PIM models (GAO; AYERS; KOZYRAKIS, 2015; GAO

et al., 2017; SONG et al., 2018). As the full-system support is compromised to enable

scalability, zsim provides a collection of lightweight user-level virtualization to ease ex-

ecution of unmodified benchmarks. SiNuca (ALVES et al., 2015) is an accurate and

validated simulator focused on Non-Uniform Cache Architectures (NUCA) simulation,

which was also used in the previous PIM studies (ALVES et al., 2016; SANTOS et al.,

2017). Though, this tool requires traces generated on a real machine without the influence

of Operating System or other processes.
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Some past studies that consider a reconfigurable logic in-memory generally extend

existing simulators. For instance, the CGRA model of (FARMAHINI-FARAHANI et

al., 2015a) placed near commodity DRAM devices is simulated in the gem5 simulator

(BINKERT et al., 2011), and the reconfigurable (GAO; KOZYRAKIS, 2016) is built on

zsim (SANCHEZ; KOZYRAKIS, 2013).

On the other hand, fixed-function in-memory processing, which includes the HMC

and the works of (AHN et al., 2015; GAO; SHEN; ZHUO, 2018; NAI et al., 2017;

OLIVEIRA et al., 2017a), relies on a more varied design methodology which generally

includes custom or in-house tools. Although there exist numerous PIM simulators, they

still lack dealing with many challenges and difficulties in the PIM simulation. The first

issue resides on the necessity of coupling a significant number of different tools to rep-

resent a whole computing system and its respective modules. In (XU et al., 2018), the

authors presented a PIM simulator that relies on the integration of three memory simula-

tors to support different memory technologies and one architectural simulator to provide

interconnection and description of CPU architectures.

Likewise, in (YANG; HOU; HE, 2019) is presented a PIM architecture for Internet-

of-Things applications which relies on the integration of one simulator for simulating both

PIM and host processing elements and a tool for estimating power consumption. Coupling

several simulators to represent the desired computing system incurs drawbacks to the de-

sign life-cycle, making this simulation approach prohibitive. When considering different

simulation environments, the architectural designers must have complete and in-depth

knowledge about the simulators features, which in turn demands time-consuming tasks.

Also, since the involved simulators may have different accuracy levels, system modeling

patterns, and technological constraint representations, the result of the simulation might

not present the desired precision.

Although (YANG; HOU; HE, 2019) utilizes the same architectural simulator for

all the hardware components, different simulation accuracy level components are instan-

tiated to compose the whole system. Thus, the simulation approach followed by (YANG;

HOU; HE, 2019) not only needs a particular synchronization mechanism but also does not

reflect a real scenario where the host processor is represented by an event-detailed pro-

cessor description and the PIM elements are described only with atomic and no-delayed

operations.

Meanwhile, other simulators require the generation of trace files as input to feed

them. The main drawbacks inherit from the trace-based simulation approach are the ne-
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cessity of previous execution of the target applications in a real machine and the gathering

of relevant information such as executed instructions and data access addresses. Although

(XU et al., 2018) and (OLIVEIRA et al., 2017a) are built over architectural cycle-accurate

simulators, the PIM modeling and measurements are done by analyzing memory traces

gathered during the simulation.

To summarize the main aspects desirable for PIM simulation tools, we gathered

some features from the related simulators in Table 3.1. The cells marked as "-" indicate

that the feature is provided, but the behavior is not correct, which is the case of many HMC

models in current gem5-based tools. According to the characteristics listed in this table,

PIM-gem5 is the only one to support full-system simulations, accurate HMC models and

system-level mechanisms for PIM designs.

Table 3.1: Summary of features

Simulator Processor
sim

HMC
model

System-level
support for PIM1

PIM
extension

Full-system
support

HMC-Sim (LEIDEL;
CHEN, 2016)

x x x x

CasHMC (JEON;
CHUNG, 2017)

x x x

Clapps (OLIVEIRA et
al., 2017a)

x x x

Zsim (SANCHEZ;
KOZYRAKIS, 2013)

x x x

SiNuca (ALVES et al.,
2015)

x x x

PimSim (XU et al., 2018) x x
gem5’s simple HMC
(AZARKHISH et al.,

2015)

- x

(YANG; HOU; HE,
2019)

-

PIM-gem5

Source: Provided by the author

3.3 System-level challenges for PIM adoption

Data-copy between PIM and host cores is a frequent challenge to be faced since

most of PIMs share their embedded memory in a regular storage mode. The investi-

1We consider if there is any available mechanisms for PIM offloading, virtual address translation, data
coherence and so on.
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gation of the cache coherence problem is restricted mainly to three alternatives: non-

cacheable data, fine-grain, and coarse-grain coherence. The use of non-cacheable mem-

ory region forces the host CPU to directly read data from memory (AHN et al., 2016;

NAI; KIM, 2015; FARMAHINI-FARAHANI et al., 2015b), while the fine-grain solution

uses traditional coherence protocols and flushes data back to the memory when needed

(BOROUMAND et al., 2017). Other works use coarse-grain coherence or coarse-grain

locks to prevent the host core to access data being used in PIM (AHN et al., 2015; HSIEH

et al., 2016a; SESHADRI et al., 2013; SESHADRI et al., 2015). Another concern on

PIM system-level infrastructure is the virtual address translation. For instance, IMPICA

(HSIEH et al., 2016b) proposes in-memory support for address translation and pointer

chasing operation, and DIPTA (GOKHALE; LLOYD; HAJAS, 2015) avoids traditional

page frame translation and stores translation information next to the data to eliminate

translation overhead in near-memory architectures.

The PIM concept introduces new challenges in how programmers will interact

with in-memory processing logic. The discussion about programming model involves

how much control the CPU has over the PIM and the type of integration of PIM instruction

using compiler-based methods and libraries. Recent works that tackle the problem of

deciding between host and PIM instructions (AHN et al., 2015; HSIEH et al., 2016a). The

PIM-enabled instruction (PEI) (AHN et al., 2015) consists of an ISA extension for PIM

operations and a data locality-aware mechanism to decide whether instructions should

be executed on the host CPU or PIM. Unlike PEI, the work of (HSIEH et al., 2016a)

proposes a compiler-based mechanism to transparently offload instructions to PIM and

also map data based on the code offloaded.

Another open issue in PIM research resides on determining the ideal place to store

data and the ideal allocation of the workload to the in-memory compute units. Besides,

(HSIEH et al., 2016a) that provides a programmer-transparent mapping of data and PIM

instructions, the work of (SURA et al., 2015) hides memory latency by combining pro-

gramming language features, compiler techniques, and operating system interfaces to map

data and optimize data access. Nonetheless, there are still many opportunities for opti-

mizations that take advantage of memory architecture properties, such as vault and banks

location, to decide where data should be mapped.
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4 SIMULATOR SUPPORT FOR PIM ARCHITECTURES

This section presents the implementation of reusable models for PIM architectural

research in the gem5 simulator. The elements described here include system and hard-

ware abstractions applicable to a wide variety of PIM styles. The following subsections

report many decisions related to modeling accurately 3D-stacked memories, offloading

mechanism, interconnection, PIM logic, and energy model. We divided the presentation

into three major blocks: HMC modeling, PIM logic modeling, and, finally, host interface

and system integration. An overview of the system integration that we intend to represent

using these three blocks is shown in Figure 4.1.

Figure 4.1: An example of system integration: a PIM-enabled stacked memory connected
to a Chip Multiprocessor (CMP) via serial links in a 2.5D package

Stacked memory
CMP

Vault controller +
Native HMC PIM +
Interconnection network +
SerDes controller 

Serial Links

Processor cores +
Cube Address Remapper + 
SerDes controller

Source: provided by the author

4.1 HMC modeling

To model the HMC and also enable the extension for future PIM studies based on

HMC, the specification (Hybrid Memory Cube Consortium, 2013b), related papers (JED-

DELOH; KEETH, 2012; PAWLOWSKI, 2011; WEIS et al., 2011; HADIDI et al., 2017;

HADIDI et al., 2018; HANSSON et al., 2014) and recent proposals of PIM interfaces

were studied (AHN et al., 2015; SANTOS et al., 2017; OLIVEIRA et al., 2017a). The

HMC is composed of three major blocks: the high-speed serial links (SerDes), switching

interconnection and the vault controller. An overview of the objects that compose the

HMC model is shown in Figure 4.2, and they are described in the following subsections.

However, before diving into the challenges of implementing and extending the three ma-



33

jor hardware components of HMC, we focus on the difficulties found to represent the

HMC interleaving correctly.

Figure 4.2: HMC model broke down into serial link, crossbar switch and vault controller
objects
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4.1.1 Address mapping

To correctly represent the HMC in the gem5 simulator, we had to make signifi-

cant changes in the memory mapping mechanism to provide vault-level parallelism and

suitable interconnection latencies in the way that it is specified in Hybrid Memory Cube

Consortium (2013a). The first challenge is associated with the correct implementation of

memory interleaving, which was already misinterpreted in a previous study presented in

Subsection 3.1.

As aforementioned in Subsection 2.1.1, the maximum memory block size dictates

the pattern of memory ranges addressed by a vault in the low-interleave mapping algo-

rithm. In the gem5 model, these address ranges are given either by a single address range

or a range list. Each vault controller receives a range list where the range addresses are

spaced at regular intervals, which depends on the number of vaults and the configured

block size.

The default approach provided by gem5’s source code is heavy to simulate and

cannot scale for ordinary memory sizes. This happens because, in a device of 8 GB, it can

represent up to 1M entries of address range to form an aggregate range of a single vault



34

controller. Thus, iterating over a 1M entries to find the address range makes this choice

prohibitive in terms of memory usage and simulation time. Then, a different interleaving

mode is needed, and we provide the Cube Address Remapper to correctly forward requests

from the serial link to the vault controllers.

Figure 4.3: Address map fields 256 Byte maximum block size and 8GB

Vault[4:0] Offset[3:0]Bank[3:0]

DRAM[3:0]DRAM[19:4]

Offset[3:0]Bank[3:0]

DRAM[3:0]DRAM[19:4]

Vault[4:0]

MSB

Source: provided by the author

The Cube Address Remapper is intended to be implemented in the host-side HMC

controller, and it enables modules within the HMC to forward packets using contigu-

ous ranges seamlessly. This module moves the bits responsible for the vault addressing

(Vault[0:4]) to the most significant part of the address as shown in Figure 4.3. By rear-

ranging the address of memory packets before they are forwarded in the cube, we provide

the so-called low-interleaved mode without extra overhead in simulation. Thus, for the

purpose of ease the simulation, each vault controller receives a single address range and

the components within a cube (serial links and switching interconnection) can correctly

forward the packets using a reduced list of address ranges. The bitfields presented in

Figure 4.3, with the exception of Vault[0:4], are used to address the memory within a

vault. DRAM[4:19] bits are used to address the row, Bank[4:19] bits address the bank,

DRAM[0:3] bits, if applicable, are used to address the block of a given bank b and row r,

and Offset[0:3] bits to address unaligned requests.

4.1.2 High-speed serial links

All HMC I/O is implemented as multiple serialized, full duplex links. Each serial

link is composed of SerDes lanes, e.g., 16 input lanes and 16 output lanes by default,

that carry system commands and data. Other SerDes configurations are also possible,
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such as half-width and quarter-width setups. All in-band communication across a link is

packetized, and a packet specifies single, complete operations. There is no specific time

associated with each memory requests, and responses are generally returned in a differ-

ent order than requests are made since there are multiple independent vaults answering

requests.

Each serial link is composed of buffered slave and master ports. In timing mode

accesses, an event on the master port side is responsible for handling a transmission list,

i.e. packets in the request buffer. Likewise, the slave port side has a buffer for the re-

sponses not yet sent. In addition to that, the master port presents a simple traffic control

by marking outstanding packets in the response buffer. By tracking outstanding responses,

it is possible to maintain a maximum number of packets inside the cube and prevent data

contention.

Table 4.1 shows the parameterized items of this model. These parameters are

mostly related to static latencies, bandwidth and number of buffer entries. As the serial

link object inherits the address range of memory and routing objects, the four links receive

the address range of an HMC crossbar switch. To provide a full address range across all

serial links, we added a crossbar switch to forward the requests coming from four serial

links to one of the four internal crossbar switches with limited address ranges.

Figure 4.4: Crossbar switch model broke down into ports, buffers and switching layers
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4.1.3 Switch interconnection

The implementation of the interconnection network between serial links and vault

controller is an open discussion. Although some past works have analyzed the impact of

a Network on Chip on real hardware (HADIDI et al., 2017; HADIDI et al., 2018), this

issue generally does not receive much attention, since different interconnection networks

can provide the maximum bandwidth. On the other hand, the first announcement of HMC

in the Hot Chips Symposium made by Jeddeloh and Keeth (2012) considers a crossbar

switch as an alternative, which we have followed in this work.

A crossbar switch is an example of implementation of how the aggregate band-

width from all vaults is made accessible to the Input/Output links. This portion of HMC

is responsible for data routing and data buffering between Input/Output links and vaults,

which is implemented by non-coherent buffered crossbar model. A detailed representa-

tion of this crossbar model is shown in Figure 4.5.

Figure 4.5: Crossbar switch model broke down into ports, buffers and switching layers
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Source: provided by the author

Each link is associated with eight local vaults that form a quadrant. Accesses from

a link to a local quadrant may have lower latency than accesses coming from a link of a

distinct quadrant. Bit fields within the vault address designate both the specific quadrant

and the vaults within that quadrant. Each internal crossbar is associated with eight local

vaults, and the transfer of requests from its corresponding serial link has reduced latency.

This behavior models the four quadrants present in HMC. We use four crossbar switches

to simulate the quadrants specified in (Hybrid Memory Cube Consortium, 2013b). In
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Table 4.1 we present the parameterized items of our crossbar switching model. These

parameters are mostly related to latencies, bandwidth and number of buffer entries.

Table 4.1: List of parameterized items in the serial link and crossbar switch model

Model Parameter Description
Lane width Number of parallel lanes inside the serial (Bytes)
Link speed Speed of each parallel lane inside the (GBps)

Serial Link Request buffer size Number of requests to buffer
Response buffer size Number of responses to buffer

Total controller latency Static latency experienced by every packet (ns)
Width Data width (Bytes)

Clock frequency Fixed clock frequency of all operations
Request buffer size Number of requests to buffer

Crossbar switch Response buffer size Number of responses to buffer
Frontend latency Static latency experienced by every packet

regardless if the bus is busy or can transmit
Forward latency Static latency to forward a packet
Response latency Static latency to transmit a packet in the response

direction

Source: provided by the author

4.1.4 Vault controller

In this section, the mechanism and behavior of a memory controller targeted for

HMC and PIM architectures are described. Our model of vault controller is based on

the generic DRAM controller proposed by Hansson et al. (2014). Their fast, event-based

model captures the behavior of modern DRAM devices, which can model either DIMM

modules or can easily be adapted to model other DRAM interfaces such as Wide-IO (KIM

et al., 2012), HBM (STANDARD, 2013) and HMC (CONSORTIUM et al., 2015).

As shown in Figure 4.6, the controller splits write and read queues for incoming

requests and a shared queue for responses. The DRAM organization is captured by de-

termining parameters such as bus width, page size, burst length, number of banks, ranks,

and devices. Likewise, DRAM operations are modeled after event-based state machines

that take DRAM timings as parameters. The controller model captures a subset of the

DRAM bank state changes, along with data bus occupancy, refresh events, and data re-

sponse events. For more details of the DRAM finite state machine, we refer the readers

to Hansson et al. (2014).

Scheduling: The memory controller schedules read and write requests observing

the DRAM timings and bank state machines with the goal of maximizing the efficiency
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and exploiting the maximum bandwidth. Two levels of scheduling are provided. The

first is related to read/write switching policy. The controller handles requests from read

queue as the default state and implements a write drain mode as described in Narancic

(2012). A parameterized threshold is used for forcefully changing the DRAM state from

read to write queue, and a minimum number of writes to switch back to read queue.

The second level of scheduling selects the request from either read or write queue as

demanded by the first scheduling level, and it is tightly coupled to the row buffer pol-

icy. Two simple scheduling algorithms are available: First-Come-First-Served (FCFS)

and First-Ready-FCFS (FR-FCFS) (RIXNER et al., 2000). Also, two basic row-buffer

policies, namely closed and opened page, and two variations, namely adaptive closed and

adaptative opened page, are provided.

The controller model uses the transaction-level gem5 port interface presented in

Section 2.3. The flow control is made by monitoring queue size when receiving a packet or

after a response event. The model has two timing parameters to capture the static frontend

and backend latency of a memory controller. The frontend latency represents the pipeline

stages and complexity of the controller design. The backend parameter captures the PHY

and IO latency, thus allowing us to study the impact of different memory interconnection,

e.g., Package-on-Package, Dual Inline Memory Module and Through Silicon Vias;

PIM logic interface: A PIM unit can be connected to arbitrary locations in the

memory system, e.g., behind a crossbar switch, attached to a dedicated port of the memory

controller, behind the row buffer, etc. To model such different locations, we provide an

interface to connect PIM logic using dedicated slave and master ports to the memory

controller. By using them, one can model the placement of PIM units inside a vault to

take advantage of reduced communication costs. The specific location can be imitated

by adjusting the timing parameters. In turn, to model PIM units externally to a vault, the

implementation is straightforward since crossbar switch models are readily available.

Regarding modeling specifics characteristics of HMC, we modeled the layers as

ranks that share the same TSV connection in burst operations. The baseline address map-

ping of HMC is RoBaVaOf 1. As the Cube Address Remapper rearranges the address as

depicted in Figure 4.3, the address mapping had to be changed to VaRoBaOf to keep the

bank-level parallelism.

Transactional operations, such as the read-modify-write (RMW) commands in

HMC and the instructions presented in Section 5.2, require changes to the scheduling al-

1With Ro, Ba, Va and Of denoting row, bank, vault and offset, respectively, and going from MSB to
LSB.
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gorithm to keep data consistency. Instead of handling the requests strictly following one

of the scheduling algorithms mentioned above, the memory controller must also check

flags and timestamps of requests to the same address in the read and write queue. The

changes made to both scheduling algorithms, FCFS and FR-FCFS, are responsible for

skipping requests to the same address or overlapping address of an in-flight transactional

request, then postponing ordinary requests till the transactional one has been finished.

More details of transactional requests are presented in Section 4.3.5, which describes two

concurrency models for lock-release and RMW requests that apply to different types of

PIM commands.

Figure 4.6: Vault controller broke down into queues, bank control, PIM FSM, DRAM
commands and DRAM organization (layers and banks)
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4.2 PIM logic modeling

As described in Section 2.2.2, the current taxonomy of PIM architecture is divided

into two classes which have different requirements when modeling and simulating them.

4.2.1 NDP and PIM with fully-programmable cores

First, fully-programmable PIM can be simulated in gem5 by adjusting parameters

to represent TSV interconnection and by taking advantage of existing CPU models and

compilers. In general, in-order CPUs are used as PIM logic since area and power are

primary constraints for the logic layer of 3D-stacked DRAM memories (PUGSLEY et

al., 2014; AHN et al., 2016; SCRBAK et al., 2017; DRUMOND et al., 2017). Regarding
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software support for code generation and optimization, traditional tools for parallel pro-

gramming can be applied, such as the m5thread library in syscall emulation mode, and

unmodified pthread, OpenMP or other libraries, which can only be used in full-system

mode.

In the present form, this work provides a correct and validated model of HMC

to be used in fully-programmable PIM research. Since many CPU and ISA models are

readily available in gem5, one can concentrate efforts in proposing novel techniques and

tools for improving performance based on the application’s characteristics and also for

dealing with thermal constraints, to list some open problems. As the HMC model is

solved and tested, the modeling of NDP/PIM architectures becomes straightforward. One

of the decision resides on where to place ports of existing CPUs into the memory system.

Figure 4.7 demonstrates different positions to place the processor cores inside or close to

HMC.

Figure 4.7: Different position to place logic near memory
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4.2.2 Fixed-function and Functional Unit-centered PIM

On the other hand, fixed-function PIM not always relies on existing models or

hardware descriptions. Thus, modeling the behavior of a specialized processing unit is

probably the first step. Figure 4.8 presents an overview of the source files used to describe

the behavior and parameters of PIM instances and HMC model. Each module is defined

by at least three files: the description file, where the parameterized values are exposed to

the Gem5 simulation engine in Python, and source file and header file, where the behavior

of the module is written in C++. To build the models related to fixed-function and FU-

centered PIM, an architect must start by defining the communication protocol, datapath,

and control unit. To couple processing units to a vault controller or to a crossbar switch, a

PIM instance must implement the PIM interface (master/slave ports) to be able to receive

memory packets that encapsulate PIM commands and data.
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The PIM instance must implement a command queue and a decoder for the packets

containing a PIM instruction. The datapath and control unit must follow one of the ap-

proaches to the event-based simulation: either by updating the model on a cycle-by-cycle

basis or based only on meaningful events. The behavior of a PIM instance is arbitrary and

can be implemented using a myriad of elements, such as pipeline stage and different is-

sues (e.g., Load Store Unit, Arithmetic and Logic Unit (ALU), and Floating Point Unit).

Statistics, such as busy cycles and the total of instructions ALU accesses, are optional,

though they are valuable for energy consumption estimation.

Two models were created to evaluate the benefits of PIM in different classes of

applications, which will be described in more details in Section 5. Before that, we present

the basic support in host CPU (offloading, virtual address translation, data coherence).

Figure 4.8: Overview of source files used to implement fixed-function PIM logics in the
gem5 simulator
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Source: provided by the author

4.2.3 Power and energy

Originally, gem5 integrates McPAT (LI et al., 2009) and CACTI (CHEN et al.,

2012) for area and power modeling of chip multiprocessors, which can still be used for

power estimation of PIM with existing programmable cores. However, fixed-function

designs need more details of the synthesis as input to an analytical model of the power

consumption. Thus, we can offer a similar estimation by using results backed on the syn-

thesis of RTL models and the statistics obtained during application execution. For com-

plete results, the analytical model takes statistics, power models and design constraints to

estimate the energy consumption of PIM cores. Statistics such as idle and busy cycles,

number of floating point, integer and logic operations, just to list some of them, are mul-
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tiplied by the static and dynamic power of each corresponding module of the processing

core to give an estimate of the energy consumption.

4.3 Host interface and system integration

Several related works propose PIM architectures based on fine-grain offloading of

PIM instructions, that is, PIM instructions are emitted one by one from a host CPU to

the PIM logic. In fact, the native instructions of HMC already use a similar mechanism.

In computer modules such as Micron’s FPGA card AC-510, the PIM commands are gen-

erated in the FPGA’s logic and transmitted to the HMC device following the protocol

specified in Consortium et al. (2015). Unlike this FPGA board, new PIM proposals have

to find a suitable mechanism to perform the communication between host and accelerator

(AZARKHISH et al., 2015) or create new ones.

This section describes an offloading mechanism implemented in an Out-of-Order

CPU model. To enable the use of this mechanism by compiler-based tools, a PIM ISA

extension was added to the gem5’s x86 ISA to support the binary code generated by the

PRIMO Compiler (AHMED et al., 2019). The offloading mechanism described here is

motivated by the proposal of (SANTOS et al., 2017) to make use of constrained PIM

logic and to avoid sophisticated Instruction Level Parallelism (ILP) techniques in PIM

units. Also, to prevent duplicating hardware and add more processing logic into the HMC

logic layer, virtual address translation and data coherence protocol are described in this

section.

4.3.1 ISA extension

Giving support to a new ISA extension requires at least adding new decoding

schemes into the decoder files. Though, this can also include more work to support new

architectural registers and addressing modes in the CPU model. In this section we present

the changes made to an existing ISA in two steps: a) adding an ISA extension described

in a mature reference manual and supported by a commercial compiler, and b) adding an

ISA extension for PIM operations, which a new academic compiler (AHMED et al., 2019)

generates binary codes. The Intel’s X86 family is the chosen ISA that serves as the basis

for both extensions. The first step implements the Intel’s Advanced Vector Extensions

(AVX) ISA, and the second one implements a PIM ISA described in Ahmed et al. (2019).
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The current version of gem5’s X86 ISA available in the public repository2 does not

support any version of the AVX, only the Streaming SIMD Extensions (SSE). Then, we

started by understanding how the ISA is simulated in a CPU model to include AVX-512

instructions. Also, the implementation of AVX to the X86 ISA was desirable for the case

studies presented in Section 5.

The primary challenge for enabling AVX extensions resides on creating new reg-

ister modes to represent vector operands. AVX extension specifies scalar and SIMD op-

erations with registers and memory operands of different sizes, such as 128 bits (xmm

registers), 256 bits (ymm registers) and 512 bits (zmm registers). A binary code targeting

this ISA extension may contain the three operand sizes mixed. Then, another feature of

the expansion must also be implemented for representing a smaller vector register con-

tained within a larger vector register.

To correctly model a zmm register as a composition of a ymm register, which in turn

is composed of an xmm register, it requires understanding and changing register reorder-

ing, mapping architectural registers to organization registers, and the basics of gem5’s

pipeline stages. Figure 4.9 presents an overview of the vector register arrangement to

enable AVX-512 SIMD operations with up to 512 bits operands. Also, Figure 4.9 depicts

the modules in X86 ISA and Out-of-Order (OoO) CPU model which were changed to

support AVX-512 ISA.

Figure 4.9: Main modifications to include AVX-512
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2https://github.com/gem5/gem5
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To not burden the scope of this document with a detailed description of AVX

extension, some of the contributions related to Intel’s AVX are summarized in the list

below:

• Vector register operands in the OoO CPU model.

• New memory addressing modes, such as VSIB, vector addressing, compressed dis-

placement.

• Support for Evex and Vex prefixes and corresponding decoding schemes.

• Support for mask register and predicate instructions.

4.3.2 ISA extension - PIM

Regarding the insertion of PIM ISA extension to gem5, three main challenges can

be pointed out: a) how to distinguish instruction packets from ordinary read/write request

packets, b) which type of PIM instruction can be supported and which modules of the

host processor they must require, and c) how to send the instruction fields for decoding in

the PIM logic through a packet in the memory system.

The first challenge demands one to encapsulate the PIM instruction as a memory

request based on the behavior and data-path of a store operation. A store request is more

suitable for performing instruction offloading, since data field is already expected to be

sent and the operation is non-blocking for other memory requests. To distinguish the

packet with PIM instruction in a CPU and throughout the memory system from the store

request (WriteReq), a special flag (PIMInst) is set to the packet.

As fixed-function and FU-centered PIM have a limited ISA, and not all instruc-

tions available in the x86 family have a corresponding instruction in PIM, we classify

these PIM instructions according to their dependence on the host CPU. To clarify that,

let us consider the behavior of three arbitrary instructions: a) register/register instruc-

tions that only take PIM registers as source operands, modifies and store in PIM regis-

ters, b) register/memory instructions that take one memory operand as a source and store

in PIM registers, or also take PIM register as source and store in the memory, and c)

CPU-register/PIM-register that take one host register as a source operand and store in a

PIM register or vice-versa. Thus, the presence or absence of memory operand or register

operand captures the three different types of PIM instructions, which solves the second

challenge.

Register/register instructions only require the host CPU to decode and carry the
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instruction fields to the execution stage so that the Load-Store Queue (LSQ) unit will be

able to assemble a request with the instruction fields in the data field. This brief bypass

solves the third challenge, since the PIM registers are statically indexed and do not re-

quire register renaming. Register/memory instructions require address translation before

assembling the request in the LSQ unit with the physical address and size of a memory

operand. Also, register/memory instructions may require invalidating conflicting cache

lines and checking any violation of the memory reordering mechanism present in OoO

organizations. Unlike register-register instructions, CPU-register/PIM-register instruc-

tion requires dependence control and register renaming for reading and writing in host

registers. Also, having a host register as destination requires handling the response com-

ing from a PIM unit in the host write-back stage, which is the only operation which is

blocking and synchronous.

Some examples of PIM instructions are shown in Figure 4.10. A register on PIM

logic is addressed by the vault index (Vault_0) and register index (Reg_0). This PIM ISA

extension provides fine-grain code offloading of PIM instructions to HMC architecture

and other similar architectures (SANTOS et al., 2017). More details of the offloading

mechanism are described in Section 4.3.3.

Figure 4.10: Example of PIM instructions
/ / r e g i s t e r −r e g i s t e r i n s t r u c t i o n s

PIM_VPERM Vault_0_Reg_1 , Vault_0_Reg_1 , Vaul t_0_Reg_0

PIM_VADD Vault_0_Reg_0 , Vault_0_Reg_0 , Vaul t_0_Reg_1

PIM_VMOVV Vault_0_Reg_1 , Vaul t_0_Reg_1

/ / r e g i s t e r −memory i n s t r u c t i o n s

PIM_LOAD Vault_0_Reg_1 , p t r [ r s p + 1024]

PIM_STORE p t r [ r s p + 1 5 3 6 ] , Vaul t_0_Reg_1

/ / CPU−PIM r e g i s t e r i n s t r u c t i o n

PIM_VMOV_PIMtoM zmm0 , Vaul t_0_Reg_1

PIM_BROADCASTRD Vault_0_Reg_1 , zmm1

Although a ISA model may have a different way to represent operands and opera-

tions, all ISA models use the gem5’s ISA description language to automate the generation

of source code to emulate an ISA. For more details of inserting instructions in gem5, we

refer to (ZHANG, 2015).
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4.3.3 Offloading PIM instructions

As described in Section 3, prior studies have investigated different offloading

methods for host-PIM logic interactions. The approach taken in this work is based on

past studies (NAI et al., 2017; AHMED et al., 2019; SANTOS et al., 2017), where a PIM

ISA extension allows instructions targeted to the host CPU and PIM units to be mixed in

the same code, as illustrated in Figure 4.11. As described in Section 4.3.1, this hybrid

code partially fulfills the code offloading to HMC and similar PIM architectures. Though,

to finally carry out the code offloading, the host processor has to fetch, decode and is-

sue the PIM instructions transparently to the PIM logic without or with minimal timing

overhead, which is the focus of this section.

Figure 4.11: Example of hybrid code mixing X86 and PIM ISA
mov r10 , rdx

xor ecx , ecx

PIM_256B_LOAD_DWORD RVU_3_R256B_1 , pimword p t r [ r s p + 1024]

PIM_256B_VPERM_DWORD RVU_3_R256B_1 , RVU_3_R256B_1 , RVU_3_R256B_0

PIM_256B_VADD_DWORD RVU_3_R256B_0 , RVU_3_R256B_0 , RVU_3_R256B_1

PIM_256B_STORE_DWORD pimword p t r [ r s p + 1 5 3 6 ] , RVU_3_R256B_0

mov eax , dword p t r [ r s i + 4∗ r c x + 16640]

imul eax , r9d

add eax , dword p t r [ r s p + 1536]

mov dword p t r [ r10 ] , eax

i n c r c x

In our modeling, we built a generic PIM ISA upon the x86 ISA, and we use a

two-step decoding mechanism to reuse modules present in any host CPU, such as TLB,

page walker and even host registers. By reusing such components, we prevent hardware

duplication in PIM logic and maintain software compatibility and memory protection.

The workflow of the two-step decoding is presented in Figure 4.12.

The first step consists of decoding a Complex Instruction Set Computer (CISC)

format instruction in the host CPU decoder. The decoded fields are used to calculate a

virtual address if the instruction implies a memory request, or to access a host register,

and also to encapsulate a PIM instruction into a Reduced Instruction Set Computer (RISC)

machine format in the execution stage. From the host CPU view, all PIM instructions are

seen as a store operation, which is issued to the LSQ unit, and then transformed into a

memory request. In the LSQ unit, the RISC format instruction is copied to the data field of

a new memory packet. From the LSQ unit to the memory system, the instruction is seen

as a regular memory packet. The second step takes place on the memory side when the
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packet arrives in the vault controller. The instruction fields are extracted from the packet

and decoded by the PIM unit, where data will be finally be transferred or modified.

Figure 4.12: Flow of a PIM instruction in host CPU and memory system
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Despite the modifications on the host decoder and copy of instruction fields, the

majority of changes were made in the LSQ unit as illustrated in Figure 4.12. This unit is

responsible for violation checking between native load/store and RVU load/store requests,

and for emitting flush requests to the cache memories and PIM instructions to the 3D-

stacked memory. An exclusive offloading port connects the LSQ directly to the HMC

controller on the host-side. The PIM instructions are dispatched in a pipeline fashion at

each CPU cycle, except for PIM memory access instructions that need its data updated in

the main memory and invalidated in the cache memories.

Before sending a memory access instruction, the LSQ unit unit emits a flush re-

quest to the data cache memory port to be handled in the cache memories, which is dis-

cussed in Subsection 4.3.4.

4.3.4 Cache coherence

Cache coherence in PIM architectures must not only keep shared data between

cache memories and processors, but also between cache memories and main memory

used in PIM mode. Since both PIM and host instructions have access to shared data,
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Figure 4.13: Sequence diagram depicting the interaction between LSQ unit and cache
model to provide data coherence for PIM instructions
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a coherence mechanism is needed. However, traditional coherence mechanisms such as

MOESI may not be enough to keep data coherent in PIM because such protocols will

require intense traffic of snooping messages in a narrower communication channel, which

may be a source of bandwidth overhead. Furthermore, time and bandwidth overheads are

important issues that should be taken into consideration during the PIM design.

An algorithm to maintain coherence between host’s cache memories and PIM-

enable memories is shown in Figure 4.13. We included this protocol in the LSQ unit and

cache model, which is triggered by PIM instructions with memory operands. Before send-

ing a memory access instruction, the LSQ unit emits a flush request of the corresponding

size (ranging from 4 Bytes to 8 KBytes) to the data cache memory port. The flush request

is sent to the first level data cache and then is forwarded to the next level until it arrives

in the last level cache, where it is transmitted back to the LSQ unit. At each cache level,

a specific HW module interprets the flush request and triggers lookups for cache blocks

within the address range of a PIM instruction that originated the flush request. If there are

cache blocks affected, they will either cause a write-back or an invalidate command that

is enqueued in the write-buffer and finally, the flush request is enqueued. For multi-core

systems, an existing cache coherence, such as MOESI (SUH; BLOUGH; LEE, 2004),

will be in charge of keeping data shared coherent.
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4.3.5 Data coherence inside HMC

Since the instructions in the PIM logic share the same address space with read /

write requests originated by the host CPU, it is likely to occur a data race within the HMC

device. Likewise, even excluding the interference of requests from the host processor,

a code region that triggers multiple PIM instances is prone to have a data race between

requests from distinct instances. Leaving it unhandled can potentially cause data haz-

ard, incorrect results and unpredictable application behavior. To solve this problem, we

present two data racing protocols to keep requests ordered and synchronized: RMW and

lock-release protocol.

The RMW protocol is designed to keep coherence of atomic HMC commands,

and it is only applicable for the requests which are made by the PIM unit of the same

vault. When the vault controller receives an HMC instruction, a read request is inserted

in the read queue and marked with a specific flag, RMW flag. While there is a request

with RMW flag in the read queue, no other read or write request to the same address can

be scheduled. Then, as soon as the response is ready and the data is modified by simple

functional units placed in the logic layer, the entry with the RMW flag can be removed

from the read queue.

The lock-release protocol is used in the case study architecture described in Sec-

tion 5.2. Although this protocol has the same purpose as RMW, it applies to non-atomic

operations and does not restrict to perform the three operations (read, modify and write)

in the same vault. The PIM instances of the case study are not limited to read/write

requests within the same vault, which makes the first protocol inadequate. The second

protocol keeps coherence and racing of host-PIM and PIM-PIM communication using an

acquire-release transaction protocol.

To do so, we define three commands to use within the inter-vault communication

subsystem: memory-write and memory-read and register-read requests. These requests

can be used with either acquire or release flag and carry a sequence number related to

the original PIM instruction. Given the request specification, we added a module between

the HMC serial link and the crossbar switching tree. This module is responsible for

emitting acquire requests, and also for splitting PIM instructions greater than 256 Bytes

into smaller instructions, since each PIM unit of the case study can operate on operands of

up to 256 Bytes. The acquire request is a dummy packet used to block a memory range in

the scheduling algorithm of a vault controller, or also to insert a blocking entry of register
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Figure 4.14: Sequence diagram depicting the interaction between vault controllers and
the instruction splitter in a PIM_load instruction
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PIM_LOAD V0_R0, 0x200

sends read request (acquire) 0x200 to vault 2

sends instruction PIM_LOAD V0_R0 to vault 0
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inserts PIM_LOAD in 
instruction queue

sends read request (release) to 0x200

replaces locking packets by regular DRAM packets

responds to the requester

PIM unit waits
for responseDRAM FSM schedules 

the request to 0x200

executes PIM_LOAD

Source: Provided by the author

read instruction in the PIM Instruction Queue.

Summarizing, when a PIM instruction is dispatched from the LSQ unit, it crosses

the HMC serial link and arrives at the Instruction Splitter module, acquire memory-read

or acquire memory-write requests are generated for memory access instruction or acquire

register-read requests for modifying instructions involving different vaults. The interac-

tion between the Instruction Splitter and the vault controller involved in this transaction

is shown in Figure 4.14. As soon as these requests are enqueued, the module takes PIM

instructions greater than 256 Bytes and split them into smaller instructions to fit within the

maximum supported vector width, which is generally sized by the row buffer size (e.g.,

256 Bytes). Thus, a PIM_4096B_load instruction must be split into 16 PIM_256B_load

instructions with updated physical address and, then, they are forwarded to 16 distinct

instances (from Vault 0 to Vault 15). Finally, when the PIM instruction is decoded in

the Finite-State Machine (FSM), its LSQ unit generates a memory-write, memory-read

or register-read request with a release flag. In the target vault controller, the release re-

quest will either unlock the register-read instruction in the Instruction Queue or remove a

blocking request in the memory read or write buffer.
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5 CASE STUDIES, METHODS AND MATERIALS

In this chapter, we will describe two PIM logic designs, namely Pointer-Chasing

Accelerator (SANTOS et al., 2018b) and Reconfigurable Vector Unit (SANTOS et al.,

2017; LIMA et al., 2018), proposed in recent studies. These PIM designs have two aspects

in common: they implement operations considering it should be placed in the logic layer

of HMC devices and also they rely on an offloading mechanism not clearly defined. Thus,

they are candidate to make use of the HMC modules, as well as the modules for offloading

mechanism proposed in the PIM support for gem5 simulator.

5.1 Pointer-Chasing Engine

In the first case study, an approach to process complex data structure by tackling

the bottleneck of pointer chasing operations is presented. The mechanism of Pointer-

Chasing Engine (PCE) uses in-memory speculation, which is based on the observation

that a wider cache line can benefit pointer-chasing lookups since data nodes are generally

allocated in memory contiguously (SANTOS et al., 2018b).

The PCE’s ISA has a single FIND instruction responsible for triggering the travers-

ing along a targeted data structure. The information that enables different node structures

to be interpreted in PCE is encoded in the instruction fields, and it can be summarized as:

• structure type - This field indicates the type of data structure to traverse, whether it

is a linked list, hash, or b+tree.

• base address - The address of a node where the search begins. It is the starting

point and the first node to be loaded by PCE.

• key offset - The distance between the key or array of keys and the beginning of its

node.

• key size - The size of key in bytes or the number of pages.

• next address offset - The distance between the pointer to the next node (or an array

of pointers to its children) and the beginning of its node.

• gold - The value used as a key in the search.

• structure size - The size of a single element in the data structure, generally referred

as a node.

• operand size - This parameter is used to configure the PCE size and also to group
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PCEs to form larger speculative operands. A single running PCE varies from

64 bytes to 256 bytes of speculative load size, a group of PCEs can vary from

256 bytes to 8192 bytes.

The entire PIM setup contains one PCE attached at each vault controller of HMC.

Each PCE unit is composed of a finite-state machine that decode the FIND instruction

into a set of fixed operations. Each PCE instance is composed of an 8x256-byte register

file, a specialized Finite-State Machine (FSM), and a Functional Unit (FU) capable of

executing scalar and vector operations such as addition, comparison and gather/scatter

micro-instructions. The FSM is responsible for managing requests and triggering op-

erations according to the information decoded from the FIND instruction. Four main

operations are managed by the FSM:

• Load Generation - The FSM generates a LOAD operation with the address provided

by a previous load or by a FIND instruction.

• Check Data - FSM checks if the data being searched has been reached. It selects

the correct operand from the current vector register.

• Address Translation - Virtual addresses are translated directly by the PCE using

SIMD operations. The algorithm for virtual address translation is the direct segment

(BASU et al., 2013), which uses only the base, limit and offset registers.

• Internal Find - A PCE instance forwards the FIND instruction to another PCE

when the required data lies on another vault.

When an instruction is offloaded to the HMC, it is forwarded to the corresponding

vault of the base address field. Then, the algorithm presented in Santos et al. (2018b)

starts to traverse the target data structure, which is illustrated by the seven states shown

in Figure 5.1. The algorithm iteratively loads nodes from a contiguous memory region,

stores them in registers and compares several keys speculatively to a gold. While the

search is not finished, the PCEs calculate the physical address of the pointer to the next

node, which may hit in the speculative region or may require another memory load. If no

key matches up with the gold value, the flow comes back to the iterative part where the

PCEs emit read requests to a contiguous memory region.
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Figure 5.1: Overview of the PCE mechanism
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5.2 Reconfigurable Vector Unit

The Reconfigurable Vector Unit (RVU) micro-architecture (SANTOS et al., 2017)

was chosen as a case study architecture to be placed in the logic layer of HMC. An RVU

core comprises a set of 32x8-byte multi-precision Functional Units, an 8x256-byte regis-

ter file, and a Finite State Machine (FSM) to control the flow of PIM instructions (SAN-

TOS et al., 2017; LIMA et al., 2018; SANTOS et al., 2018a).

The PIM architecture proposed by Santos et al. (2017) considered several RVU

cores, one in each vault and placed alongside the vault controller to reduce communi-

cation costs. Each RVU operates on variable operand sizes, varying from 4 Bytes to

256 Bytes, using scalar or SIMD instructions based on the native HMC ISA and the AVX

ISA. Nonetheless, by using larger PIM instructions and an instruction splitting mecha-

nism, it is possible to trigger several RVU instructions at once. Thus, when a PIM in-

struction aggregates RVU cores, they enable massive and adaptive in-memory processing

capability and can achieve a peak compute power of 2.5 TFLOPS (LIMA et al., 2018).

Regarding programmability, each RVU only expects to receive PIM instructions

in the RISC format as described in Section 4.3.3. Thus, the responsibility for finding DLP

and delivering the instruction is entirely up to a compiler and host processor. Hence, the

performance that this PIM architecture can achieve depends on the efficient exploitation
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Figure 5.2: Overview of the RVU architecture
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of DLP and data location by PRIMO compiler (AHMED et al., 2019) and other system-

level techniques.

The RVU ISA has the following class of instructions: memory access, register

transfer, and data modification. Memory access instructions, such as RVU LOAD, RVU

STORE, and RVU BROADCAST with memory operand, rely on the existing host address

translation mechanism, but the request is made by RVU’s LSU. The register transfer

instructions can move host register to PIM register and vice-versa, and also between PIM

registers. Data modification instructions include arithmetic and logic operations, which

represent the majority of the instructions described in the ISA specification.

All instructions are addressed by the destination RVU and an architecture-specific

flag is set in the packet to differ it from typical read and write requests. The payload of an

instruction packet comprises mandatory fields, such as opcode, register indexes for source

and destination operands, data size, vector width, and optional fields, such as immediate,

data from host register, and up to two physical addresses.

RVU instances are not limited to read and write requests within the same vault.

Also, a PIM instance may use registers from other instances since the hybrid code con-

siders all instances as part of the same execution flow sharing register files. So, we had to

enhance the crossbar switching tree presented in Section 4.1.3 with bridges and ports for

requesting in the opposite direction, thus enabling inter-vault requests inside the HMC.
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Figure 5.3: Setup mechanism used for all experiments with fixed-function PIM
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Coupled with the data coherence mechanism presented in Section 2.1, this allows the

RVU architecture to: a) synchronize and keep the order of memory requests as soon as

the PIM instruction arrives in the PIM logic, and b) emit a read or write request from a

RVU located in an arbitrary vault to any other vault of the same HMC.

5.3 Experimental setup

In this section, we present the experimental setup used to validate the memory

modeling and evaluate the performance of the case studies of PIM architectures.

5.3.1 HMC architecture setup

The chosen DRAM organization is based on Micron’s specification (Hybrid Mem-

ory Cube Consortium, 2013b) targetting high-end HMC devices, and the DRAM timings

are provided by DRAMSpec (WEIS et al., 2017). The organization and timing parame-

ters are summarized in Table 5.1. The latency of serial links were estimated based on the

works of (KIM et al., 2013; AHN; YOO; CHOI, 2016) and the interconnection latencies

were based on the (HADIDI et al., 2018). The organization shown in Figure 5.3 is used

in the validation of HMC model and the case studies of PIM architectures.
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Table 5.1: HMC configuration

Vault controller
Number of Vaults 32
Number of DRAM layers 8
Banks/vault 16
Memory size 8GB
Row buffer size 256B
Burst width 8B
CL,RP,RAS,RCD 9.9ns, 7.7ns, 21.6ns, 10.2ns
Row-buffer policy close adaptive
Crossbar Switching Tree
SerDes Crossbar
Bus width 128B
Clock frequency 2.5 GHz
Latency frontend, forward, response 2, 2, 2
Buffer size req/resp 32, 32
HMC Crossbar
Bus width 32B
Clock frequency 2.5 GHz
Latency frontend, forward, response 2, 2, 2
Buffer size req/resp 32, 32
Serial Link
Number of links 4
Number of lanes 16
Lane Speed 40 Gbps
Delay 2 ns
Buffer size req/resp 64, 64

Source: provided by the author

5.3.2 PIM multi-core setup

Figure 5.4 presents an overview of the multi-core setup using the PIM concept.

The reduced latency provided by TSVs is captured by connecting the CPU ports to the

internal crossbar switch of HMC. Each 4-core group is composed of private and cache

memories, which are attached to a quadrant crossbar. Following the HMC architecture

presented in Figure 5.3, each quadrant crossbar (four in total) has access to the full mem-

ory range. Hence, the request latency may also depend on the distance between the PIM

unit and vault controller, as well as queuing constraints. For this reason, data mapping

and CPU affinity optimization would benefit multi-core setups, since the PIM units has

reduced cost to memory access to the same quadrant.
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Figure 5.4: Setup mechanism for PIM multi-core simulation
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5.3.3 Fixed-function PIM for pointer-chasing operations

Table 5.2 describes the configuration of the baseline systems employed to evalu-

ate the PCE mechanism, and also the internal configuration of the PCE. The baseline is

an ARM-A57 + 1MB of last-level cache. In our analysis, we explored different config-

urations for the PCE, ranging its operand size capabilities from 64 bytes to the limit of

8192 bytes. We extrapolate the last-level cache size for the baseline to 2M Bytes, aiming

to evaluate the benefits of a larger cache memory for the pointer-chasing operation.

In this section, we also present energy results of the proposed architecture. We

estimated energy by synthesizing a Hardware Description Language of PCE using Ca-

dence RTL Compiler Tool with a technology node of 32nm. We also consider the power

consumption of the host processor connected to the pointer-chasing accelerator. For the

baseline ARM processor and cache memories, we are based on McPat (LI et al., 2009)

coupled with Cacti (CHEN et al., 2012) tools extrapolated to a technology of 22nm. The

HMC organization follows the parameters presented in Section 5.3.1.

The design is evaluated using the same three data-intensive micro-benchmarks

employed in related works (HSIEH et al., 2016b; HONG et al., 2016), following the

parameters presented in (HSIEH et al., 2016b). The micro-benchmarks are composed of

linked lists (varying the memory access pattern from continuous insertions to 25%, 50%

and 100% random insertions and deletions), a hash table from (FITZPATRICK, 2004),

and the b+tree implementation of DBx1000 (YU et al., 2014).
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Table 5.2: Baseline and Design system configuration of PCE

ARM A57
2.5 GHz; 4 cores; NEON Instruction Set Capable;
I/D 64kB L1 Cache 2 Cycles + 16-way L2 Cache 1MB 20 Cycles;
Power - 8W;

PCEs
1.25 GHz; 32 Independent Vector Units;
Vectorial Operations up to 256Bytes per Units;
Vector Register Bank of 8x256Bytes each;
Scalar Register Bank of 8x32 bits each;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units;
Interconnection between vaults: 5 cycles latency;
Host Processor - 1.2GHz ARM Cortex A8; IL1 64kB + DL1 64kB;
Power - PCE Logic = 3.1W estimated;
Power - Host Processor = 0.6W;

5.3.4 Reconfigurable Vector Unit

To experiment and evaluate the RVU and reconfiguration techniques, the RVU ar-

chitecture was implemented for simulation and tests as presented in Section 5.2. For com-

piling the source code application tests and generating the binaries, PRIMO (AHMED et

al., 2019) was used as a support compiler tool. Table 5.3 summarizes setup simulated,

it comprises an Intel Skylake micro-architecture as the host processor and an HMC RVU

capable module as main memory. As the RVU core is based on AVX-512 ISA, the x86

processor available on the chosen simulator was modified to support both the targeted

PIM ISA and the AVX-512 ISA.

Further, we use a subset of the PolyBench benchmark suite to evaluate the impact

of the proposed architecture in most of scientific kernel applications (POUCHET, 2012).

Table 5.3 summarizes the setup simulated.

The energy and power models were obtained by synthesizing the VPU design

provided by (LIMA et al., 2018). Supported by Cadence RTL Compiler tool, we extracted

area, dynamic and static power for this implementation using 32nm process technology.
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Table 5.3: Baseline and Design system configuration of RVU

Intel Skylake Microarchitecture
4GHz; AVX-512 Instruction Set Capable; L3 Cache 16MB;
8GB HMC; 4 Memory Channels;

RVU
1GHz; 32 Independent Functional Units; Integer and Floating-Point Capable;
Vectorial Operations up to 256Bytes per Functional Units;
32 Independent Register Bank of 8x256Bytes each;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units;
Latency (cycles): 5-alu, 5-mul. and 20-div. floating-point units;
Interconnection between vaults: 5 cycles latency;
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6 RESULTS AND DISCUSSION

In this chapter, we present the potential for simulation of new PIM architecture

based on 3D-stacked memories. To simplify the analysis, we have divided our results into

three sections. In the first section, we present the validation of our HMC model. Then,

we show potential gains of the fixed-function PIM described in Section 5.1. Finally, we

show the results of a programmable FU-centered PIM and their design space exploration.

6.1 HMC validation

Since the HMC’s memory vendor provides little information about the internal

configuration, the validation is not limited to HMC’s datasheet, but we also validate our

results based on previous studies using the Micron’s FPGA card AC-510 (HADIDI et al.,

2017; HADIDI et al., 2018) and a thesis that explores the design space of this memory

device (ROSENFELD, 2014). Thus, we have to evaluate if the parameters provided in

Section 5.3.1 represent the memory by comparing basic statistics, such as memory band-

width and latency.

A stress test is performed to find the maximum memory bandwidth and latencies

in two memory access pattern, linear and random access, through the whole HMC during

10ms. We set up a traffic generator to generate packets at a higher rate to pressure the

memory system in the two access patterns. In the linear mode, the traffic generator creates

read/write requests in a way that their address pattern allows us to explore the maximum

bank-level parallelism. In the random mode, the requests are generated randomly without

avoiding bank conflicts. To observe the effects of requests’ characteristics, we varied the

request size from 32B to 256B, which aims at simulating different cache lines size, and

we also varied the read/write ratio from 0% of read requests to 100% with a step of 25%.

The traffic generator is attached to a host HMC controller, as presented in Figure 5.3.

Figure 6.1 and Figure 6.2 show that greater request sizes (128B and 256B) enable

the vault controllers to achieve a higher bandwidth. The reason for a single request of

256B be more beneficial than four aligned requests of 64B relies on the minimum timing

between the requests that a vault controller has to respect. Also, the maximum aggregate

bandwidth is provided when 100% of the requests are write ones for any access pattern.

Although Rosenfeld (2014) has already observed this behavior that relates higher ratios of

read/write to less efficient TSV usage, the bandwidth achieved by their simulations is far
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Figure 6.1: Aggregate vault bandwidth for linear access pattern

Source: provided by the author

lower than the results presented in this work. The maximum bandwidth this work could

achieve is 299 GB/s for write requests only, and 267 GB/s for read requests only, both

using with request size of 256B.

In the random mode, it is expected a significant performance degradation due to

bank conflicts. However, the random pattern can also cause write requests to be merged

in write queue and read quests be responded from the write queue, thus increasing the

vault bandwidth. After all, the random mode reduce the bandwidth by up to 9% when

compared to the linear mode.

Figure 6.3 and Figure 6.4 presents the average latency of read requests for the two

above-mentioned access patterns. The results presented in Figure 6.3 suggest that the ratio

of read/write requests significantly impacts the latency observed for a read request. Also,

by increasing the percentage of write requests, the latency perceived by the requester is

also increased, since the memory controller has to constantly switch between read to write

queue.

In comparison with the random mode when 100% of the requests are read ones,

the linear pattern can fully take advantage of the pipeline of the DRAM scheduler and

provide the smallest latencies for any requested size. In random patterns, though, the

increased latency is due to bank conflicts, that inserts bubbles into the pipeline. However,

smaller request sizes provide reduced latencies in random access patterns.

In both access pattern shown in Figure 6.3 and Figure 6.3, the average latency
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Figure 6.2: Aggregate vault bandwidth for random access pattern

Source: provided by the author

drops when the read/write ratio is 0.25 for 256B request size. This drop is due to the

combination of two features of the controller scheduler. Firstly, a 256-byte requests can

take advantage of the maximum row-buffer size and the scheduler can optimize the access

while reducing the bank conflict. Secondly, as more than 50% of the requests are write

ones, the scheduler’s FSM spend more time in the write queue, while the read ones are

already scheduled and in the fly. Also, this drop is impacted by the disparity of latency

between write and read operations, seeing that write operation are faster than read ones.

6.2 PIM multi-core

The gem5 platform has been widely used to perform architectural exploration on

chip multiprocessors, either creating homogeneous or heterogeneous multi-core systems.

Although the modeling of such scenarios is simple, the design of PIM multi-core has open

issues regarding thermal and power dissipation, which have become the central problem

of many past studies. Figure 6.5 presents the execution time of Polybench kernels when

running on 16 in-order cores in PIM style normalized to 1 OoO core in traditional style.

The main challenges on PIM multi-core design resides on the system setup and

software infrastructure, such as code partition and thread optimization targeting near-

memory architectures rather than traditional memory hierarchy. In Figure 6.5 we could

not achieve a significant reduction of execution time since little effort was put in the task

partition. For most of the applications, the 16-core setup have lower execution time, which
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Figure 6.3: Average latency observed for read requests in linear access pattern

Source: provided by the author

Figure 6.4: Average latency observed for read requests in random access pattern

Source: provided by the author
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Figure 6.5: Performance comparison between 16 in-order cores and single OoO core
systems

Source: provided by the author

can represent up to 80% of the execution time of a single OoO core setup.

Though this test shows that gem5 can simulate multiple cores, mostly of the ef-

forts have to be made on using software libraries and optimization to improve time per-

formance. On the other hand, when compared to traditional architecture the application’s

energy consumption can be minimized since off-chip transfer are avoided and cache mem-

ories are generally reduced (also due to power and area constraints).

6.3 Fixed-function PIM for pointer-chasing operations

Figure 6.6 presents performance and energy results for traversing a linked list with

100 k nodes using both the ARM processor with an extra last-level cache memory and the

PCEs limited to 8k bytes of memory. In the first set of bars (Contiguous), the nodes of a

linked list lay contiguously on the memory, which means that processors can take advan-

tage of prefetching techniques. Even so, the PCEs can accelerate the application using

the same data chunk size of processors’ cache line (64 bytes), since the micro-benchmark

presents no data-reuse and the PCEs have no cache latencies. Also, by increasing the

cache size of the baseline, no performance improvement is observed, as the spatial local-

ity stands out as the main pattern of this workload. Moreover, as the PCEs are aggregated

to enlarge the accessed data chunk, they are capable of increasing the performance by

speculatively reading up to 8192 bytes of data from DRAM in parallel, taking advantage

of spatial locality. Despite the sequential characteristics of the FIND instruction, the spec-
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Figure 6.6: Speedup and energy for traversing a linked list with 100k nodes
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ulative loads mitigate the DRAM access latencies, thus increasing the overall performance

by 2.7× when speculating over 8192 bytes of data.

On the other hand, when the entire data is placed randomly in memory (RAND

100% in Figure 6.6), the amount of data reuse increases, leveraging the importance of

larger cache memories. However, the performance increment achieved by the ARM pro-

cessor when doubling its cache size is limited to 18%. In contrast, the PCEs can speedup

1.6× when speculating over 256 bytes of data. Speculating over 8192 bytes of data,

though, provides a speedup of 1.3×, showing the benefits that configurable speculation

can bring to our evaluation.

Figure 6.7 depicts the results when the PCEs are allowed to use 64k bytes of

vector registers. For continuous data (orange bars), increasing the number of registers

available for PCE does not lead to performance improvement. However, when workload

has random data access, the PCEs can take advantage of extra registers due to the now

available temporal locality. Also, the energy savings for each access pattern and each

PCE configuration (gray bars) are presented in Figure 6.6 and Figure 6.7. The PCEs can

reduce energy consumption to 88% and 50% for contiguous and entirely random data

access pattern, respectively.

In Figure 6.8, we increased the size of the linked lists to 1M nodes, aiming to

analyze the effect of more pressure on the memory hierarchy. As depicted by the red

bars of Figure 6.8, the PCEs can accelerate the traversing of fully random data in up to

2.2× when configured with a speculative window of 4k bytes and 64k bytes of registers.
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Figure 6.7: Performance and energy for traversing a linked list with 100k nodes - PCE
using 64kB of registers
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Figure 6.8: Performance and energy consumption for traversing a linked list with 1M
nodes
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Figure 6.9: Performance and energy consumption for traversing a hash table with 1.5M
nodes and a b+tree with 3M nodes
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Thus, this case study reduces energy consumption by 60% of the energy consumed by the

baseline.

Figure 6.9 presents the results for traversing a hash table and a b+tree with a work-

load of 1.5M nodes and 3M nodes, respectively. By using 64k bytes of registers and

8192 bytes of speculative request size (blue bars), the PCEs can speed up the operations

on hash tables in 2.7× when compared to the baseline. Due to the reduced temporal local-

ity of traversing operations on a hash table, the PCEs cannot take advantage of 8k bytes of

total registers (orange bars), or even 64k bytes of registers, seeing that a slight difference

is observed when varying the number of registers. Due to the acceleration and reduced

hardware, the PCEs consumes 35% of the baseline’s energy consumption to accelerate

2.7× the Find operation on a hash table structure.

The b+tree traversing presents a more intensive temporal locality, which can be

observed on green and orange bars of Figure 6.9. The additional cache size available

for the baseline can provide only 7% of performance improvement, showing that the

reduced spatial locality dictates an important rule on the overall performance. On the

other hand, PCE can take advantage of its configurable operands and SIMD units. Setting

the operand size to 4096 bytes represents the best compromise between temporal and

spatial locality for this kernel application. Also, as the temporal locality is considerable,

the 64k bytes of registers are better exploited. Furthermore, the vector operations and

simple TLB design facilitate the calculus of the next addresses (16 per node on b+tree),
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which increases overall performance. Thus, this case study can achieve a speedup of

4.94× when compared to the baseline, while the energy reduction is near to 87% for

traversing b+trees.

Therefore, by taking advantage of the parallelism present in HMC, the PCEs make

use of speculation to perform pointer-chasing operations with reduced energy consump-

tion and improved performance. In the majority of cases, a larger request size can benefit

applications because the nodes of a data structure are contiguously allocated in the mem-

ory. This pointer-chasing accelerator is capable of accelerating linked list traversal and

hash tables by a factor of 2.5, and b+tree by 4.9, while consuming 13% of the baseline’s

energy on average.

6.4 Reconfigurable Vector Unit

In this section we present the results used to evaluate the RVU architecture in two

steps. First, we break down the execution time of some benchmarks into the overhead of

cache coherence, intercommunication delay, and the time for processing in RVUs. These

results are related to the first degree of reconfigurability, which is entirely given by the

vector width of a PIM instruction. Then, we evaluate another level of reconfiguration that

optimizes the number of active functional units in each RVU core based on the compute

intensity of different kernel applications.

6.4.1 Evaluation of mechanisms to support RVU

Figure 6.10 presents the results for small kernels decomposed into three regions.

The bottom blue region represents the time spent only computing the kernel within the

in-memory logic. The red region highlighted in the middle depicts the cost of inter-vault

communication, while the top green region represents the cost to keep cache coherence.

It is possible to notice in the vecsum kernel that more than 70% of the time is

spent in cache coherence and internal communication, while only 30 % of the time is

actually used for processing data. Although most of the vecsum kernel is executed in

PIM, hence the data remains in the memory device during all execution time and no hits

(writeback or clean eviction) should be seen in cache memories, there is a fixed cost for

lookup operations to prevent data inconsistency. Regarding the matrix-multiplication and

dot-product kernels in Figure 6.10, the impact of flush operations is diminished by the

lower ratio of PIM memory access per PIM modification instructions.



69

Figure 6.10: Execution time of common kernels to illustrate the costs of cache coherence
and inter-vault communication
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Since the flush operation generally triggers lookups to more than one cache block

addressed by a PIM instruction, the overall latency will depend on each cache-level

lookup latency. Also, for each flush request dispatched from the LSQ, all cache levels

will receive the operation, but it is executed sequentially from the first-level to last-level

cache. Only improvements in lookup time or reduced cache hierarchy would impact

in the performance of flush operations. On the other hand, inter-vault communication

penalty generally has little impact on the overall performance. For the transposed matrix-

multiplication kernel, it is possible to see the effect of a great number of register-read and

mem-read to different vaults inherent to the application loop.

Considering flush operations and inter-vault communication as costs that could

be avoided, in Figure 6.11 we show the overall performance improvement of an ideal

PIM and the time penalty using our proposal in some benchmarks of Polybench Suite.

In general, the present mechanism can achieve speedup improvements between 2.5× and

14.6×, while the time penalty represents an average percentage of 29% over the ideal

PIM. In general, our proposal provides a competitive advantage in terms of speedup in

comparison to other HMC-instruction-based PIM setups. For instance, the proposal pre-

sented in (NAI et al., 2017) relies on uncacheable data region, hence no hardware cost

is introduced. However, it comes with a cost in how much performance can be extracted

when deciding if a code portion must be executed in the host core or in PIM units.

Also, the speculative approach proposed in (BOROUMAND et al., 2017) has only

5% of performance penalty compared to an ideal PIM, but the performance can pro-

foundly degrade if rollbacks are frequently made, which will depend on the application

behavior. Also, another similar work (AHN et al., 2015) advocates locality-aware PIM
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execution to avoid flush operations and off-chip communication. However, they do not

consider that large vectors in PIM can amortize the cost of cache coherence mechanism

even if, eventually, the host CPU has to process scalar operands on the same data region.

Figure 6.11: Execution time of PolyBench applications normalized to AVX-512

Source: provided by the author

This section presented the simulation results of system-level mechanisms for PIM

architectures described in Section 4.3, which aims at solving the instruction offloading,

data coherence and management of the communication inside HMC to a class of PIM de-

signs. The proposed acquire-release protocol offers programmability and data coherence

resources to reduce programmers and compilers’ effort in designing applications to be ex-

ecuted in PIM architectures. The experiments show that RVU can accelerate applications

up to 14.6× compared to an AVX baseline, while the penalty due to cache coherence and

communication represents an average percentage of 29% over an ideal PIM.

6.4.2 Design space exploration on RVU

In a second step, we used the simulator and the RVU model to propose a reconfig-

uration technique and improve energy efficiency according to the application’s demands.

The motivation and a description of modifications which have to be made in the RVU

design presented by Santos et al. (2017), Lima et al. (2018) are presented in Lima et al.

(2019). We varied the amount of active Functional Units, which is given by the #FUnn

labels in the following charts. Figure 6.12 presents normalized memory bandwidth and

processing power achieved by PIM logic to process kernels with different arithmetic in-
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tensity. These kernel applications range from mostly memory-bounded, such as Scale,

to mostly compute-bounded kernels, such as Polynomial Equation Solver. Figure 6.12(a)

depicts a pure streaming behavior where the number of Functional Units does not impact

on the total processing power, neither the average memory bandwidth. As this kernel

application is not compute-intensive, the memory bandwidth stands out when the appli-

cation makes use of largest load/store instructions available.

In contrast to the Stream Scale, the Polynomial Solver Equation shows an opposite

behavior to streaming applications, as shown in Figure 6.12(c). The largest vector widths

achieve both the highest values of memory bandwidth and processing power. In this

case, not only memory bandwidth is required by the application, but also the processing

power, which is achieved by the two reconfiguration setups (#FU32 and #FU16). It is

possible to notice that the combination of memory- and compute-bound characteristics are

found in the Bilinear Interpolation kernel. As shown in Figure 6.12(b), the discrepancy

of bandwidth and FLOPS is only observed on the setups #FU1. One can notice that

increasing the vector width also increase the memory bandwidth, thus allowing the use of

few FUs to achieve the maximum FLOPS.

For the kernels presented in Figure 6.12, Figure 6.13 shows speedup and energy

results. The streaming-like application in Figure 6.13(a) shows that bandwidth limits

the speedup. The reconfiguration setup with fewer FUs is enough to consume data and

achieve the same performance of the setups with more FUs. To achieve high perfor-

mance, more VPUs are required to allow larger load operations. However, this implies

that more hardware resources (register file, FSM, and FUs) will be kept in idle mode wast-

ing static power, thus reducing the energy efficiency of those configurations. Similarly,

Figure 6.13(c) can achieve the highest performance for different reconfiguration setups,

except for the #FU1. In Figure 6.13(d), different points can achieve the low energy con-

sumption of computation. However, as aforementioned, this application combines mem-

ory and compute-bound behavior, which means that the most efficient points will occur

when a better compromise between memory bandwidth and processing power. Compute-

intensive kernels are profoundly impacted by the number of FUs available in SIMD units,

as presented in Figure 6.13(e). Although the highest performance is achieved by using

the RVU4096 with setups #FU32 or #FU16, the most energy efficient configuration is

achieved by using the setups #FU16 and #FU8.

Despite Figure 6.13 have presented different energy consumption and performance

points separately, a better metric to show the efficiency of the reconfiguration is the
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Energy Delay Product (EDP). Figure 6.14 presents the EDP results of several applica-

tion benchmarks. These applications are classified according to their arithmetic inten-

Figure 6.12: Total memory bandwidth and processing power for applications with
different processing requirements. (a) Stream Scale, (b) Bilinear Interpolation and (c)

Polynomial Solver
(a)

(b)

(c)

Source: provided by the author
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sity into: mostly memory-bound applications, such as Scale, Copy, Fill, Add, Sum and

Daxpy, applications with intermediate arithmetic intensity, such as Interpolation and Dot-

product, and compute-bounded kernels, such as Matrix-vector Multiplication and Poly-

nomial Equation Solver. All columns were obtained by running the largest vector width

(RVU4096) and varying the reconfiguration setups. One can notice from Figure 6.14

that memory-bound applications must use fewer FUs to achieve significant energy effi-

ciency, since the lowest EDP results are obtained with the setup #FU1. On the other hand,

compute-bound applications require higher FLOPS, and the setup with lower EDP values

are obtained by using a larger amount of FUs.

Therefore, by identifying and taking advantage of the deviations in the compute-

intensity, we can reconfigure RVU and lead to more energy savings. Our simulation re-

sults show that, for a set of memory-bounded applications, the number of FUs on does not

interfere in the system performance so that energy savings can be achieved. On the other

hand, compute-bounded applications have their memory bandwidth as FLOPS dictated

by the biggest number of active FUs.

6.5 Applicability to emergent memory technologies

To simulate the performance of a system with main memory different from DRAM,

we chose the Resistive RAM (ReRAM) based on the 1-transistor-1-resistor (1T1R) ar-

ray architecture as it is organized similarly to the conventional 1-transistor-1-capacitor

(1T1C) array present in DRAMs. Thus, a ReRAM can be simulated by changing the

DRAM timings to ReRAM ones (MAO et al., 2016). Figure 6.15 presents the perfor-

mance of two scenarios to run an image recognition algorithm, namely Yolo9000, and

both setups are based on an HMC using DRAM and ReRAM timings.

The first architecture presented in Figure 6.15 is composed of 4 SSE-enabled cores

connected to HMC’s SerDes as presented in Section ??? TODO: referencia da secao

pim multicore, which can achieve up to 7 FPS with DRAM. The second scenario presents

the results for RVU (setup presented in Section ??) reaching up to 64 frames per second

(FPS). The bars of Figure 6.15 illustrate the main difference between the two designs,

where the traditional cores spends more time in generic matrix-multiplication relative to

memory access. Due to the large vector units, the PIM approach spends less time process-

ing and more time in memory access, which indicates that convolutional neural networks

may not take advantage of full processing power provided by large SIMD instructions of
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Figure 6.13: Speedup and energy consumption in three applications. (a) and (b) Stream
Scale, (c) and (d) Bilinear Interpolation, and (e) and (f) Polynomial Solver Equation

(a) (b)

(c) (d)

(e) (f)

Source: provided by the author

RVU cores.

By changing the memory parameters, the improvement on the memory access time

provided by ReRAM has improved the overall performance in both cases, as the memory

bound portions of Yolo application have significant impact on FPS. Thus, 4 X86 cores

and RVU have achieved 10 and 71 FPS, respectively, which represents an improvement

of 36% and 10% over DRAM.
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Figure 6.14: Energy Delay Product (EDP) results for several application kernels

Source: provided by the author

Figure 6.15: Effect of memory technology on application’s performance

Source: provided by the author

6.6 Simulation time and development efforts

In order to illustrate the performance of the proposed GEM5 support, Figure 6.16

shows the simulation time comparison between two scenario of traditional fully pro-

grammable cores. The first architecture is represented by 1 X86 SSE-enabled core con-

nected to the HMC’s SerDes and the second one consists of 16 X86 in-order cores con-

nected to the crossbar switches of the HMC, as presented in Section ??? TODO: qual

secao.

Figure 6.16 demonstrates that the simulation time is approximately proportional

to the number of simulated cores. The slowdown of simulating 16 cores in comparison to

a single core ranges from 9× to 16×. This slowdown is due to the sequential engine of

the gem5 simulator, which runs all models in a single core of the host machine. This issue

is an open problem in gem5 platform. Although there is a simple approach to parallelize
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Figure 6.16: Simulation time of PIM multicore

Source: provided by the author

the simulation engine, it is limited to cores without synchronization and requires more

development efforts in the overall gem5 engine to be beneficial in terms of simulation

time.

Figure 6.17 shows the simulation time comparison between traditional fully pro-

grammable cores and fixed-function PIM approach. As fixed-function PIM generally

relies on simplified models, their simulation time is drastically reduced. As the simulated

PIM reduces the number of instructions executed due to the improvement on vector capa-

bilities, the simulation time is drastically reduced. Also, it is important to notice that the

RVU PIM is able to operate through different operand sizes per instructions, thus operat-

ing from 128 Bytes to 4096 Bytes of data at once, which further reduces the simulation

time.

Table 6.1 presents an estimate of the development effort put into the gem5 support

for PIM presented in this thesis. One can notice that the a number of lines of code is

needed to insert a new ISA in the simulator. Though, the efforts to implement and test a

PIM logic cannot be underestimated, since synchronization of independent PIM logic is

crucial to prevent deadlocks on the memory system.
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Figure 6.17: Simulation time of RVU cores

Source: provided by the author

Table 6.1: Estimate of development efforts

Number of lines to write a PIM logic 2,500
Number of lines to extend x86 ISA with AVX 10,000
Number of lines to extend x86 ISA with PIM ISA 2,000
Number of lines added to HMC model 700
Number of lines to provide system-level features 1,500

Source: provided by the author
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7 CONCLUSIONS AND FUTURE WORK

In this thesis, we presented PIM-gem5, a set of models, mechanisms, and methods

to support PIM design exploration in the gem5 simulator. The proposed simulator pro-

vides system-level information, such as statistics regarding execution time, hardware uti-

lization, offloading and data coherence overhead for different types of PIM logic placed in

3D-stacked memories like HMC. We demonstrated how PIM-gem5 can provide support

not only for PIM multi-core, but also for fixed-function PIM, which demands different

programming and execution models. The simulation time of the case studies had shown

that time is not a drawback in any case, which is not much different from the time to

simulate a single processor in the original gem5.

We have demonstrated that the proposed HMC model achieves an aggregate band-

width close to the one specified by HMC consortium. Also, PIM-gem5 provides system-

level solutions which apply to a wide variety of PIM architectures, such as data coherence

protocols, instruction offloading mechanism, and virtual-to-physical address translation

mechanisms inspired in past studies and enhanced in this work. Finally, we demonstrated

the potential of the simulator to perform design space exploration in two case studies

of PIM architectures, namely Pointer-Chasing Engine, and Reconfigurable Vector Unit,

which made use of some generic system-level solutions.

By choosing a well-accepted, flexible simulator like gem5 as the basis of this work,

we can take advantage of many features related to mature design patterns for modeling,

compatibility with several operating system features and existing models of CPU and ISA,

without reinventing the wheel or limiting future expansion of this simulation tool. This

description of modifications made to gem5 aims at easing the learning process to include

new instructions and processing logic models, thus allowing computer architects to focus

on the proposal of new solutions rather than developing a simulator from scratch or based

on a tool with a steep learning curve. Though, it requires the architects to get acquainted

with gem5’s simulation modes and basic objects, such as slave/master ports and event

scheduling.

7.1 Future Work

We plan to include new features to PIM-gem5 and continue investigating generic

solutions for PIM architectures, mainly for the class of fixed-function and FU-centered



79

PIM designs. Some topics for future studies and developments are:

• Enable the simulation of new memory technologies and in-situ computing devices,

such as memristive devices and in-DRAM circuits.

• Investigate the benefits of multi-core host processors sharing and offloading code

to PIM devices.

• Investigate the benefits of static and runtime schedulers for PIM execution to pro-

vide seamless data mapping.

• Parallelize the simulation engine to run simulations on multi-core hosts.

7.2 Published Papers

The PIM support for gem5 was used as main tool either for validating an architec-

ture or a compiler in the works listed below.

1. SANTOS, Paulo C. et al. Processing in 3D memories to speed up operations on

complex data structures. In: Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2018. IEEE, 2018. p. 897-900.

2. DE LIMA, João Paulo C. et al. Design space exploration for PIM architectures

in 3D-stacked memories. In: Proceedings of the 15th ACM International Confer-

ence on Computing Frontiers. ACM, 2018. p. 113-120.

3. SANTOS, Paulo Cesar et al. Exploring IoT platform with technologically ag-

nostic processing-in-memory framework. In: Proceedings of the Workshop on

INTelligent Embedded Systems Architectures and Applications. ACM, 2018. p.

1-6.

4. AHMED, Hameeza et al. A compiler for Automatic Selection of Suitable Processing-

in-Memory Instructions. In: Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2019. IEEE, 2018. p. 897-900.

5. DE LIMA, João Paulo C. et al. Exploiting reconfigurable vector processing for

energy-efficient computation in 3D-stacked memories. In: International Sympo-

sium on Applied Reconfigurable Computing. Springer, Cham, 2019. p. 28-35.
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